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A sequence of blowing-ups connecting moduli
of sheaves and the Donaldson polynomial

under change of polarization

By

Kimiko Yamada∗

Introduction

Let X be a nonsingular projective surface over C, H an ample line bundle
on X, and MH(c1, c2) the moduli scheme of S-equivalence classes of rank-two
H-semistable sheaves on X with fixed Chern classes (c1, c2). It is projective
over C.

Fix two ample line bundles H1 and H2 on X. In this article, we connect
MH1(c1, c2) with MH2(c1, c2) by a sequence of blowing-ups and blowing-downs
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using canonical properties of moduli schemes, and study the exceptional divisor
Ei of φi in (0.1). Further, we apply this sequence to the calculation of the Don-
aldson polynomial of X. We shall algebro-geometrically inquire into the fact
the Donaldson polynomials of X are independent of the choice of Riemannian
metrics when b+2 (X) = 2pg(X) + 1 > 1.

Now let us survey the historical background and outline the content of
this article. Roughly speaking, two methods have been developed to describe
the change of moduli of sheaves under the change of polarization as a sequence
of (birational) morphisms. First, Matsuki and Wentworth [MW] succeeded in
connecting MH1(c1, c2) and MH2(c1, c2) by a sequence of Thaddeus-type flips.
They introduced the notion of twisted stability of sheaves, and reduced the
construction of the flip (0.1) to the Mumford-Thaddeus principle, which dealt
with the change of GIT quotients under a variation of G-linearization.
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On the other hand, Ellingsrud-Göttsche [EG] and Friedman-Qin [FQ] con-
structed a diagram of blowing-ups (0.1) by elementary transforms of universal
sheaves, mainly in case where the Kodaira dimension of X is 0 or −∞. Com-
paring this with the above-mentioned construction via Thaddeus-type flip, we
see that the good point of this method is its definiteness; the centers of blowing-
ups in (0.1) is directly described in terms of moduli problems. One can also get
the relation between universal sheaves on two moduli spaces in (0.1) very con-
cretely. Thanks to such definiteness, it should be possible to derive interesting
properties of this flip with the help of moduli theory. However, this method
has been established only for surfaces with κ(X) ≤ 0. One of main results
of this article is that we could complete it for any surfaces with any Kodaira
dimensions. Our construction of a flip (0.1) shall proceed as follows. In Section
2, we endow a subset

P1 = {[E] | E is not H2-semistable}

of MH1(c1, c2) with a natural subscheme structure. Here several improvements
are needed since P1 may admit singularities when κ(X) is positive. In Section
5, one can also study some structure of this P1 over Pic(X)×Hilb(X)×Hilb(X).

Let φ : M̃ → MH1(c1, c2) be the blowing-up of MH1(c1, c2) along P1.
Roughly speaking, we modify the pull-back (idX ×φ)∗U1 of the universal family
of MH1(c1, c2) via an elementary transform to obtain a new flat family W on
X × M̃ , and get a morphism ψ : M̃ →MH2(c1, c2) using W in Section 3. This
ψ is in fact blowing-up of MH2(c1, c2), as shall be shown in Section 4. Therefore
we obtain a sequence of blowing-ups (0.1) connecting MH1 and MH2 .

Although this idea is primarily based on that of Ellingsrud-Göttsche or
Friedman-Qin, we have to proceed more carefully. Denote the exceptional di-
visor of φ by E. On X ×E, there is the relative Harder-Narasimhan filtration

0 −→ F̃ −→ (id×φ)∗U1|X×E −→ G̃ −→ 0

with respect to H2-stability. Then one can naturally induce another exact
sequence

(0.2) 0 −→ G̃(−E) −→W|X×E −→ F̃ −→ 0.

We have to show that (0.2) is a family of nontrivial extensions in order to get
a morphism ψ : M̃ → MH2 . In contrast to the case where κ(X) ≤ 0, it is not
sufficient for our purpose to look only over tangent spaces of E and M̃ since
P1 and E admit singularities. We shall examine the infinitesimal behaviors of
E and (idX ×φ)∗U1.

Here let us mention another good point of this method. When one com-
paresMH1(c1, c2) withMH2(c1, c2), it is often useful and important to grasp the
structure of exceptional divisor of φi in (0.1). When pg(X) = 0 or KX is trivial,
this divisor was investigated in [EG, Section 4], but little has been known about
it in general; this divisor is much more complicated when κ(X) > 0. In Lemmas
8.2 and 8.4, we shall show that the obstruction theory of universal families may
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provide us with some useful information about exceptional divisors. This is
possible because our construction of a flip is concrete enough. The information
obtained in such a way shall play an essential role later in this article.

Now let us turn the subject to the Donaldson polynomials. Refer to [FM]
about its basic material. Fix an integer c2 and a polarization H. Using the
moduli scheme MH(0, c2), Jun Li [Li] introduced a homomorphism γH(c2) :
Symd(c2) NS(X)→ Z.

Proposition 0.1 ([Li, p. 456]). Suppose that X is simply connected and
that pg(X) > 0. Then there is such a constant A(S) depending on a compact
subset S ⊂ Amp(X) as satisfies the following :
If c2 ≥ A(S) and if some rational multiple of an ample line bundle H is con-
tained in S, then γH(c2) is equal to the restriction of the Donaldson invariant
q(c2) : Symd(c2) H2(X,Z) → Z to Symd(c2) NS(X). In particular γH(c2) is
independent of an ample line bundle H contained in Q · S.

The independence of γH(c2) is due to the fact that the Donaldson poly-
nomial qg(c2) is independent of the choice of generic Riemannian metrics g on
X. As an application of the flip constructed in the above, we observe this fact
algebro-geometrically in the latter half of this article. Up to now, an attempt
to explain this fact via a flip succeeded only in K3 case ([EG]). We aim to
carry out this attempt in more general situations. Our result in this article is
as follows.

Suppose that ample line bundles H1 and H2 are in neighboring chambers
of type (0, c2) separated by a wall of type (0, c2), say W . (See Section 1 for
the definition of walls and chambers.) Now denote by A+(W ) the set of all the
triples f = (f,m, n) ∈ Num(X)×N×2 which satisfy f ∈ 2Num(X), H1 · f > 0,
m+ n = c2 + (f2/4), and the set

W f = {x ∈ Num(X) | x · f = 0}
is equal to W . Then, for f ∈ A+(W ) one can define a homomorphism C(c2, f) :
Symd(c2) NS(X)→ Z such that

γH1 − γH2 =
∑

f∈A+(W )

C(c2, f).

In Section 2 we shall divide P1 into
∐

f∈A+(a) P
f
1 as a disjoint union of compo-

nents in a natural way, and C(c2, f) is the contribution of P f
1 to γH1 − γH2 . In

the following theorem, Picf/2(X) designates an open subset of Pic(X)

{L ∈ Pic(X) | [2L] = f in Num(X)}.
Theorem 0.2. Suppose that q(X) = 0 and that some global section

κ ∈ Γ(KX) gives a nonsingular curve K ⊂ X. Let S be any compact subset of
the ample cone Amp(X). Then there are constants d0(S), d1(X) and d2(X)
depending on S such that the following hold :

Assume that f = (f,m, n) ∈ A+(W ) satisfies that
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(i) the functions T f = Picf/2(X)×Hilbm(X)×Hilbn(X)→ Z defined by

(L,Z1, Z2) �→ dim Ext1X(O(L)⊗ IZ1 ,O(−L)⊗ IZ2) and

(L,Z1, Z2) �→ dim Ext1X(O(−L)⊗ IZ2 ,O(L)⊗ IZ1)

are locally-constant, and that
(ii) −f2 > (4/3)c2 + d1(S)

√
c2 + d2(S).

Then C(c2, f) is zero if c2 ≥ d0(S).

How strong are these conditions (i) and (ii)? As to (ii), recall that f ∈
NS(X) defines a wall of type (0, c2) ifW f∩Amp(X) �= ∅, f ≡ 0 mod 2Num(X)
and 0 < −f2 ≤ 4c2. Thus the condition (ii) is reasonably weak when c2 is
sufficiently large with respect to S. The condition (i) is more strict, while this
is always valid when X is a K3 surface. We prove Theorem 0.2 in Section 6,
7, and 8. In the proof it is important to grasp the structure of exceptional
divisors in the flip (0.1), as mentioned earlier.

After completing this work, the author realized by chance Mochizuki had
shown the independence of γH(c2) from H when pg(X) > 0 by using moduli
stacks of semistable mixed objects and master spaces with torus action in his
paper [Mo]. Mochizuki’s proof seems to be very different from ours, and our
construction of the sequence of morphisms connecting MH1 and MH2 must be
useful.

Acknowledgement. The author is grateful to Prof. Akira Ishii for in-
forming the author of Mochizuki’s work, and giving useful advice especially to
Section 3. Deep appreciation also goes to Prof. Zhenbo Qin, who gave valuable
advice especially to Lemma 7.2.

Notation.
(1) A scheme is algebraic over C. For a surface X, Num(X) is the quotient

of Pic(X) modulo the numerically equivalence. Amp(X) ⊂ Num(X) ⊗Z R is
the ample cone of X. For a closed subscheme D of S, ID = ID,S means its
ideal sheaf. The stability of coherent torsion-free sheaves is in the sense of
Gieseker-Maruyama.

(2) For T -schemes f : X → T and g : S → T , let XS denote X ×T S.
Let F be a sheaf on X, and D ⊂ T a subscheme. We often shorten a sheaf
(idX ×g)∗F on XS to g∗F , and shorten F|XD

to F|D. hom and exti indicate,
respectively, dim Hom and dim Exti.

1. Background materials

In this section let us review some background materials introduced in [EG]
and [Q2]. Let X be a nonsingular surface, and fix a line bundle c1 on X and
an integer c2 such that 4c2 − c21 > 0.

Definition 1.1. (1) For f ∈ Num(X) we define W f ⊂ Amp(X) by

W f = {x ∈ Amp(X) | x · f = 0}.
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f is said to be define a wall of type (c1, c2) ifW f is nonempty, 0 < −f2 ≤ 4c2−c21
and f−c1 is divisible by 2 in Num(X). Then W f is called a wall of type (c1, c2).

(2) A chamber of type (c1, c2) is a connected component of the complement
of the union of all walls of type (c1, c2). Two different chambers are said to
be neighboring if the intersection of their closures contains a nonempty open
subset of a wall.

For an ample line bundle H on X we denote by MH(c1, c2) the coarse
moduli scheme of H-semistable rank-two sheaves with Chern classes (c1, c2).

Lemma 1.2. (1) For H not contained in any wall of type (c1, c2), MH(c1, c2)
depends only on the chamber containing H.

(2) The set of walls of type (c1, c2) is locally finite.

Proof. (1) is [EG, Proposition 2.7]. (2) is [Q2, Proposition 2.1.6].

Let H+ and H− be ample line bundles lying in neighboring chambers C+
and C− respectively, and H an ample line bundle contained in the wall W
separating C+ and C−, and not contained in any wall but W . Such a setting is
natural because of the lemma above. We can assume that M = H+ − H− is
effective by replacing H+ by its high multiple if necessary.

Lemma 1.3. There is an integer n0 such that if E is a rank-two sheaf
with Chern classes (c1, c2) on X then the following holds for any integer l ≥ n0:

(1) E is H−-stable (resp. semistable) if and only if E(−lM) is H-stable
(resp. semistable).

(2) E is H+-stable (resp. semistable) if and only if E(lM) is H-stable
(resp. semistable).

Proof. [EG, p. 6, Lemma 3.1].

Let C denote (n0 + 1)M in this section, where n0 is that in the lemma
above.

Definition 1.4. Let a be a real number between 0 and 1.
(1) We define Pa(E) by Pa(E) = [(1−a)χ(E(−C))+aχ(E(C))]/rk(E) for

a torsion-free sheaf E.
(2) A torsion-free sheaf E on X is said to be a-stable (resp. a-semistable)

if every subsheaf F � E satisfies Pa(F (lH)) ≤ Pa(E(lH)) (resp. Pa(F (lH)) <
Pa(E(lH))) for sufficiently large integer l.

(3) E is a-semistable if and only if parabolic sheaf (E(C), E(−C), a) is
parabolic semistable with respect to H. Hence from [Yk], there is a coarse
moduli scheme of S-equivalence classes of a-semistable rank-two sheaves with
Chern classes (c1, c2) on X, denoted by Ma(c1, c2). This is projective over C.
Ms
a(c1, c2) ⊂Ma(c1, c2) denotes the open subscheme of a-stable sheaves.

By Lemma 1.3, M0(c1, c2) (resp. M1(c1, c2)) is naturally isomorphic to
MH−(c1, c2) (resp. MH+(c1, c2)). So we would like to study how Ma(c1, c2)
changes as a varies.
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Definition 1.5. For a real number 0 ≤ a ≤ 1, A+(a) is the set of
(f,m, n) ∈ Num(X)× Z2

≥0 satisfying that W f is equal to the wall W dividing
H+ and H−, H+ ·f > 0, m+n = c2− (c21−f2)/4, and m−n = 〈f · (c1−KX)〉/
2 + (2a− 1)〈f · C〉. a is called a miniwall if A+(a) is nonempty. Remark that
the number of miniwalls is finite. A minichamber is a connected component of
the complement of the set of all miniwalls in [0, 1]. Two minichambers are said
to be neighboring if their closures intersect.

Lemma 1.6. Let a− < a+ be in neighboring minichambers separated by
a miniwall a. For torsion-free rank-two sheaf E with Chern classes (c1, c2), the
following holds.

(1) If E is a−-semistable and not a+-semistable, then E is given by a
nontrivial extension

(1.1) 0 −→ OX(F )⊗ IZ1 −→ E −→ OX(c1 − F )⊗ IZ2 −→ 0,

where Z1 and Z2 are zero-dimensional subschemes of X such that

(1.2) (2F − c1, l(Z1), l(Z2)) ∈ A+(a).

(2) Conversely suppose that E is given by a nontrivial extension (1.1) sat-
isfying (1.2). Then E is a−-stable, strictly a-semistable, and not b-semistable
for any b > a.

Proof. [EG, Lemmas 3.10 and 3.11].

We fix ample line bundles H± and H, and neighboring minichambers
a− < a+ separated by a miniwall a. We shorten Ma±(c1, c2) to M±(c1, c2)
for simplicity.

2. Subscheme consisting of not a+-semistable sheaves

In this section we shall give a natural subscheme structure to a well-defined
subset

(2.1) M− ⊃ {[E] | E is not a+-semistable}
contained in Ms

−. This closed subscheme shall be the center of a blowing-up
later.

We begin with a quick review of the construction of M±(c1, c2) = M± re-
ferring to [Yk]. Let F−(c1, c2) (or F+(c1, c2), resp.) denote the family of all a−-
semistable (a+-semistable, resp.) rank-two sheaves with Chern classes (c1, c2)
on X. By the boundedness of a±-semistablity, there is an integer N0 such that
the following conditions are satisfied for any E ∈ F−(c1, c2) ∪ F+(c1, c2).

(1) If m ≥ N0, then both E(C)(mH)|2C and E(−C)(mH) are generated
by its global sections.

(2) If m ≥ N0, then hi(E(C)(mH)|2C) = 0 and hi(E(−C)(mH)) = 0 for
i > 0.
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We fix an integer m ≥ N0. Then h0(E(C)(mH)) = R is independent of
E ∈ F+(c1, c2)∪F−(c1, c2). The Quot-scheme QuotP (l)

O(−C−mH)⊕R/X
is denoted

by Q, where P (l) is the Hilbert polynomial χ(E(lH)) of E ∈ F±(c1, c2). On
XQ there is the universal quotient sheaf τ0 : OXQ

(−C −mH)⊕R → U . Now
let Qs± (or Qss± , resp.) be the maximal open subset of Q such that, for every
t ∈ Qs± (Qss± , resp.),

H0(τ0(C +mH)⊗ k(t)) : k(t)⊕R → H0(U(C +mH)⊗ k(t))
is isomorphic, U⊗k(t) satisfies the hypothesis (i) and (ii) above, and U⊗k(t) is
a±-stable (a±-semistable, resp.). Let us denote the universal quotient sheaf of
Qss± by U± ∈ Coh(XQss

± ). G = PGL(R,C) naturally acts on Qss± and Qs±. By
[Yk] we can construct a good quotient of Qss± (or Qs±, resp.) by G when m is
sufficiently large. This quotient turns out to be the moduli scheme M±(c1, c2)
(Ms

±(c1, c2), resp.). Moreover, because a a±-stable sheaf is simple, one can
prove that the quotient map π± : Qs± →Ms

±(c1, c2) is a principal fiber bundle
with group G ([M2]) in a similar fashion to the proof of [Ma, Proposition 6.4].

Now we try to give a closed-subscheme structure to the subset (2.1). For
f = (f,m, n) ∈ A+(a), we can define a functor

Qf : (Sch /Qss− )◦ → (Sets)

as follows: Qf (S → Qss− ) is the set of all S-flat quotient sheaves U−⊗Qss
− OS →

G′ such that, for every geometric point t ∈ S, the induced exact sequence

0 −→ Ker −→ U− ⊗ k(t) −→ G′ ⊗ k(t) −→ 0

satisfies that (c1−2c1(G′⊗k(t)), c2(Ker), c2(G′⊗k(t))) = (f,m, n). This functor
Qf is represented by a relative Quot-scheme Qf , that is projective over Qss− .
On XQf there is the universal quotient τf : U− ⊗OQf → G.

Lemma 2.1. G ⊗ k(s) is torsion-free for every closed point s ∈ Qf .

Proof. The proof is by contradiction. Assume that G⊗k(s) is not torsion-
free, and denote its torsion part by T �= 0. Then we have a new quotient sheaf

U− ⊗ k(s)→ G ⊗ k(s)→ G′ = G ⊗ k(s)/T.
Then Pa(G ⊗ k(s)(lH)) > Pa(G′(lH)) if l is sufficiently large. From the defini-
tion of f and Qf one can show that Pa(G ⊗ k(s)(lH)) = Pa(U− ⊗ k(s)(lH)) for
all l. So the quotient sheaf U− ⊗ k(s)→ G′ satisfies that

(2.2) Pa(U− ⊗ k(s)(lH)) > Pa(G′(lH))

if l is sufficiently large. On the other hand

(2.3) Pa−(U− ⊗ k(s)(lH)) ≤ Pa−(G′(lH))

if l is sufficiently large since U− ⊗ k(s) is a−-semistable. From (2.2), (2.3) and
the Riemann-Roch theorem, there should be an integer a− ≤ b < a such that
Pb(U− ⊗ k(s)(lH)) = Pb(G′(lH)) for all l. We can easily prove that b is a
miniwall, which contradicts the choice of a− and a.
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Lemma 2.2. The structural morphism i = if : Qf → Qss− is a closed
immersion.

Proof. For s ∈ Qf we put t = i(s). First we claim that their residue fields
satisfy k(s) = k(t). Indeed, any member λ ∈ Gal(k(s)/k(t)) induces another
k(s)-valued point

Spec(k(s)) λ−→ Spec(k(s))→ Qf

of Qf . We denote this k(s)-valued point by s′. s and s′ respectively give exact
sequences

(2.4) 0 �� K �� (U− ⊗ k(t))⊗ k(s) �� G ⊗ k(s) �� 0

0 �� K ′ �� (U− ⊗ k(t))⊗ k(s′) �� G ⊗ k(s′) �� 0.

Because of the definition of f and Qf , it holds that

0 < {c1(K)− c1(G ⊗k(s))} ·H+ and that 0 < {c1(K ′)− c1(G′⊗k(s))} ·H+.

Besides, the lemma above tells us that both G⊗k(s) and G⊗k(s′) are torsion-free
and rank-one. Thus two horizontal rows in (2.4) respectively give the Harder-
Narasimhan filtration of U−⊗k(s) with respect to H+-stability. Because of the
uniqueness of the Harder-Narasimhan filtration, two quotient sheaves in (2.4)
are isomorphic, that is, s = s′. Accordingly Gal(k(s)/k(t)) = {1}, and hence
k(s) = k(t) since ch(k(t)) = 0.

Next, i is injective and hence finite. Indeed, suppose that two points s and
s′ in Qf satisfy that i(s) = i(s′) = t. Then k(s) = k(s′) = k(t) as mentioned
above, and we have two exact sequences

0 �� K �� U− ⊗ k(t) �� G ⊗ k(s) �� 0

0 �� K ′ �� U− ⊗ k(t)⊗ k(s′) �� G ⊗ k(s′) �� 0.

Then one can prove that s = s′ in Qf , in the same way as the preceding
paragraph.

Next, i is unramified. To prove this, we only need to show that the tangent
map Tt i : TtQf → TsQ

ss
− is injective. t ∈ Qf gives an exact sequence

(2.5) 0 −→ K −→ U− ⊗ k(s) −→ G ⊗ k(t) −→ 0

on Xk(s) = Xk(t). By [HL, p. 43] Ker(Tt i) equals HomXk(t)(K,G ⊗ k(t)),
which is equal to zero because (2.5) gives the Harder-Narasimhan filtration of
U− ⊗ k(s).

Last, i is a closed immersion. Since i is injective and unramified, the
fiber i−1(t) is naturally isomorphic to Spec(k(s)) for s ∈ Qf . Since i is finite,
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i−1(t) is isomorphic to Spec(i∗OQf ⊗ k(t)). These facts tell us that the natural
homomorphism OQss

− ⊗ k(t)→ i∗OQf ⊗ k(t) is surjective since k(t) = k(s). So
OQf → i∗OQf itself should be surjective. This means that a finite morphism i
is a closed immersion.

We therefore obtain a closed subscheme Qf of Qss− , which is contained in
Qs− by virtue of Lemma 1.6. Remembering the way to define the natural action
σ̄ : Ḡ×Qs− → Qs−, one can verify the following:

Lemma 2.3. Denote by σ− : G × Qs− → Qs− the natural action of
G on Qs−. Then the morphism id×σ− : G × Qs− → G × Qs− satisfies that
(id×σ−)(G×Qf ) = G×Qf as subschemes of G×Qf .

This lemma means that

(2.6) pr∗2OQf = OG×Qf = (idG×σ−)∗OG×Qf = σ∗
−OQf

as quotient sheaves of OG×Qs
−
. Since π− : Qs− →Ms

− is a principal fiber bundle

with group G, (σ−, pr2) : G × Qs− → Qs− ×Ms
− Qs− is isomorphic. Thus, the

identification (2.6) corresponds to an isomorphism

(2.7) α2 : pr∗2OQf → pr∗1OQf

of quotient sheaves of OQs
−×MQs

− , where pri : Qs− ×Ms
− Qs− → Qs− is the i-th

projection for i = 1, 2. Since (2.6) results from Lemma 2.3, one can check
that the isomorphism (2.7) satisfies that pr∗12(α2) ◦ pr∗23(α2) = pr∗13(α2), where
prij : Qs− ×Ms

− Q
s
− ×Ms

− Q
s
− → Qs− ×Ms

− Q
s
− is the (i, j)-th projection.

By faithfully-flat quasi-compact descent theory, we get a coherent sheaf F
on M− and a homomorphism p′ : OMs

− → F such that π∗
−F = OQf and that

π∗
−(p′) = pf . This p′ : OMs

− → F should be surjective since π− : Qs− → Ms
−

is faithfully-flat, and hence p′ gives a closed subscheme P f of Ms
− such that

π−1
− (P f ) = Qf . On the other hand Qf is a closed subscheme of Qss− fixed by G,

and so P f = π−(Qf ) is closed not only in Ms
− but also in M− by the property

of good quotient. Summarizing:

Lemma 2.4. The closed subscheme Qf of Qss− obtained in Lemma 2.2
descends to a closed subscheme P f of M− such that π−1

− (P f ) = Qf , where
π− : Qss− →M− is the quotient map. P f is contained in Ms

−. Set-theoretically,∐
f∈A+(a) P

f coincides with the subset (2.1). Both Qf ∩Qf ′ and P f ∩ P f ′ are
empty if f and f ′ are mutually different member of A+(a).

At the end of this section, we define a closed subset

(2.8) M+ ⊃ {[E] | E is not a−-semistable}

similarly to the above M−. First we define −f .
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Definition 2.5. For f = (f,m, n) ∈ A+(a), we define −f ∈ Num(X)×
Z×2
≥0 by −f = (−f, n,m).

In the same way as the case of if : Qf → Qss− and P f ⊂ Qss− , we can show
that a projective Qss+ -scheme Q−f can be defined; the structural morphism
i−f : Q−f → Qss+ is a closed immersion which factors through Qs+; by using
faithfully-flat quasi-compact descent theory, we can obtain a closed subscheme
P−f ⊂Ms

+ such that π−1
+ (P−f ) = Q−f ; for different members f and f ′ of A+(a),

we see that P−f ∩P−f ′ is empty; set-theoretically,
∐

f∈A+(a) P
−f coincides with

the subset (2.8) of M+.

3. A sequence of morphisms connecting M−(c1, c2) with M+(c1, c2)

Let V− be a closed subscheme
∐

f∈A+(a)Q
f of Qss− , and ϕ− : Q̃ss− → Qss−

the blowing-up of Qss− along V−, with exceptional divisor D−. Similarly, let P−
be a closed subscheme

∐
f∈A+(a) P

f of M−, and φ− : M̃− →M− the blowing-up
of M− along P−, with exceptional divisor E−.

V− =
∐
f

Qf � � Qss−

π−

��

Q̃ss−
ϕ−��

π̃−

��

D−� �

P− =
∐
f

P f � � M− M̃−
φ−�� E−� �

Because ϕ−1
− π−1

− (P−) = ϕ−(V−) = D− is an effective Cartier divisor on Q̃ss− ,
a morphism π̃− is induced. In this section, we begin with constructing a mor-
phism ϕ̃+ : Q̃ss− →M+ using the method of elementary transformation. Joining
the universal quotient sheaf U−|X

Qf
� G = Gf of Qf , we have a quotient sheaf

U−|XV− � G on XV− =
∐

f XQf . This results in an exact sequence

(3.1) 0 −→ F −→ U−|V− −→ G −→ 0

of V−-flat XV− -modules. Pulling back this by idX ×ϕ− : XD− → XV− , we get
an exact sequence of D−-flat sheaves

(3.2) 0 −→ F̃ −→ Ũ−|D− −→ G̃ −→ 0

on XD− . Now let W+ denote Ker(Ũ− � Ũ−|D− → G̃), that is,

(3.3) 0 −→W+ −→ Ũ− −→ G̃ −→ 0
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is exact. From [Fr, Lemma A.3] W+ is flat over Q̃ss− . (3.2) and (3.3) induce a
commutative diagram on XQ̃ss

−

(3.4) 0

��

0

��
0 �� Ũ−(−D−) �� W+

f ��

��

F̃ ��

��

0

0 �� Ũ−(−D−) �� Ũ− ��

h

��

Ũ−|D−
��

��

0

G̃

��

G̃

��
0 0

whose rows and columns are exact. The second column of (3.4) gives rise to
an exact sequence

0 −→ Tor
XQ̃ss−
1 (G̃,OXD− ) = G̃(−D−) −→ W+|XD− −→ Ũ−|XD− −→ G̃ −→ 0.

From (3.4), this results in an exact sequence

(3.5) 0 −→ G̃(−D−) −→ W+|XD−

f |D−−→ F̃ −→ 0.

(3.5) and the first row of (3.4) induce the following commutative diagram on
XQ̃ss

−
:

(3.6) 0

��

0

��
0 �� W+(−D−) �� Ũ−(−D−)

��

h̄ �� G̃(−D−)

��

�� 0

0 �� W+(−D−) �� W+
��

f

��

W+|D−
��

f |D−
��

0

F̃

��

F̃

��
0 0

such that its second column is equal to the first row of (3.4), and that all rows
and columns are exact. For homomorphisms h in (3.4) and h̄ in (3.6), one can
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find an isomorphism jg : G̃(−D−)→ G̃(−D−) such that

(3.7) Ũ−(−D−)
h̄ �� G̃(−D−)

jg

��
Ũ−(−D−)

h(−D−)�� G̃(−D−)

is commutative, in view of the uniqueness of the Harder-Narasimhan filtration
and the simplicity of torsion-free rank-one sheaf.

Now we recall some obstruction theory. By the exact sequence

(3.8) 0 −→ OD−(−D−) −→ O2D− −→ OD− −→ 0.

and (3.2), we have the following commutative diagram on X2D− whose rows
and columns are exact:

(3.9) 0

��
0 �� F̃(−D−) �� Ũ− ⊗OD−(−D−) ��

��

G̃(−D−) �� 0

Ũ−|X2D−

��
0 �� F̃ �� Ũ−|XD−

��

�� G̃ �� 0

0 .

From this we can get a complex F̃(−D−) F−→ Ũ−|X2D−
G−→ G̃, and check

that its middle cohomology B = KerG/ ImF is a OXD− -module. Then, again
from (3.9) we can deduce an exact sequence

(3.10) 0 −→ G̃(−D−)
p−→ B

q−→ F̃ −→ 0

of D−-flat OXD− -modules.

Lemma 3.1. The following conditions are equivalent for a closed point
t of D−:

(1) The exact sequence

(3.11) 0 −→ G̃(−D−)⊗ k(t) −→ B ⊗ k(t) −→ F̃ ⊗ k(t) −→ 0

induced from (3.10) is trivial ;
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(2) Let m̃t ⊂ OQ̃ss
−

be the maximal ideal defining t and l the integer such

that ID−,t ⊂ m̃l
t and that ID−,t �⊂ m̃l+1

t . Then there is a morphism pl+1 :
Spec(OQ̃ss

−
/m̃l+1

t )→ V− =
∐

f Q
f such that

(3.12) Spec(OQ̃ss
−
/O(−D−) + m̃l+1

t )
��

��

� � �� D−
ϕ− �� V−

��

��
Spec(OQ̃ss

−
/m̃l+1

t ) � � ��

pl+1

������������������������

Q̃ss− ϕ−
�� Qss−

is commutative.

Proof. We put A = OQ̃ss
−
/m̃l+1

t and A′ = OQ̃ss
−
/(O(−D−)+m̃l+1

t ), which
are Artinian local rings. Tensoring A to (3.8), we have the following commu-
tative diagram whose rows are exact.

(3.13)
OD−(−D−)⊗Q̃ss

−
A ��

q
����

O2D− ⊗Q A �� OD− ⊗Q A �� 0

I = O(−D−) + m̃l+1
t /m̃l+1

t
� � �� A �� A′ �� 0

Remark that I is a k(t)-module because of the choice of l. From its bottom
row and (3.2) we get the following commutative diagram on XA whose rows
and columns are exact, similarly to (3.9):

(3.14) 0

��
0 �� F̃k(t) ⊗ I �� Ũk(t) ⊗ I ��

��

G̃k(t) ⊗ I �� 0

Ũ−|XA

��
0 �� F̃ ⊗D− A

′ �� Ũ−|XA′
��

��

G̃ ⊗D− A
′ �� 0

0 .

Then one can deduce a complex F̃k(t) ⊗ I F ′
−→ Ũ−|XA′

G′
−→ G̃ ⊗D− A′ and an

exact sequence of XA′-modules

(3.15) 0 −→ G̃k(t) ⊗ I −→ B′ = KerG′/ ImF ′ −→ F̃ ⊗D− A
′ −→ 0.

Now recall that obstruction theory shows the following fact ([HL, p. 43]).
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Fact 3.2. The exact sequence (3.15) is trivial if and only if the condition
(ii) in Lemma 3.1 is satisfied.

From the commutativity of (3.13), we can make a homomorphism B ⊗D−
A′ → B′ such that

(3.16)

G̃(−D−)⊗D− A
′ = G̃(−D−)⊗Q A �� ��

id⊗q
����

B ⊗D− A
′ ��

����

F̃ ⊗D− A
′ �� 0

G̃k(t) ⊗ I = G̃ ⊗Q̃ss
−
I �� �� B′ �� F̃ ⊗D− A

′ �� 0

is commutative, where the first row is obtained by tensoring A to (3.10), and the
second row is (3.15). Further, the homomorphism q in (3.13) gives a surjective
homomorphism q ⊗ k(t) : OD− ⊗D− k(t) � I, which should be isomorphic
because rkk(t)OD−(−D−) ⊗ k(t) = 1 and I �= 0. Accordingly we obtain a
commutative diagram

(3.17) Ext1XA′ (F̃ ⊗A′, G̃(−D−)⊗A′)
q∗ ��

(πt)∗
��

Ext1XA′ (F̃ ⊗A′, G̃k(t) ⊗ I)

Ext1XA′ (F̃ ⊗A′, G̃(−D−)⊗ k(t))

(q⊗k(t))∗
		�������������������

Ext1Xk(t)
(F̃k(t), G̃(−D−)k(t)),

π∗
t

��

where πt is a natural homomorphism A′ → k(t). Remark that π∗
t is isomorphic

since F̃ is D−-flat. Let λ ∈ Ext1XA′ (F̃⊗A′, G̃(−D−)⊗A′) be the extension class
of the first row of (3.16). Then one can prove that (π∗

t )−1(πt∗(λ)) is the exten-
sion class of (3.11) and that q∗(λ) is the extension class of (3.15) by using the
commutativity of (3.16). Because (q⊗k(t))∗ is isomorphic, (π∗

t )−1(πt∗(λ)) = 0
if and only if q∗(λ) = 0. This and Fact 3.2 complete the proof of this lemma.

Lemma 3.3. There is an isomorphism r0 :W+|XD− → B such that the
following diagram is commutative:

(3.18) 0 �� G̃(−D−) ��

jg

��

W+|XD−
��

r0

��

F̃ �� 0

0 �� G̃(−D−)
p �� B

q �� F̃ �� 0.

Here the first row is the third column of (3.6), the second row is (3.10), and jg
is the isomorphism in (3.7).

Proof. Tensoring O2D− to (3.4), we have a commutative diagram on
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X2D−

(3.19) G̃(−2D−) ��
��

��

0

��
Ũ−(−D−)|2D−

k′
�� W+|2D−

f |2D− ��

r

��

F̃ ��

��

0

Ũ−(−D−)|2D−
�� Ũ−|2D−

��

h|2D−=G

��

Ũ−|D−
��

��

0

G̃

��

G̃

��
0 0

whose rows and columns are exact. In this diagram h|2D− clearly is equal to

the homomorphism G defined just below (3.9), and so r factors intoW+|2D−
r1�

Im r = KerG→ Ũ−|2D− . One can readily check that

(3.20) W+|2D−
�� ��

r1

����

W+|D−

r0

��

f |D−

�� ��������������

KerG �� �� B = KerG/ ImF q
�� F̃

is commutative by the definition of q in (3.10). Since B is naturally regarded as
an OXD− -module, we can induce a homomorphism r0 :W+|D− → B such that
the left side of (3.20) becomes commutative. Then one can also check the right
side of (3.20) is commutative, sinceW+|2D− →W+|D− is surjective. Therefore
the right side of (3.18) is surely commutative for this r0.

Next, by the definition of p in (3.10) one can readily check that

Ũ−(−D−)|2D−

h(−D−)|2D− �� ��

k′

��

G̃(−D−)

p

��W+|2D−
r1 �� �� KerG �� �� B

is commutative, where h|2D− and k′ are those of (3.19). We have also the
following commutative diagram:

Ũ−(−D−)|2D−
k′

��

h̄|2D−
��

W+|2D−
r1 ��

����

KerG

����
G̃(−D−) ��W+|D−

r0 �� �� B,
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where the left side is the upper-right side of (3.6), and the right side is the left
side of (3.20). These two commutative diagrams gives rise to a commutative
diagram

(3.21) Ũ−(−D−)|2D−

h̄|2D− �� �� G(−D−) �� W+|D−

r0

��
Ũ−(−D−)|2D−h(−D−)

�� �� G̃(−D−)
p �� B.

Then we can prove the right side of (3.18) is commutative from (3.7) and the
surjectivity of h̄|2D− .

Corollary 3.4. Let t ∈ D− be a closed point. Then the exact sequence

0 −→ G̃(−D−)⊗ k(t) −→W+ ⊗ k(t) −→ F̃ ⊗ k(t) −→ 0

induced from the third column of (3.6) is nontrivial.

Proof. Suppose not. Then Lemmas 3.1 and 3.3 lead to a morphism pl+1 :
Spec(OQ̃ss

−
/m̃l+1

t ) → V− such that (3.12) becomes commutative. This pl+1

induces a Q̃ss− -morphism ql+1 : Spec(OQ̃ss
−
/m̃l+1

t )→ Q̃ss− ×Qss
− V− = D−. Thus

ID− is contained in m̃l+1
t , which contradicts the choice of l in Lemma 3.1.

From the corollary above one can show that W+ ⊗ k(t) ∈ Coh(Xk(t)) is
a+-semistable for every point t ∈ Q̃ss− in a similar fashion to the proof of Lemma
1.6 (ii). This sheafW+ accordingly gives a morphism ϕ̃+ : Q̃ss− →M+. Now we
intend to construct a morphism φ̄+ : M̃− →M+ such that φ̄+◦ π̃− : Q̃ss− →M+

is equal to ϕ̃+.

Lemma 3.5. The natural morphism Q̃ss− → Qss−×M−M̃− is isomorphic.

Proof. Q̃s− denotes the open subset (φ− ◦ π̃−)−1(Ms
−) of Q̃ss− , and M̃s

−
denotes φ−1

− (Ms
−). Because E− ⊂ M̃− is contained in M̃s

− it suffices to show
that Q̃s− → Qs− ⊗Ms

− M̃s
− is isomorphic. Since π− : Qs− → Ms

− is flat one can
show that π∗

−(IP−,Ms
−) = IV−,Qs

− , and hence that π∗
−(InP−,Ms

−
) = InV−,Qs

−
for any

n.

Using this lemma one can induce an action Σ̄− : Ḡ×Q̃ss− = (Ḡ×Qss− )×M−

M̃− → Q̃ss− = Qss− ×M− M̃− from the action σ̄− : Ḡ×Qss− → Qss− .

Lemma 3.6. As to the morphism ϕ̃+, the following is commutative:

Ḡ× Q̃ss− Σ̄−
��

pr2

��

Q̃ss−

ϕ̃+

��
Q̃ss−

ϕ̃+ �� M+.
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One can prove this lemma easily. π− : Qss− → M− is a good quotient by
σ̄−, so [M2, p. 8, Remark 5] and [M2, p. 27, Theorem 1] imply that π̃− : Q̃ss− =
Qss− ×M− M̃− → M̃− is a categorical quotient by Σ̄−. Therefore there is a
unique morphism φ̄+ : M̃− → M+ such that φ̄+ ◦ π̃− : Q̃ss− → M+ is equal to
φ̃+ because of the lemma above.

Consequently we can connect M− = M−(c1, c2) with M+ = M+(c1, c2) by

(3.22) V−
� � Qss−

π−

��

Q̃ss−
ϕ−��

π̃−
��

ϕ̃+



�
��

��
��

�

P−
� � M− M̃−

φ−��
φ̄+

�� M+

when P− ⊂ M− is nowhere dense. (Without this hypothesis M̃− may be
empty.)

We shall reverse M− and M+ and follow a similar argument. Let V+ be a
closed subscheme

∐
f∈A+(a)Q

−f , and P+ a closed subscheme
∐

f∈A+(a)P
−f of

M+, mentioned right after Definition 2.5. Let ϕ+ : Q̃ss+ → Qss+ be the blowing-
up along V+, and φ+ : M̃+ → M+ the blowing-up along P+. Denote their
exceptional divisors by D+ ⊂ Q̃ss+ and E+ ⊂ M̃+ respectively. Then we can
construct a morphism ϕ̄− : Q̃ss+ → M− and make it descend to a morphism
φ̄− : M̃+ → M−. Thereby we get another sequence of morphisms connecting
M− and M+ as follows:

(3.23) Q̃ss+
ϕ̃−

����
��

��
��

π̃+

��

ϕ+
�� Qss+

π+

��

V+
� �

M− M̃+
φ̄−

��
φ+

�� M+ P+.� �

4. φ̄+ : M̃− →M+ is blowing-up

In this section we would like to compare (3.22) with (3.23) assuming that
P− is nowhere dense in M−. The following lemma shall be needed later.

Lemma 4.1. Let U+ be a universal quotient sheaf of Qss+ on XQss
+

, and
W+ the XQ̃ss

−
-module defined at (3.3). There are an open covering

⋃
αUα of

Q̃ss− , a morphism ϕ̄α+ : Uα → Qss+ such that

Uα
ϕ̄α

+ ��
��

Qss+

π+

��
Q̃ss−

ϕ̃+ �� M+
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is commutative, and an isomorphism Φα+ :W+|Uα
→ (ϕ̄α+)∗U+ of XUα

-modules.
Furthermore, we can assume that Uα ∩ Uβ ⊂ Q̃s− if α �= β.

Proof. The proof of the first part is easy, so may be left to the reader.
Recall that both Qss+ and Qss− are open subsets of a Quot-scheme Q, and that
U+|Qss

− ∩Qss
+

= U−|Qss
− ∩Qss

+
. U0 = Q̃ss− \D− = Qss− \V− is an open neighborhood

of Q̃ss− \ Q̃s−, and is contained in Qss− ∩ Qss+ . Let ϕ̄0
+ : U0 = Qss− \ V− →

Qss+ be a natural open immersion, and Φ0
+ : W+|U0 → U+|U0 an isomorphism

W+|Q̃ss
− \D− → Ũ−|Q̃ss

− \D− = U−|Qss
− \V− = U+|Qss

− \V− induced from (3.3). Then

ϕ̄0
+ and Φ0

+ satisfy the conditions in this lemma. Thus we can assume that
Uα ∩ Uβ ⊂ Q̃s− if α �= β.

Lemma 4.2. ϕ̃−1
+ (P+) is equal to D− = ϕ−1

− (V−) as closed subschemes
in Q̃ss− .

Proof. Clearly D− ⊂ ϕ̃−1
+ (P+) from the construction of ϕ̃+. We first

consider the case where D′
− := ϕ̃−1

+ (P+) is a Cartier divisor of Q̃ss− . By virtue
of the definition of V+, there is an exact sequence

(4.1) 0 −→ G′ −→ U+|XV+
−→ F ′ −→ 0

of V+-flat XV+ -modules such that, for every closed point t of Q−f , (2c1(G′k(t))−
c1, c2(G′k(t)), c2(F ′

k(t))) is equal to −f . Similarly to Lemma 2.1, F ′ and G′ are
flat family of torsion-free sheaves. Pulling back this by ϕ̄α+ of Lemma 4.1, we
have an exact sequence

0 −→ (ϕ̄α+)∗ G′ = G′α −→ (ϕ̄α+)∗ U+|D′
−∩Uα

= Ūα+|D′
−∩Uα

−→ (ϕ̄α+)∗F ′ = F ′
α −→ 0

(4.2)

on X × (ϕ̄α+)−1(V+) = XD′
−∩Uα

, where we put (ϕ̄α+)∗U+ = Ūα+. Let V− denote
Ker(Ūα+ � Ūα+|D′

−∩Uα
� F ′

α), that is,

(4.3) 0 −→ V− −→ Ūα+ −→ F ′
α −→ 0

is exact. V− is flat over Uα since D′
− is a Cartier divisor of Q̃ss− .

Because D′
− ⊃ D−, the isomorphism Φα+ in Lemma 4.1 induces a surjection

Ūα+|D′
−∩Uα

�W+|D−∩Uα
. Hence we have a diagram on XD′

−∩Uα

(4.4) 0 �� G′α �� Ūα+|D′
−∩Uα

��

����

F ′
α

��

r

��

0

0 �� G̃(−D−)|Uα
�� W+|D−∩Uα

�� F̃ |Uα
�� 0,

where the first row is (4.2) and the second row is the restriction of the third col-
umn in (3.6) to XD−∩Uα

. One can check that HomXD′−∩Uα
/D′

−∩Uα
(G′α, F̃|Uα

) =
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HomXD−∩Uα/D−∩Uα
(G′α|D−∩Uα

, F̃ |Uα
) = 0 by base change theorem on relative

Ext sheaves, and so one can find r : F ′
α → F̃|Uα

such that (4.4) is commutative.
Then the following also is commutative:

(4.5) 0 �� V− ��

s

��

Ūα+ ��

(Φα
+)−1

��

F ′
α

��

r

��

0

0 �� Ũ−(−D−)|Uα
�� W+|Uα

�� F̃ |Uα
�� 0,

where the first row is (4.3) and the second row is the restriction of the second
column in (3.6) to XUα

.

Claim 4.3. Set-theoretically, D− ∩ Uα coincides with D′
− ∩ Uα.

Proof. Suppose not. Then one can find a closed point t ∈ D′
− that is

not contained in D−. Since t ∈ D′
−, (4.2) implies that Ūα+ ⊗ k(t) is not a−-

semistable. Since t �∈ D−, (3.3) implies that W+ ⊗ k(t) is a−-semistable. This
is a contradiction because Ūα+ ⊗ k(t) is isomorphic to W+ ⊗ k(t).

One can obtain the following commutative diagram by tensoring OD′
−∩Uα

to the first row in (4.5) and OD−∩Uα
to the second row in (4.5) since D′

− ⊃ D−:

(4.6)
F ′
α(−D′

−) �� ��

u

��

V−|D′
−∩Uα

��

s′

��

Ūα+|D′
−∩Uα

��

(Φ−1)′
����

F ′
α

��

r

��

0

F̃(−D−)|Uα
�� �� Ũ(−D−)|D−∩Uα

�� W+|D−∩Uα
�� F̃|Uα

�� 0.

Claim 4.4. s⊗k(t) : V−⊗k(t)→ Ũ−(−D−)⊗k(t) in (4.5) is isomorphic
for every closed point t ∈ Uα.

Proof. We have to verify this only in case where t is contained in D′
−.

By Claim 4.3 t is also contained in D−. Tensoring k(t) to (4.6), we obtain a
commutative diagram

(4.7)

0 �� F ′
α(−D′

−)k(t) ��

ut

��

V− k(t) ��

s′t
��

Ūα+ k(t)
��

(Φ−1)′t
��

F ′
α k(t)

��

rt

��

0

0 �� F̃(−D−)k(t) �� Ũ−(−D−)k(t) ��W+ k(t) �� F̃k(t) �� 0

whose rows are exact. (Φ−1)′t is isomorphic by its definition. One can see that
also rt is isomorphic by the uniqueness of the Harder-Narasimhan filtration
with respect to a−-stability. Thus s′t is nonzero map. If ut is zero map, then
s′t induces a nonzero homomorphism
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s̄′t : G′α ⊗ k(t) = Cok(F ′
α(−D′

−)k(t) → V− k(t))→ Ũ−(−D−)k(t)

by (4.2). This s̄′t should be injective because G′α ⊗ k(t) is torsion-free and
rank-one. This contradicts the a−-semistability of Ũ−(−D−)k(t), and so ut
should be nonzero, and hence injective. Then one can see s′t is injective by
diagram-chasing. (4.7) implies the Chern classes of V− k(t) are equal to those
of Ũ−(−D−)k(t), we see that s′t = s⊗ k(t) is isomorphic.

Both V− and Ũ−(−D−)|Uα
are Uα-flat, and hence the claim above implies

that s in (4.5) is isomorphic. Then also r in (4.5) is isomorphic. Because F ′
α is

D′
− ∩ Uα-flat and F̃ |Uα

is D− ∩ Uα-flat, one can verify that D− ∩ Uα is equal
to D′

− ∩ Uα. Since this holds good for every Uα, we conclude the proof of this
lemma in case where ϕ̃−1

+ (P+) is a Cartier divisor.
Next, we consider the case where ϕ̃−1

+ (P+) = D′
− is not necessarily a

Cartier divisor of Q̃ss− . Let ϕ(2)
− : Q̃(2)

− → Q̃ss− be the blowing up along D′
−.

Let D̃− and D̃′− denote closed subschemes (ϕ(2)
− )−1(D−) and (ϕ(2)

− )−1(D′
−) of

Q̃
(2)
− , respectively. For a natural exact sequence

0 −→ OQ̃ss
−

(−D−) −→ OQ̃ss
−
→ OD− −→ 0

on Q̃ss− , one can verify that also its pull-back by ϕ(2)
−

0 −→ (ϕ(2)
− )∗OQ̃ss

−
(−D−) −→ O

Q̃
(2)
−
−→ OD̃− −→ 0

is exact. In view of this, one can check that the pull-back of (3.6) by idX ×ϕ(2)
−

0

��

0

��
0 �� W̃(2)

+ (−D̃−) �� Ũ (2)
− (−D̃−) ��

��

G̃(2)(−D̃−) ��

��

0

0 �� W̃(2)
+ (−D̃−) �� W̃(2)

+
��

��

W̃(2)
+ |D̃−

��

��

0

F̃ (2)

��

F̃ (2)

��
0 0

satisfies that its rows and columns are exact, where W̃(2)
+ denotes

(idX ×ϕ̃(2)
− )∗W+, and so on. Now both D̃′

− and D̃− are Cartier divisors, and
we can show that D̃′

− = D̃− as subschemes of Q̃(2)
− in the same way as the

proof in the preceding case.
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Claim 4.5. Let R be a Noetherian ring, t an element of R which is not
a zero-divisor, and tR ⊃ I an ideal of R. Suppose that ProjR(⊕ In/In+1) =
ProjR(⊕ In/tIn) as subschemes in ProjR(⊕n≥0 I

n). Then tR = I if Spec(R/I)
is nowhere dense in Spec(R).

Its proof is left to the reader. Now Lemma 4.2 is immediate from Claims
4.3 and 4.5.

Corollary 4.6. (φ̄+)−1(P+) coincides with E− = φ−1
− (P−) as subschemes

of M̃−.

Proof. By Claim 4.3, closed subschemes E− and (φ̄+)−1(P+) of M̃− are
contained in M̃s

−. Thus π̃− : π̃−1
− (E−) = D− → E− and π̃− : π̃−1

− φ̄−1
+ (P+) =

ϕ̃−1
+ (P+)→ φ̄−1

+ (P+) are faithfully-flat. Hence this corollary is immediate from
Lemma 4.2.

By the corollary above, there is a morphism ∆+ : M̃− → M̃+ such that
φ+ ◦∆+ : M̃− → M̃+ → M+ is equal to φ̄+. Likewise, for Uα ⊂ Q̃ss− and ϕ̄α+
in Lemma 4.1, there is a morphism ∆α

+ : Uα → Q̃ss+ such that ϕ+ ◦∆α
+ : Uα →

Q̃ss+ → Qss+ is equal to ϕ̄α+ since (ϕ̄α+)−1(V+) = (ϕ̃+)−1(P+) ∩ Uα is a Cartier
divisor of Uα by Lemma 4.2.

Lemma 4.7.
Uα

� �

iα

∆α
+

��

Q̃ss− π̃−
�� M̃−

∆+

��
Q̃ss+

π̃+ �� M̃+

is commutative.

Proof. One can check that both φ+ ◦ (∆+ ◦ π̃− ◦ iα) : Uα → M̃+ → M+

and φ+ ◦ (π̃+ ◦∆α
+) coincide with π+ ◦ ϕ̄α+ : Uα → Qss+ →M+. Then this lemma

follows by the universal property of the blowing-up φ+ : M̃+ →M+.

Proposition 4.8. The morphism φ̄− ◦∆+ : M̃− → M̃+ →M− is equal
to φ− : M̃− →M−.

Proof. First, let us verify the commutativity of

(4.8) Uα
� �

iα

∆α
+

��

Q̃ss− ϕ−
�� Qss−

π−

��
Q̃ss+

ϕ̃− �� M−.

Pulling back an exact sequence (4.1) on XV+ by idX ×ϕ+ : XQ̃ss
+
→ XQss

+
, we
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obtain a commutative diagram on XQ̃ss
+

0 �� W− ��

����

ϕ∗
+U+ = Ũ+

��

����

ϕ∗
+F ′ = F̃ ′ �� 0

0 �� ϕ∗
+G′ = G̃′ �� Ũ+|D+

�� F̃ ′ �� 0

whose rows are exact. Remark that W− is Q̃ss+ -flat. Pulling back this diagram
by idX ×∆α

+, we obtain a commutative diagram on XUα

(4.9) (∆α
+)∗W− ��

��

(∆α
+)∗Ũ+

��

����

(∆α
+)∗F̃ ′ �� 0

0 �� (∆α
+)∗G̃′ �� (∆α

+)∗Ũ+|D−∩Uα
�� (∆α

+)∗F̃ ′ �� 0

whose rows are exact, because (∆α
+)−1(D+) = D− ∩ Uα by Lemma 4.2. Com-

pare this with a commutative diagram

(4.10) 0 �� Ũ−(−D−) ��

����

W+
��

����

F̃ �� 0

0 �� G̃(−D−) �� W+|D−
�� F̃ �� 0

on XQ̃ss
−

in (3.6). Since (∆α
+)∗Ũ+ = (ϕ̄α+)∗U+, an isomorphism Φα+ in Lemma

4.1 connects the second row of (4.9) with that of (4.10):

(4.11) 0 �� (∆α
+)∗G̃′ �� (∆α

+)∗Ũ+|D−∩Uα
��

(Φα
+)−1

��

(∆α
+)∗F̃ ′ ��

γ

��

�� 0

0 �� G̃(−D−)|Uα
��W+|D−∩Uα

�� F̃ |Uα
�� 0.

Remark that all sheaves in this diagram are flat over D− ∩ Uα. One can check
that two exact sequences in this diagram are relative Harder-Narasimhan filtra-
tions of (∆α

+)∗Ũ+|D−∩Uα
� W+|D−∩Uα

with respect to a−-stability, and hence
we get a homomorphism γ : (∆α

+)∗F̃ ′ → F̃|Uα
which makes (4.11) commuta-

tive. γ ⊗ k(t) is isomorphic for any t ∈ D− ∩ Uα because of the uniqueness
of HNF, and so γ should be isomorphic. (4.9), (4.10), Φα+ and γ induce a
surjective homomorphism

(4.12) s : (∆α
+)∗W− → Ũ−(−D−)|Uα

.

In fact s ⊗ k(t) should be isomorphic for any closed point t ∈ Uα, since
(∆α

+)∗W− ⊗ k(t) and Ũ−(−D−) ⊗ k(t) has the same Chern classes. Thereby
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(4.12) is isomorphic, and hence (4.8) is commutative. From Lemma 4.7 and
(4.8), one can verify φ̄− ◦∆+ ◦ π̃− ◦ iα : Uα ↪→ Q̃ss− →M− equals φ− ◦ π̄− ◦ iα :
Uα → Q̃ss− → M− by diagram-chasing. Hence (φ̄− ◦∆+) ◦ π̃− : Q̃ss− → M̃− →
M− equals φ−◦π̃− : Q̃ss− → M̃− →M−. As mentioned in the preceding section,
π̃− : Q̃ss− → M̃− is a categorical quotient by Ḡ. Therefore we conclude that
φ̄− ◦ ∆+ : M̃− → M̃+ → M− coincides with φ−, thanks to the property of
categorical quotients.

From the proposition above we get a morphism ∆+ such that

(4.13) M̃−
φ̄+ ��

φ−
��

∆+



�
��

��
��

�
M+

M− M̃+
φ̄−

��

φ+

��

is commutative. Quite similarly, there is a morphism ∆− : M+ → M− such
that

(4.14) M̃−
φ̄+ ��

φ−
��

M+

M− M̃+
φ̄−

��

φ+

��
∆−

��������

is commutative. Thus φ− ◦ (∆− ◦ ∆+) : M̃− → M̃− → M− is equal to φ− :
M̃− → M−, and so ∆− ◦ ∆+ : M̃− → M̃+ → M̃− should be idM̃− because
of the universal property of blowing-up φ−. Likewise ∆+ ◦ ∆− : M̃+ → M̃+

equals idM̃+
, and hence both ∆+ and ∆− are isomorphic. Summarizing:

Proposition 4.9. As to (3.22) and (3.23), there are isomorphisms ∆+

: M̃− → M̃+ and ∆− : M̃+ → M̃− such that (4.13) and (4.14) are commutative.
In particular, the morphism φ̄+ : M̃− → M+, which is constructed by the
method of elementary transform and descent theory, is the blowing-up of M+

along W+.

5. Some structure of P f over Pic(X)×Hilb(X)×Hilb(X)

Let f = (f,m, n) be a member of A+(a). (3.1) gives an exact sequence

(5.1) 0 −→ F −→ U−|Qf −→ G −→ 0

of Qf -flat OX
Qf

-modules. By Lemma 2.1 both F⊗k(t) and G⊗k(t) are torsion-
free, rank-one, and hence H-stable for any t ∈ Qf . Denote by MH(1, F,m) the
coarse moduli scheme of H-stable rank-one sheaves on X with Chern classes
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(F,m) ∈ Num(X) × Z. Then F and G in (5.1) induce morphisms τF : Qf →
MH(1, (c1 + f)/2,m) and τG : Qf → MH(1, (c1 − f)/2, n). On the other
hand MH(1, F,m) is isomorphic to PicF (X)×Hilbm(X), where PicF (X) is an
open closed subscheme {L ∈ Pic(X) | [L] = F in Num(X)} of Pic(X). Thereby,
using τF and τG we obtain a morphism τQ : Qf → Pic(c1+f)/2(X)×Hilbm(X)×
Hilbn(X) which has the following properties: Let P ∈ Coh(XPic) be a universal
line bundle of Pic(X), and let IZ1 ∈ Coh(XHilbm) (resp. IZ2 ∈ Coh(XHilbn))
be the ideal sheaf of a universal sheaf of Hilbm(X) (resp. Hilbn(X)). Define
F0 and G0 ∈ Coh(XPic×Hilbm ×Hilbn) by

(5.2) F0 := pr∗12(P)⊗ pr∗13(IZ1) and G0 := c1 ⊗ pr∗12(P∨)⊗ pr∗14(IZ2).

Then one can find line bundles L1 and L2 on Qf such that

(5.3) F � (τQ)∗F0 ⊗ L1 and G � (τQ)∗G0 ⊗ L2.

From now on, we shorten Pic(c1+f)/2(X)×Hilbm(X)×Hilbn(X) to T = T f .
One can show that τQ : Qf → T is Ḡ-invariant in a similar fashion to the

proof of Lemma 3.6, and hence τQ descends to a morphism τ− : P f → T , since
π− : π−1

− (P f ) = Qf → P f is a categorical quotient by Ḡ. In this section we
would like to study some structure of P f as a T -scheme.

One can find bounded complexes F • and G• of locally-free OT -modules of
finite rank which allow quasi-isomorphisms τF : F • → F0 and τG : G• → G0 of
complexes. Let q : XT → T be the projection. The Serre duality [H1] asserts a
natural homomorphism

(5.4) Θq : Rq∗ RHomXT
(HomXT

(F •, G•),OXT
[2])

→ RHomT (Rq∗(HomXT
(F •, G•(KX)),OT )

in the derived categoryD(T ) is isomorphism. Now we shall deduce the following
from this.

Proposition 5.1. For any T -scheme f : S → T , there is an isomor-
phism

Θf∗q : Ext1XS/S
(f∗G0, f

∗F0)→ Ext1XS/S
(f∗F0, f

∗G0(KX))∨

of relative Ext sheaves.

Proof. We prove this lemma only in case where S = T . It’s easy to extend
the proof to general case. As to the left side of (5.4), one can check that

(5.5) [Rq∗ RHomXT
(HomXT

(F •, G•),OXT
[2])]−l � Ext2−lXT /T

(G0,F0)

for any integer l. Now consider the right side of (5.4). If we fix an affine open
covering U = {Ui}i of XT such that q : Ui ↪→ XT → T is affine, then we can
construct a quasi-isomorphism

HomXT
(F •, G•(KX)) −→ HomXT

(F •,G0(KX))
−→ C•(HomXT

(F •,G0(KX)),U)
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to the Cěch complex similarly to [H2, Lemma III.4.2].

q∗ (C•(HomXT
(F •,G0(KX)),U))

represents Rq∗(HomXT
(F •, G•(KX))) since Cp (HomXT

(F q,G0(KX)),U) is
q∗-acyclic. Therefore, for an injective resolution ιT : OT → K•, a complex

HomT (q∗(C•(HomXT
(F •,G0(KX)),U)),K•)

represents RHomT (Rq∗(HomXT
(F •, G•(KX))),OT ). Furthermore, for any

affine open subset Tα of T , there is a bounded complex H•
α of free OTα

-modules
of finite rank and with a quasi-isomorphism

(5.6) hα : H•
α → q∗C•(HomXT

(F •,G0(KX)),U)|Tα
.

by [M1, p. 47, Lemma 1.1]. This hα and ιT : OT → K• give rise to an
isomorphism

(5.7) [HomT (q∗C•(HomXT
(F •,G0(KX)),U),K•)|Tα

]−1

� [HomTα
(H•

α,K
•)]−1 � [HomTα

(H•
α,OTα

)]−1 .

Claim 5.2. This complex H•
α induces an isomorphism

iα : HomTα
([H•

α]1,OTα
)→ [HomTα

(H•
α,OTα

)]−1 .

Proof. As a result of the base change theorem for relative Ext sheaves [La,
Theorem 1.4], Ext2XT /T

(F0,G0(KX)) is equal to zero. Thus one can assume
that H l

α = 0 if l ≥ 2. The remaining part of the proof is easy and left to the
reader.

From (5.6), (5.7) and the claim above, we obtain an isomorphism

jα : [HomT (q∗C•(HomXT
(F •,G0(KX)),U),K•)]−1 |Tα

→ HomT ([q∗C•(HomXT
(F •,G0(KX)),U)]1 ,OT ) |Tα

Claim 5.3. Let Tα and Tβ be affine open subsets in T . Then jα|Tαβ
=

jβ |Tαβ
.

Proof. For hα and hβ at (5.6), there are a bounded complexK•
αβ of locally

free OTαβ
-modules of finite rank, and quasi-isomorphisms kα and kβ such that

K•
αβ

kβ

��

kα

��

H•
β

hβ |Tαβ

��
H•
α

hα|Tαβ �� q∗C•(HomXT
(F •,G0(KX)),U)|Tαβ

is commutative up to homotopy. This (K•
αβ, kα, kβ) can be found by using [M1,

p. 47, Lemma 1.1] and the mapping cone complex Z•(f) ([H1, p. 26]). Then a
quasi-isomorphism

kα|Tαβ
◦ kα : K•

αβ → q∗C•(HomXT
(F •,G0(KX)),U)|Tαβ
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induces an isomorphism jαβ similarly to jα. One can verify that both jα|Tαβ

and jβ |Tαβ
coincide with jαβ .

By this claim we can glue {jα}α to obtain an isomorphism

j : [HomT (q∗C•(HomXT
(F •,G0(KX)),U), K•)]−1

= [RHomT (Rq∗(HomXT
(F •, G•(KX))),OT )]−1

→ HomT ([q∗C•(HomXT
(F •,G0(KX)),U)]1 ,OT )

= Ext1XT /T
(F0,G0(KX))∨.

Now this j, (5.4) and (5.5) complete the proof of this lemma.

Remark that Ext1XT /T
(F0,G0(KX)) is not isomorphic to Ext1XT /T

(G0,

F0)∨ in general.

Lemma 5.4. A natural homomorphism

f∗Ext1XT /T
(F0,G0(KX))→ Ext1XS/S

(f∗F0, f
∗G0(KX))

is isomorphic for any T -scheme f : S → T .

Proof. This lemma is immediate from base change theorem [La, p. 104].

Now let us study a T -scheme P f .

Lemma 5.5. There is a T -morphism i− : P(Ext1XT /T
(F0,G0(KX)))→

P f .

Proof. We shorten P(Ext1XT /T
(F0,G0(KX))) to P−, and denote by p− :

P− → T its structural morphism. Proposition 5.1 and Lemma 5.4 lead to a
natural isomorphism

HomP−(p∗−Ext
1
XT /T

(F0,G0(KX)),O(1))

� Γ(P−, Ext1XP−/P−(G0,F0 ⊗O−(1)))

� Ext1XP−
(G0,F0 ⊗O−(1))

since HomXP−/P−(G0,F0⊗O−(1)) = 0 by base change theorem. A tautological
quotient line bundle

(5.8) p∗−Ext
1
XT /T

(F0,G0(KX)) � O−(1)

on P− gives σ ∈ Ext1XP−
(G0,F0 ⊗O−(1)) or an extension

(5.9) 0 −→ F0 ⊗O−(1) −→ V− −→ G0 −→ 0.
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This OXP− -module V− is P−-flat. For any point t of P−, Proposition 5.1 and
Lemma 5.4 provide us with homomorphisms

κ1 ◦ (k(t)⊗Θq) : k(t)⊗ Γ(P−, Ext1XP−/P−(G0,F0 ⊗O − (1)))

−→ k(t)⊗ Γ(P−, Ext1XP−/P−(F0 ⊗O−(1),G0(KX))∨)

−→ Ext1Xk(t)
(F0 k(t), G0 k(t)(KX))∨

and

Θq⊗k(t) ◦ κ2 : k(t)⊗ Γ(P−, Ext1XP−/P−(G0,F0 ⊗O−(1)))

−→ Ext1Xk(t)
(G0 k(t),F0 k(t))

−→ Ext1Xk(t)
(F0 k(t),G0 k(t)(KX))∨,

where κi are natural maps. In fact these homomorphisms are equal to each
other because a trace map Trq : R2q∗(KX) → OT is compatible with base
change by [Co, p. 172, Theorem 3.6.5]. The extension class of the exact sequence

(5.10) 0 −→ F0 k(t) −→ V− k(t) −→ G0 k(t) −→ 0

induced from (5.9) is equal to κ2(σ) ∈ Ext1Xk(t)
(G0 k(t),F0 k(t)). On the other

hand κ1 ◦ (k(t) ⊗ Θq)(σ) ∈ Homk(t)(Ext1Xk(t)
(F0 k(t),G0 k(t)), k(t)) is nonzero

since (5.8) is surjective. Therefore we see that (5.10) is not trivial, which means
that V− is a flat family of a−-stable sheaves by Lemma 1.6. V− gives a morphism
i− : P− → M−. It’s easy to see that i− factors through P− → P f ↪→ M− and
that i− : P− → P f is a T -morphism.

By (5.1) and (5.3), we have a natural exact sequence

(5.11) 0 −→ (τQ)∗F0 ⊗ L1 −→ U−|Qf −→ (τQ)∗G0 ⊗ L2 → 0

on XQf . Similarly to the proof of the lemma above, one can show that

Ext1X
Qf

((τQ)∗G0 ⊗ L2, (τQ)∗F0 ⊗ L1)

� HomQf ((τQ)∗Ext1XT /T
(F0,G0(KX)), L1 ⊗ L∨

2 ),

and that the homomorphism (τQ)∗Ext1XT /T
(F0,G0(KX)) � L1 ⊗ L∨

2 induced
by (5.11) is surjective. Thus jQ : Qf → P(Ext1XT /T

(F0,G0(KX))) is derived.
One can check that jQ is Ḡ-invariant. As a result, jQ descends to a morphism

(5.12) j− : P f → P(ExtXT /T (F0,G0(KX))).

Lemma 5.6. For morphisms i− in Lemma 5.5 and j− at (5.12), it
holds that i− ◦ j− = idP f and that j− ◦ i− = idP− .
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Proof. Since π− : Qf → P f is a categorical quotient by Ḡ, i− ◦ j−
is equal to idP f if and only if (i− ◦ j−) ◦ π− = i− ◦ jQ is equal to π−.
One can readily verify this, and hence its proof is omitted. T -morphism
i− : P(Ext1XT /T

(F0,G0(KX))) = P− → P f ↪→ M− is induced from an OXT
-

module V− in (5.9), and hence one can find an affine open covering {Pα}α of
P− and a morphism iα : Pα → Qf such that π− ◦ iα = i−|Uα

. It’s easy to show
that jQ ◦ iα = j− ◦ i−|Pα

: Pα → P− is equal to idPα
, and hence its proof is left

to the reader.

Summing up, we get the following:

Proposition 5.7. Fix an element f of A+(a). We define a scheme T ,
OXT

-modules F0 and G0, and line bundles L1 and L2 over Qf as in (5.2) and
in (5.3).

(1) P f can be regarded as a T -scheme.
(2) There is an isomorphism j− : P f → P(Ext1XT /T

(F0,G0(KX))) over T
such that L1⊗L∨

2 ∈ Pic(Qf ) in (5.3) is equal to (j− ◦π−)∗O−(1), where O−(1)
is the tautological line bundle of P(Ext1XT /T

(F0,G0(KX))).

6. Algebro-geometric analogy of µ-map and the Donaldson polyno-
mial

From now on we shall consider the case of c1 = 0. Hence M− stands for
Ma−(0, c2), and so on. We begin with reviewing the algebro-geometric analogy
µ− : NS(X)→ NS(M−) of µ-map, which was introduced in [Li]. Let C ⊂ X be
a nonsingular curve, and θC a line bundle on C with deg(θC) = g(C)−1. For a
universal sheaf U− of Qss− on XQss

− , one can show that a complex R pr2 ∗(U−|C⊗
θC) on Qss− locally is quasi-isomorphic to a bounded complex of free modules of
finite rank. Thus its determinantal line bundle detR pr2 ∗(U−|C ⊗ θC) on Qss−
exists. In fact this line bundle descends to a line bundle LM−(C, θC)∨ on M−,
and its algebraic equivalence class [LM−(C, θc)∨] ∈ NS(M−) is independent of
the choice of θC . It can be checked that the correspondence C �→ [LM−(C, θC)]
induces a homomorphism µ− : NS(X) → NS(M−). One can also construct a

homomorphism µ+ : NS(X)→ NS(M+) likewise. Let M−
φ−←− M̃−

φ+−→M+ be
the sequence of morphisms (3.22). For f ∈ A+(a), we denote by Ef the Cartier
divisor φ−1

− (P f ) on M̃−, which is equal to φ̃−1
+ (P f ) by Corollary 4.6.

Lemma 6.1. For α ∈ NS(X), it holds that

φ∗−µ−(α)− φ̄∗+µ+(α) =
∑

f∈A+(a)

OM̃−

(〈f · α/2〉Ef
)

in NS(M̃−).

Proof. For the simplicity of notation, we prove this lemma in case of
�A+(a) = 1. It’s easy to extend the proof to general case. Let C and θC be as
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explained above, and

(6.1) 0 −→W+ −→ Ũ− −→ G̃ −→ 0

the exact sequence (3.3) on XQ̃ss
−

. Since U− is a flat family of torsion free

sheaves, one can show that a OCQ̃ss−
-module Ũ−|C is Q̃ss− -flat. By using the

method of Cěch complex, one get a quasi-isomorphism

(6.2)
Lf∗R pr2 ∗(Ũ−|C ⊗ θC)→ R pr′2 ∗ Lf

′∗(Ũ−|C ⊗ θC) = R pr′2 ∗ f
′∗(Ũ−|C ⊗ θC),

where
CS

f ′
��

pr′2

��

CQ̃ss
−

pr2

��
S

f �� Q̃ss−

is a fiber product. The analogy to these result about (Ũ−, Q̃ss− ) also holds to
(W+, Q̃

ss
− ) and (G̃, D−). (6.1) gives a triangle

R pr2 ∗(W+|C ⊗ θC) −→ R pr2 ∗(Ũ−|C ⊗ θC) −→ R pr2 ∗(G̃−|C ⊗ θC)

in D(Q̃ss− ), and hence an isomorphism

(6.3) detR pr2 ∗(Ũ−|C ⊗ θC) � detR pr2 ∗(W+|C ⊗ θC) · detR pr2 ∗(G̃|C ⊗ θC)

in Pic(Q̃ss− ) is induced.
detR pr2 ∗(W+|C ⊗ θC) naturally is isomorphic to π̃∗

+φ̄
∗
+LM+(C, θC)∨. In-

deed, Lemma 4.1 gives an open covering
⋃
α Uα of Q̃ss− , a morphism ϕ̄α+ : Uα →

Qss+ , and an isomorphism of XUα
-modules Φα+ : W+|Uα

→ (ϕ̄α+)∗U+. By (6.2)
Φα+ naturally induces an isomorphism

det(Φα+) : detR pr2 ∗(W+|C ⊗ θC)|Uα
→ detR pr2 ∗(ϕ̄

α
+)∗(U+|C ⊗ θC)

→ (ϕ̄α+)∗ detR pr2 ∗(U+|C ⊗ θC)
= (ϕ̄α+)∗π∗

+LM+(C, θC)∨ = ϕ̃∗
+LM+(C, θC)∨|Uα

.

In addition, if α �= β then the isomorphism

(6.4) (Φβ+)−1 ◦ Φα+ :W+|Uαβ
→W+|Uαβ

on XUαβ
= XUα∩Uβ

is given by λαβ ∈ Γ(O×
Uαβ

) since W+|Uαβ
is a flat family of

simple sheaves as mentioned right after Corollary 3.4. One can define the rank
R of a perfect complex R pr2 ∗(W+|C ⊗ θC), and then

det(Φβ+)−1 ◦ det(Φα+) : detR pr2 ∗(W+|C ⊗ θC)|Uαβ

−→ detR pr2 ∗(W+|C ⊗ θC)|Uαβ
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is given by λ×Rαβ . This R turns out to be zero because the Riemann-Roch
theorem implies that χ(Ck(t),W+|C ⊗ θC ⊗ k(t)) = 0 for every t ∈ Uαβ . Hence
we can glue det(Φα+) to obtain an isomorphism

(6.5) detR pr2 ∗(W+|C ⊗ θC) � ϕ̃∗
+LM+(C, θC)∨ = π̃∗

−φ̄
∗
+LM+(C, θC)∨.

From (6.2), we can get a natural isomorphisms

detR pr2 ∗(Ũ−|C ⊗ θC)→ ϕ∗
− detR pr2 ∗(U−|C ⊗ θC) = π̃∗

−φ
∗
−LM−(C, θC)∨.

Hence by (6.3) and (6.5)

π̃∗
−(φ̃∗+LM+(C, θC)− φ∗−LM−(C, θC)) � detR pr2 ∗(G̃|C ⊗ θC).

G̃|C⊗θC is a sheaf on CD− ⊂ CQ̃ss
−

, and so detR pr2 ∗(G̃|C⊗θC) can be regarded

as detR pr2 ∗ jC∗ (G̃|C ⊗ θC) = det j∗R pr′2 ∗(G̃|C ⊗ θC), where

CD−
� � jC

pr′2
��

CQ̃ss
−

pr2

��
D−

� � j
Q̃ss−

is a fiber product. By the Riemann-Roch theorem χ(Ck(t), G̃|C ⊗ θC ⊗ k(t)) =
−f ·C/2 for every t ∈ D−. Thus the rank of a complex R pr′2 ∗(G̃|C⊗θC) on D−
is equal to −f ·C/2. In view of this we can prove that detR pr2,∗(G̃|C ⊗ θC) =
− 〈f · C/2〉D− in Pic(Q̃ss− ); its proof is omitted. Summing up, we obtain an
isomorphism

(6.6) π̃∗
−(φ̃∗+LM+(C, θC)− φ∗−LM−(C, θC))

� −
∑

f∈A+(a)

OQ̃ss
−

(〈f · C/2〉Df ) = −
∑

f∈A+(a)

π̃∗
−OM̃−(〈f · C/2〉Ef )

in Pic(Q̃ss− ). Moreover, both sides in (6.6) respectively have a natural Ḡ-
linearized structure. One can check that (6.6) is an isomorphism of Ḡ-linearized
line bundles. By [Se, Theorem 4] and [HL, p. 87, Theorem 4.2.16] the natural
homomorphism

(6.7) π̃∗
− : Pic(M̃−)→ PicḠ(Q̃ss− )

is injective, where PicḠ(Q̃ss− ) is the group of Ḡ-linearized line bundles on Q̃ss− .
Thereby (6.6) and (6.7) complete the proof of this lemma.

Now we assume that

(6.8) dimMH±(0, c2) = 4c2 − 3χ(OX) = d(c2)
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and that

(6.9) codim(M±, P±) ≥ 2.

These assumptions can be considered to be reasonably weak by the following
lemma.

Lemma 6.2. Let Amp(X) be the ample cone of X, and S ⊂ Amp(X)
a compact subset containing H±. If c2 is sufficiently large with respect to S,
then assumptions (6.8) and (6.9) hold good.

Proof. Refer to [Zu, Theorem 2], [GL], and the proof of [Q1, Theorem
2.3.].

By (6.8) we can define a multilinear map

γ± = γ±(c2) : Symd(c2) NS(X)→ Z

by γ±(α1, . . . , αd(c2)) = µ±(α1) ··· · · · ··· µ±(αd(c2)) using the intersection number
of line bundles on M± = Ma±(0, c2). Similarly, a multilinear map

γH± = γH±(c2) : Symd(c2) NS(X)→ Z

can be defined by the intersection number of line bundles on MH±(0, c2).
Concerning γH±(c2) let us recall its relation to the Donaldson polynomials,

which was stated in Proposition 0.1. As explained in Introduction, Proposition
0.1 originally results from differential geometry. We would like to observe this
proposition from an algebro-geometric point of view. For this reason we shall
study µ−(C)d(c2)−µ+(C)d(c2) for a nonsingular curve C inX. We often shorten
d(c2) to d.

Since (6.9) both φ− : M̃− → M− and φ̄+ : M̃− → M+ are birational,
µ+(C)d − µ−(C)d is equal to φ̄∗+µ+(C)d − φ∗−µ−(C)d. For f ∈ NS(X) , we set
λCf := 〈f · C/2〉. Then Lemma 6.1 implies that

φ̄∗+µ+(C)d − φ∗−µ−(C)d

= {φ̄∗+µ+(C)− φ∗−µ−(C)} ·
d−1∑
k=0

φ∗−µ−(C)k ··· φ̄∗+µ+(C)d−1−k

=
d−1∑
k=0

[
φ∗−µ−(C)k ··· φ̄∗+µ+(C)d−1−k ··· −

∑
f

λCf E
f

]
M̃−

,

(6.10)

where [ ]M̃− stands for the multiplication of line bundles is calculated on M̃−.
By [KL, p. 297, Proposition 4], (6.10) is equal to

∑
f∈A+(a)

−λCf
d−1∑
k=0


φ∗−µ−(C)|kEf ···

{
φ∗−µ−(C)−

∑
f

λCf E
f

}∣∣∣∣∣
d−1−k

Ef



Ef

=
∑
f

−λCf
d−1∑
k=0

[φ∗−µ−(C)|kEf ··· {φ∗−µ−(C)− λCf Ef}|d−1−k
Ef ]Ef ,

(6.11)
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since Ef ∩ Ef ′ = ∅ if f and f ′ are different by 2.4. φ− and φ̄+ induce a
commutative diagram

Ef

φ−
��

φ̄+

�� P−f

τ+

��
P f

τ− �� T.

Let F0 and G0 be OXT
-modules defined in (5.2). By Proposition 5.7 there are

tautological line bundles Of
−(1) and O−f

+ (1) on, respectively, P f and P−f .

Lemma 6.3. A line bundle OEf (−Ef ) on Ef is naturally isomorphic
to φ∗−Of

−(1) + φ̄∗+O−f
+ (1).

Proof. We shorten Of
−(1) and O−f

+ (1) to, respectively, O−(1) and O+(1).
Let Df denote a closed subscheme (π̃−)−1(Ef ) of Q̃ss− . Then

Qf

π−

��

Df

π̃−
��

ϕ−
�� Df ∩ Uα� �

ϕ̄α
+

�� Q−f

π+

��
P f

φ−
�� Ef

φ̄+ �� P−f

is commutative for Uα ⊂ Q̃ss− and ϕ̄α+ in Lemma 4.1. By (5.3), we can rewrite
the exact sequence (3.5) to obtain

(6.12) 0 −→ G0 ⊗ L2(−Df ) −→W+|X
Df
−→ F0 ⊗ L1 −→ 0

on XDf . Next, let

(6.13) 0 −→ G′ −→ U+|Q−f −→ F ′ −→ 0

be the exact sequence (4.1) on XQ−f . Similarly to (5.3), there are isomorphisms

F ′ � F0 ⊗M1 and G′ � G0 ⊗M2

with some line bundles M1 and M2 on Q−f . Analogously to Proposition 5.7,
M2 ⊗M∨

1 is isomorphic to π∗
+O+(1). Thus we obtain an exact sequence

(6.14) 0 −→ G0 ⊗ (ϕ̄α+)∗M2 −→ (ϕ̄α+)∗U+|Df∩Uα
−→ F0 ⊗ (ϕ̄α+)∗M1 −→ 0

on XDf ∩ Uα, pulling (6.13) back by idX ×ϕ̄α+ : XDf∩Uα
→ XQ−f . Connecting

(6.12) and (6.14) by the isomorphism Φα+ in Lemma 4.1, we get the following:

(6.15)
0 �� G0 ⊗ L2(−Df ) ��

r′α
��

W+|Df∩Uα
��

Φα
+

��

F0 ⊗ L1|Uα
��

rα

��

0

0 �� G0 ⊗ (ϕ̄α+)∗M2
�� (ϕ̄α+)∗U+|Df∩Uα

�� F0 ⊗ (ϕ̄α+)∗M1
�� 0.
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As observed in the proof of Lemma 4.2, there is an isomorphism rα : F0 ⊗
L1|Uα

→ F0 ⊗ (ϕ̄α+)∗M1 which makes (6.15) commutative. This rα induces an
isomorphism r′α in (6.15). Because both F0 and G0 are flat families of simple
sheaves, rα and r′α induce isomorphisms

Γ(rα) : L1|Uα
→ (ϕ̄α+)∗M1 and Γ(r′α) : L2 ⊗ODf (−Df )|Uα

→ (ϕ̄α+)∗M2

of line bundles on Df ∩ Uα. Γ(rα) and Γ(r′α) induce an isomorphism

Γ(rα)−1 · Γ(r′α) : ODf (−Df )|Uα
= π̃∗

−OEf (−Ef )|Uα

→ (L1 ⊗ L∨
2 )|Uα

⊗ (ϕ̄α+)∗(M2 ⊗M∨
1 )

� π̃∗
−φ

∗
−O−(1)|Uα

⊗ (ϕ̄α+)∗π∗
+O+(1)

= π̃∗(φ∗−O−(1) + φ̄∗+O+(1))|Df∩Uα

By (6.4) one can check that Γ(rα)−1 · Γ(r′α) = Γ(rβ)−1 · Γ(r′α), and hence glue
Γ(rα)−1 · Γ(r′α) to obtain an isomorphism

π̃∗
−OEf (−Ef ) � π̃∗

−(φ∗−O−(1) + φ̄∗+O+(1))

of line bundles onDf . One can also check this is an isomorphism of Ḡ-linearized
line bundles. Then we complete the proof of this lemma in similar fashion to
the proof of Lemma 6.1.

From (6.11) and Lemma 6.3 we obtain that

(6.16) µ−(C)d(c2) − µ+(C)d(c2) =
∑

f∈A+(a)

−λCf

·
d(c2)−1∑
k=0

[
φ∗−µ−(C)|kEf ··· {φ∗−µ−(C)|Ef + λCf (Of

−(1) +O−f
+ (1))}d(c2)−1−k

]
Ef
.

In the following section, we shall in detail examine the right side of this equation
in some special case.

7. The relation to the intersection theory of P(A−)× P(A∨
−)

From now on, adding to (6.8) and (6.9) we assume that the irregularity
q(X) = 0 and that

(7.1) some section κ ∈ Γ(KX) gives a nonsingular curve K ⊂ X

in view of Proposition 0.1. (We can expect this will be weakened to the con-
dition pg(X) > 0; to do so, we have to adjust the assumption in Proposition
7.1.) Moreover we assume the following about f = (f,m, n) ∈ A+(a):

dim Ext1Xt
(F0 ⊗ k(t),G0 ⊗ k(t)) = L+ and

dim Ext1Xt
(G0 ⊗ k(t),F0 ⊗ k(t)) = L−

(7.2)
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are independent of t ∈ T = Pic[f/2](X)×Hilbm(X)×Hilbn(X), where F0 and
G0 are OXT

-modules defined in (5.2). This assumption (7.2) holds good if, for
example, KX is numerically equivalent to zero, but is not weak at all in general.
Assuming (7.2) we see that both

(7.3) A− = Ext1XT /T
(F0,G0(KX)) and A+ = Ext1XT /T

(G0,F0(KX))

are locally free OT -modules, and hence P±f = P(A∓) are projective bundles
over a nonsingular scheme T . Under these assumptions we would like to exam-
ine

(7.4)
d(c2)−1∑
k=0

[
φ∗−µ−(C)|kEf ··· φ̄∗+µ+(C)|d−1−k

Ef

]
Ef

=
d(c2)−1∑
k=0

[
φ∗−µ−(C)|kEf ··· {φ∗−µ−(C) + λCf (Of

−(1) +O−f
+ (1))}|d−1−k

Ef

]
,

which appeared in (6.16). We shorten Of
−(1) and O−f

+ to, respectively, O−(1)
and O+(1) for the time being. Since P±f are projective bundles over T there
are line bundles β± on T and integers N± such that

µ−(C)|P f = τ∗−(β−) +O−(N−) and µ+(C)|P−f = τ∗+(β+) +O+(N+)

in Pic(P±f ). By Lemmas 6.1 and 6.3 we have

(7.5) φ∗−τ
∗
−(β−−β+)+φ∗−O−(N−)−φ̄∗+O+(N+) = −λCf (φ∗−O−(1)+φ̄∗+O+(1))

in Pic(Ef ). Suppose that N+ �= λCf = 〈f · C/2〉. Then (7.5) implies that OEf

is φ−-ample since OEf (−Ef ) = φ∗−O−(1) + φ̄∗+O+(1) is φ−-ample. By [EGA,
II.5.1], the proper morphism φ− : Ef → P f should be finite if OEf is φ−-ample.
This contradicts (6.9). Therefore as divisors on Ef we have

φ∗−µ−(C)|Ef = φ∗−{τ∗−β +O−(−λCf )} and

φ̄∗+µ+(C)|Ef = φ̄∗+{τ+β +O+(λCf )}
with β = β− ∈ Pic(T ). Hence one can check that (7.4) is equal to

(7.6)
d−1∑
k=0

[
φ∗−(β +O−(−λCf ))k ··· φ̄∗+(β +O+(λCf ))d−1−k

]
Ef

=
d−1∑
t=0

d−1Ct · (λCf )d−1−t
d−1−t∑
s=0

[
βt ··· O+(1)s ··· O−(−1)d−1−t−s

]
Ef

by using the equation
∑t

l=0 s+lCl ··· d−1−s−lCs−l = d−1Ct.
Let Ef

0, . . . , E
f
n be the reductions of all irreducible components of Ef , and

let F f
0 , . . . , F

f
n ⊂ P f×T P−f be their image schemes by φ−×T φ̄+ : Ef → P f×T
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P−f . [KL, Section 1] implies that
∑d−1−t
s=0

[
βt ··· O+(1)s ··· O−(−1)d−1−t−s]

Ef in
(7.6) is equal to

(7.7)
n∑
i=0

degi
d−1−t∑
s=0

[
βt ··· O+(1)s ··· O−(−1)d−1−t−s]

F f
i

with some rational number degi. We shorten F f
i to F f for the time being. We

fix some integer M , and divide (the right side of) (7.7) into

(7.8)
M∑
s=0

+
d−1−t∑
s=M+1

=

[
βt ··· O−(−1)d−1−t−M ···

M∑
s=0

(O+(1)s ··· O−(−1)M−s)

]
F f

+

[
βt ··· O+(1)M+1 ···

d−2−t−M∑
s=0

(O+(1)s ··· O−(−1)d−2−t−s−M )

]
F f

.

(7.8) is related to the intersection theory on P f ×T P−f = P(A−) ×T P(A+)
since F f is its closed subscheme. In this section we would like to reduce the
problem of computing (7.8) to the intersection theory on P(A−)×T P(A∨

−) and
P(A∨

+)×T P(A+) by choosing M suitably. The reason why we would like to do
so will be explained in the next section. It is possible to connect P f ×T P−f

with P(A−)×T P(A∨
−) because pg(X) > 0.

Since T is projective over C, there is a line bundle β0 on T such that
coherent OT -modules A− ⊗ β0, A− ⊗ 2β0 and A− ⊗ (β + β0) are generated
by their global sections. Because β = {O−(1) + β + β0} − {O−(1) + β0} and
O−(1) = 2{O−(1)+β0}−{O−(1)+2β0}, one can express βs ···O−(−1)d−1−t−M

in (7.8) as
I∑
i=1

Ni

d−1−M∏
j=1

(O−(1) + Lij)

with integers Ni and line bundles Lij on T such that

(7.9) τ−∗(O−(1) + Lij) = A− ⊗ Lij is generated by its global sections.

Hence, in order to understand the first half of (7.8), let us examine

(7.10)


d−1−M∏

j=1

(O−(1) + Lj) ···
M∑
s=0

(O+(1)s ··· O−(−1)M−s)



F f

,

where Lj ∈ Pic(T ) satisfies (7.9). We shall denote the natural projections by
p∓ : F f ↪→ P f ×T P−f → P±f . (7.10) clearly is zero if d−1−M > dim p−(F f ),
and so we can assume that d − 1 − M ≤ dim p−(F f ). Then one can find
nonzero global sections λj ∈ Γ(P f ,O−(1) ⊗ Lj) = Γ(T,A− ⊗ Lj) such that
dim(F f ∩ p−1

− (Λ1 ∩ · · · ∩ Λj)) = dimF f − j, where Λj ⊂ P f is the effective
Cartier divisor of P f corresponding to λj . These λj induce a homomorphism

(7.11)
⊕
j

⊗λj : L−1
1 ⊕ · · · ⊕ L−1

d−1−M → A−.
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Λ1 ∩ · · ·∩Λd−1−M ⊂ P f is just a closed subscheme P(Cok(
⊕

j ⊗λj)) ⊂ P(A−).
By a general property of intersection number [KL, p. 297, Proposition 4], (7.10)
is equal to

(7.12)
M∑
s=0

[O+(1)s ··· O−(−1)M−s]
p−1
− (Λ1∩···∩Λd−1−M )

.

On the other hand, κ ∈ Γ(KX) in (7.1) induces a homomorphism

(7.13) ⊗κ− : A∨
+ = Ext1XT /T

(F0,G0)→ A− = Ext1XT /T
(F0,G0(KX))

by virtue of Proposition 5.1. We define l− by l− = rk(Cok(⊗κ−)) and prove
the following proposition.

Proposition 7.1. If d − 1 −M ≥ l− + dimT , then we can choose λj
so that

(7.14)
A∨

+ = Ext1XT /T
(F0,G0)

⊗κ→ A− = Ext1XT /T
(F0 ⊗ G0(KX)) � Cok(

⊕
j

⊗λj)

is surjective. In particular, p−1
− (Λ1 ∩ · · ·Λd−1−M ) can be regarded as a closed

subscheme of P(A∨
+)×T P−f = P(A∨

+)×T P(A+).

Proof. Suppose that the following lemma is valid:

Lemma 7.2. Define a closed subscheme Ti of T by

Ti =
{
t ∈ T rkCok{⊗κ : Ext1Xt

(F0 ⊗ k(t),G0 ⊗ k(t))→
Ext1Xt

(F0 ⊗ k(t),G0(KX)⊗ k(t))} ≥ l− + i

}
.

Then codim(Ti, T ) ≥ i for all i ≥ 0.

Then the dimension of a closed subscheme P(Cok (⊗κ)) of P(A−) = P f

is less than l− + dimT since relative Ext sheaves A− and A∨
+ are compatible

with base change by the assumption (7.2). Thus if d − 1 −M ≥ l− + dimT ,
then one can choose λj suitably so that Λ1 ∩ · · · ∩ Λd−1−M ∩ P(Cok (⊗κ)) = ∅
in P f , or L−1

1 ⊕ · · · ⊕ L−1
d−1−M

⊕⊗λj−→ A− = Ext1XT /T
(F0,G0(KX)) � Cok(⊗κ)

is surjective. Hence also A∨
+

⊗κ−→ A− � Cok(⊕ ⊗ λj) is surjective, and so the
proof of Proposition 7.1 is completed.

To prove Lemma 7.2 let us observe good properties of Hilb(X). F0 ⊗ k(t)
and G0 ⊗ k(t) are isomorphic to, respectively, O(L)⊗ IZ1 and O(c1 − L)⊗ IZ2

for some divisor L on Xt and codimension-two closed subschemes Z1 and Z2

in Xt. The long exact sequence of Ext sheaves associated with a short exact
sequence

0 −→ O(c1 − L) = G0 ⊗ k(t) ⊗κ−→ O(c1 − L+KX)⊗ IZ2

= G0(KX)⊗ k(t) −→ O(c1 − L+KX)|K ⊗ IZ2 −→ 0
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tells us that

rkCok{κ : Ext1Xt
(F0 ⊗ k(t),G0 ⊗ k(t))→ Ext1Xt

(F0 ⊗ k(t),G0(KX)⊗ k(t))}
= L− − L+ − homX(IZ1 ,O(c1 − 2L+KX)⊗ IZ2)

+ homX(IZ1 ,O(c1 − 2L+KX)|K ⊗ IZ2),

where L± are those of (7.2). Since

dim Ext1Xt
(G0 ⊗ k(t),F0 ⊗ k(t)) = dim Ext1Xt

(IZ1 ,O(c1 − 2L+KX)⊗ IZ2)

is independent of t ∈ T , homX(IZ1 ,O(c1 − 2L + KX) ⊗ IZ2) is independent
of t ∈ T . Moreover, if t ∈ T is so general that Z1 ∩ K = Z2 ∩ K = ∅, then
homX(IZ1 ,O(c1−2L+KX)|K⊗IZ2) is equal to h0(O(c1−2L+KX)|K), which
is independent of t ∈ T since q(X) = 0. Therefore one can show that

rk Cok{⊗κ : Ext1Xt
(F0 ⊗ k(t),G0 ⊗ k(t))→ Ext1Xt

(F0 ⊗ k(t),G0(KX)⊗ k(t))}
− l− = homX(IZ1 ,O(c1 − 2L+KX)|K ⊗ IZ2)− h0(O(c1 − 2L+KX)|K).

Now we divide Artinian schemes Z1 and Z2 into Z1 = W1

∐
T1 and Z2 =

W2

∐
T2 so that, set-theoretically, W1 = W2 = Z1 ∩ Z2 ∩ K.

Claim 7.3.

homX(IZ1 ,O(c1 − 2L+KX)|K ⊗ IZ2)− h0(O(c1 − 2L+KX)|K)
≤ l(Z1 ∩ K) + l(Z2 ∩ K) + homX(OW2 ,OW1)

+ homX(OW1 , Im(⊗κ : OW2 → OW2)).

Proof. From the long exact sequence of Tor sheaves, one derives two exact
sequences

(7.15) 0 −→ F2 −→ OZ2

⊗κ−→ OZ2 −→ OZ2∩K −→ 0

and
0 −→ F2 −→ IZ2 |K −→ L2 = Ker(OK � OK∩Z2) −→ 0.

Hence one can show that

homX(IZ1 ,O(c1 − 2L+KX)|K ⊗ IZ2)− h0(O(c1 − 2L+KX)|K)

≤ homX(IZ1 ,O(c1 − 2L+KX)|K) + homX(IZ1 , F2)− h0(O(c1 − 2L+KX)|K)

= [χ(IZ1 ,O(c1 − 2L+KX)) + ext1X(IZ1 ,O(c1 − 2L+KX)|K)
− χ(IZ1 ,O(c1 − 2L))]− [χ(O(c1 − 2L+KX))− χ(O(c1 − 2L))

+ h1(O(c1 − 2L+KX)|K)] + χ(IZ1 , F2) + ext1X(IZ1 , F2)

= ext1X(IZ1 ,O(c1 − 2L+KX)|K) + l(F2) + ext1X(IZ1 , F2)

− h1(O(c1 − 2L+KX)|K)

= ext1X(IZ1 ,O(c1 − 2L+KX)|K)− h1(O(c1 − 2L+KX)|K)
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+ l(Z2 ∩ K) + ext1X(IZ1 , F2)

by the Riemann-Roch theorem and (7.15). If we define F1 by an exact sequence

0 −→ F1 −→ OZ1

⊗κ−→ OZ1 −→ OZ1∩K −→ 0,

then we have that

ext1X(IZ1 ,O(c1 − 2L+KX)|K)− h1(O(c1 − 2L+KX)|K)

≤ ext2X(OZ1 ,O(c1 − 2L+KX)|K) = homX(O(c1 − 2L)|K,OZ1)
= homX(OK,OZ1) = homX(OK, F1) ≤ l(F1) = l(Z1 ∩ K)

For W2 ⊂ Z2 mentioned above, there is an exact sequence

0 −→ G2 −→ OW2

⊗κ−→ OW2 −→ OW2∩K −→ 0.

ext1X(IZ1 , F2) = ext2X(OZ1 , F2) = homX(F2,OZ1) equals homX(G2,OW1) nat-
urally. G2 induces an exact sequence

0 −→ G2 −→ OW2 −→ Im(⊗κ) −→ 0.

This sequence implies that

homX(G2,OW1)

≤ homX(OW2 ,OW1)− homX(Im(⊗κ),OW1) + ext1X(Im(⊗κ),OW1)

= −χ(Im(⊗κ),OW1) + ext2X(Im(⊗κ),OW1) + homX(OW2 ,OW1)
= homX(OW1 , Im(⊗κ)) + homX(OW2 ,OW1).

Hence we conclude the proof of this claim.

For nonnegative integers p, q and r,

Wmn
pqr = Wpqr =




(Z1, Z2) ∈ l(Z1 ∩ K) = p, l(Z2 ∩ K) = q,
Hilbm(X)× hom(OW2 ,OW1) + hom(OW1 , Im(⊗κ :
Hilbn(X) OW2 → OW2)) = r




is a locally-closed subscheme of Hilbm(X)×Hilbn(X). By the claim above, the
proof of Lemma 7.2 is completed if we prove that

(7.16) codim(Wmn
pqr ,Hilbm(X)×Hilbn(X)) ≥ p+ q + r.

Let Hilbm(X,x) denote Hilbm(Spec(OX,x)) for a closed point x ∈ X, and let
Zmp ⊂ Hilbm(X) be a locally closed subscheme {z ∈ Hilbm(X) | l(Z ∩ K) = p}
for p ∈ N.

Claim 7.4. If we prove that

(7.17)
codim(Wmn

pqr ∩ [Hilbm(X,x)×Hilbn(X,x)], Hilbm(X,x)×Hilbn(X,x))

≥ p+ q + r + 1
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and that

(7.18) codim(Zmp ,Hilbm(X)) ≥ p,
then (7.16) follows.

Proof. The proof is by induction on (m,n). Fix (m,n) and suppose that
(7.16) holds good for (m′, n′) �= (m,n) such that m′ ≤ m and n′ ≤ n. If either
m or n is zero, then (7.16) for (m,n) is immediate from (7.18). Hence we
assume that both m and n are positive. We divide the proof into several cases.
Let (Z1, Z2) be a member of Wmn

pqr ⊂ Hilbm(X)× Hilbn(X).
First, suppose that � supp(Z1) ≥ 2 and � supp(Z2) ≥ 2. Let m1, m2, n1

and n2 be positive integers such that m1 + m2 = m and n1 + n2 = n. If we
define an open subset Um1 of Hilbm1(X)×Hilbm2(X) by

Um1 = {(Z(1)
1 , Z

(2)
1 ) | Z(1)

1 ∩ Z(2)
1 = ∅},

then we can define a natural map ϕm1 : Um1 → Hilbm(X). Similarly we can
define ϕn1 : Un1 → Hilbn(X). Let V m1,n1 be an open subset of Um1 × Un1

{(Z(1)
1 , Z

(2)
1 , Z

(1)
2 , Z

(2)
2 ) | Z(2)

1 ∩ Z(1)
2 = Z

(1)
1 ∩ Z(2)

2 = ∅}.
(Z1, Z2) is contained in ϕm1 ×ϕn1(V m1,n1) for some m1, n1. It’s easy to prove
that, in Hilbm1 ×Hilbn1 ×Hilbm2 ×Hilbn2 ,

(7.19) (ϕm1 × ϕn1)−1(Wmn
pqr ) ∩ V m1,n1 ⊂

⋃
(pi,qi,ri)

Wm1n1
p1q1r1 ×Wm2n2

p2q2r2 ,

where (pi, qi, ri) runs over the set of all triples such that p1+p2 = p, q1 +q2 = q
and r1+r2 = r. The inductive hypothesis tells us that the dimension of the right
side of (7.19) is not exceeding 2(m+n)− (p+ q+ r), since dim Hilbn(X) = 2n
by [Fo]. Hence dim(Wmn

pqr ∩ (ϕmi × ϕni)(Vmi,ni) ≤ 2(m+ n)− (p+ q + r).
Unless � supp(Z1) ≥ 2 and � supp(Z2) ≥ 2, it holds either � supp(Z1) =

1 and � supp(Z2) ≥ 2, � supp(Z1) ≥ 2 and � supp(Z2) = 1, supp(Z1) =
supp(Z2) = {x} or supp(Z1) ∩ supp(Z2) = ∅. In all cases one can ver-
ify that (Z1, Z2) is contained in a subscheme whose dimension does not ex-
ceed 2(m + n) − (p + q + r), similarly to the case where � supp(Z1) ≥ 2 and
� supp(Z2) ≥ 2.

Claim 7.5. Let us denote Zmp ∩ Hilbm(X,x) by Zmp (x). If we prove
that

(7.20) codim(Zmp (x),Hilbm(X,x)) ≥ p− 1,

then (7.17) and (7.18) follow.

Proof. We can prove (7.18) by using (7.20) in a similar fashion to the
proof of Claim 7.4. Shorten Wmn

pqr ∩ [Hilbm(X,x)×Hilbn(X,x)] to Wmn
pqr (x). If

(Z1, Z2) ∈Wmn
pqr (x), then

r = homX(OZ2 ,OZ1) + homX(OZ1 , Im(⊗κ : OZ2 → OZ2))
≤ l(Z1) + l(Im(⊗κ)) = l(Z1) + l(Z2)− l(Z2 ∩ K) = m+ n− q.
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Hence if Zmnpqr (x) �= ∅, then (7.20) means that

2(m+ n)− (p+ q + r) ≥ 2(m+ n)− (p+ q +m+ n− q)
= m+ n− p = m− 1− (p− 1) + (n− 1) + 1
≥ dim(Zmp (x)×Hilbn(X,x)) + 1 ≥ dim(Wmn

pqr (x)) + 1

since dim Hilbm(X,x) = m+ 1 by [Br]. Thus (7.17) follows.

Now we prove the following claim, which completes the proof of Proposition
7.1 because of the claim above.

Claim 7.6. For an integer i ≥ 2 and a closed point x ∈ X, we define a
locally closed subscheme Wm

qi (x) of Zmq (x) ⊂ Hilbm(X) by

Wm
qi (x) = {z ∈ Zmq (x) | dimC(IZ ⊗ k(t)) = i}.

Then it holds that

(7.21) dimZmq (x) ≤ m− q (1 ≤ q ≤ m),

and that

(7.22) dimWm
qi (x) ≤ m− q + 2− i (2 ≤ i, 1 ≤ q ≤ m).

Proof. It suffices to prove this in case where x ∈ K. The proof is by
induction on m. It’s easy to prove this claim for m = 1. Fix m and suppose
that this claim is valid for all m′ ≤ m. Referring to [ES], we here recall the
incidence subvariety Hm,m+1 of Hilbm(X)×Hilbm+1(X):

Hm,m+1 = {(Z1, Z2) ∈ Hilbm(X)×Hilbm+1(X) | Z1 ⊂ Z2}.
Let f : Hm,m+1 → Hilbm(X) and g : Hm,m+1 → Hilbm+1(X) be the pro-
jections. There is a natural morphism q : Hm,m+1 → X sending (Z1, Z2) to
the unique point where Z1 and Z2 differ. They give a (birational) morphism
φ = (f, q) : Hm,m+1 → Hilbm(X)×X. By [ES, Section 3] it holds that

(7.23) dimφ−1(Z1, y) = dimC(IZ1 ⊗ k(y))− 1

for (Z1, y) ∈ Hilbm(X)×X, and that if (g, q)−1(Z2, y) �= ∅ then

(7.24) dim(g, q)−1(Z2, y) = dimC(IZ2 ⊗ k(y))− 2

for (Z2, y) ∈ Hilbm+1(X)×X.
First let us show (7.21) for m + 1. Suppose that q ≤ m. Then for any

Z2 ∈ Zm+1
q (x) one can find Z1 ∈ Zmq (x) such that (Z1, Z2) ∈ Hm,m+1. Thus

Zm+1
q (x) ⊂ g(φ−1(Zmq (x)× {x})). Zmq (x) clearly is equal to

⋃
i≥2W

m
qi (x), and

so dimZm+1
q (x) ≤ maxi≥2 dimφ−1(Wm

qi (x) × {x}). The inductive hypothesis
(7.22) and (7.23) imply that

(7.25) dimφ−1(Wm
qi (x)× {x})
≤ dimWm

qi (x) + i− 1 ≤ m− q + 2− i+ i− 1 = m− q + 1.



�

�

�

�

�

�

�

�

Moduli of sheaves under change of polarization 869

Now we claim that dimZm+1
m+1 (x) = 0. Indeed, if Z2 ∈ Zm+1

m+1 (x), then OZ2 is
isomorphic to OZ2∩K, which is equal to OK/mm+1

K,x since K is a nonsingular
curve. Therefore (7.21) is valid for m+ 1.

Next let us show (7.22) for m + 1. If q = m + 1 or i = 2, then (7.22)
results form (7.21). So suppose that q ≤ m and i ≥ 3. If (Z1, Z2) ∈ Hm,m+1

satisfies Z2 ∈ Wm+1
qi (x), then Z1 ∈ Hilbm(X,x), l(Z1 ∩ K) = q − 1 or q, and

dimC(IZ1 ⊗ k(x)) = i− 1, i, or i+ 1. Hence

(7.26)

g−1(Wm+1
qi (x)) ⊂

i+1⋃
j=i−1

φ−1
(
Wm
q−1,j(x)× {x}

) ∪ i+1⋃
j=i−1

φ−1
(
Wm
q,j(x)× {x}

)
.

If Z1 ∈ Zmq−1(x) and Z2 ∈ Zm+1
q (x) satisfy Z1 ⊂ Z2, then IZ2 is equal to

Ker(IZ1 � IZ1 |K � IZ1∩K = mq−1
K,x � mq−1

K,x /m
q
K,x � C)

since K is nonsingular, where mK,x is the ideal sheaf of x ∈ K. Consequently
the inductive hypothesis (7.22) implies that

(7.27) dimφ−1(Wm
q−1,j(x)× {x}) ∩ g−1(Wm+1

q,i (x))

≤ dimWm
q−1,j(x)× {x} ≤ m− q + 3− j ≤ m− q + 1

since j ≥ i − 1 ≥ 2. (7.25), (7.26) and (7.27) mean that dim(Wm+1
qi (x)) ≤

m− q + 1. By (7.24) we have

dimWm+1
qi (x) ≤ m− q + 1− (i− 2) = m+ 1− q + 2− i.

Therefore we have proved (7.22).

Claim 7.6 concludes the proof of Proposition 7.1.

Therefore (7.12), which is the first half of (7.8), is related to the intersection
theory on P(A∨

+)×T P(A+) if d− 1−M ≥ l− + dimT .

8. The relation to incidence varieties

To understand (7.12) still more, let us examine subschemes F f and p−1
− (Λ1

∩ · · · ∩ Λd−1−M ) of P f ×T P−f . We denote the reduction of ϕ−1
− (Qf ) =

ϕ̃−1
+ (P−f ) by Df .

Lemma 8.1. Let r : HomX
Df /Df (G̃, G̃(KX))→ Ext1X

Df /Df (G̃, F̃(KX))
be a homomorphism induced by the restriction of (3.2) to XDf . (We here
shorten F̃ |X

Df
to F̃ , etc.) The extension class of the third column of (3.6)

gives an element s of

Ext1X
Df

(F̃ , G̃(−D−)) = Γ(Df , Ext1X
Df /Df (F̃ , G̃(−D−)))

� Γ(Df , Ext1X
Df /Df (G̃(−D−), F̃(KX))∨)

= HomDf (Ext1X
Df /Df (G̃, F̃(KX)),ODf (−D−))
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by virtue of Proposition 5.1. Then s◦r : HomX
Df /Df (G̃, G̃(KX))→ ODf (−D−)

is zero.

Proof. We shall appeal to some obstruction theory. For a closed point t
of Df the third column of (3.6) induces an exact sequence

(8.1) 0 −→ G̃k(t)(−D−) −→W+|Xk(t) −→ F̃k(t) −→ 0

on Xk(t). As observed in the proof of Lemma 3.1 and lemma 3.3, the extension
class σ of (8.1) in Ext1Xk(t)

(F̃k(t), G̃k(t)(−D−)) is the obstruction to extend a
morphism

Spec(A′) = Spec(OQ̃ss
−
/O(−D−) + m̃l+1

t ) −→ D−
ϕ−−→ V−

to a morphism Spec(A) = Spec(OQ̃ss
−
/m̃l+1

t ) → V−, where l is the integer in
Lemma 3.1. Next, let

r′t : Ext1X(F̃k(t), G̃k(t)(−D−)) −→ Ext2X(G̃k(t), G̃k(t)(−D−))

be an homomorphism induced by (3.2). Then r′t(σ) is the obstruction to extend
G̃ ⊗D− OA′ ∈ Coh(XA′) to an A-flat family of simple sheaves on XA by [HL,
Section 2.A]. Moreover, the trace map

(8.2) tr : Ext2X(G̃k(t), G̃k(t)(−D−)) −→ H2(OX(−D−))

sends r′t(σ) to the obstruction to extend a line bundle det(G̃ ⊗D− OA′) on XA′

to a line bundle on XA by [HL, Theorem 4.5.3]. Now Pic(X) is smooth over C,
and the trace map (8.2) is isomorphic since rk(G̃k(t)) = 1. Therefore r′t(σ) = 0.
Remark that

Ext1X(F̃k(t), G̃k(t)(−D−))

Θ

��

r′t
�� Ext2X(G̃k(t), G̃k(t)(−D−))

Θ

��
Ext1X(G̃k(t)(−D−), F̃k(t)(KX))∨

r∨t �� HomX(G̃k(t)(−D−), G̃k(t)(KX))∨

is commutative, where Θ is an isomorphism induced by the Serre duality (5.4),
and

rt : Hom(G̃k(t)(−D−), G̃k(t)(KX)) −→ Ext1X(G̃k(t)(−D−), F̃k(t)(KX))

is defined similarly to r in this lemma. One can verify that

HomX
Df /Df (G̃, G̃(KX))⊗ k(t)

can−→ HomXk(t)(G̃k(t), G̃k(t)(KX))
r∨t ◦Θ(σ)−→ OQ̃ss

−
(−D−)⊗ k(t)

is equal to (s ◦ r)⊗ k(t). Hence (s ◦ r)⊗ k(t) = 0 for every closed point t ∈ Df ,
which implies s ◦ r = 0 since Df is reduced.

An exact sequence (5.9) on XP f induces a homomorphism

(8.3) rP : HomX
P f /P f (G0,G0(KX))→ Ext1X

P f /P f (G0,F0 ⊗O−(1)(KX)).
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Lemma 8.2. The image scheme of φ− ×T φ̄+ : (Ef )red → P f ×T P−f

is contained in a subscheme

P(Cok(rP )) ⊂ P(Ext1X
P f /P f (G0,F0 ⊗O−(1)(KX))) = P f ×T P−f

defined in (8.3).

Proof. We shorten (Ef )red to Er in this proof. There is a natural exact
sequence

(8.4) 0 −→ G0 ⊗O+(1) −→ V+ −→ F0 −→ 0

on X−f similarly to (5.9). Pulling back (5.9) and (8.4) by, respectively, φ− and
φ̄+, we have two exact sequences

0 −→ F0 ⊗O−(1) −→Ṽ− −→ G0 −→ 0,(8.5)

0 −→ G0 ⊗O+(1) −→Ṽ+ −→ F0 −→ 0(8.6)

on XEr
. They induce two homomorphisms

rE :HomXEr/Er
(G0,G0(KX)) −→ Ext1XEr/Er

(G0,F0 ⊗O−(1)(KX)) and

sE :Ext1XEr/Er
(G0,F0 ⊗O−(1)(KX)) −→ O−(1)⊗O+(1).

We pull them back by π̃− : Df → Er. Then

π̃∗
−HomXEr/Er

(G0,G0(KX))
π̃∗
−(sE◦rE)

��

f1
��

π̃∗
−(O−(1)⊗O+(1))

f2

��
HomX

Df /Df (G̃, G̃(KX)) s◦r �� ODf (−D−)

is commutative, where f1 is a natural homomorphism and f2 is the isomorphism
in Lemma 6.3. One can prove this by recollecting the way to construct φ̄+ and
the proof of Proposition 5.7. Therefore π̃∗

−(sE ◦ rE) = 0 by Lemma 8.1.
On the other hand, π̃− : (π̃−)−1(Ef

red)→ Ef
red = Er is a principal Ḡ-bundle

since Ef ⊂ M̃s
−. Thereby (π̃−)−1(Ef

red) is reduced, and hence (π̃−)−1(Ef )red =
Df . Accordingly π̃− : Df → Er is faithfully-flat, and so π̃∗

−(sE ◦ rE) = 0
implies sE ◦ rE = 0. In fact, sE gives a morphism P(sE) : Er → Er ×T
P−f = P(Ext1XEr/Er

(G0,F0(KX)) and P(sE) is equal to id×T φ̄+ because of its
definition. Thus sE ◦ rE = 0 implies this lemma.

Here we remark that F f also is contained in P(Cok(rP )) ⊂ P f ×T P−f by
virtue of its definition and the lemma above.

Let us proceed to study a closed subscheme p−1
− (Λ1 ∩ · · · ∩Λd−1−M ) of F f

in (7.12). We assume that q(X) > 0, (6.8), (6.9), (7.1) and (7.2).

Definition 8.3. Dualizing a canonical quotient A+⊗T OP−f � O+(1),
we have an exact sequence
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(8.7) 0 −→ O+(−1) −→ A∨
+ ⊗T OP−f −→ Cok+ −→ 0

on P−f . The incidence subvariety D−f of P(A∨
+ ⊗T OP−f ) = P(A∨

+)×T P(A+)
is a closed subscheme P(Cok+).

Lemma 8.4. Suppose that the homomorphism (7.14) is surjective.
Then a closed subscheme p−1

− (Λ1∩· · ·Λd−1−M ) of P(Ext1XT /T
(F0,G0))×T P−f

is contained in the incidence variety D−f .

Proof. In the proof we shorten Λ1∩· · ·∩Λd−1−M to Λ for simplicity. From
the assumption we have the following commutative diagram of OT -modules:

(8.8) A∨
+ = Ext1XT /T

(F0,G0) �� ��

⊗κ
��

Cok(⊕⊗ λj)

A− = Ext1XT /T
(F0,G0(KX)).

�� ��																

This induces two closed immersions:

(8.9) P(A∨
+) P(Cok(⊕⊗ λj)) = Λ� �

i∨
��

� �

i

��















P(A−) = P f .

Now we can find isomorphisms

j∨ : i∨∗O∨
+(1) −→ i∗O−(1) and j : i∗O−(1) −→ OΛ(1)

such that

(8.10) A∨
+ ⊗T OΛ ⊗κ

��

(i∨)∗λ∨
+
����

A− ⊗T OΛ
�� ��

i∗(λ−)
����

Cok(⊕⊗ λj)⊗T OΛ

λΛ
����

(i∨)∗O∨
+(1)

j∨
�� i∗O−(1)

j
�� OΛ(1)

is commutative, where λ−, λ∨+ and λΛ are the natural surjections on P f , P(A∨
+)

and Λ, respectively. Pull back this diagram by φ− : EΛ := φ−1
− (Λ) → Λ,

which is a restriction of φ− : Ef
red → P f . The following diagram on EΛ is

commutative:
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(8.11) O+(−1)|EΛ can
��

l

��

HomXEΛ/EΛ(F0 ⊗O+(1),F0)

⊗κ
��

HomXEΛ/EΛ(F0 ⊗O+(1),F0(KX))

r′E
��

A∨
+ ⊗T OEΛ

⊗κ ��

(i∨◦φ−)∗λ∨
+
����

A− ⊗T OEΛ = Ext1XEΛ/EΛ
(F0,G0(Kx))

(i◦φ−)∗λ−
����

O∨
+(1)

φ∗
−(j∨)

�� O−(1).

Here, l is the pull back of O+(−1)→ A∨
+⊗TOP−f in (8.7) by EΛ ↪→ Ef → P−f ,

r′E is defined by using (8.6) similarly to rP (8.3), and the lower diagram is
obtained from the left side of (8.11). Then, (i◦φ−)∗λ− in (8.11) coincides with
the homomorphism s′E : Ext1XEΛ/EΛ

(F0,G0(KX)) � O−(1) defined by using
(8.5) similarly to sE in the proof of Lemma 8.4. Hence one can verify that
(i ◦φ−)∗λ− ◦ r′E = 0 in the same way as the proof of Lemma 8.4, which implies
(i∨ ◦ φ−)∗λ∨+ ◦ l = 0 in (8.11). This and (8.10) imply that

O+(−1)|EΛ

l−→ A∨
+ ⊗T OEΛ � Cok(⊕⊗ λj)⊗T OEΛ

φ∗
−(λΛ)−→ OΛ(1)

is the zero map. By this we can conclude the proof.

For the time being we suppose a homomorphism (7.14) is surjective. More-
over, we assume that dimF f = dimEf = d − 1 since (7.7) is zero unless this
holds good. Then, by the lemma above a subvariety p−1

− (Λ1 ∩ · · · ∩ Λd−1−M )
of P(A∨

+)×T P(A+) gives an algebraic cycle ω ∈ Ar(D−f ) of the incidence va-
riety D−f with r = codim(p−1

− (Λ1 ∩ · · · ∩Λd−1−M ),D−f ). D−f is nonsingular,
so we can use the intersection theory of Df . Because O−(1)|Λ1∩···∩Λd−1−M

=
O∨

+(1)|Λ1∩···∩Λd−1−M
as mentioned in (8.10), one can verify that (7.12) is equal

to

(8.12)
M∑
t=0

deg
(
c1(O+(1))t ··· c1(O∨

+(−1))M−t ··· ω)
D−f ,

where ( )Df designates the multiplication in the Chow ring A(D−f ). We shall
omit c1( ) from now on. Moreover, one can write ω ∈ Ar(D−f ) as ω =∑L+−2

j=0 bj O∨
+(1)j with some bj ∈ Ar−j(P−f ) = Ar−j(P(A+)) because the sheaf

Cok+ in (8.7) is a vector bundle on P−f whose rank is L+− 1 = rkA∨
+− 1. By

(8.7), (−1)M times (8.12) is equal to
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deg
L+−2∑
j=0

(
bj ··· O∨

+(1)j ···
M∑
t=0

O∨
+(1)t ··· O+(−1)M−t

)
D−f

= deg
L+−2∑
j=0

(
bj ···

M+j∑
t=0

O∨
+(1)t ··· O+(−1)M+j−t

)
D−f

− deg
L+−2∑
j=0

(
bj ···

j−1∑
t=0

O∨
+(1)t ··· O+(−1)M+j−t

)
D−f

= deg
L+−2∑
j=0

(
bj ···

M+j∑
t=0

OP(Cok+)(1)t ··· O+(−1)M+j−t
)

P(Cok+)

− deg
L+−2∑
j=0

(
bj ··· O+(−1)M−1 ···

j−1∑
t=0

OP(Cok+)(1)t ··· O+(−1)j−1−t
)

P(Cok+)

= deg
L+−2∑
j=0

(
bj ···

M−j∑
t=0

st−(L+−2)((Cok+)∨) ··· O+(−1)M+j−t
)
P−f

− deg
L+−2∑
j=0

(
bj ··· O+(−1)M−1 ···

j−1∑
t=0

st−(L+−2)((Cok+)∨)

· O+(−1)j−1−t
)
P−f

.

(8.13)

Here sl((Cok+)∨) ∈ Al(P−f ) is the Segre class of a vector bundle (Cok+)∨ on
P−f , which is explained in [Fu, Section 3.1].

In general, the Chern polynomial ct(V) =
∑∞
j=0 cj(V) tj of a vector bundle

V satisfies that ct(V)−1 =
∑∞
j=0 sj(V) tj as power serieses. Thus the dual of

(8.7) tells us that

st((Cok+)∨) · (1 +
∑
j>0

O+(−1)j tj) = st(A+ ⊗T OP−f ).

In addition, sj(V) = 0 if j < 0. We see that (8.13) is equal to the degree of

L+−2∑
j=0

(
bj ··· sM+j−(L+−2)(A+ ⊗T OP−f )

)
P−f

−
L+−2∑
j=0

(
bj ··· O+(−1)M+1 ··· sj−1−(L+−2)(A+ ⊗T OP−f )

)
P−f

=
L+−2∑
j=0

(
bj ··· sM+j−(L+−2)(A+ ⊗T OP−f )

)
P−f ,

(8.14)
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taking into account that j − 1 − (L+ − 2) < 0. Since A+ is a vector bundle
on T , sM+j−(L+−2)(A+ ⊗T OP−f ) = 0 provided that M + j − (L+ − 2) ≥
M − (L+ − 2) > dimT . Therefore we obtain the following proposition as a
result of (7.8), Proposition 7.1, (8.12), (8.14), etc.

Proposition 8.5. If d−1−M ≥ l−+dimT and M−(L+−2) > dimT ,
then the first term

∑M
s=0 in (7.8) is zero.

Furthermore, the second term
∑d−1−t
s=M+1 of (7.8),

(8.15)

[
βt ··· O+(1)M+1 ···

d−2−t−M∑
s=0

O+(1)s ··· O−(−1)d−2−t−s−m
]
F f

,

clearly is zero if M + 1 > dimP−f = L+ − 1 + dimT .

Proposition 8.6. The contribution of Ef to µ−(C)d(c2) − µ+(C)d(c2),
that is (7.4), is equal to zero if d ≥ L+ − l− + 2 dimT .

Proof. By Proposition 8.5 and (8.15), (7.8) is equal to zero if M ≤ d −
1 − l− − dimT and M > L+ − 2 + dimT . One can find such an integer M if
d− 1− l− − dimT > L+ − 2 + dimT .

As observed before Claim 7.3,

l− = L− − L+ − homX(IZ1 ,O(c1 − 2L+KX)⊗ IZ2)

+ h0(O(c1 − 2L+KX)|K)

= −χ(IZ1 ,O(c1 − 2L+KX)⊗ IZ2)− L+ + h0(O(c1 − 2L+KX)|K),

where L and Zi satisfies that ([2L − c1], l(Z1), l(Z2)) = f = (f,m, n). From
the Riemann-Roch theorem and Clifford’s theorem [H2, Theorem IV.5.4], we
deduce that

l− + L+ = −f · (f −KX)/2 + (m+ n)− χ(OX) + h0(O(c1 − 2L+KX)|K)
≤ −f · (f −KX)/2 + (m+ n)− χ(OX)

+ max(−KX · f, (KX − f) ·KX/2 + 1, 0).

On the other hand, dimT = dim(Pic(X)×Hilbm(X)×Hilbn(X)) = 2(m+ n)
and m+n = c2 +(f2− c21)/4 since (f,m, n) ∈ A+(a). Therefore one can verify

d− (L+ + l− + 2 dimT )

≥ −c2 − (3/4)f2 − 2χ(OX) + min(±KX · f/2,−K2
X/2− 1).

Now fix a compact subset S in Amp(X). Then one can find a constant d0(S)
depending on S such that |f ·KX | ≤ d0(S) ·

√
−f2 if W f ∩S �= ∅, as shown in

the proof of [Q1, Lemma 2.1]. Hence one can find constants d1(S) and d2(S)
depending on S such that if −f2 > (4/3)c2 + d1(S)

√
c2 + d2(S), then (8) is

greater than zero.
Therefore we arrive at Theorem 0.2 in Introduction, which is the observa-

tion of Proposition 0.1 in algebro-geometric view.
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Remark 8.7. Suppose that X isK3 surface and that assumptions (6.8)
and (6.9) hold good for (0, c2). Then (7.1) and (7.2) are always valid, and
furthermore, the homomorphism (7.14) is always surjective. (It is not necessary
to assume that d−1−M ≥ l−+dimT .) Thus one can prove γH−(c2) = γH+(c2).
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