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Abstract

Let χ be the inverse of the Grötzsch modulus function and let σn

be the n-th iteration of the function σ(r) = 2
√

r/(1 + r), r > 0. For a
real constant β �= 0 with β > −2, the difference χ(x)β − σn(4e−2nx)β

is estimated. In the particular case where β = −2 one has an approx-
imation of the inverse S of the Teichmüller modulus function, which is
applied to improving the known upper and lower estimates concerning
the error term of λ(K) = χ(πK/2)−2 − 1 from 16−1eπK − 2−1 for the
variable K > 1. Expressions of χ and S in terms of theta functions are
studied. Lipschitz continuity of f or log f for f = χ, S, as well as other
functions are proved.

1. Introduction

The disk D = {z; |z| < 1} in the complex plane C = {z; |z| < +∞}, slit
along the closed interval [0, r] = {x; 0 � x � r} for 0 < r < 1, is conformally
mapped onto the ring domain {z; 1 < |z| < eµ(r)}. H. Grötzsch’s modulus
function µ(r) is decreasing from +∞ to 0 as r increases from 0 to 1, and µ
admits the inverse function χ defined in (0,+∞). More explicitly, C. G. J.
Jacobi’s identity

(1.1) χ(x) = 4e−x
+∞∏
n=1

(
1 + e−4nx

1 + e−(4n−2)x

)4

for x > 0 is known, where the right-hand side can be regarded as a function
of e−x; for the details see Section 7 in the present paper. On the other hand,
C minus the intervals [−1, 0] and [t,+∞), t > 0, is conformally mapped onto
{z; 1 < |z| < eT (t)}, where T (t) = 2µ(1/

√
1 + t); see [LV, p. 55]. The in-

verse S of O. Teichmüller’s modulus function T is, therefore, given by S(x) =
χ(x/2)−2 − 1 for x > 0. As will be seen in Section 7,

(1.2) S(x) = 16−1ex
+∞∏
n=1

(
1 − e−(2n−1)x

1 + e−2nx

)8

;
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this is not a trivial consequence of (1.1).
Both functions µ and T appear in the celebrated extremal problems in [Gr]

and [T], respectively.
Although both χ and S are limits of partial products both of which are

rational functions of e−x, there is another point of view. Let σn be the n-th
iteration, or the n times composed function, of σ1(r) ≡ σ(r) = 2

√
r/(1 + r),

r � 0; the function σn is increasing from 0 to 1 on the closed interval [0, 1] and
decreasing from 1 to 0 on [1,+∞). One of the main subjects is the following:
For a natural number n and a real constant β �= 0 with β � −2, the function
∆n,β(x) of x > 0 which appears in

χ(x)β = σn(4e−2nx)β + ∆n,β(x)e−(β+2n+1)x

is estimated. The case where β = 1 or β = −2 is of use for approximating χ or
S in terms of functions σn(4e−2nx) or σn(4e−2n−1x)−2 − 1 of e−x, respectively.

A special emphasis is placed on χ and S because the function ϕK(r) =
χ(µ(r)/K) of r with 0 � r < 1 for a fixed K � 1, and the function λ(K, t)
= S(KT (t)) of two variables K � 1 and t � 0, where ϕK(0) = λ(K, 0) = 0,
are important in Geometric Function Theory; see [LV, p. 64, Theorem 3.1] for
ϕK(r), and [LV], [LVV] for λ(K) ≡ λ(K, 1). The function λ(K) of K � 1
appears in the sharp inequality [LV, p. 81, (6.6)] for the boundary values
of a K-quasiconformal self-mapping of the upper half-plane preserving the
point at infinity. Both functions ϕK(r) and λ(K, t) are linked by the equa-
tions ϕK(r) = χ(K−2µ(1/

√
1 + λ(K, r−2 − 1))) for 0 < r < 1 and λ(K, t) =

χ(K2µ(ϕK(1/
√

1 + t)))−2 − 1 for t > 0. Note that the function ηκ(t) has been
studied in [AVV1], [AVV2], [QV] and others is exactly S(κT (t)) for κ > 0 and
t > 0; see Remark 2 in Section 12. Actually, ηK(t) = λ(K, t) for K � 1 and
t > 0. A Schottky-type theorem by G. J. Martin [Ma, Theorem 1.1] claims that,
for f holomorphic in D with f(D) ⊂ C \ {0, 1}, the inequality |f(z)| � λ(K, t)
for z ∈ D holds, where K = (1 + |z|)/(1 − |z|) and t = |f(0)|. The bound
λ(K, t) is sharp for each pair K � 1 and t > 0. See Remark 1 in Section 12.

Concerning λ(K) it will be proved in Section 2 that

(1.3) 1.2425 . . . < (λ(K) − 16−1eπK + 2−1)eπK < 1.25.

for K � 1; the right constant 1.25 is the best possible in the sense that the
central term in (1.3) tends to 1.25 as K → +∞. Earlier and weaker estimations
are in

(1.4) 1 < (λ(K) − 16−1eπK + 2−1)eπK < 35/24 = 1.458333 . . .

for K � 1, the details of which may be found in [LVV, pp. 12–13], in [AVV1,
p. 7], and, in particular, in [AVV2, p. 406] for the upper bound 35/24.

The functions χ and S, together with their derivatives up to the second
order, are expressed in terms of basic theta functions of Jacobi in Theorems 4
and 5 in Section 7. Theta functions are made effective use of in Sections 8, 9,
and 10. Estimates of χ and S are obtained in Theorem 6 in Section 8; they are
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“local” in contrast with (3.1) for β = 1 and (2.1) in the forthcoming Theorems
2 and 1, respectively. Beginning with Theorem 7 functions relating to µ, T, χ,
and S are shown to be Lipschitz continuous in Section 9. Theorem 8 in Section
10 reveals that the Poincaré density of the domain C\{−1, 0} on the real axis is
important for estimating the difference | logµ(r1)− logµ(r2)| for r1, r2 ∈ (0, 1).
In Section 11 two series expansions of µ(r) in r due to Jacobi and C. F. Gauss
are reduced to the expressions in terms of σn. In the final Section 12 remarks
on the preceding results are given.

Acknowledgement. The referee pointed out, among others, an error in
Theorem 7 in the first draft and gave the correct form of (9.4). The present
author expresses his deepest gratitude to the referee.

2. Theorem 1 on S

The present paper begins with a theorem on S in conjunction with (1.3),
a typical one following in reality from the forthcoming Theorem 2 in Section 3.

Theorem 1. For n � 1 and x > 0,

(2.1) S(x) = σn(4e−2n−1x)−2 − 1 + ∆S,n(x)e(1−2n)x,

where the function ∆S,n(x) satisfies

(2.2)
0 < ∆S,n(x) < 21−n(1+

√
1 − 16L−4)−1 for x � 22−n logL with L � 2;

in particular,

(2.3) 0 < ∆S,n(x) < 21−n for x � 22−n log 2.

Furthermore,

(2.4)
1 − σn(4)−2 < ∆S,n(x) < 161−2−n

(σn(
√

2)−2 − 1) for 0 < x � 22−n log 2

and

(2.5) 0 � lim sup
x→+∞

∆S,n(x) � 2−n.

Actually, as x increases from 0 to 22−n log 2, the function ∆S,n(x) increases
from 1 − σn(4)−2 < 0 to 161−2−n

(χ(21−n log 2)−2 − 1) > 0 which is, as will be
proved, less than the upper bound in (2.4).

It follows on setting x = πK and n = 1 in Theorem 1 that

(2.6) λ(K) = 16−1eπK − 2−1 + δLV V (K),

where the function δLV V (K) ≡ (1 + ∆S,1(πK))e−πK of K � 1 is studied
in [LVV, Theorem 3] and 0 < ∆S,1(πK) < (1 +

√
1 − 16e−2π)−1 < 1 for
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πK � π = 2 logL1 with L1 = eπ/2 > 2 by (2.2). Also the case n = 2 yields
that

(2.7) λ(K) = σ2(4e−2πK)−2 − 1 + ∆S,2(πK)e−3πK ,

where 0 < ∆S,2(πK) < 2−1(1 +
√

1 − 16e−4π)−1 < 2−1 for πK � π = logL2

with L2 = eπ by (2.2). Equating (2.6) and (2.7) one has that

(2.8) δLV V (K)eπK = 4−1 + (1 + 4y)−1 + ∆S,2(πK)y,

where y = e−2πK � e−2π. Consequently

(2.9) δLV V (K)eπK > 4−1 + (1 + 4e−2π)−1.

On the other hand, since the function 4−1 + (1 + 4y)−1 + 2−1y of y � e−2π is
strictly decreasing by e−2π < (

√
8 − 1)/4, it follows that δLV V (K)eπK < 5/4.

This, combined with (2.9), establishes that

(2.10) 1.2425 . . . = 4−1 + (1 + 4e−2π)−1 < δLV V (K)eπK < 5/4

which is promised in (1.3). It follows from (2.8) that

lim
K→+∞

δLV V (K)eπK = 5/4,

so that, the constant 5/4 in (2.10) can not be replaced with any smaller one.
Since δLV V (1)eπ = 16−1(24 − eπ)eπ = 1.2428 . . . by λ(1) = 1, the lower

bound of δLV V (K)eπK does not exceed 1.2428 . . . . Further conjecture might
be, therefore, that δLV V (K)eπK were an increasing function of K � 1.

A generalization of δLV V will be discussed later in Section 6.

3. Theorem 2 and outline of proof

As was stated, Theorem 1 follows from

Theorem 2. Let β �= 0 be real, β � −2, L � 2, and n be natural. Then

(3.1) χ(x)β = σn(4e−2nx)β + ∆n,β(x)e−(β+2n+1)x

for x > 0, where the function ∆n,β(x) satisfies

(3.2)
−22β−n+4(1 +

√
1 − 16L−4)−1 < β−1∆n,β(x) < 0 for x � 21−n logL;

in particular,

(3.3) −22β−n+4 < β−1∆n,β(x) < 0 for x � 21−n log 2.

Suppose that 0 < x � 21−n log 2. If β > 0, then

(3.4) 221−nβ+4(σn(
√

2)β − 1) < ∆n,β(x) < 221−nβ+4(1 − σn(4)β).
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Inverse functions of Grötzsch’s and Teichmüller’s modulus functions 775

For −2 � β < 0 the function ∆n,β(x) increases from 1 − σn(4)β < 0 to

(3.5) 221−nβ+4(χ(21−n log 2)β − 1) > 0,

which is strictly less than

(3.6) 221−nβ+4(σn(
√

2)β − 1),

as x increases from 0 to 21−n log 2. Finally, for all β �= 0 with β � −2,

(3.7) −22β−n+3 � lim inf
x→+∞ β−1∆n,β(x) � 0.

A reason why σn(
√

2) is chosen on the left-hand side in (3.4) and in (3.6)
is that this is an algebraic number.

Theorem 1 follows from Theorem 2 by setting β = −2 and by replacing x
with x/2. More explicitly, ∆S,n(x) = ∆n,−2(x/2).

Before the detailed proof of Theorem 2 its principal idea is here outlined.
Set

(3.8) Φ(y) ≡ Φn,β(y) ≡ σn(4y−2)β for y > 0,

and set

(3.9) αn = 2−n for n = 0, 1, 2, · · · .
Then σn(4e−2nx)β in (3.1) for n � 1 is exactly Φ(ex/αn−1) for x > 0. Set

(3.10) r = χ(x) for x > 0 or x = µ(r) for 0 < r < 1.

Then the function δ(r) ≡ δn(r) > 0 of r, 0 < r < 1, with n � 1 will be found,
where δ(r) appears in

(3.11) χ(x)β = Φ(ex/αn−1 + δ(r)) for r = χ(x);

see the forthcoming (4.4). The Mean-Value Theorem applied to Φ then yields
that

(3.12) χ(x)β − σn(4e−2nx)β = Φ′(Y (r))δ(r),

where Y (r) ≡ Y n,β(r) ≡ ex/αn−1 + ϑδ(r) for a ϑ with 0 < ϑ < 1.
The main part in the proof is, therefore, upward estimation of Φ′(Y (r))

and δ(r) in (3.12).
For n � 1, and for x, r in (3.10), set

Y (r) ≡ Yn(r) ≡ eµ(r)/αn−1 + δ(r) = ex/αn−1 + δ(r);

this appears on the right-hand side of (3.11). It will be seen that Y (r) > 2 for
all r, 0 < r < 1. Obviously,

(3.13) ex/αn−1 < Y (r) < Y (r) for 0 < r < 1.
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In Section 4 the inequality

(3.14) 0 < δ(r) < 23Y (r)−3A(r) < 1 for 0 < r < 1

is proved, where

(3.15) A(r) ≡ An(r) = (1 +
√

1 − 16Y (r)−4)−1 < 1.

In Section 5, first the inequality for Φ′,

(3.16) 0 > β−1Φ′(Y (r)) > 2−3Cn,βY (r)γY (r)3

is established under the restriction that n � 1 and x � αn−1 logL � αn−1 log 2
which assures the inequality Y (r) > 2. Here Cn,β ≡ −22β−n+4 < 0 and

(3.17) γ ≡ −βαn−1 − 4 < 0

for which β+2n+1 = −γ/αn−1 appears in the second term in the right of (3.1).
It then follows from (3.1), (3.12), (3.16), (3.13), and (3.14) that

0 > β−1∆n,β(x) = β−1{χ(x)β − σn(4e−2nx)β}e(β+2n+1)x

= β−1Φ′(Y (r))δ(r)e−(γ/αn−1)x

> Cn,βA(r)(e−x/αn−1Y (r))γ > Cn,βA(r).

(3.18)

Since A(r) < (1 +
√

1 − 16L−4)−1 for x � αn−1 logL by the forthcoming for-
mula (4.7), estimation (3.2) in Theorem 2 follows from (3.18). In the remaining
case where 0 < x � αn−1 log 2, bounds are determined by fairly direct method.
The proof of Theorem 2 is completed in Section 5.

4. Upper bound of δ(r)

The function σ(r) of r � 0 has the inverse function ω(r) =
r2(1 +

√
1 − r2)−2 in [0, 1]. The n-th iteration ωn of ω is therefore the inverse

of σn in [0, 1]. Note that σn(1/r) = σn(r) for all r > 0. Set σ0(r) ≡ ω0(r) = r
in [0, 1].

Before proceeding further a brief review of the function µ will be given.
J. Hersch [H, p. 316, (1)] proved that µ(r) = (π/2) K(

√
1 − r2) /K(r) for

0 < r < 1, where

K(r) =
∫ π/2

0

dϑ√
1 − r2 sin2 ϑ

=
π

2
+
π

2

∞∑
n=1

(
(2n− 1)!!
n!2n

)2

r2n, 0 < r < 1,

is A. M. Legendre’s complete elliptic integral of the first kind; see [BB, pp. 7–
8], [WW, p. 499] for K and also [LV, p. 60, (2.2)] for the expression of µ. The
function K(r) increases from π/2 to +∞ as r increases from 0 to 1. The function
µ is real-analytic and µ becomes continuous in (0, 1] on setting µ(1) = 0; see
[LV, p. 62]. Furthermore, µ(1/

√
2) = π/2 is immediately obtained. Among
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others two series expansions of µ(r) in r due to Gauss and Jacobi are known;
see (11.4) and (11.9). Since µ(σ(r)) = 2−1µ(r), 0 < r < 1 ([H, p. 316, (3′)],
[BB, p. 16, 1. e)]), it immediately follows that µ(σn(r)) = αnµ(r) for n � 0
and 0 < r < 1. Hence µ(r) = αnµ(ωn(r)) for n � 0 and 0 < r < 1.

Since 21−n log 2 < 21−n(π/4) = 2−nµ(1/
√

2) = µ(σn(1/
√

2)) = µ(σn(
√

2))
by log 2 = 0.69314 . . . < 0.78539 . . . = π/4, it follows that σn(

√
2) <

χ(21−n log 2). Hence the constant in (3.6) is greater than that in (3.5) because
β < 0.

Replacing r with ωn(r) in the inequalities

(4.1) log
(1 +

√
1 − r2)2

r
< µ(r) < log

4
r
, 0 < r < 1,

(see [H, p. 318, (9′)] and [LV, p. 61, (2.10)]; see also (11.10) and (11.12)) one
obtains the estimates

(4.2) αn log
(1 +

√
1 − ωn(r)2)2

ωn(r)
< µ(r) < αn log

4
ωn(r)

, 0 < r < 1.

It then follows from (4.2), together with ωn = ω ◦ ωn−1, that

(4.3)

αn−1 log
(1 + 4

√
1 − ωn−1(r)2)2

ωn−1(r)
< µ(r) < αn−1 log

2(1 +
√

1 − ωn−1(r)2)
ωn−1(r)

,

for 0 < r < 1 and for n � 1. The function δ(r) of r ∈ (0, 1) is then defined by

δ(r) ≡ δn(r) ≡ 2(1 +
√

1 − ωn−1(r)2)
ωn−1(r)

− eµ(r)/αn−1

for n � 1, so that, δ(r) > 0 by (4.3) and, for Y (r) ≡ eµ(r)/αn−1 + δ(r), one has

(2Y (r)−1)2 = ω ◦ ωn−1(r) = ωn(r) < 1.

Automatically, Y (r) > 2 for all r, 0 < r < 1. Consequently,

r = σn(4Y (r)−2) = Φ(Y (r))1/β,(4.4)

ωn−1(r) = σ(4Y (r)−2)(4.5)

for 0 < r < 1 and for n � 1. On the other hand, it follows from (4.3) and (4.5)
that

(4.6) 0 < δ(r) < Λ(ωn−1(r)) = Λ ◦ σ(4Y (r)−2)(< 1)

for 0 < r < 1 and for n � 1, where the function of ρ, 0 < ρ � 1,

Λ(ρ) = {2(1 +
√

1 − ρ2) − (1 + 4
√

1 − ρ2)2}/ρ
= ρ3(1 + 4

√
1 − ρ2)−2(1 +

√
1 − ρ2)−2 (� 1)
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increases from 0 to 1 as ρ increases from 0 to 1. Hence the identity

Λ ◦ σ(ρ) = ρ3/2(1 +
√

1 − ρ2)−1, 0 < ρ � 1,

together with (4.6), yields (3.14). Furthermore, if µ(r)(= x) � αn−1 logL, then
Y (r) � L+ δ(r) > L, so that

(4.7) A(r) < (1 +
√

1 − 16L−4)−1 � 1.

5. Derivative Φ′

To establish (3.16) one begins with estimation of (σβ
n)′(r) = (d/dr)

{σn(r)β} for n � 1 and 0 < r < 1. Set Qn,β ≡ 2(2−αn−1)β−n and recall
that β �= 0 and β � −2. To verify inductively that

(5.1) 0 < β−1(σβ
n)′(r) < Qn,β · rβαn−1

for n � 1 and 0 < r < 1, one begins with the identity Fn+1 = Fn ◦ σ for
Fn(r) ≡ σn(r)β with 0 < r < 1. Because

β−1F ′
1(r) = 2β−1rβ/2−1(1 + r)−β−2(1 − r2) < 2β−1rβ/2−1

by −β − 2 � 0, the case n = 1 in (5.1) follows. Next suppose (5.1) for n � 1.
Then

β−1F ′
n+1(r) = β−1F ′

n(σ(r))σ′(r)

is positive and is strictly less than Qn,βσ(r)βαn−1σ′(r). Since

σ(r)βαn−1σ′(r) = 2βαn−1rβαn+1−1(1 + r)−βαn−2(1 − r2)
< 2βαn−1rβαn+1−1

because −βαn − 2 < 0 by β � −2 > −2/αn, it follows that (5.1) is valid for
n+ 1 instead of n.

Precisely, Φ′(y) = −23y−3(σβ
n)′(22y−2) for the function Φ of (3.8), from

which, together with (5.1), results the estimate

0 > β−1Φ′(y) > −Rn,β · y−βαn−1−1 = −Rn,β · yγ+3

for y > 2, γ of (3.17), and n � 1. Here, Rn,β = 2βαn−1+1Qn,β = 22β−n+1 > 0.
Setting Cn,β = −23Rn,β one immediately obtains (3.16) for x � αn−1 log 2

because Y (r) > 2 by (3.13).
It follows from (3.18) that β−1∆n,β(x) > Cn,βA(r) for x � αn−1 log 2.

Since ex/αn−1 < Y (r) → +∞ as x→ +∞, it follows that limx→+∞A(r) = 2−1.
Hence (3.7) is established.

For 0 < x � αn−1 log 2 it is convenient to introduce the functions G(x) =
χ(x)β − σn(4e−2nx)β and H(x) = e(β+2n+1)x, so that ∆n,β(x) = G(x)H(x).
Then H increases from 1 to 2βαn−1+4 because β � −2 > −2n+1. Notice that
4e−2nx � 1. If β > 0 then G decreases from 1−σn(4)β > 0 to χ(αn−1 log 2)β −
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1 < 0. Consequently, (3.4) follows from σn(
√

2) < χ(αn−1 log 2). In the case
where (−2n+1 <) − 2 � β < 0, the function G increases from 1 − σn(4)β < 0
to χ(αn−1 log 2)β − 1 > 0. Hence ∆n,β(x) increases from 1 − σn(4)β to the
quantity in (3.5).

6. The function δLV V revisited

Although the choice x = KT (t) = 2Kµ(1/
√

1 + t) in Theorem 1 leads to
the expansion of the function λ(K, t) of K and t, there is another approach with
t limited. Set L(n, t) = exp{2n−1µ(1/

√
1 + t)}, so that L(n+1, t) > L(n, t) for

n � 1 and t > 0. For example, L(2, 1) = eπ > L(1, 1) = eπ/2 > 2. Under the
condition that

(6.1) L(n, t) � 2

for n � 1 and t > 0, Theorem 1 for x = 2Kµ(1/
√

1 + t), together with L =
L(n, t) in (2.2), immediately yields

Theorem 3. Suppose that n � 1 and t > 0 satisfy (6.1). Then for
every K � 1,

λ(K, t) = σn(4 exp{−2nKµ(1/
√

1 + t)})−2 − 1

+ ∆λ,n(K, t) exp{(2 − 2n+1)Kµ(1/
√

1 + t)},(6.2)

where ∆λ,n(K, t) = ∆S,n(2Kµ(1/
√

1 + t)) and

(6.3) 0 < ∆λ,n(K, t) < 21−n(1 +
√

1 − 16L(n, t)−4)−1.

Furthermore, for all fixed n � 1 and t > 0, possibly L(n, t) < 2,

(6.4) 0 � lim sup
K→+∞

∆λ,n(K, t) � 2−n,

where ∆λ,n(K, t) is, this time, defined directly by (6.2).

Set

(6.5) δLV V (K, t) = λ(K, t) − 1
16

exp{2Kµ(1/
√

1 + t)} +
1
2

for K � 1 and t > 0, so that δLV V (K) = δLV V (K, 1) by (2.6). Furthermore,
set

(6.6) ζK(t) ≡ exp{−2Kµ(1/
√

1 + t)}(� exp{−2µ(1/
√

1 + t)})

and Ψn(K, t) ≡ σn(4ζK(t)2
n−1

)−2 for n � 1 and t > 0. The latter is exactly
the first term in the right of (6.2) even in the case L(n, t) < 2. Then

(6.7) Ψ1(K, t) = ζK(t) +
1
2

+
1

16ζK(t)
.
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Suppose that for t > 0 the function ∆λ,n(K, t) is defined directly by (6.2).
Then

(6.8) λ(K, t) = Ψn(K, t) − 1 + ∆λ,n(K, t)ζK(t)2
n−1

for n � 1 and t > 0. Set

(6.9) Wn(K, t) ≡ Ψn(K, t) − Ψ1(K, t) + ζK(t).

Then it follows from (6.5), (6.8), (6.9), and (6.7) that

(6.10) δLV V (K, t)ζK(t)−1 = Wn(K, t)ζK(t)−1 + ∆λ,n(K, t)ζK(t)2
n−2

for n � 1 and t > 0.
On the other hand, for each fixed t > 0 the function

(6.11) W2(K, t)ζK(t)−1 =
5
4
− 4
ζK(t)−2 + 4

of K � 1 increases from 5/4 − 4/(e4µ(1/
√

1+t) + 4) to 5/4 as K increases from
1 to +∞.

Fix t > 0 and consider (6.10) for n = 2. Since W2(K, t)ζK(t)−1 → 5/4
as K → +∞ by (6.11), it follows from (6.3) that δLV V (K, t)ζK(t)−1 → 5/4 as
K → +∞.

In the present and next paragraphs the condition that L(1, t) � 2 is sup-
posed, so that µ(1/

√
1 + t) � log 2. Since L(n, t) � L(1, t) � 2, estimates (6.3)

in Theorem 3 are valid for n, t, with L = L(n, t). It then follows from (6.3) and
(6.10) that

Wn(K, t)ζK(t)−1 < δLV V (K, t)ζK(t)−1

< Wn(K, t)ζK(t)−1

+ 21−n(1 +
√

1 − 16L(n, t)−4)−1 exp{(22 − 2n+1)µ(1/
√

1 + t)}.
(6.12)

It further follows from (6.12) for n = 2, together with the monotone property
of the function W2(K, t)ζK(t)−1 of K � 1, that

5
4
− 4
e4µ(1/

√
1+t) + 4

< δLV V (K, t)ζK(t)−1

<
5
4

+ (2 + 2 ·
√

1 − 16L(2, t)−4)−1 exp{−4µ(1/
√

1 + t)}.

(6.13)

On setting t = 1 in (6.13) one immediately has

1.2425 . . . = 5/4 − 4(e2π + 4)−1 < δLV V (K)eπK

< 5/4 + e−2π(2 + 2 ·
√

1 − 16e−4π)−1 = 1.2504 . . . ;

the right most is worse than 5/4 in (2.10).
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Since µ(1/
√

1 + t) � log 2 by L(1, t) � 2, it follows that L(2, t) � 4. Hence
(6.13) can be reduced to a weaker form with the bounds independent of t,

1.05 =
5
4
− 4

16 + 4
< δLV V (K, t) exp{2Kµ(1/

√
1 + t)}

<
5
4

+ (2 + 2 ·
√

1 − 16 · 4−4)−1 · 1
16

=
14 −√

15
8

= 1.2658 . . .
(6.14)

for t with L(1, t) � 2.
More precisely, if

(6.15) t � σ(
√

2)−2 − 1 = (3
√

2 − 4)/8 = 0.03033 . . . ,

then

µ(1/
√

1 + t) � µ(σ(1/
√

2)) = 2−1µ(1/
√

2) = π/4 > log 2.

Hence L(1, t) � eπ/4 > 2 and moreover, L(2, t) � eπ/2. Consequently, (6.13) is

reduced to

1.1026 . . . =
5
4
− 4
eπ + 4

< δLV V (K, t) exp{2Kµ(1/
√

1 + t)}

<
5
4

+
e−π

2(1 +
√

1 − 16e−2π)
= 1.2608 . . .

(6.16)

for t satisfying (6.15).
Setting t = 1 in (6.14) or in (6.16) one still has improvement of (1.4).

7. Basic theta functions

Topics on the functions χ and S are picked up in conjunction with theta
functions. The main reference is the book [BB].

The basic theta functions ([BB, pp. 52 and 33], [WW, p. 464])

θ2(q)(= θ2(0, q)) = 2
+∞∑
n=0

q(n+2−1)2 =
+∞∑

n=−∞
q(n+2−1)2 = 2q1/4

+∞∑
n=0

qn(n+1),

θ3(q)(= θ3(0, q)) = 1 + 2
+∞∑
n=1

qn2
=

+∞∑
n=−∞

qn2
, and

θ4(q)(= θ4(0, q)) = 1 + 2
+∞∑
n=1

(−q)n2
=

+∞∑
n=−∞

(−q)n2

for 0 < q < 1 admit respectively infinite-product expressions ([BB, p. 64,
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Corollary 3.1], [WW, pp. 472–473]),

θ2(q) = 2q1/4
+∞∏
n=1

(1 − q2n)(1 + q2n)2,

θ3(q) =
+∞∏
n=1

(1 − q2n)(1 + q2n−1)2, and

θ4(q) =
+∞∏
n=1

(1 − q2n)(1 − q2n−1)2.

In the present Section the dash ′ means the derivative. Set Ξk(q) =
θk(q)′θk(q)−1 for k = 2, 3, 4 and for 0 < q < 1. Then Ξ2(q) = 4−1q−1 +
Q′(q)Q(q)−1 > 0 where Q(q) = 2

∑+∞
n=0 q

n(n+1). Obviously Ξ3(q) > 0. It will
be soon observed that Ξ4(q) < 0.

Two theorems involving theta functions will be proved.

Theorem 4. For x > 0

χ(x) = θ2(e−2x)2θ3(e−2x)−2,(7.1)

χ′(x) = −θ2(e−2x)2θ3(e−2x)−2θ4(e−2x)4,(7.2)

χ′′(x) = θ2(e−2x)2θ3(e−2x)−2θ4(e−2x)4[θ4(e−2x)4 + 8e−2xΞ4(e−2x)],(7.3)
(d2/dx2) logχ(x) = 8e−2xθ4(e−2x)4Ξ4(e−2x).(7.4)

A real function f defined in an open interval (a, b) with −∞ � a < b � +∞
is called d-increasing if f ′(x) > 0 for all x ∈ (a, b) and f is called d-convex if
f ′′(x) > 0 for all x ∈ (a, b). If −f is d-increasing, then f is called d-decreasing,
whereas if −f is d-convex, then f is called d-concave.

Proof of Theorem 4. The quotient Ω(q) = θ2(q)/θ3(q) is d-increasing in
(0, 1) and it increases from 0 to 1 as the variable q increases from 0 to 1. In
reality,

(7.5) Ω(q) = 2q1/4
+∞∏
n=1

(
1 + q2n

1 + q2n−1

)2

and

(7.6) (d/dq) log Ω(q) = Ξ2(q) − Ξ3(q) = 4−1q−1θ4(q)4;

see [BB, p. 42, (2.3.11)] which, together with ds = −π−1q−1dq for s = −π−1 log
q there, reads (7.6). Since 2µ(r) = − log q for r = Ω(q)2 by [BB, pp. 40–41,
Theorem 2.3], the identity (7.1) follows on setting q = e−2x.

Taking the square roots of both sides in Jacobi’s formula [J, p. 146, (7.)]
one actually has (7.5); accordingly the identity (1.1) is Jacobi’s. Jacobi’s for-
mula can be rewritten as

exp(µ(r) + log r) = 4
+∞∏
n=1

(
1 + q2n

1 + q2n−1

)4

.
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Here the variable q = e−2µ(r) ∈ (0, 1) is called the nome associated with the
variable r ∈ (0, 1).

Since dq/dx = −2q for q = e−2x, it follows from (7.6), together with
χ(x) = Ω(q)2, that

(7.7) χ′(x)/χ(x) = −θ4(q)4;
furthermore,

(7.8) χ′′(x)/χ′(x) − χ′(x)/χ(x) = −8qΞ4(q).

Obviously, (7.2) follows from (7.7). One is now able to prove (7.3). The identity

(d2/dx2) logχ(x) = (χ′(x)/χ(x))(χ′′(x)/χ′(x) − χ′(x)/χ(x)),

together with (7.7) and (7.8), shows (7.4).

It is known that µ′′(rι) = 0 for only one point rι ∈ (0, 1); see [AVV2,
p. 84, Theorem 5.13, (1)]. Hence χ′′(xι) = 0 for only one point xι = µ(rι); the
derivative of θ4(e−2x)−4 with respect to x at this point xι is just −1 by (7.3).
Let us introduce Legendre’s complete elliptic integral of the second kind

E(r) =
∫ π/2

0

√
1 − r2 sin2 ϑdϑ =

π

2
− π

2

∞∑
n=1

(
(2n− 1)!!
n!2n

)2
r2n

2n− 1
,

0 < r < 1;

see [BB, p. 8] and [WW, p. 518]. The function E(r) is d-decreasing and it
decreases from π/2 to 1 as r increases from 0 to 1. It then follows from [BB,
p. 43, (2.3.17)] that

(7.9) Ξ4(q) = π−2q−1K(r)(E(r)−K(r))

for r = Ω(q)2. Since E(r) < K(r), it follows that Ξ4(q) < 0 for 0 < q < 1.
The d-decreasing function logχ(x) < 0 of x > 0 is d-concave by (7.4). See

also [AVV2, p. 96, Theorem 5.46]. A consequence is that the inverse function
x = µ(es) of s = logχ(x) is a d-decreasing and d-concave function of s < 0.
Consequently, for a constant β < 0, the function µ(sβ) = µ(exp(β log s)) is
a d-increasing and d-concave function of s > 1 because β log s is d-decreasing
and d-convex. Furthermore, the d-increasing function χ(x)β = exp(β logχ(x))
of x > 0 for a constant β < 0 is d-convex. In particular, S is seen to be a
d-increasing and d-convex function without appealing to the direct calculation
of S′′(x). Consequently the inverse T of S is a d-increasing and d-concave
function. Furthermore, Sβ for a constant β > 1 is d-increasing and d-convex.

The inverse function of y = tanhx, x > 0, is x = tanh−1y, where tanh−1y
≡ 2−1 log{(1 + y)/(1 − y)}, 0 < y < 1. To prove that tanh−1χ is d-decreasing
and d-convex, the identity [BB, p. 35, (2.1.10)]

(7.10) θ3(q)4 − θ2(q)4 = θ4(q)4
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for 0 < q < 1 should be recalled. Then for q = e−2x it follows from (7.1) that
1 − χ(x)2 = θ3(q)−4θ4(q)4 for x > 0. On the other hand, the identity

(7.11) Ξ3(q) = Ξ4(q) + 4−1q−1θ2(q)4

follows from [BB, p. 42, (2.3.15)]. Consequently, in view of (7.2) one has

(tanh−1χ(x))′ = −θ2(q)2θ3(q)2 < 0

and hence

(tanh−1χ(x))′′/(tanh−1χ(x))′ = −4q(Ξ2(q) + Ξ3(q)) < 0.

Let Q be the first quadrant in the plane. The set {(κ, t) ∈ Q; S(κ−1T (t)) =
c} for a constant c > 0 is the curve {(κ, S(κT (c))); κ > 0}. On the other hand,
for a fixed t > 0 the d-increasing function S(κT (t)) of κ > 0 is d-convex; see also
[AVV2, p. 217, Theorem 10.31]. Accordingly the shape of the level set defined
above should be clarified. Furthermore, the set {(κ, t) ∈ Q; S(κT (t)) = c} for a
constant c > 0 is the curve {(κ, S(κ−1T (c))); κ > 0}. The function S(κ−1T (c))
of κ > 0 is d-decreasing and d-convex.

From the infinite-product formula for θ4(q), together with (1.1) and (7.7),
it follows that

χ′(x) = −4e−x
+∞∏
n=1

(1 − e−8nx)4(1 − e−(4n−2)x)8(1 + e−(4n−2)x)−4.

Theorem 5. For x > 0

S(x) = θ2(e−x)−4θ4(e−x)4,(7.12)

S′(x) = θ2(e−x)−4θ3(e−x)4θ4(e−x)4,(7.13)

S′′(x) = θ2(e−x)−4θ3(e−x)4θ4(e−x)4[θ3(e−x)4 − 4e−xΞ3(e−x)],(7.14)
(d2/dx2) logS(x) = −4e−xθ3(e−x)4Ξ3(e−x).(7.15)

Proof of Theorem 5. It follows from (7.10) that Ω(q)−4−1 = θ2(q)−4θ4(q)4

for all q with 0 < q < 1, so that, one has S(x) = θ2(p)−4θ4(p)4 or (7.12) on
setting p = e−x for x > 0. Hence S′(x)/S(x) = −4p(Ξ4(p) − Ξ2(p)). On the
other hand, it follows from [BB, p. 42, (2.3.16)] that

(7.16) Ξ4(q) − Ξ2(q) = −4−1q−1θ3(q)4

for 0 < q < 1, so that one may replace q with p; actually, (7.16) is a consequence
of (7.6), (7.11), and (7.10). Consequently,

(7.17) S′(x)/S(x) = θ3(p)4,

whence,

(7.18) S′′(x)/S′(x) − S′(x)/S(x) = −4pΞ3(p).
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Both (7.13) and (7.14) follow from (7.17) and (7.18). Multiplying (7.17) and
(7.18) one immediately obtains (7.15).

An immediate consequence of

θ2(q)−1θ4(q) = 2−1q−1/4
+∞∏
n=1

(
1 − q2n−1

1 + q2n

)2

,

combined with (7.12), accomplishes (1.2). From the infinite-product formula
for θ3(p), p = e−x, together with (1.2) and (7.17), it follows that

S′(x) = 16−1ex
+∞∏
n=1

(1 − e−2nx)4(1 − e−(4n−2)x)8(1 + e−2nx)−8.

One can express the right-hand side in (7.15) in a series form. Let us recall
the identity θ3(q)4 = 1+8

∑∗
nqn(1−qn)−1 for 0 < q < 1, where

∑∗ means the
summation taken over all integers n � 1 with n �≡ 0 (mod 4); see [BB, p. 71,
(3.2.23)]. Differentiation then yields that 4θ3(q)4Ξ3(q) = 8

∑∗ n2qn−1(1 −
qn)−2 for 0 < q < 1. The derivative (d2/dx2) logS(x) in (7.15) is hereby
−8e−x

∑∗
n2e−(n−1)x(1 − e−nx)−2 < 0.

Consequently, the d-increasing function logS(x) of x > 0 is d-concave. An
additional conclusion is that the inverse function x = T (es) of s = log S(x) is d-
increasing and d-convex for −∞ < s < +∞. Furthermore, for a constant β < 0,
the function T (sβ) = T (exp(β log s)) of s > 0 is d-decreasing and d-convex. For
a constant β < 0, the d-decreasing function S(x)β = exp(β logS(x)) of x > 0
is d-convex.

In particular, for each fixed t > 0, the d-increasing function logS(κT (t))
of κ > 0 is d-concave; see [AVV2, p. 217, Theorem 10.31]. The function
logS(κT (t)) of t > 0 for a fixed κ > 0 is d-increasing and d-concave; see [AVV2,
p. 213, Theorem 10.23]. For β < 0, the function S(κT (t))β =
exp(β logS(κT (t)))) of t > 0 is d-decreasing and d-convex.

The function S is seen to be d-convex. This fact, together with (7.14),
reveals that θ3(q)4 > 4qΞ3(q) for 0 < q < 1, a direct proof of which is obtained
from (7.11), θ3(q) > θ2(q) and Ξ4(q) < 0.

The following notice on Ω(q) might be significant. Consider the particular
case where β = 1/2, n = 1, and x = −2−1 log q in Theorem 2. Then (3.1),
(3.3), and (3.4) yield that Ω(q) = 2q1/4(1 + 4q)−1/2 + ∆(q)q9/4, for 0 < q < 1,
where −8 < ∆(q) < 16

√
2(1 − 2/

√
5) = 2.3883 . . . .

8. Inequalities for χ and S

Let f = χ or f = S, and letAn = 2n−1π for all integers n. “Good”functions
gn and hn will be found so that gn � f � hn in each closed interval [An, An+1].

Hereafter for a negative integer n and for 0 < r < 1, let us set σn(r) =
ω−n(r) and ωn(r) = σ−n(r). Then µ(σn(r)) = 2−nµ(r) for all r ∈ (0, 1) and for
all integers n. Set ψn = ωn(1/

√
2) for all n. Since µ(ψn) = 2nµ(1/

√
2) = An,
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it follows that 0 < ψn+1 < ψn < 1 for all n. Moreover, ψn → 0 as n → +∞,
whereas, ψn → 1 as n→ −∞ because µ(ψn) → +∞ as n→ +∞ and µ(ψn) → 0
as n→ −∞.

Next, four constants are defined in terms of ψ.

Bn,1 = 21−nπ−1 log(ψn+1/ψn), Bn,2 = ψ2
n − 1,

Bn,3 = 21−nπ−1 log
ψ−2

n − 1
ψ−2

n−1 − 1
, Bn,4 = 21−nπ−1 · ψ

−2
n − ψ−2

n−1

ψ−2
n−1 − 1

.

Obviously Bn,1 < 0 and Bn,2 < 0; furthermore, Bn,3 > 0 and Bn,4 > 0.
An absolute constant c0 = 4−1π−3Γ(1/4)4 = 1.39320 . . . will become im-

portant, where Γ(1/4) = 3.62560990822190 . . . . It follows from

(8.1) K(1/
√

2) = 4−1π−1/2Γ(1/4)2 = 1.85407 . . .

(see [BB, p. 25, Theorem 1.7]) that c0 = 4π−2K(1/
√

2)2.
Set cn = c0

∏n
k=1(1 + ψk)−2 for n > 0 and cn = c0

∏n+1
k=0(1 + ψk)2 for

n < 0. Then cn+1 < cn for n � 0 and cn+1 > cn for n � 0. Since ψn → 1
as n → −∞, it follows that

∑n+1
k=0 ψk → +∞ as n → −∞, whence cn → +∞

as n → −∞. At the end of the present Section it will be proved that cn has a
finite limit as n→ +∞.

Theorem 6. Let an integer n be arbitrary. Then for all x ∈ [An, An+1],

ψn exp{Bn,1(x−An)} � χ(x) � ψn exp{cnBn,2(x−An)};(8.2)

(ψ−2
n−1 − 1) max

[
exp{Bn,3(x−An)}, 1 + cn−1(x−An)

]
� S(x)

� (ψ−2
n−1 − 1) min

[
exp{cn−1(x−An)}, 1 +Bn,4(x−An)

]
.

(8.3)

Equality holds in the left in (8.2) if and only if x ∈ {An, An+1}, whereas, in
the right if and only if x = An. All the equalities hold in (8.3) if and only if
x ∈ {An, An+1}.

Proof. The proof depends on fairly elementary treatment. For a d-convex
function f in an open interval (a, b) with −∞ � a < b � +∞, and for A ∈ (a, b),
the quotient F (x) = (f(x) − f(A))/(x− A) becomes a continuous function in
(a, b) on setting F (A) = f ′(A). The derivative f ′′(x)(x−A) of the function

g(x) = (x−A)2F ′(x) = f ′(x)(x−A) − (f(x) − f(A))

of x ∈ (a, b)\{A} is positive for x > A and negative for x < A, and furthermore,
g(x) → 0 as x → A. Hence g(x) > 0 for all x ∈ (a, b) \ {A}. This implies that
F ′(x) > 0 for x ∈ (a, b) \ {A}, whence F (x) < F (y) for a < x < y < b. Thus,
for x ∈ [A,B] ⊂ (a, b) with A < B,

(8.4) f ′(A) � f(x) − f(A)
x−A

� f(B) − f(A)
B −A

.
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Equality holds in the first if and only if x = A, whereas it holds in the second if
and only if x = B. The right-most is strictly less than f ′(B) by the Mean-Value
Theorem with the monotone property of f ′. Furthermore,

(8.5) −∞ � lim
x→a

f(x) − f(A)
x− A

<
f(x) − f(A)

x−A
< lim

x→b

f(x) − f(A)
x−A

� +∞

for all x ∈ (a, b). All the inequalities in (8.4) and in (8.5) should be reversed if
f is d-concave in (a, b).

Since logχ and log S both are d-concave in (0,+∞), one immediately
obtains for x ∈ [An, An+1] that

h(An) exp
{(

1
An

log
h(An+1)
h(An)

)
(x−An)

}
� h(x)

� h(An) exp
{
h′(An)
h(An)

(x−An)
}

for h = χ, S. Equality holds in the left if and only if x ∈ {An, An+1} and in
the right if and only if x = An. Furthermore, since S is d-convex in (0,+∞),
one also has for x ∈ [An, An+1] that

S(An)
(

1 +
S′(An)
S(An)

(x−An)
)

� S(x)

� S(An)
(

1 +
1

S(An)

(
S(An+1) − S(An)

An

)
(x−An)

)
;

again equality holds in the left if and only if x = An and in the right if and
only if x ∈ {An, An+1}.

One thus observes that (8.2) and (8.3) depend finally on proofs of a string
of identities

χ(An) = ψn,(8.6)

S(An) = ψ−2
n−1 − 1,(8.7)

χ′(An)/χ(An) = (ψ2
n − 1)cn, and(8.8)

S′(An)/S(An) = cn−1(8.9)

for all integers n.
Identities (8.6) and (8.7) are obvious from µ(ψn) = An and χ(2−1An) =

ψn−1.
Proofs of (8.8) and (8.9) begin with establishing that 4π−2K(ψn)2 = cn for

all integers n. This is obvious for n = 0 by (8.1). First, the identity K(r) = (1+
r)−1K(σ(r)) for 0 < r < 1 ([BB, p. 12, Theorem 1.2, (a)]) should be changed
into K(ω(r)) = (1+ω(r))−1K(r). Then induction to both identities shows that
K(σn(r)) = K(r)

∏n
k=1(1 + σk−1(r)) and K(ωn(r)) = K(r)

∏n
k=1(1 + ωk(r))−1

for n � 1 and 0 < r < 1. Setting r = 1/
√

2 in these formulae, one obtains the
requested cn = 4π−2K(ψn)2.
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Since

(8.10) θ3(q)4 = 4π−2K(r)2

for r = θ2(q)2θ3(q)−2 with 0 < q < 1 by [BB, p. 35, (2.1.13)], it follows that

(8.11) θ2(q)4 = 4π−2r2K(r)2,

so that the identity θ4(q)4 = θ3(q)4 − θ2(q)4 reveals further that

(8.12) θ4(q)4 = 4π−2(1 − r2)K(r)2.

Here µ(r) = −2−1 log q.
One thus has (8.8) with the aid of (7.7) and (8.12) for r = χ(An) =

ψn by (8.6), whereas one has (8.9) with the aid of (7.17) and (8.10) for r =
χ(2−1An) = ψn−1.

In addition to (8.4) one has

f ′(A) <
f(B) − f(A)

B −A
=
f(A) − f(B)

A−B
� f(x) − f(B)

x−B
� f ′(B)

for x ∈ [A,B] on considering the function (f(x) − f(B))/(x − B) instead of
F there. Again the inequalities are reversed if f is d-concave. One can then
obtain obvious counterparts of (8.2) and (8.3) the details of which are left as
exercises.

Return to (8.5) and set f = − logχ. Since χ(x) → 1 as x → 0, it follows
that

lim
x→0

logχ(A) − logχ(x)
x−A

= −A−1 logχ(A).

On the other hand, since θ3(q) → 1 and θ2(q)2q−1/2 = Q(q)2 → 4 as q → 0, it
follows from (7.1) with q = e−2x that

lim
x→+∞

logχ(A) − logχ(x)
x−A

= 1.

One now obtains that

(8.13) (−A−1 logχ(A))|x−A| � | logχ(x) − logχ(A)| � |x−A|
for all x > 0; both equalities hold if and only if x = A.

Next, set f = − logS and also f = S in (8.5). Since S(x) → 0 as x → 0
and A > 0, it immediately follows that

lim
x→0

logS(A) − logS(x)
x−A

= −∞,

whereas, since θ4(p) → 1 and θ2(p)−4p = Q(p)−4 → 16−1 as p → 0, it follows
from (7.12) with p = e−x that

lim
x→+∞

logS(A) − logS(x)
x−A

= −1.
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Consequently,

(8.14) |x−A| � | logS(x) − logS(A)|
for all x > 0; equality holds if and only if x = A.

On the other hand,

lim
x→0

S(x) − S(A)
x−A

= A−1S(A)

because S(x) → 0 as x→ 0. Furthermore, one is now able to prove that

lim
x→+∞

S(x) − S(A)
x−A

= lim
p→0

p−1

log(p−1)
= +∞

with the aid of (7.12) again. Hence

A−1S(A)|x−A| � |S(x) − S(A)|
for all x > 0; equality holds if and only if x = A.

Explicit estimations will be obtained on setting A = An.
In Section 7 functions other than logχ, log S, and S are shown to be d-

concave or d-convex. For example, χβ for β < 0 is d-convex in (0,+∞), so that
one has estimations of χβ in intervals [An, An+1] on following the described
argument. In case −2 � β < 0, these estimations are different, in spirit, from
(3.1) in Theorem 2.

In view of (7.9) for µ(r) = −2−1 log q, one can prove with the aid of (7.11)
and (8.11) that

(8.15) Ξ3(q) = π−2q−1K(r)(E(r)− (1 − r2)K(r))

and with the aid of (7.16) and (8.10) that

(8.16) Ξ2(q) = π−2q−1E(r)K(r).

It follows from (7.7), together with (8.12), that χ′(x)/χ(x) = 4π−2(r2 −
1)K(r)2, whence

(8.17) χ′(x) = 4π−2r(r2 − 1)K(r)2

for r = χ(x). It further follows from (7.8), together with (7.9) and (8.17), that

χ′′(x) = 16π−4r(1 − r2)K(r)3(2E(r) − (1 + r2)K(r))

for r = χ(x). Since 2E(r)/((1 + r2)K(r)) decreases from 2 to 0 as r increases
from 0 to 1, the function χ is d-convex in (0, xι) and d-concave in (xι, 1). It is
now an exercise to obtain the following for S, where, this time, r = χ(2−1x).

S(x) = r−2 − 1,

S′(x) = 4π−2(r−2 − 1)K(r)2,

S′′(x) = 16π−4(r−2 − 1)K(r)3((2 − r2)K(r) − E(r)).
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As for T , one obtains on setting r = (1+ t)−1/2 that T ′(t) = −r3µ′(r) and

T ′′(t) = 2−1r5µ′(r)(3 + rµ′′(r)/µ′(r))

for t > 0. Since T ′′ < 0 and since µ′ < 0, one has the inequality µ′′(r)/µ′(r) >
−3r−1 for r ∈ (0, 1).

To prove that cn → c0
∏+∞

n=1(1+ψn)−2 �= 0, �= +∞, as n→ +∞, it suffices
to set r = 1/

√
2 in

(8.18) 0 <
+∞∑
n=0

log(1 + ωn(r)) < +∞

which is valid for all r ∈ (0, 1). For the proof, first, ωn(r) < r2
n

or σn(r) > r2
−n

for n > 1 and r ∈ (0, 1), is obtained by induction; in particular, ωn(r) → 0 as
n→ +∞. On the other hand, there exists a unique ro ∈ (

√√
17 − 3/2, 1) such

that (1+r)2 < 1+σ(r) if and only if r < ro. Consequently, (1+r)2
n

< 1+σn(r)
for n > 1 by induction. Hence 1 + ωn(r) < (1 + r)2

−n

, from which

(8.19) log(1 + ωn(r)) < 2−n log(1 + r)

for n > 1 and r ∈ (0, ro). Given r ∈ (0, 1), choose N such that ωN (r) < ro.
Replace then r with ωN (r) in (8.19) to have log(1+ωn+N (r)) < 2−n log(1+ro)
for all n > 1. The proof of (8.18) is herewith complete.

9. Lipschitz continuity

In the present Section, Lipschitz continuity and “inverse” Lipschitz conti-
nuity of f or log f for f = µ, χ, T , or S are mainly investigated.

Theorem 7. For rk ∈ (0, 1) with k = 1, 2,

(9.1) | log r1 − log r2| � |µ(r1) − µ(r2)|;
inequality is strict if and only if r1 �= r2. For each constant a ∈ (0, 1), and for
rk ∈ (0, a] with k = 1, 2,

(9.2) |µ(r1) − µ(r2)| � −aµ′(a)| log r1 − log r2|;
inequality is strict if and only if r1 �= r2. The constant

−aµ′(a) = 4−1π2(1 − a2)−1K(a)−2

depending on a, increases from 1 to +∞ as a increases from 0 to 1. For each
constant A > 0, and for xk ∈ [A,+∞) with k = 1, 2,

(9.3) | logS(x1) − logS(x2)| � (S′(A)/S(A))|x1 − x2|;
inequality is strict if and only if x1 �= x2. The constant

S′(A)/S(A) = 4π−2K(χ(2−1A))2
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depending on A, decreases from +∞ to 1 as A increases from 0 to +∞.
For xk > 0 with k = 1, 2,

(9.4) | logχ(x1) − logχ(x2)| � | logS(x1) − logS(x2)|;
inequality is strict if and only if x1 �= x2.

For (9.1) see also [AVV2, p. 84, Theorem 5.13, (2)].
Consequences are listed. Inequality (9.1) is equivalent to

(9.5) | logχ(x1) − logχ(x2)| < |x1 − x2|,
so that

(9.6) | log(S(x1) + 1) − log(S(x2) + 1)| < |x1 − x2|;
both for x1 > 0 and x2 > 0 with x1 �= x2. The right inequality in (8.13) is, in
reality, equivalent to (9.5). A direct proof of (9.1) in connection with that of
(9.2) will be given. Incidentally, the inequality

(9.7) |x1 − x2| � | logS(x1) − logS(x2)| (x1 > 0, x2 > 0)

is equivalent to (8.14).
Furthermore, it follows from (9.2), (9.3), (9.7), and (9.6), respectively, that

(9.8) |x1 − x2| < −(χ(b)/χ′(b))| logχ(x1) − logχ(x2)|
for xk ∈ [b,+∞), k = 1, 2, with x1 �= x2 and b > 0;

(9.9) | log t1 − log t2| < B−1T ′(B)−1|T (t1) − T (t2)|,
for tk ∈ [B,+∞), k = 1, 2, with t1 �= t2, where B−1T ′(B)−1 =
4π−2K(χ(2−1T (B)))2 for B > 0;

|T (t1) − T (t2)| < | log t1 − log t2| and
| log(t1 + 1) − log(t2 + 1)| < |T (t1) − T (t2)|

both for t1 > 0, t2 > 0 with t1 �= t2.
It follows from (8.8) that the Lipschitz constant −aµ′(a) in (9.2), for a =

χ(An) with integer n, is −χ(An)/χ′(An) = (1 − ψ2
n)−1c−1

n . Furthermore, the
constant S′(A)/S(A) in (9.3) for A = An+1 is cn by (8.9). It is now obvious
that the constant in (9.8) for b = An is (1 − ψ2

n)−1c−1
n , while the constant in

(9.9) for B = S(An+1) is cn.
Combinations of the above inequalities yield, for example, the following

two, where κ > 0 is fixed. For 0 < rk � a < 1, k = 1, 2,

| logχ(κµ(r1)) − logχ(κµ(r2))| � −κaµ′(a)| log r1 − log r2|,
whereas, for tk � C > 0, k = 1, 2,

| logS(κT (t1)) − logS(κT (t2))| � 4π−2κK(χ(2−1κT (C)))2| log t1 − log t2|.
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Remaining cases are left as exercises.
Before the proof of Theorem 7 expressions of µ′(r) and µ′′(r) in terms of

θk(q), k = 2, 3, 4, and Ξ4(q) are proposed, where µ(r) = −2−1 log q. It follows
from (7.2) with µ′(r) = 1/χ′(x), q = e−2x, and r = Ω(q)2, that

(9.10) µ′(r) = −θ2(q)−2θ3(q)2θ4(q)−4 = −r−1θ4(q)−4.

Since µ′′(r) = −χ′′(x)µ′(r)3, it further follows from (7.3) and (9.10) that

µ′′(r) = θ2(q)−4θ3(q)4θ4(q)−8(θ4(q)4 + 8qΞ4(q))
= r−2θ4(q)−8(θ4(q)4 + 8qΞ4(q)).

That θ3 is d-increasing and θ4 is d-decreasing is observed by θ′3(q) > 0 and
Ξ4(q) < 0 in (7.9) respectively, both for 0 < q < 1. On the other hand, θ2 is
d-increasing by θ2 = θ3Ω.

It follows from (8.12) and limr→1(K(r) − log(4/
√

1 − r2)) = 0 (see [WW,
p. 521]) that θ4(q) decreases from 1 to 0 as q increases from 0 to 1. The
function −rµ′(r) is d-increasing because its derivative is −4θ4(q)−4Ξ4(q)(dq/dr)
by (9.10), together with dq/dr = −2qµ′(r) > 0; furthermore, it increases from
1 to +∞ because r increases if and only if q increases. One is now able to give

Proof of Theorem 7. Since −rµ′(r) > 1 for all r ∈ (0, 1), it follows from
integration that µ(r1) − µ(r2) � log r2 − log r1 for r1 � r2. Exchanging r1 for
r2 in the opposite case one has (9.1).

On the other hand, −rµ′(r) � −aµ′(a) for r � a, whence, by integration,
0 � µ(r1) − µ(r2) � −aµ′(a) log(r2/r1) for r1 � r2 � a. Exchanging r1 for r2
in the opposite case one has (9.2). Since

(9.11) −rµ′(r) = θ4(q)−4 = 4−1π2(1 − r2)−1K(r)−2

for 0 < r < 1 by (9.10) and (8.12) (see also [BB, p. 137, (4.6.3a)]), one has
immediately the expression of −aµ′(a). One can prove that

√
1 − r2K(r) is

d-decreasing directly by the formula of K(r).
It follows from (7.17), together with (8.10), that S′(x)/S(x) = 4π−2K(r)2,

where r = χ(2−1x). By the d-concavity of log S, or by the d-increasing property
of K, S′(x)/S(x) is d-decreasing. Thus, S′(x)/S(x) � S′(A)/S(A) for x � A.
The proof of (9.3) is now obvious.

To prove (9.4) the identity θ4(p2)4 = θ3(p)2θ4(p)2 for 0 < p < 1 resulting
from [BB, p. 34, (2.1.7ii)] is of use. It then follows from (7.7) and (7.17) for
q = p2 with p = e−x that

(χ′(x)/χ(x))2 = θ4(p)4S′(x)/S(x) < S′(x)/S(x)

for x > 0. Consequently, the Schwarz inequality for integral gives that

(logχ(x1) − logχ(x2))2 � |x1 − x2|
∣∣∣∣
∫ x2

x1

(χ′(x)/χ(x))2dx
∣∣∣∣

� |x1 − x2|| log S(x1) − log S(x2)|,
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which, combined with (9.7), proves (9.4).

10. Grötzsch function µ and Poincaré density

The Poincaré density P (z) in the twice punctured plane C
∗ = C \ {−1, 0}

is the function defined by the equation P (z)−1 = (1 − |w|2)|M′(w)| at z =
−M(w), where

M(w) = 16q(w)
+∞∏
n=1

(
1 + q(w)2n

1 + q(w)2n−1

)8

with q(w) = exp{π(w + 1)/(w − 1)}, is an elliptic modular function defined
in D, which omits precisely three points 0, 1, and ∞; see [N, p. 319, (76)] and
[BB, pp. 112–115].

The Poincaré distance between z and w in C∗ is

d(z, w) =
∫
P (ζ)|dζ|,

where the integral is taken along a geodesic connecting z and w in C
∗. Fur-

thermore,

(10.1) P (z) = P (−1 − z) = |1 + z|−2P (−z/(1 + z))

for z ∈ C∗ and

(10.2) d(z, w) = d(−1 − z,−1 − w) = d(−z/(1 + z),−w/(1 + w))

for z, w ∈ C
∗ because the mappings z 	→ −1 − z and z 	→ −z/(1 + z) both are

conformal from C∗ onto C∗.

Theorem 8. For r1, r2 ∈ (0, 1) with r1 �= r2,

(10.3) | logµ(r1) − log µ(r2)| < 4P (1)

∣∣∣∣∣log

√
1 − r21
r1

− log

√
1 − r22
r2

∣∣∣∣∣ ,
where

(10.4) 4P (1) =
8π2

Γ(1/4)4
= 0.456946 . . . .

In addition,

(10.5) | logµ(r1) − logµ(r2)| > π

2
Υ(r1, r2)

∣∣∣∣∣log

√
1 − r21
r1

− log

√
1 − r22
r2

∣∣∣∣∣
for r1, r2 ∈ (0, 1) with r1 �= r2, where

Υ(r1, r2) =
1

max[K(r1)K(
√

1 − r21), K(r2)K(
√

1 − r22)]
.
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For (10.4) see [Hm, p. 436] where ρ(−1) = 2P (1). The constant cH =
2−1P (1)−1 is important for estimating Poincaré densities in hyperbolic do-
mains; see [Y1, p. 118]. The length l of the lemniscate (x2 + y2)2 = x2 − y2 in
the xy-plane is

l = 4
∫ 1

0

(1/
√

1 − τ4)dτ = Γ(1/4)Γ(1/2)Γ(3/4)−1

= 2−1/2π−1/2Γ(1/4)2 = 5.24411 . . . ,

where l/4 = 1.3110287771460599068 . . . is shown by Gauss [Ga, p. 413], so that
P (1) = πl−2, the area of the disk of radius l−1.

For xk > 0, k = 1, 2, with x1 �= x2, set rk = χ(xk/2), k = 1, 2. Then (10.3)
reads that

| log x1 − log x2| < 2P (1)| logS(x1) − logS(x2)|.

Proof of Theorem 8. One first proves that

(10.6) (tP (t))−1 = 8π−1K(1/
√

1 + t)K(
√
t/(1 + t))

for t > 0. This is true for t = 1 by (8.1).
Set q = q(s) ≡ exp{π(s+ 1)/(s− 1)} for −1 < s < 1, so that −1 < t < 0

for t ≡ −M(s). Then µ(r) = −2−1 log q for r = r(s) ≡ Ω(q)2 and t = −r2.
Since (1 − s2)q′(s) = 2q log q, and since

M′(s) = 4Ω(q)4(Ξ2(q) − Ξ3(q))q′(s) = −tq−1q′(s)θ4(q)4

by (7.6), it follows from (8.12) that

(10.7) −(tP (t))−1 = −2θ4(q(s))4 log q(s) = 8π−1(1 + t)K(
√−t)K(

√
1 + t)

for −1 < t < 0. Identity (10.6) for t > 0 follows on replacing t with −t/(1 + t)
in (10.7) and further, on observing (10.1).

As is seen in the proof of [AVV2, p. 64, Lemma 3.32] the function
K(r)K(

√
1 − r2) is d-decreasing in (0, 1/

√
2) and d-increasing in (1/

√
2, 1), so

that (tP (t))−1 is d-decreasing in (0, 1) and d-increasing in (1,+∞) by (10.6).
Consequently, P (t) < P (1)t−1 for all t > 0, t �= 1. Combining this with the
identity

(10.8) d(t, λ(K, t)) =
∫ λ(K,t)

t

P (x)dx = 2−1 logK (x ∈ R)

for K > 1 and t > 0 (see [KY, Section 4]), one immediately has

(10.9) 2−1 logK < P (1) log(λ(K, t)/t).

Notice that λ(K, t) > t. Suppose that 0 < r1 < r2 < 1 and set t = r−2
2 − 1,

and further, K = µ(r1)/µ(r2). Then λ(K, t) = r−2
1 − 1. Substituting these in

(10.9) one immediately obtains (10.3) for r1 < r2.
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The proof of (10.5) begins with the inequality xP (x) � C(a, b) for x ∈
[a, b] ⊂ (0,+∞), a �= b with C(a, b) = min[aP (a), bP (b)]. Then for a = t > 0
and for b = λ(K, t) with K > 1 one has in view of (10.8) that

(10.10) 2−1 logK � C(t, λ(K, t)) log(λ(K, t)/t).

Given 0 < r1 < r2 < 1, set t = r−2
2 − 1 and K = µ(r1)/µ(r2) to have again

λ(K, t) = r−2
1 − 1. One then accomplishes the proof by obtaining (10.5) from

(10.10) for C(r−2
1 − 1, r−2

2 − 1) = 8−1πΥ(r1, r2) with the aid of (10.6).

Since Υ(r1, r2) � Υ(a, b) for for r1, r2 ∈ [a, b] ⊂ (0, 1), it follows from
(10.5) that, for r1 �= r2,

| logµ(r1) − logµ(r2)| > π

2
Υ(a, b)

∣∣∣∣∣log

√
1 − r21
r1

− log

√
1 − r22
r2

∣∣∣∣∣ .

Set I1 = (0,+∞), I2 = (−∞,−1), and I3 = (−1, 0). One can then show
that

d(t1, t2) =
1
2

∣∣∣∣logµ
(

1√
1 + t1

)
− logµ

(
1√

1 + t2

)∣∣∣∣ for t1, t2 ∈ I1;

(10.11)

d(t1, t2) =
1
2

∣∣∣∣logµ
(

1√−t1

)
− logµ

(
1√−t2

)∣∣∣∣ for t1, t2 ∈ I2;

(10.12)

d(t1, t2) =
1
2
| logµ(

√
1 + t1) − log µ(

√
1 + t2)| for t1, t2 ∈ I3.

(10.13)

Identity (10.11) for t1 < t2 follows on setting K = T (t2)/T (t1), and t = t1
in (10.8), whereas Identities (10.12) and (10.13) both follow from (10.11) with
the aid of (10.2).

As a corollary of Theorem 8 the following six inequalities are listed. Three
upper estimates of d(t1, t2) are first exhibited.

d(t1, t2) < P (1)
∣∣∣∣log

t1
t2

∣∣∣∣ for t1, t2 ∈ I1, t1 �= t2;

d(t1, t2) < P (1)
∣∣∣∣log

1 + t1
1 + t2

∣∣∣∣ for t1, t2 ∈ I2, t1 �= t2;

d(t1, t2) < P (1)
∣∣∣∣log

t1(1 + t2)
t2(1 + t1)

∣∣∣∣ for t1, t2 ∈ I3, t1 �= t2.
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Three lower estimates of d(t1, t2) are the following.

d(t1, t2) >
π

8
Υ
(

1√
1 +A

,
1√

1 +B

) ∣∣∣∣log
t1
t2

∣∣∣∣
for t1, t2 ∈ [A,B] ⊂ I1, t1 �= t2;

d(t1, t2) >
π

8
Υ
(

1√−A,
1√−B

) ∣∣∣∣log
1 + t1
1 + t2

∣∣∣∣
for t1, t2 ∈ [A,B] ⊂ I2, t1 �= t2;

d(t1, t2) >
π

8
Υ(

√
1 +A,

√
1 +B)

∣∣∣∣log
t1(1 + t2)
t2(1 + t1)

∣∣∣∣
for t1, t2 ∈ [A,B] ⊂ I3, t1 �= t2,

where A �= B in all cases.

11. Function µ and iteration σn

Two expressions of µ in terms of σn are summarized in

Proposition. For 0 < r < 1,

µ(r) = log
1
r

+
+∞∑
n=0

2−n log(1 + σn(
√

1 − r2)),(11.1)

µ(r) =
π

2

∞∏
n=0

1 + σn(
√

1 − r2)
1 + σn(r)

.(11.2)

The expansion (11.1) can be read about in [QV, p. 1059, Theorem 1.1]. It
will be shown, nevertheless, that (11.1) follows from Gauss’s identity explained
below.

Proof of the Proposition. Set a0(r) = 1, b0(r) =
√

1 − r2; and inductively,
an+1(r) = (an(r) + bn(r))/2, bn+1(r) =

√
an(r)bn(r) for 0 < r < 1 and for

n � 0. Then one obtains that

(11.3) bn(r)/an(r) = σn(
√

1 − r2)

for n � 0 and for 0 < r < 1, which may be proved by making use of the
recursion formula bn(r)/an(r) = σ(bn−1(r)/an−1(r)) for n � 1.

The Gauss identity [BB, p. 50, (2.5.14)] states that

(11.4) µ(r) = log(4/r) +
+∞∑
n=0

2−n log(an+1(r)/an(r))

for 0 < r < 1; the cited identity of Gauss is the case a = 1, b =
√

1 − r2, and
c = r in the formula in the second line in [Ga, p. 388]. On the other hand, the
recursion formula

an+1(r)
an(r)

=
an(r)
an−1(r)

· 1 + σn(
√

1 − r2)
1 + σn−1(

√
1 − r2)
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for n � 1 and 0 < r < 1 following from (11.3) demonstrates that

(11.5) an+1(r)/an(r) = (1 + σn(
√

1 − r2))/2.

Substituting this in (11.4) one obtains (11.1).
To prove (11.2) the celebrated limit formula [BB, p. 5, Theorem 1.1]

1/ lim
n→∞ an(r) = 1/ lim

n→∞ bn(r) = (2/π)K(r)

due to Gauss should be recalled. Meanwhile, the expression

(11.6) an(r) = 2−n
n−1∏
k=0

(1 + σk(
√

1 − r2))

for n � 2 and 0 < r < 1, immediately follows from (11.5), which, together with
the Gauss limit formula for K, proves that

(11.7) K(r) =
π

2

∞∏
n=0

2
1 + σn(

√
1 − r2)

.

Hence (11.2) follows. Formula (11.7) is equivalent to [BB, p. 14, Algorithm 1.1,
(a)] on replacing k0 with

√
1 − r2 there.

Incidentally, (11.6), combined with (11.3), shows that

bn(r) = 2−nσn(
√

1 − r2)
n−1∏
k=0

(1 + σk(
√

1 − r2))

for n � 2 and 0 < r < 1.
It would be interesting that, as a consequence of (11.3), the function

σn(4e−2nx) which appears in (3.1) is the quotient bn(
√

1 − 16e−2n+1x)/
an(

√
1 − 16e−2n+1x) for n � 1 and for x > 21−n log 2.
Since

1 + σn(
√

1 − r2) = 2σn(
√

1 − r2)1/2σn+1(
√

1 − r2)−1,

it follows from (11.1) that

(11.8) µ(r) = log
4(1 − r2)

r
− (3/2)

+∞∑
n=0

2−n log σn(
√

1 − r2).

Substituting bn(r)/an(r) instead of σn(
√

1 − r2) in (11.8) which is possible by
(11.3) one has the Jacobi expansion [BB, p. 52, (2.5.15)] which is equivalent to

(11.9) µ(r) = log(4 4
√

1 − r2/r) + (3/2)
+∞∑
n=1

2−n log(an(r)/bn(r))
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for 0 < r < 1. One can reverse this procedure, so that the Jacobi expansion
(11.9) follows from the Gauss expansion (11.4), and vice versa.

Setting r = 1/
√

2 in (11.1) one has

+∞∑
n=0

2−n log(1 + ψ−n) = π/2 − log
√

2 = 1.2242 . . .

and setting r = 1/
√

2 in (11.8) one further has has

+∞∑
n=0

2−n logψ−n = (2/3) log(2
√

2) − π/3 = −0.35405 . . . .

Upper and lower bounds of µ(r) can here be studied. The expression (11.1)
is transformed into

µ(r) = log
2(1 +

√
1 − r2)
r

+
+∞∑
n=1

2−n log
1 + σn(

√
1 − r2)

2
,

whence for n � 1,

µ(r) < log
2(1 +

√
1 − r2)
r

+
n∑

k=1

2−k log
1 + σk(

√
1 − r2)

2
(11.10)

� log
2(1 +

√
1 − r2)
r

+ 2−1 log
1 + σ1(

√
1 − r2)

2
= log{21/2r−1(1 +

√
1 − r2)1/2(1 + 4

√
1 − r2)}

< log{2r−1(1 +
√

1 − r2)} < log(4/r).

Furthermore, the expression (11.1) is equivalent to

µ(r) = log
(1 +

√
1 − r2)2

r
+

+∞∑
n=1

2−n log
1 + σn(

√
1 − r2)

1 +
√

1 − r2
.

On the other hand, since σ(r) > r for 0 < r < 1, it follows that σn(
√

1 − r2) >√
1 − r2, where n � 1. Hence for n � 1,

µ(r) > log
(1 +

√
1 − r2)2

r
+

n∑
k=1

1
2k

log
1 + σk(

√
1 − r2)

1 +
√

1 − r2
(11.11)

> log
(1 +

√
1 − r2)2

r
.

Let us treat the case n = 2 in (11.11). Since

1 + σ2(r)
1 + r

=

(
1 +

√
σ(r)

1 + σ(r)

)2(
1 +

√
r

1 + r

)2

,
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it follows that

1
4

log
1 + σ2(

√
1 − r2)

1 +
√

1 − r2
=

1
2

log
1 + σ(

√
1 − r2)1/2

1 + σ(
√

1 − r2)
+

1
2

log
1 + 4

√
1 − r2

1 +
√

1 − r2

for 0 < r < 1. Consequently,

µ(r) > log
(1 +

√
1 − r2)(1 + 4

√
1 − r2)1/2

r
+

1
2

log(1 + σ(
√

1 − r2)1/2)

(11.12)

> log
(1 +

√
1 − r2)(1 + 4

√
1 − r2)

r
> log

(1 +
√

1 − r2)2

r
.

Both inequalities in (4.1) are actually established with the aid of a confor-
mal mapping in [H, p. 318] and [LV, p. 61]. On the other hand, improvements
of (4.1) are obtained by (11.10) and (11.12) both of which follow essentially
from (11.4) due to Gauss.

12. Nine remarks

The following remarks might serve for further studies.

Remark 1. Let FK be the family of K-quasiconformal mappings f
from C onto C with f(0) = f(1) − 1 = 0, K � 1. Set P2(t,K) =
supf∈FK

max|z|=t |f(z)| for t > 0. S. Agard established in [A, p. 10, (3.11)]
that P2(t,K) = λ(K, t) for t � 1. Although Agard assumes that t � 1,
this is also true for 0 < t < 1. In reality, it is verified that λ(K, t) =
maxf∈FK

max|z|=t |f(z)| for all t > 0; see [Y2, Theorem 1]. Let GS be the
family of functions f holomorphic in D with f(D) ⊂ C \ {0, 1}. For t > 0 let
GS,t be the family of f ∈ GS with |f(0)| = t. Martin [Ma, Theorem 1.1] claims
that supf∈GS,t

|f(z)| = P2(t, (1+ |z|)/(1−|z|)) for z ∈ D. Since 1/f ∈ GS,1/t for
f ∈ GS,t, it follows that inff∈GS,t

|f(z)| = 1/λ(K, 1/t) for K = (1+ |z|)/(1−|z|)
with z ∈ D.

For extensive treatment of λ(K, t) which is defined even for t < 0, see
[KY]; the starting definition of λ(K, t) in [KY] is different but natural and it
coincides with S(KT (t)) for t > 0. Also the function ν(K, t) for real t is defined
in [KY]; in particular, ν(K, t) = S(T (t)/K) = 1/λ(K, 1/t) for t > 0.

Remark 2. Obviously χ(π/2) = 1/
√

2 and S(π) = 1. First, for x > 0,

(12.1) χ(x) =
√

1 − χ(4−1π2/x)2.

For the proof, let us set r = χ(x) in the formula π2/4 = µ(r)µ(
√

1 − r2) which
directly follows from the definition of µ. Analogously,

(12.2) S(x) = S(π2/x)−1

for x > 0. For the proof, replace x with x/2 in (12.1) and eliminate χ to have the
equality only for S, from which (12.2) follows. One then has T (t)T (t−1) = π2
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for t > 0. Consequently, S(κ−1T (t−1)) = S(κT (t))−1, whence it follows that

ηκ(t) ≡ (ϕκ(
√
t/(1 + t))/ϕ1/κ(1/

√
1 + t))2

= (S(κT (t)) + 1)/(S(κ−1T (t−1)) + 1) = S(κT (t))

for κ > 0 and t > 0, where ϕκ(r) = χ(κ−1µ(r)) for κ > 0 and 0 < r < 1.
Let us be concerned with the case 0 < x � π for S(x). First, (2.6) reads

that
S(x) = 16−1ex − 2−1 + (1 + ∆S,1(x))e−x

for x � π. Hence, for 0 < x � π, one has

S(x)−1 = S(π2/x) = 16−1eπ2/x − 2−1 + (1 + ∆S,1(π2/x))e−π2/x with

0 < ∆S,1(π2/x) < (1 +
√

1 − 16e−2π)−1.

A consequence is that lim(S(x)eπ2/x) = 16 as x→ +0.

Remark 3. Recall that µ(1) = 0. Hence 0 � µ(r) + αn logωn(r) <
αn log 4 for all r ∈ (0, 1] by (4.2). Consequently, the sequence of functions
−αn logωn converges to µ as n→ +∞ uniformly on (0, 1]. The k-th derivative
of −αn logωn, therefore, converges to µ(k) uniformly on each closed interval
[p, q] ⊂ (0, 1). Particularly, −αnω

′
n/ωn → µ′. It then follows from (11.7) and

(9.11) that

2n/2(r(1 − r2))−1/2(ωn(r)/ω′
n(r))1/2 → (2/π)K(r) =

∞∏
n=0

2
1 + σn(

√
1 − r2)

as n→ +∞ uniformly on every closed interval [p, q] ⊂ (0, 1).
An exercise is to prove that −2−n logψn → π/2 as n→ +∞.

Remark 4. Let β �= 0 and β � −2. For each p > 0, the function
σn(4e−2nx)β in (3.1) uniformly converges to χ(x)β as n→ +∞ on the interval
[p,+∞). Actually, let us choose N � 1 such that p > 21−N log 2, so that
2N+1 > 2 � −β. Then, for all n > N , and for all x ∈ [p,+∞), it follows
from (3.3) that |χ(x)β − σn(4e−2nx)β| < |∆n,β(x)| < |β|22β−n+4; the right-
most tends to 0 as n → +∞. Since χ(x)β and σn(4e−2nx)β both are real-
analytic in (0,+∞), the k-th derivative of σn(4e−2nx)β converges to that of
χ(x)β uniformly on each [p,+∞), p > 0. A conjecture is that the conclusion
were valid for all β �= 0.

The function σ(r) is d-increasing and d-concave for 0 < r < 1, so that
the same is true of σn(r), and furthermore, of log σn(r). For a constant β <
0 the function σβ

n = exp(β log σn) is therefore d-decreasing and d-convex in
(0, 1). Since 4 exp(−2nx) is d-decreasing and d-convex for x > 0, the function
σn(4e−2nx)β , with a constant β < 0, is d-increasing and d-convex for x >
22−n log 2. As was observed in Section 7, the function χ(x)β with β < 0 is
d-increasing and d-convex for x > 0.
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Remark 5. The constant σn(
√

2) in (2.4), (3.4), and (3.6) can be
replaced with any algebraic number Na satisfying

σn(
√

2) < Na < χ(21−n log 2).

Obviously Na becomes better as Na becomes nearer to χ(21−n log 2). For a
rational number p > 0 there exists a unique algebraic number kp with 0 < kp <
1 and µ(kp) = π

√
p/2 ([BB, p. 139 et seqq.] and [BB, p. 156]). If a natural

number m is found so that

(12.3) log 2 < 2−m−1π
√
p < π/4,

or equivalently, if log 2 < µ(σm(kp)) < π/4, thenNa = σn+m−1(kp) will do. Ac-
tually, the inequality αn−1 log 2 < µ(σn+m−1(kp)) implies that σn+m−1(kp) <
χ(αn−1 log 2). On the other hand, µ(σn(

√
2)) = αn−1µ(σ(

√
2)) = αn−1π/4 >

αn−1µ(σm(kp)) = µ(σn+m−1(kp)), whence σn(
√

2) < σn+m−1(kp).
The algebraic number σ(

√
2) = 0.98517 . . . appearing in (6.15) may be

replaced with σm(kp) > σ(
√

2) for m and p satisfying (12.3).
Let ε be rational with 0 < ε < 64(1 − (4π−1 log 2)2) = 14.151 . . . . Then,

(12.3) is true for m = 4 and p = 64 − ε. For instance, ε = 6 will do for which
k58 = (13

√
58−99)(

√
2−1)6 by k58 = λ∗(58) in [BB, p. 299, Exercise 9.d).iii)].

Here µ(σ4(k58)) = π
√

58/32 = 0.75409 . . . .
Suppose that t � σ4(k64−ε)−2 − 1. Then µ(1/

√
1 + t) � µ(σ4(k64−ε)) =

π
√

64 − ε/32, so that L(2, t) � exp(π
√

64 − ε/16). It then follows from (6.13)
that

5
4
− 4
eπ

√
64−ε/8 + 4

< δLV V (K, t) exp{2Kµ(1/
√

1 + t)}

<
5
4

+
e−π

√
64−ε/8

2(1 +
√

1 − 16e−π
√

64−ε/4)

for t with σ4(k64−ε)−2 − 1 � t < σ(
√

2)−2 − 1.
It is remarkable that there exists kp with p �= 64 − ε for which log 2 <

µ(σm(kp)) < π/4 with m �= 4, or (12.3) is still valid. Notice that 49 < 64− ε <
64.

As a first example, let us choose k13 which satisfies the equation
4k2

13(1−k2
13) = G−24

13 = 649−180
√

13; see [BB, p. 172, Table 5.2a] whereG−12
N =

2kNk
′
N . Calculation with the aid of [BB, p. 161, Exercise 2.a).ii)], together with

G−12
13 = 5

√
13 − 18, then reveals that k13 = 2−1(

√
5
√

13 − 17 −
√

19 − 5
√

13)
= 0.01387 . . . and µ(σ3(k13)) = π

√
13/24 = 0.70794 . . ., so that (12.3) is valid

for m = 3.
Another example for large p is σ5(k210) = 0.99266 . . . for S. Ramanujan’s

celebrated

k210 = (
√

2 −
√

1)2(
√

4 −
√

3)(
√

7 −
√

6)2(
√

10 −
√

9)2

× (
√

15 −
√

14)(
√

16 −
√

15)2(
√

36 −
√

35)(
√

64 −
√

63)

= 10−10 × 5.2025 . . .
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because log 2 < µ(σ5(k210)) = π
√

210/26 (= 0.71134 . . .) < π/4; see [BB,
p. 141, (4.6.12)] for k210. Since µ(σ3(k13)) = π

√
208/26 < π

√
210/26 =

µ(σ5(k210)), it exactly follows that σ3(k13) > σ5(k210).
Finally, for the non-integer 31/2 one has µ(σ3(k31/2)) = π2−4

√
31/2 =

0.77302 . . . , so that p = 31/2 with m = 3 is an example.

Remark 6. For a fixed K � 1 the functions δLV V (K, t) and ζK(t) in
(6.5) and (6.6), respectively, are functions of t > 0. Set ∆(K, t) =
δLV V (K, t)ζK(t)−1 − 1. Then

(12.4) λ(K, t) = 16−1ζK(t)−1 − 2−1 + ζK(t) + ∆(K, t)ζK(t).

For ∆(K, t) one observes in [KY, Theorem 6.2, (6.7), (6.6)] that

(12.5) 0 < ∆(K, t) < 8

for t � to ≡ S(K−1 log 4), or equivalently, K � T (t)−1 log 4, whereas

(12.6) −5/2 < ∆(K, t) < 5/2

for 0 < t < to, or equivalently, K < T (t)−1 log 4.
Set n = 1 and x = 2Kµ(1/

√
1 + t) = − log ζK(t) in Theorem 1. Then

Formula (2.1) in this case is exactly Formula (12.4) with ∆S,1(x) = ∆(K, t).
It then follows from (2.3) that 0 < ∆(K, t) < 1 for t � to, a result better than
(12.5). On the other hand, it follows from (2.4) that

(12.7)
−0.5625 = 1 − σ(4)−2 < ∆(K, t) < 4(σ(

√
2)−2 − 1) = 3/

√
2 − 2 = 0.12132 . . .

for 0 < t � to. Estimation (12.6) is thus improved in (12.7).
One can replace σ(

√
2) in (12.7) with σ4(k64−ε); see Remark 5. One cannot

set t = 1 in (12.7) because T (1)−1 log 4 = π−1 log 4 = 0.44127 . . . < 1. Hence
(12.7) does not serve for estimating δLV V (K)eπK = ∆(K, 1) + 1.

Finally, (6.14) yields that 0.05 < ∆(K, t) < (6 −√
15)/8 = 0.2658 . . . for t

with t > S(log 4) � to.

Remark 7. Particular values of λ(K, t) and ϕK(r) for K � 1 are
obtained:

λ(2m
√
p/q, σn+m(kq)−2 − 1) = σn(kp)−2 − 1;

ϕK(σn(kp)) = σn+m(kq), K = 2m
√
p/q,

where p and q are rational numbers with 0 < q � p and n and m are integers
with m � 0. First, λ(K, r−2

2 −1) = r−2
1 −1 and ϕK(r1) = r2 for 0 < r1 � r2 < 1

and K = µ(r1)/µ(r2). Next, µ(σn(kp))/µ(σn+m(kq)) = 2m
√
p/q for rational

numbers p, q with 0 < q � p, and for integers n and m with m � 0. On the
other hand, it follows from kp � kq that r1 ≡ σn(kp) � σn(kq) � σn+m(kq) ≡
r2. Hence the requested formulae follow.
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Remark 8. Identity (7.9) can be rewritten as

qΞ4(q) = π−2K(r)(E(r)−K(r)),

for r = θ2(q)2θ3(q)−2 with 0 < q < 1, which, combined with (7.16) and (8.10),
yields

qΞ2(q) = π−2K(r)E(r),

whereas, combined with (7.11) and (8.11), yields

qΞ3(q) = π−2K(r)(E(r)− (1 − r2)K(r)).

Since

(1 − r2)(K(r)− E(r)) < E(r) − (1 − r2)K(r) < K(r) − E(r)

for 0 < r < 1 ([AVV2, p. 53, Theorem 3.21, (6)]), it follows from 1 − r2 =
θ4(q)4θ3(q)−4 that

(0 <) − θ4(q)4θ3(q)−4Ξ4(q) < Ξ3(q) < −Ξ4(q)

and since
4−1π2 < E(r)K(r) < 4−1π2(1 − r2)−1/4

for 0 < r < 1 ([AVV2, p. 62, Theorem 3.31, (1)]), it follows further that

4−1 < qΞ2(q) < 4−1θ4(q)−1θ3(q)

for 0 < q < 1.

Remark 9. The doubly connected domain which is the plane C slit
along the interval (−∞, 0] and the circular arc {eiθ; |θ| � α} for 0 < α < π can
be mapped conformally onto the ring domain {z; 1 < |z| < expµ(sin(α/2))}.
Calculation with the aid of [AVV2, p. 82, (5.9)] yields that

(d2/dα2)µ(sin(α/2)) = 16−1π2r−2(1 − r2)−1K(r)−3(2E(r)−K(r))

for r = sin(α/2). Since

2E(r) −K(r) =
∫ π/2

0

1 − 2r2 sin2 θ√
1 − r2 sin2 θ

dθ,

it follows that 2E(r) − K(r) > 0 for 0 < r � 1/
√

2. Consequently, µ(sin(α/2))
is d-decreasing and d-convex as a function of α, 0 < α < π/2. For 0 < α < π/2,
the described doubly connected domain is known as Mori’s extremal domain.
See [Mo] and [LV, p. 59].
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Inverse functions of Grötzsch’s and Teichmüller’s modulus functions 805

[N] Z. Nehari, Conformal mapping, McGraw-Hill, NewYork, 1952.

[QV] S.-L. Qiu and M. Vuorinen, Infinite products and normalized quotients
of hypergeometric functions, SIAM J. Math. Anal. 30 (1999), 1057–
1075.

[T] O. Teichmüller, Untersuchungen über konforme und quasikonforme
Abbildung, Deutsche Mathematik 3 (1938), 621–678. (in pp. 205–
262 in “Gesammelte Abhandlungen”, edited by L.A. Ahlfors and
F. W.Gehring; Springer-Verlag, Berlin-Heidelberg-New York, 1982)

[WW] E. T. Whittaker and G. N. Watson, Modern analysis, 4th edition
(1927), Cambridge Univ. Press, reprinted (1992), Cambridge Univ.
Press, Cambridge-NewYork-Oakleigh.

[Y1] S. Yamashita, The derivative of a holomorphic function and estimates
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