J. Math. Kyoto Univ. (JMKYAZ)
46-3 (2006), 525-533

Relative isoperimetric inequality
on a curved surface

By

Keomkyo SEO*

Abstract
Let C be a closed convex set on a complete simply connected surface
S whose Gaussian curvature is bounded above by a nonpositive constant
K. For a relatively compact subset 2 C S ~ C, we obtain the sharp
relative isoperimeric inequality 2w Area(Q) — K Area(Q2)? < Length(9Q ~
dC)2. And we also have a similar partial result with positive Gaussian
curvature bound.

1. Introduction

The classical isoperimetric inequality says that 4w Area(2) < Length(9£2)?
for a compact subset 2 C R2. Equality holds if and only if € is a disk. Many
mathematicians have generalized this inequality. For example, the following
isoperimetric inequality is well-known. For a domain €) in a complete surface
S of Gaussian curvature bounded above by a constant K,

(1.1) 4 Area(Q) — K Area(Q)? < Length(99).

Equality holds if and only if €2 is a geodesic disk of constant Gaussian curvature
K ([1], [2], [3], [B], [9], [11], see [10] for more references.).

Now we consider the relative isoperimetric problem. It is to find an isoperi-
metric region outside a closed convex set C' in a Euclidean space or in a Rie-
mannian manifold M. We study this problem in a smooth category. On that
account we assume JC and O0f) are smooth for a closed convex set C' and a
subset 2 C S ~ C. One may then ask if the relative isoperimetric inequality
similar to (1.1) holds. That is, given a complete simply connected surface S of
Gaussian curvature bounded above by a constant K, a closed convex set C' in
S, and a relatively compact subset 2 of S ~ C', does the inequality

(1.2) 2 Area(S2) — K Area(Q)? < Length(9Q ~ 0C)?
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hold? And does equality hold if and only if € is a geodesic half disk with
constant Gaussian curvature K and 02 ~ 9C' is a geodesic semicircle?

Choe ([6]) proved (1.2) for a disk type domain  C S ~ C with nonpositive
Gaussian curvature, i.e. K = 0. In this article we will show that the inequality
(1.2) holds for a relatively compact subset  C S ~ C of Gaussian curvature
bounded above by a nonpositive constant K. And we also prove a similar
partial result with positive Gaussian curvature bound.

The author would like to thank Professor J. Choe for bringing this problem
to his attention.

2. The case of constant Gaussian curvature

In this section we prove the relative isoperiemtric inequality on a complete
simply connected surface with constant Gaussian curvature K, for complete-
ness. First we consider the case of K < 0.

Theorem 2.1.  Let C be a closed convex set in a complete simply con-
nected surface S with constant Gaussian curvature K < 0. Then, for a rela-
tively compact subset Q in S ~ C' we have

(2.1) 2 Area() — K Area(2)? < Length(9Q ~ 9C)?,

where equality holds if and only if Q is a geodesic half disk and 9Q ~ 0C' is a
geodesic semicircle.

Proof. 1If each connected component D of §2 is not a disk topologically,
we fill it to get a disk type domain D C S ~ C, using the simple connectivity
of S. One can easily see that Area(D) < Area(D) and Length(dD; ~ 9C) <
Length(D ~ AC). Once we have the inequality (2.1) for D, we can prove (2.1)
for a relatively compact subset D C S ~ C, since we have

2mArea(D) — K Area(D)? < 2rwArea(D) — K Area(D)?
(2.2) < Length(0D ~ dC)?
< Length(0D ~ 0C)2.

And if D is an annular domain surrounding C, then D U C' satisfies the
isoperimetric inequality (1.1) which automatically satisfies (2.1). Hence it is
enough to show that the inequality (2.1) holds for a domain € which is a disjoint
union of disk type D’s. We assume that each D is a disk type domain. For
each D C S ~ C, we obtain a new domain D C S by reflecting the convex hull
of D about its geodesic boundary inside C'. Let

Q = U(D U the convex hull of D).

Then from the classical isoperimetric inequality for a constantly curved
surface €2, we have

(2.3) 4mArea(Q) — K Area(Q)? < Length(9Q)2.
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Furthermore we know
2Area(Q) < Area(Q) and 2Length(9Q ~ dC) > Length(9Q).

Applying these equalities to (2.3), we can see that a domain Q which is a
disjoint union of disk type D satisfies the inequality (2.1). Equality occurs if
and only if Q satisfies equality in (2.3). Hence Q2 is a geodesic half disk and
092 ~ 9C is a geodesic semicircle. Therefore we obtain the above theorem. [

For K > 0, the proof of Theorem 2.1 doesn’t work because the inequality
(2.2) doesn’t hold in this case. However, with more assumptions, we have a
similar partial result as follows.

Theorem 2.2.  Let C be a closed convex set in a two dimensional sphere

52(\/%) C R? of radius \/i? with constant Gaussian curvature K > 0. Sup-

pose that € is a disk type domain in SQ(\/L?) ~ C and S is contained in a

hemisphere. Then we have
21 Area(Q) — K Area(Q)? < Length(99Q ~ 9C)?,

where equality holds if and only if Q is a geodesic half disk and 02 ~ 0C
s a geodesic semicircle.

Proof. Use the reflection arguments as in the proof of the Theorem 2.1.
O

3. The case of Gaussian curvature bounded above by a nonpositive
constant

In 1933, Beckenbach and Radé [4] gave a proof of (1.1) by using subhar-
monic functions. This method was employed by Choe [6] to prove the relative
isoperimetric inequality (1.2) holds for K = 0. We also apply this method to
prove the following.

Theorem 3.1.  Let C be a closed convex set in a complete simply con-
nected surface S with Gaussian curvature Kg bounded above by a nonpositive
constant K. Then, for a relatively compact subset Q in S ~ C we have

(3.1) 21 Area(Q) — K Area(Q)? < Length(92 ~ 9C)?

and equality holds if and only if Q is a geodesic half disk with constant Gaussian
curvature K and 02 ~ 0C' is a geodesic semicircle.

Proof. As the same arguments of proof of Theorem 2.1, it is enough to
show that the inequality (3.1) holds for a disk type 2 € S ~ C. And we
may assume that 002 meets OC perpendicularly, otherwise for sufficiently small
€ > 0, we approximate € with €2, satisfying that 0Q2. meets OC perpendicularly,
Area(§2.) — Area(Q2) and Length(€.) — Length(£2) as ¢ — 0. (In fact, we only
approximate  with Q. in an e-ball B(p,¢) for each point p € 9(0Q2 N 9C).)
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Now let D C R? be a half disk with the diameter C; = {(z,y) : * =
0,—1 < y < 1} and the semicircle Coy = {(z,y) : © > 0,2% + y?> = 1} such
that 0D = C; U Cy. We consider the isothermal coordinates (z,y) of  with
a conformal map ¢ : D — Q such that ¢(C1) = 9Q N IC. Then the metric
of Qis g = €2/ (dx? 4 dy?) for some smooth function f on Q. Note that the
Gaussian curvature Ko = —e~2fAf < K by assumption.

Let h be the solution of the mixed boundary value problem on D satisfying

Ah+ Ke?" =0 in the interior of D

h=f on (s
oh
W 0 on (1,

where v is the outward unit normal to C;. We know the existence and regularity
of the solution h of the above problem [7]. The convexity of C implies

0
(32) FZSO on Ol.

(See [6] for the proof.) It should be mentioned that the inequality (3.2) does
not depend on the Gaussian curvature of the surface 2.
Thus by invoking the maximum principle, we obtain

(3.3) h>f on D.

Let D be D equipped with the metric g = e*"(dz? 4 dy?). Denote by C,
and Cy the parts of D corresponding to Cy, Co, respectively. Hence by the
above inequality (3.3),

Area(Q) < Area(D).

And Length(dQ ~ dC) = Length(C5). On the other hands, by Theorem
2.1

2 Area(D) — K Area(D)? < Length(C3)?

Using the above relations and the assumption K < 0, we have

2mArea(Q) < 2rArea(D) < Length(Ch)? + K Area(D)?
< Length(9Q ~ 0C)? + K Area(f2)?

To have equality in (3.1), we notice that h = f on D. In other words, D
has constant Gaussian curvature K. Hence by Theorem 2.1, equality holds if
and only if 2 is a geodesic half disk with the constant Gaussian curvature K
and 02 ~ JC is a geodesic semicircle. |

4. The case of Gaussian curvature bounded above by positive con-
stant

For a nonnegatively curved surface S, we cannot get the inequality (1.2)
in general. For example, we consider a flat cylinder S x [0,00) glued with a
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lower hemisphere S? along its boundary S in R3. If we take S? as a convex
set C and 2 = S x [0,¢] for ¢t > 0 satisfying QN C = S'. Then it is easy
to see that Gauss curvature K = 1 but (1.2) does not hold. However, under
additional conditions, we have the following theorem.

Theorem 4.1.  Let C be a closed convex set in a complete simply con-
nected surface S with its Gaussian curvature Kg bounded above by a positive
constant K. Suppose that for a disk type domain Q@ C S ~ C. Then we have

2w Area(2) — K Area(Q2)? < Length(9Q ~ 0C)?

and equality holds if and only if Q is a geodesic half disk with constant Gaussian
curvature K and 02 ~ 0C' is a geodesic semicircle.

Proof. We will use Bandle’s method ([3]).
As in the proof of Theorem 3.1, we consider the isothermal coordinate of (2
with a conformal map ¢ : D —  such that ¢(C4) is contained in 0C. The
curvature assumption is

Ks=—e"2Af <K.
Thus we have

Af 4+ Ke*f > 0.

Put & = f—h, where h is the solution of the mixed boundary value problem
on D:

Ah =0 in the interior of D

(41) h= f on 02
oh
% =0 on Cl.

We know the existence and smoothness of the solution A of the above
problem ([7]). Then by the definition of k and (3.2) we get

(4.2) Ak + Ke?*¢?® >0 in the interior of D
k=0 on Cy
ok
(4.3) £y <0 on Ci.

Now let D be D equipped with the metric ds? = ?"(dz? 4 dy?). Recall
that D is flat by (4.1).
Let D(t) = {z € D : k(x) > t}. Define

t; = inf k(x), ta = sup k(z), a(t) :/ e*'dv, and A :/ e
zeD z€D D(t) D

where dv is an area form in D.
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Notice that a(t) is a decreasing function with a(t;) = A and a(t2) = 0.
Since k is a smooth function and e2” is a positive function, we have the function
t(a) which is the inverse function of a(t). Then we define

H(a) =K e dv = K/ W,
D(t(a)) 0

By the co-area formula for D(t) C D,

2h
@ = _/ ¢ ds for almost all ¢ > ¢;.
dt aD(t)y~cy |VE|

Applying the Schwarz inequality, we obtain

2 €2h
(4.4) / ehds S/ —ds/ |Vk|ds.
aD(t)~Cy apw~c, IVEl Japw~c,

By (4) and (4.4) we have

da S (faD(t)Ncl elds)?

(4.5) - > :
dt = [opc, VElds

Now we use the divergence theorem to get

Akdv :/ %ds :/ %ds—&—/ %ds S/ %ds,
D(t) aD(t) OV ey O Calt) OV Ca(ty OV

where C1(t) = C1 N OD(t), Ca(t) = OD(t) ~ C1(t) and v is the outward unit
normal to dD(t). In the last inequality we applied the inequality (4.3). Note

that % = (Vk,v) and v = |_Vikk on 0D(t). Therefore,

/ Akdv < / %ds = —/ |Vk|ds,
D) Ca(t) OV Ca ()

(4.6) / |Vk\ds:/ IVk|ds
AD(t)~0C Ca(t)

< —/ Akdv < H(a(t)) using (4.2).
D(t)

Furthermore we know the classical relative isoperimetric inequality on a
complete simply connected flat surface S, i.e., for any domain ¢(D(t)) C S,,

2
(4.7) 277/ e < / eds
D(t) OD(t)~0C1

By the inequalities (4.5), (4.6), and (4.7),

da 2ma

(4.8) @ 2 HW

for t1 <t <to.
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Note that in the above equalities, t(a) is locally Lipschitz on (0, a(t1))([3],
Lemma 4). Therefore H(a) is differentiable for almost all a in (0,a(t;)). Since

dH(a) =H'(a) = i K/ efdv | = i (K/ ezt(l)dl> = K2t
da da D(t(a)) da 0

and H" (a) = 2K62t(“)? <0,
a

H' 1da
we get ﬁ = 5& ThuS by (48),
H'H > —naH".
In other words

H?(a)

2

(aH’(a)—H(a)+ )120 for 0<a<a(t).

We integrate above inequality between a = 0 and a = a(0) to give

H?(a(0))
2w

H?(0)
or

a(0)H'(a(0)) — H(a(0)) + + H(0) > 0.

Moreover we have H'(a(0)) = K and H(0) = 0. Therefore,

H(a(0))

KMg
— > —
a(0) — My + o 2 0, where M, %

On the other hands, in the domain D ~ D(0) where k is nonpositive we
have the following inequality:

/ 2l dy > / 2l dv
D~D(0) D~D(0)

ie.,
A —a(0) = M — Mo,
where M = [ e*/dv = Area(Q) and we recall A = / e*'dv = Area(D).
We obtaiﬁ P
A—-M+ K > 0.
Hence

21A — 27 M + KM? > 0.

And by the relative isoperimetric inequality in flat surfaces, we obtain

2w Area(D) < Length(0Q ~ 9C)2.
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Thus we have
2 Area(f2) < Length(9Q ~ 0C)? 4+ K Area(Q).

Equality occurs only if k satisfies equality in (4.2). It follows that Af +
Ke?f = 0. Hence Q has constant Gaussian curvature K. By Theorem 2.2,
equality holds if and only if 2 is a geodesic half disk with constant Gaussian
curvature K and 02 ~ 0C' is a geodesic semicircle. O

5. Remarks

Howard ([8]) proved the Sobolev inequality

(5.1) in [ 72+ (/SIfIQdA)Q < (/S IIVfIIdA>27

where S is a complete simply connected surface with Gaussian curvature Kg <
—1 and f is a compactly supported function of bounded variation on S. By
the coarea formula ([8]) for functions of bounded variation on a surface S, the
last term of (5.1) can be written as follows,

[Ivslaa= [ row e s @)=
S 0

where H* is the one dimensional Hausdorff measure. We say that a function f
on S ~ C has a relatively compact support if the support of f is a compact
subset in the relative topology on S ~ C. Using Howard’s argument ([8]), we
get the relative Sobolev inequality corresponding to the relative isoperimetric
inequality (3.1) as follows.

Theorem 5.1.  Let S be a complete two dimensional simply connected
Riemannian manifold with Gaussian curvature Kg < K <0, and C its closed
convex subset. Then

2
o [ CdeA—K</S CfIdA> s(/s CIIVfIIdA>

for every relatively compactly supported function f of bounded variation on
S ~ C. FEquality holds if and only if up to a set of measure zero, f is cxp
where ¢ is a constant and D is a geodesic half disk with constant Gaussian
curvature K and 0D ~ OC is a geodesic semicircle.

2

Howard showed the inequality (5.1) for a compactly supported function f
of bounded variation on S, but in our Theorem 5.1, the function f may not
vanish on 9C. It is sufficient that f is compactly supported in the relative
topology on S ~ C for a closed convex set C' C S.
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