
J. Math. Kyoto Univ. (JMKYAZ)
46-3 (2006), 637–655

A lower estimate of the topological entropy
from a one-dimensional reconstruction of

time series

By

Maria Vivien V. Visaya

Abstract

We present a method for estimating the measure of complexity of
an unknown dynamical system by studying the time series observed from
it. In particular, we propose a simple method for giving a lower bound
to the topological entropy of the unknown dynamical system via a one-
dimensional multivalued map obtained from the time series. We illus-
trate this method using the Hénon map and the magnetoelastic ribbon
data.

1. Introduction

Consider a sequence {xn}n∈N of successive iterates of a point x0 ∈ M by
some unknown dynamical system f : M → M, where M is a bounded domain
in Rd or a finite dimensional compact manifold. A sequence of real numbers
{un}n∈N is given as follows by an observation of {xn}. The orbit of the form

n �→ xn = fn(x0)

has a complete description of the evolution starting at x0, while

n �→ un = ρ(fn(x0))

contains only partial information about the orbit [17]. However, {xn} is often
difficult to observe, so understanding {un} is crucial if we want to infer some
interesting idea about how the true underlying system behaves. For instance,
if we know that the observed {un} has a complex behaviour, then we may say
that it comes from a complex nature of {xn}, modelled by a continuous map
ρ : M → R which assigns to each state xn ∈ M the corresponding observation
ρ(xn) ∈ R.

The notion of topological entropy, an invariant quantitative measure of the
complexity of a dynamical system f , is often used to define chaos. It measures
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the extent to which points that are very near are mapped to points that are
far away by repeated application of f . A dynamical system f may be said
to be chaotic if its topological entropy, denoted by htop(f), is positive. For
continuous maps on a compact metric space, htop(f) is given by the standard
definition due to Bowen [3].

In this paper, we present a means of estimating a lower bound of the
topological entropy of f via a time series {un}. In doing so, we employ the
method of time-delay reconstruction and consider a set-valued map, which we
shall refer to as a multivalued map, obtained from the time series. We then give
a condition on the multivalued map that implies the positivity of htop(f).

There are a number of literature on reconstruction that estimate the mini-
mum embedding dimension (e.g., [5], [13] and [14]). However, there is no stan-
dard method in choosing such. The purpose of this paper is to show that in
some cases, a one-dimensional reconstruction is enough to say something about
the complexity of the unknown dynamical system f . The following definitions
are important to understand our results.

Definition 1.1. Let X and Y be arbitrary sets. A multivalued map F
from X to Y , denoted by F : X ⇒ Y , is such that F (x) is assigned a set
Yx ⊂ Y for all x ∈ X. Let

1. dom(F ) = {x ∈ X | F (x) �= ∅},
2. F (X ′) =

⋃{F (x) | x ∈ X ′} for X ′ ⊂ X.
A single-valued map g : X ′(⊂ X) → Y is called a selector for F over X ′ if
g(x) ∈ F (x) for all x ∈ X ′.

Definition 1.2. Let X and Y be topological spaces and let F : Y ⇒ Y
be a multivalued map. Let f : X → X and q : X → Y be continuous single-
valued maps. The following diagram is said to upper-semicommute if q(f(x)) ∈
F (q(x)) holds for any x ∈ X:

f

X −→ X
q ↓ F ↓ q
Y ⇒ Y

In the setting given above, namely given f : M → M and ρ : M → R, let
I = ρ(M) be the image of ρ. We then define a multivalued map F : I ⇒ I by

(1.1) F(x) = (ρ ◦ f)(ρ−1(x))

such that the diagram

f

M −→ M
ρ ↓ F ↓ ρ(1.2)

I ⇒ I
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upper-semicommutes. Thus, for a time series {un} given by un = ρ(xn) =
ρ(fn(x0)), it follows that the relation between F and {un} is such that un+1 ∈
F(un).

Definition 1.3. Let F : R ⇒ R be a multivalued map and let J, K be
compact intervals. Let ∂−(J) and ∂+(J) denote the left and right boundaries of
J , respectively, and let K− = {x | x < min(K)} and K+ = {x | x > max(K)}.
The interval J is said to F-cover K if the following conditions are satisfied:

1. F(J) � K, namely int(F(J)) ⊃ K;
2. F(∂−(J)) ⊂ K− (resp., K+) and F(∂+(J)) ⊂ K+ (resp., K−); and
3. there exists a continuous selector for F over J .

Figure 1. (a) Intervals J1 and J2 do not F-cover K because condition 2 is
not satisfied. (b) Interval J1 does not F-cover K because condition 3 is not
satisfied.

Theorem 1. Let M be a path-connected compact metric space. Let
f : M → M be continuous, ρ : M → R continuous and onto an interval I,
and F : I ⇒ I be a multivalued map that makes diagram (1.2) upper semi-
commutative. Assume that

(∗) there exist disjoint compact subintervals J1, J2, . . . , J� of I and
K ⊃ J1 ∪ J2 ∪ . . . ∪ J� such that for any i = 1, 2, . . . , �, Ji F-covers K.

Then htop(f) ≥ log �.

The basic idea of Theorem 1 is that given a time series {un} observed from
f and a multivalued map F obtained from {un}, we can say something about
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the complexity of the true underlying system f as long as there is horseshoe-
like dynamics present in F . Given {un}, we plot in a two-dimensional phase
space points of the form zn = (un, un+k), with some k ≥ 1. This is how we
shall view a multivalued map Fk : I ⇒ I (see Section 4.2 for more details).
For k = 2, we illustrate in Figure 2 the reconstruction plot of the Hénon map
and magnetoelastic ribbon2 data which exhibit such horseshoe-like dynamics,
as shown in Section 5.

Figure 2. (a) Full shift for the second iterate of the reconstructed Hénon map
with a = 1.998 and b = 0.001. (b) Subshift for the second iterate of the
reconstructed magnetoelastic ribbon2 data.

This paper is organized as follows. In Section 2, we introduce the definition
and some useful properties of the topological entropy. In Section 3, we give a
proof of Theorem 1 together with another theorem that deals with the subshift
of finite type. In Section 4, basic terminologies on time series reconstruction are
discussed. The basic setting needed for the theorems applied to a time series is
given as well. In Section 5, an application to the Hénon map and magnetoelastic
ribbon data is presented. We give concluding remarks in Section 6.

2. Topological entropy

We give the standard definition of the topological entropy due to Bowen
[3].

Definition 2.1. Let (X, d) be a compact metric space with distance d
and let g : X → X be continuous. For any integer k ≥ 1, define the distance
function dk : X × X → R≥0 by

dk(x, y) = max
0≤�<k

d(g�(x), g�(y)).
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A finite set E ⊂ X is called (k, δ)-separated if dk(x, y) ≥ δ for all x, y ∈ E.
Moreover, if E has the maximal cardinality among all the (k, δ)-separated sets,
then E is called a maximal (k, δ)-separated set. The topological entropy of g is
given by

htop(g) = lim
δ→0

lim sup
k→∞

log sg(k, δ)
k

,

where sg(k, δ) is the cardinality of the maximal (k, δ)-separated set for g.

We mention some useful properties of the topological entropy [11].
(1) Let X be a compact metric space and let f : X → X be continuous.

Then

(2.3) htop(fm) = mhtop(f) for every m ∈ N.

(2) Let X and Y be compact metric spaces, and let f : X → X and
g : Y → Y be continuous maps. If f is semi-conjugate to g, namely there exists
a continuous onto map ϕ : X → Y , then

(2.4) htop(f) ≥ htop(g).

(3) For an integer � ≥ 2, let

Σ+
� = {s = (s0, s1, s2, . . . , sn, . . .) | si ∈ {1, 2, . . . , �} for all i ∈ N}.

The shift map σ : Σ+
� → Σ+

� is such that (σ(s))n = sn+1 for n ≥ 0. The pair
(Σ+

� , σ) is called the symbol space on � symbols or the full (one-sided) �-shift
space. The topological entropy of σ : Σ+

� → Σ+
� is given by

(2.5) htop(σ) = log �.

(4) For one-sided shifts, we can also define subshifts of finite type. Given
a transition matrix A = (aij) with aij ∈ {0, 1}, let

Σ+
A = {s ∈ Σ+

� | ask,sk+1 = 1 for k = 0, 1, 2, . . .}.

Notice that Σ+
A is invariant under the shift map σ. Define σA = σ|Σ+

A
. The pair

(σA, Σ+
A) is called the subshift of finite type for the matrix A. The topological

entropy of σA : Σ+
A → Σ+

A is given by

(2.6) htop(σA) = log sp(A)

where sp(A) is the spectral radius of A.

3. Proof of Theorem 1

We consider the case � = 2. The proof can be readily extended to the
general case and is treated in exactly the same manner. Let ρ−1(Ji) = Ni

and let ρ−1(∂(Ji)) = Li for any i = 1, 2. Then by the continuity of ρ, the
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compactness of the disjoint intervals, and the boundedness of M, each Ni is
compact and N1 ∩ N2 = ∅. Figure 3 shows possible pre-images of J1 and J2

in M. However, in general, the structure of Ni can be more complicated. For
instance, Figure 4 illustrates a possibility of the pre-image in M of J1 given in
Figure 1(a). We view L−

1 = ρ−1(∂−(J1)) as two disjoint subsets of N1 whose
image under f is mapped by ρ to opposite ends of K.

Figure 3. Pre-image in M for the intervals J1 and J2.

Figure 4. A possible pre-image in M that corresponds to F|J1 given in Figure
1(a). The shaded region is N1 and the region bounded by the inner curve is
f(N1).

We present the following Lemma needed to prove Theorem 1.

Lemma. There exists a continuous curve αi : [−1, 1] → Ni such that
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ρ(Im(αi)) = Ji and ρ(αi(±1)) = ∂±(Ji) for i = 1, 2.

Proof. Let Li = L−
i ∪ L+

i , where L±
i = ρ−1(∂±(Ji)). Choose x±

i ∈ L±
i .

By the path-connectedness of M, there exists a continuous path β : [0, 1] → M
connecting x−

i and x+
i . By the continuity of ρ, ρ(Im(β)) is compact and path-

connected in R, hence an interval. If ρ(Im(β)) �= Ji, then ρ(Im(β)) � Ji.
Let

t− = max{t ∈ [0, 1] | β(t) ∈ L−
i },

t+ = min{t ∈ [t−, 1] | β(t) ∈ L+
i }.

Clearly, t− < t+ so we obtain a path α = β|[t−,t+] that joins L−
i and L+

i .
Reparameterizing on [−1, 1], α satisfies the desired properties.

We are now ready to prove Theorem 1.

Let N = N1∪N2, S+ =
⋂∞

i=0 f−iN and ϕ : N → {1, 2} such that ϕ(x) = i
if x ∈ Ni. Let σ : Σ+

2 → Σ+
2 be the shift map such that (σ(s))n = sn+1 for

n ≥ 0. To show that htop(f) ≥ log 2, it is sufficient to show the existence of a
semi-conjugacy, namely a continuous surjective map h : S+ → Σ+

2 that makes
the diagram below commute.

f

S+ −→ S+

h ↓ σ ↓ h
Σ+

2 → Σ+
2

Define h : S+ → Σ+
2 by

h(x) =
(
ϕ(x), ϕ(f(x)), ϕ(f2(x)), . . .

)
= (s0, s1, s2, . . .) = s.

From the definition, h is well-defined and makes the diagram commute.
For h to be surjective, we show that

(3.7)
∞⋂

i=0

f−iNsi
�= ∅

for an arbitrary s = (s0, s1, s2, . . . , sn, . . .) ∈ Σ+
2 .

Recall that Ni �= ∅ for i = 1, 2. Let αs0 : [−1, 1] → Ns0 be a path given
in the Lemma. It is clear from the assumption (∗) of Theorem 1 and from the
commuting diagram in (1.2) that

(3.8) ρ(f(Im(αs0))) ⊃ (J1 ∪ J2)

holds. This is illustrated for a curve α in Figure 5.

Claim. There exists a curve αs0s1 ⊂ αs0 such that ρ(f(Im(αs0s1))) = Js1

and ρ(f(∂(αs0s1))) = ∂(Js1).
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Since αs0 is connected, f(Im(αs0)) is connected. Let ρ ◦ f(αs0) : [−1, 1] →
I. By (3.8), ρ(f(Im(αs0))) ⊃ Js1 . Choose x±

i ∈ L±
s1

. By the same argument
in the Lemma, there is a γ ⊂ f(Im(αs0)) that joins x−

i and x+
i . Again, as

in the Lemma, we can choose T1 = [t−1 , t+1 ] ⊂ [−1, 1], t−1 < t+1 , such that
ρ(f(αs0(T1))) = Js1 . Defining αs0s1 = αs0 |T1 , the claim follows. In particular,
αs0s1 ⊂ Ns0 ∩ f−1Ns1 , and hence Ns0 ∩ f−1Ns1 �= ∅.

Figure 5. A curve α ⊂ Ns0 and its image under f .

Inductively, we can construct a nested sequence of closed intervals

([−1, 1] ⊃) T1 ⊃ T2 ⊃ . . . ⊃ Tk ⊃ . . . , Tk = [t−k , t+k ], t−k < t+k

such that ρ(fk(Im(αs0 |Tk
))) = Jsk

and ρ(fk(αs0(t
±
k ))) = ∂(Jsk

) for any k.
Observe that

αs0s1...sk
= αs0 |Tk

⊂ Ns0 ∩ f−1Ns1 ∩ . . . ∩ f−kNsk
.

Since {Tk} are compact intervals and nested, T∞ =
⋂∞

k=1 Tk is also a non-empty
compact interval, and so

αs0 |T∞ ⊂
∞⋂

i=0

f−iNsi
.

Therefore,
∞⋂

i=0

f−iNsi
�= ∅

and thus h is surjective.
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Next, we show that h is continuous. Recall that the topology on Σ+
2 is

defined by the metric

d(s, s̄) =
∞∑

i=0

δi

2i
,

where

δi =
{

0 if si = s̄i

1 if si �= s̄i.

Choose x ∈ S+ such that h(x) = (s0, s1, s2, . . . , sn, . . .). For any ε > 0,
there exists m ∈ N such that 1

2m < ε. If si = s̄i for all 0 ≤ i ≤ m, then
d(s, s̄) < 1

2m < ε. For x ∈ S+ and for any k ∈ N, fk(x) ∈ N . From the
compactness of N , f i is uniformly continuous on N for all 0 ≤ i ≤ m. That is,
for any ν > 0, there exists η = ην > 0 such that for any x, y ∈ N ,

d′(x, y) < η ⇒ d′(f i(x), f i(y)) < ν for all 0 ≤ i ≤ m,

where d′ is the metric on M. Let

v∗ =
1
2

min
x∈N1,y∈N2

d′(x, y) > 0

and choose δ = ηv∗ . Then, for x and y with d′(x, y) < δ, h(x) and h(y) have
the same itinerary up to time m. Hence, d(h(x), h(y)) < 1

2m < ε and h is
continuous for any x ∈ S+.

3.1. Subshift of finite type
We shall extend Theorem 1 for the subshift of finite type.

Definition 3.1. Let F : I ⇒ I be a multivalued map on an interval
I and let {J1, J2, . . . , J�} be a set of compact disjoint subintervals of I. An
� × � matrix A = (aij), aij ∈ {0, 1}, is a transition matrix for F if for any
i = 1, 2, . . . , �, there is an interval Ki ⊂ I such that for all aij = 1, the
following conditions are satisfied:

1. Ki ⊃ Jj

2. Ji F-covers Ki.

As an illustration, consider the intervals J1, J2, J3 in Figure 6. Let the
dark vertical lines on the left be the associated Ki for each Ji. One choice for
A is

A =


 0 1 1

1 1 1
1 1 0


 .

Note that there are other choices for A. For instance, K1 replaced with
the dark vertical line on the right gives the matrix

A =


 0 1 1

0 1 1
1 1 0


 .
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Figure 6. Associated Ki for each interval Ji, i = 1, 2, 3, given by the dark
vertical lines.

Given a set of compact disjoint subintervals {J1, J2, . . . , J�} of I and a
transition matrix A for F , we consider the one-sided subshift of finite type
(σA, Σ+

A). Recall that the topological entropy of the subshift is determined by
the spectral radius of A, denoted by sp(A).

Theorem 2. Let f , M and ρ be as in Theorem 1. Let F : I ⇒ I be a
multivalued map over an interval I and let {J1, J2, . . . , J�} be a set of compact
disjoint subintervals of I. If A is a transition matrix for F , thenhtop(f) ≥
log sp(A).

Given a transition matrix A for F , let S+
A = h−1(Σ+

A) ⊂ S+, where h is
the map given in the proof of Theorem 1. By definition, S+

A is f -invariant.
Showing that h : S+

A → Σ+
A is a semi-conjugacy from f |S+

A
to σ|Σ+

A
is essentially

the same as the proof of Theorem 1.

4. Application to time series

4.1. Time-delay reconstruction
Measuring complex systems frequently do not yield the whole set of state

variables but we can infer the missing dynamics from a scalar time series by
using the familiar notion of time-delay technique, first implemented by Packard,
et al. [9]. Let M ⊂ Rd be bounded, f : M → M and ρ : M → R, where both
f and ρ are continuous. For m ∈ N, denote by Γm

ρ the reconstruction map of
the form

Γm
ρ :M → Rm

x �→(ρ(x), ρ(f(x)), . . . , ρ(fm−1(x))).
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Essentially, only one measurable quantity is needed from the d-dimensional
phase space. From the only quantity that is available, i.e., a sequence of real
numbers {un} = {ρ(xn)}, the procedure is to construct m-dimensional vectors
and obtain a reconstructed set

Am = {(ui, ui+1, ui+2, . . . , ui+(m−1)) | i ∈ N}.
For k ≥ 0, denote by Ak

m the kth lag of Am, where

Ak
m = {(ui, ui+k, ui+2k, . . . , ui+(m−1)k) | i ∈ N}.

Figure 7 illustrates the reconstructed sets A2 from the Hénon map for different
observation functions. With a correct choice of m, significant information about
the attractor in M can be found by studying Am.

If M is a compact manifold with dim(M) = D, then for smooth
f : M → M and ρ : M → R, the classical embedding result due to Takens
[17] states that under suitable genericity assumptions on the pair (f, ρ), if
N ≥ 2D + 1, then the map

ΓN
ρ :M → RN

x �→(ρ(x), ρ(f(x)), . . . , ρ(fN−1(x)))

is an embedding. We shall refer to ΓN
ρ as the embedding map and N as an

embedding dimension.

Figure 7. Reconstructed set A2 from the Hénon map with a = 1.4, b = 0.3, and
for the observation (a) ρ(x, y) = x (b) ρ(x, y) = x + y and (c) ρ(x, y) = xy.

4.2. Basic setting
We give the basic setting in applying the theorem to a time series.

A1. There exists f : M̃ → Rd continuous over a bounded domain M̃ ⊂ Rd.
Moreover, f has a closed positively invariant set M̂ in M̃.
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Note that we view f to model a time evolution of some phenomenon. In
particular, we consider the closed positively invariant set M̂ as an object of
interest carrying some interesting phenomena. We require M̂ to be closed in
order to assure that it lies strictly inside M̃. Hence, f defines a dynamical
system on a compact metric space M̂.

For x0 ∈ M̂, denote the positive limit set of x0 by

L+(x0) = {y ∈ M̂ | ∃ {ni} ⊂ N, with ni ∈ N and lim
i→∞

ni = ∞
such that lim

i→∞
fni(x0) = y}.

Since we are interested in a complicated dynamics in M̂, one way to de-
scribe the dynamics of f is by looking at an orbit that, in particular, exhibits a
chaotic behaviour. By definition, L+(x0) captures the asymptotic behaviour of
the phenomenon. Therefore, we often consider L+(x0) to contain some chaotic
dynamics. Moreover, since O+(x0) ⊂ M̂, L+(x0) is a compact invariant
subset of M̂.

A2. There exists a path-connected positively invariant compact neighborhood
M of L+(x0) in M̃.

Since L+(x0) can be viewed as some kind of an attractor, it attracts some
neighborhood of it, say M ⊂ M̃. In an ideal setting, we are tempted to take
M as L+(x0). But to be certain that M is path-connected, we take M to be
a neighborhood of L+(x0).

Notice that, in general, the assumption A2 may not be satisfied if L+(x0)
is not connected. We show a way to give an evidence for this assumption in an
example studied in Section 5. Once this is accepted, it follows that I = ρ(M)
is connected, hence I is an interval, and the multivalued map F : I ⇒ I is
defined by (1.1).

In the case where the physical system is a flow φ : R × M → M, we
consider f : M → M as the time τ map given by f(x) := φ(τ, x). For a
positive orbit {xn}n∈N, x0 ∈ M, each xn is taken at a regular interval τ > 0,
namely xn = fn(x0) = φ(nτ, x0).

In experiments, it is reasonable to assume that the observations are taken
after transient behaviour has passed, i.e., O+(x0) = {xn}n≥0 is close to the
attractor L+(x0), hence {xn} ⊂ M. Since the time series {un} is obtained
from an orbit {xn} in M, if we reconstruct it in two-dimension, we expect that
the reconstructed points {(un, un+1)}n∈N

, which is a much smaller set in R2,
distribute in Γ2

ρ(M).
For applications, we view this set A2 = {(un, un+1)} as the graph of the

multivalued map F . The following is an argument that supports this view.
Recall that

graph(F) = {(x, y) | x ∈ I = ρ(M), y ∈ F(x)}.
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Thus, by the upper-semicommutative diagram (1.2), A2 is contained in the
graph of F . On the other hand, since the attractor A we consider is the
limit set L+(x0) of the orbit {xn} and M is a small neighborhood of A, it is
reasonable in practice to assume that {xn} is “almost dense” in M, namely
it captures most of M. Therefore, the reconstructed attractor A2 = Γ2

ρ(A)
is approximately the same as M2 = Γ2

ρ(M), which means that any point
(x, y) ∈ M2 can be approximated by a point in A2. Take any point (x, y) ∈
graph(F). Then from the definition that F = ρ ◦ f ◦ ρ−1, there exists ξ ∈ M
such that x = ρ(ξ) and y = ρ(f(ξ)), or equivalently, (x, y) = Γ2

ρ(ξ). Since
{xn} is “almost dense” in M, there should be an xn which is close to ξ, and
hence (x, y) is close to Γ2

ρ(xn) = (un, un+1) ∈ A2. This shows that graph(F)
is contained in M2 = Γ2

ρ(M) which is, in practice, approximately equal to A2.
Thus we have approximately the opposite inclusion and hence, it is justified
that at least in applications, it is reasonable to consider A2 as the graph of the
multivalued map F .

With these assumptions, we have the following correspondence: the un-
known dynamical system f corresponds to the multivalued map F ; the attrac-
tor A = L+(x0) in M corresponds to A2; and the orbit {xn} converging to A
corresponds to the observation {un}.

5. Examples

5.1. The Hénon map
We first consider the two-dimensional Hénon map given by

xn+1 = 1 + yn − ax2
n

yn+1 = bxn

(5.1.1)

with initial value (x0, y0) = (0, 0). Denote by H : I ⇒ I the multivalued map
from an observation of the Hénon map. As mentioned in Section 4.2, we view
the graph of H as the reconstruction plot of the points that are of the form
zn = (un, un+1).

Although it does not matter in principle what set of variables is used in
choosing ρ to do the reconstruction, we obtain a good representation of the
true attractor for the Hénon map for ρ(xn, yn) = xn, as depicted in Figure
7(a). This is because the Hénon map in equation (5.1.1) can be written as a
second order one-dimensional difference equation given by

xn+1 = bxn−1 + 1 − ax2
n.

Thus, in such a case, the reconstructed set exhibits the exact dynamics of the
real system, provided that a good observation function is chosen.

Figures 7 and 8 illustrate the graphs of H and H2 for parameters a = 1.4,
b = 0.3, and for three different observation functions. Although we do not
find intervals that satisfy assumption (∗) given in Theorem 1 for this choice of
parameter values, the existence of the intervals is clear for H2 for parameters
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Figure 8. Reconstructed set A2
2 from the Hénon map with a = 1.4, b = 0.3, and

for the observation (a) ρ(x, y) = x (b) ρ(x, y) = x + y and (c) ρ(x, y) = xy.

a = 1.998, b = 0.001, and observation ρ(xn, yn) = xn, as depicted in Figure
2(a).

5.2. The magnetoelastic ribbon
The following example is an application to a time series data coming from

a true experiment courtesy of J. Reiss and K. Mischaikow.
The magnetoelastic ribbon is a thin strip of magnetic material whose shape

can be changed by applying a magnetic field to it. This strong coupling between
strain and magnetization leads to interesting dynamics. Depending upon the
parameters (i.e., the strength of the applied uniform field Hdc, the strength and
frequency f of the applied oscillating field Hac in the vertical direction), the
motion of the ribbon may exhibit a wide variety of different behaviours.

The dynamics of the ribbon was driven by both DC and AC magnetic fields
provided by three mutually orthogonal pairs of Helmholtz coils. The position
of the ribbon once per driving period is considered, and the data set consists of
consecutive voltage readings from a photonic sensor. For further information
concerning the experimental setup, see [10].

We consider two distinct ribbon data which we refer to as ribbon1 and
ribbon2. The parameters for ribbon1 are Hdc = 2212.4542 mV, Hac = 3200
mV and a driving frequency f = .95 Hz. The parameters for ribbon2 are
Hdc = 2825.3968 mV, Hac = 2840 mV and f = .95 Hz. Both consist of 10, 000
data points.

For the ribbon1 data, Figure 9 illustrates the reconstruction plot for the
lags k = 1 and k = 2. For the third iterate F3 (refer to Figure 10), we can
find J1 and J2 that satisfy assumption (∗) in Theorem 1. Although not seen
in Figure 10(b), we assume the existence of a continuous selector for F over
the intervals J1 and J2 since ideally, the reconstructed attractor is the closure
of infinitely many reconstructed points in R2. Moreover, with the implicit
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Figure 9. Reconstruction plot for the magnetoelastic ribbon1 data with lag (a)
k = 1 (b) k = 2. (Data courtesy of J. Reiss.)

Figure 10. (a) Reconstruction plot for the magnetoelastic ribbon1 data with
lag k = 3. (b) Intervals that satisfy (∗).

assumption that further increasing the number of data points n will not alter
the intervals that satisfy (∗) for F3, we thus have htop(f) ≥ 1

3 log 2.
In [8] and [16], the existence of symbolic dynamics for ribbon1 is de-

tected from an isolating neighborhood composed of four mutually disjoint two-
dimensional subsets Bi, i = 1, 2, 3, 4, with the associated transition matrix given
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Figure 11. Reconstruction plot for the magnetoelastic ribbon2 data with lag
k = 1. (Data courtesy of K. Mischaikow.)

by

T =




0 0 0 1
0 1 1 0
1 0 0 0
0 1 1 0


 .

This agrees with the itinerary of J1 = [7.2047, 7.2677] for k = 3. In particular,
B4 lies in the rectangle R = {(x, y)|7.15 ≤ x ≤ 7.26, and 6.6 ≤ y ≤ 6.9}
in Figure 17 of [16], and so a part of B4 whose x coordinate lies in J1 covers
itself under the third iterate, as suggested by an admissible periodic sequence
B4 → B1 → B3 → B4. This further supports our estimate for the lower bound
of htop(f).

For the ribbon2 data, the reconstruction plot for lag k = 1 is illustrated in
Figure 11. Although there are no intervals for which a horseshoe exists for the
full shift, we did find a subshift of finite type for the second iterate, associated
with the matrix [

1 1
1 0

]

as depicted in Figure 2(b). In this case, htop(f) ≥ 1
2

(
1+

√
5

2

)
.

We now verify assumption A2. In particular, we want to obtain informa-
tion about the path-connectedness of M only from the observed time series
{un}. One approach to this problem is to compute a topological invariant,
called the Betti number. Note that to a topological space X, one can assign
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homology groups Hi(X), i = 0, 1, 2, . . .. Betti numbers, which we denote as
βi, are the rank of Hi(X). For k = 0, β0 counts the number of connected
components of X. In particular,

X is connected ⇔ β0 = 1.

The zeroth Betti number is therefore the type of information we seek,
particularly in verifying assumption A2. Note that in this context, since M is
a neighborhood, the path-connectedness and connectedness of M are the same.

For practical verification, computation of β0 is carried out using the CHomP
software [18]. The reconstructed set in Rm is approximated by a cubical set,
that is, a union of finitely many m-cubes. The procedure is to grid Rm into
m-dimensional boxes and consider the set of all boxes that contain the data
points. We refer to [6] for the complete description of the algorithm. For the
ribbon1 and ribbon2 data, a 50 × 50 cubical grid composed of grid squares of
size 0.023070 and 0.033136 respectively, give β0 = 1 for m = 2 and m = 3. In
principle, if the data size is large enough, one can continue this procedure for
larger m and finer grid size, and obtain a more convincing conclusion on the
connectedness of A = L+(x0). Of course, in practice, this procedure cannot
give a mathematical proof due to the limitation that one can only deal with
finite (relatively low) m and finite (though large) data points.

Note that if the reconstruction is an embedding, then the conclusion about
the connectivity of A is clear since the properties of A is mirrored in AN , where
N is an embedding dimension. The problem is that the dimension D of the true
dynamical system f is usually unknown. Although there are statistical methods
for identifying D, a reasonable estimate of the true dimension is difficult to
compute from experimental data. Despite the practical assumption that the
number of data points is large enough, in theory, D is a limit that is reached only
with infinite data. Furthermore, in the case where D is known, it may happen
that N = 2D+1 is too large and thus presents the difficulty in visualizing AN .

6. Conclusions

We have presented a method for showing the positivity of the topological
entropy of the unknown dynamical system from a one-dimensional reconstruc-
tion of time series. By constructing a one-dimensional multivalued map F
obtained from a time series {un}, we can give a lower estimate for the topolog-
ical entropy of the true dynamical system f , provided there is horseshoe-like
dynamics in F .

The advantage of the method presented lies in the fact that we do not
need the reconstruction map to be an embedding. We detect symbolic dynam-
ics through the disjoint intervals satisfying the assumptions in either of the
theorems and show that the true system f is at least as complicated as that of
the one-sided full shift or subshift of finite type.

It is worth noting the result of Mischaikow, et al. ([7], [8]) that is like-
wise independent of the embedding dimension. In their work, they consider a
multivalued map F : G ⇒ G, G ⊂ R2, that takes squares to a set of squares.
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We have further simplified studying the dynamics in the one-dimensional case
by considering a one-dimensional multivalued map F : I ⇒ I defined by (1.1)
such that for a given time series {un}, un+1 ∈ F(un).

Note that throughout the paper, we assume that a time series data set
does not contain any error. Experimental time series data, however, consists
of values un related to the original states by

un = ρ(xn) + ζn,

where ζn denotes some inaccuracy in measuring the observations. In [7] and
[8], the observation function is modelled as a multivalued map that takes into
account error present in the time series. A multivalued measurement function
θ : M ⇒ R is defined such that each point x ∈ M is assigned an interval
θ(x) = Ix ⊂ R, with the assumption that ρ is a continuous selector for θ.

Similarly, our method is insensitive to any small error or any small pertur-
bation of f , say fλ. This is due to the assumption that F(∂(Ji)) will always
lie strictly outside K. This may be argued as well by the robustness of the
horseshoe which assures that the graph of Fλ will lie close to the graph of F
near the disjoint intervals satisfying (∗).

Clearly, the drawback in our method is that the application is restricted
to time series data that come from an almost one-dimensional chaotic system.
Furthermore, we lose information about the geometric information of the true
attractor A ⊂ M. In particular, the topology of A may not be mirrored in a
one-dimensional reconstruction.
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