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Spectrum perturbations of operators on tensor
products of Hilbert spaces

By

M. I. Gil’∗

Abstract

We investigate the spectrum perturbations and spectrum localiza-
tion of a class of operators on a tensor product of separable Hilbert
spaces. In particular, estimates for the spectral radius and norm of
the resolvent are derived. Applications to partial integral and integro-
differential operators are also discussed.

1. Introduction and notation

Operators on tensor products of Hilbert spaces arise in various problems
of pure and applied mathematics, cf. [4], [11], and references therein. In many
applications, for example, in numerical mathematics and stability analysis,
bounds for the spectrum of operators on tensor products are very important.
But for the best of our knowledge, the bounds are not investigated. In the
present paper we consider a class of linear operators on tensor products of
Hilbert spaces. The spectrum perturbations and localization are investigated.
In particular, we suggest estimates for the spectral radius and the norm of the
resolvent. Applications to partial integral operators and integro-differential
operators are also discussed.

A few words about the contents. In Section 2, estimates for quasinilpotent
operators are derived. They are needed to prove the main result of the paper-
Theorem 3.3 on an estimate for the resolvent. By virtue of Theorem 3.3, in
Section 4, we establish bounds for the spectrum. Section 5 deals with partial
integral operators. Section 6 is devoted to integro-differential operators.

Let E1 and E2 be separable Hilbert spaces with the scalar products 〈·, ·〉1
and 〈·, ·〉2, respectively and norms ‖ · ‖j =

√〈·, ·〉j (j = 1, 2). Let H = E1 ⊗E2

be a tensor product of E1 and E2. This means that H is the collection of all
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720 M. I. Gil’

formal sums of the form

(1.1) u =
∑

j

yj ⊗ hj (yj ∈ E1, hj ∈ E2)

with the understanding that

λ(y ⊗ h) = (λy) ⊗ h = y ⊗ (λh), (y + y1) ⊗ h = y ⊗ h+ y1 ⊗ h,

y ⊗ (h+ h1) = y ⊗ h+ y ⊗ h1.

Here y, y1 ∈ E1 ;h, h1 ∈ E2, and λ is a number. The scalar product in H is
defined as

〈y ⊗ h, y1 ⊗ h1〉H = 〈y, y1〉1 〈h, h1〉2 (y, y1 ∈ E1, h, h1 ∈ E2)

and the cross norm ‖ · ‖H =
√〈·, ·〉H . From the theory of tensor products we

only need the basic definition and elementary facts which can be found in [4].
For a linear operator A, σ(A) is the spectrum, Dom (A) is the domain,

rs(A) denotes the spectral radius, α (A) = supRe σ(A) and

ρ(A, λ) := inf
t∈σ(A)

|t− λ|

is the distance between σ(A) and a λ ∈ C.
A linear operator V is said to be quasinilpotent if σ(V ) = {0}. V is called

a Volterra operator, if it is quasinilpotent and compact. In addition, I = IH
and Ij mean the unit operator in H and Ej , respectively.

Let us consider the operator

(1.2) A = D + V1 ⊗ I2 + I1 ⊗ V2,

where D is a normal operator, V1 and V2 are Volterra operators in E1 and E2,
respectively. A wide classes of linear operators on tensor products of Hilbert
spaces can be represented as perturbations of operators of type (1.2).

Recall that a maximal resolution of the identity (m.r.i.) P̃ (t) (−∞ ≤ t ≤
∞) is a left continuous orthogonal resolution of the identity, such that any gap
P̃ (t0 + 0) − P̃ (t0) of P̃ (t) (if it exists) is one-dimensional, cf. the books by
Brodskii [3], Gohberg and Krein [9] and Gil’ [5, p. 69]. It is assumed that there
are m.r.i. Pj(t) (j = 1, 2) in Ej , such that

(1.3) Pj(t)VjPj(t) = VjPj(t) (−∞ ≤ t ≤ ∞)

and

(1.4) D =
∫ ∞

−∞

∫ ∞

−∞
w(t, s)dP (t, s),

where

(1.5) P (t, s) := P1(t) ⊗ P2(s) (t, s ∈ R)
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and w is a P -measurable scalar-valued function defined on R2. Below we will
check that

(1.6) VA := V1 ⊗ I2 + I1 ⊗ V2

is a quasinilpotent operator. In the sequel, P (t, s), D and VA will be called
the spectral measure, diagonal part and nilpotent part of A, respectively. In
addition, the equality

(1.7) A = D + VA

is said to be the triangular representation of A.

2. Powers of quasinilpotent operators

Everywhere below, ni(V ) denotes the nilpotency index of a nilpotent oper-
ator V , so that V ni(V ) = 0 �= V ni(V )−1; if V is quasinilpotent but not nilpotent
we write ni(V ) = ∞. Recall the following formula for the spectral radius of an
operator A, cf. [4]

rs(A) = lim
m→∞

m
√
‖Am‖.

Thus a quasinilpotent operator V satisfies the relation

lim
m→∞

m
√
‖V m‖ = 0.

Let W1,W2 be commuting operators in H. Then, clearly,

(2.1) (W1 +W2)n =
n∑

k=0

Ck
nW

k
1 W

n−k
2 .

Here and below Ck
n = n!/k!(n − k)! are the binomial coefficients. Let cjk :=

‖W k
j ‖ and

k
√
cjk → 0 (j = 1, 2; k = 1, 2, . . .).

So W1,W2 are quasinilpotent operators. Then W1 + W2 is a quasinilpotent
operator. Indeed, due to (2.1),

‖(W1 +W2)n‖ ≤ c3n :=
n∑

k=0

Ck
nc1kc2,n−k

since W1,W2 commute. Since, c1k, c2,k are coefficients of some entire functions
f1(z) and f2(z), and

n∑
k=0

c1kc2,n−k

are coefficients of the entire function f1(z)f2(z), taking into account that Ck
n ≤

2n (k ≤ n), we can assert that n
√
c3n → 0. So W1+W2 is really a quasinilpotent

operator.
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Recall that a norm ideal Yj (j = 1, 2) of compact operators acting in a Ej

is algebraically a two-sided ideal, which is complete in an auxiliary norm | · |Yj

for which |CB|Yj
and |BC|Yj

are both dominated by ‖C‖j |B|Yj
for a bounded

operator C in Ej and a B ∈ Yj , cf. [9]. Assume, in addition, that there are
positive constants θ(j)

k (k ∈ N), with

k

√
θ
(j)
k → 0,

for which, for an arbitrary Volterra operator Ṽ ∈ Yj

(2.2) ‖Ṽ k‖j ≤ θ
(j)
k |Ṽ |kYj

(k = 1, 2, . . . , ni(Ṽ ) − 1; j = 1, 2).

Below we will check that the Neumann-Schatten ideal has the property (2.2).
Let us suppose that

(2.3) Vj ∈ Yj (j = 1, 2)

and

(2.4) W1 = V1 ⊗ I2 and W2 = I1 ⊗ V2.

Then

‖W k
j ‖H = ‖V k

j ‖j ≤ θ
(j)
k |Vj |kYj

(k = 1, 2, . . . , ni(Vj) − 1; j = 1, 2).

Thus,

(2.5) ‖(W1 +W2)n‖H ≤
n1∑

k=n2

Ck
nθ

(1)
k θ

(2)
n−k|V1|kY1

|V2|n−k
Y2

,

where

(2.6) n1 = min{n, ni(V1) − 1}, n2 = max{0, n− ni(V2) + 1}.

Here we have (W1 +W2)n = 0 if n1 < n2. We thus have proved

Lemma 2.1. Let W1 and W2 be quasinilpotent and commuting opera-
tors. Then the operator W1 +W2 is quasinilpotent. Moreover, conditions (2.3)
and (2.4) imply inequality (2.5).

In particular, let

(2.7) Vj ∈ C̃2 (j = 1, 2),

where C̃2 = C2(Ej) is the ideal of Hilbert-Schmidt operators in Ej with the
Hilbert-Schmidt norm

N2(K) ≡ [Trace K∗K]1/2 (K ∈ C2).
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The asterisk means the adjoint operation. Due to Lemma 2.3.1 from [5], any
quasinilpotent operator Ṽ ∈ C2 in Ej satisfies the inequality

(2.8) ‖Ṽ k‖j ≤ Nk
2 (Ṽ )√
k!

(k = 1, 2, . . . , ni(Ṽ ) − 1).

Now Lemma 2.1 implies

Corollary 2.2. Under conditions, (2.4) and (2.7), we have

‖(W1 +W2)n‖H ≤
n1∑

k=n2

Ck
n

Nk
2 (V1)Nn−k

2 (V2)√
(n− k)!k!

.

Since, Ck
n ≤ 2n (k ≤ n), we have

‖(W1 +W2)n‖H ≤ 1√
n!

n∑
k=0

Ck
n

√
Ck

nN
k
2 (V1)Nn−k

2 (V2)

≤ 2n/2

√
n!

n∑
k=0

Ck
nN

k
2 (V1)Nn−k

2 (V2)

=
[
√

2(N2(V1) +N2(V2))]n√
n!

(V1, V2 ∈ C̃2).

(2.9)

Let now C̃p = Cp(Ej) be the Neumann-Schatten ideal in Ej with some p > 0.
That is,

Np(K) := [Trace (K∗K)p/2]1/p <∞ (K ∈ C̃p).

Recall that for an arbitrary natural r ≥ 1,

Np/r(Kr) ≤ Nr
p (K) (K ∈ C̃p),

(cf. [8, Section III.7]). According to this inequality and (2.8), for any quasinilpo-
tent operator V ∈ C̃2p(Ej) with a natural p > 1, we have

‖V mp‖j ≤ Nm
2 (V p)√
m!

≤ Npm
2p (V )√
m!

(m = 1, 2, . . .).

Hence, for any k = i+mp (i = 0, . . . , p− 1; m = 0, 1, 2, . . .), we have

‖V k‖j = ‖V i+pm‖j ≤ ‖V i‖jN
m
2 (V p)√
m!

≤ N i+pm
2p (V )√

m!
.

This inequality can be written as

(2.10) ‖V k‖j ≤ Nk
2p(V )√
[k/p]!

(V ∈ C̃2p; k = 1, 2, . . .),

where [x] means the integer part of a number x > 0.
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Corollary 2.3. Under the conditions (2.4) and

(2.11) Vj ∈ C̃2p (j = 1, 2; p = 1, 2, . . .)

we have

(2.12) ‖(W1 +W2)n‖H ≤
n∑

k=0

Ck
n

Nk
2p(V1)Nn−k

2p (V2)√
[k/p]![(n− k)/p]!

.

Under condition (2.11) we can also derive estimate similar to (2.9).

3. Estimates for resolvents

Simple calculations show that

(3.1) ‖A1 ⊗A2‖H = ‖A‖1‖A2‖2

for all bounded operators Aj acting in Ej (j = 1, 2). Again consider the
operator A defined by (1.2) under conditions (1.3), (1.4). Due to the triangular
representation (1.7) we have

(3.2) (A−λI)−1 = (D+VA −λI)−1 = (I+Qλ)−1(D−λI)−1 (λ �∈ σ(A)),

where
Qλ = (D − λI)−1VA.

According to (1.4),

(D − Iλ)−1 =
∫ ∞

−∞

∫ ∞

−∞
(w(t, s) − λ)−1dP (t, s) (λ �∈ σ(D)).

Or
(D − Iλ)−1 =

∫ ∞

−∞
dP1(t) ⊗ T2(t, λ) =

∫ ∞

−∞
T1(s, λ) ⊗ dP2(s),

where
T1(s, λ) =

∫ ∞

−∞
(w(t, s) − λ)−1dP1(t)

and
T2(t, λ) =

∫ ∞

−∞
(w(t, s) − λ)−1dP2(s).

Then Qλ = B1(λ) +B2(λ), where

B1(λ) := (D − λ)−1(V1 ⊗ I2) =
∫ ∞

−∞
T1(s, λ)V1 ⊗ dP2(s)

and
B2(λ) := (D − λ)−1(I1 ⊗ V2) =

∫ ∞

−∞
dP1(t) ⊗ T2(t, λ)V2.
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It can be directly checked that operators B1(λ) and B2(λ) commute and that

Bn
1 (λ) =

∫ ∞

−∞
(T1(s, λ)V1)n ⊗ dP2(s) (n = 1, 2, . . .).

Since Tj(s, λ) and Vj have the same m.r.i. Pj , due to Lemma 3.2.4 from [5]
Tj(s, λ)Vj are qausinilpotent operators. So

(3.3) ‖(Tj(s, λ)Vj)n‖j ≤ θ(j)
n |Vj |nYj

‖Tj(s, λ)‖n
j ≤ θ

(j)
n |Vj |nYj

ρn(D,λ)
(j = 1, 2).

Let {ek} be an orthogonal normal basis in E1 and {dk} an orthogonal normal
basis in E2. Vectors of the form

(3.4) h̃ =
s∑

j=1

s∑
k=1

ckjek ⊗ dj =
s∑

k=1

ek ⊗ vk

are dense in H. Here

vk =
s∑

k=1

ckjdj .

Now let w ∈ E2 be a generating vector. That is, for any h2 ∈ E2 and ε > 0,
there are numbers ck ∈ C and

−∞ < t0 < t1 < · · · < ts <∞,

such that∥∥∥∥∥h2 −
s∑

k=1

ck∆P2(tk)w

∥∥∥∥∥
2

≤ ε (∆P2(tk) = P2(tk) − P2(tk−1))

(cf. [1, Section VI.83]). Thus, there are coefficients bkj , j = 1, . . . , l, such that

vk =
l∑

j=1

bkj∆P2(tj)w + αk (αk ∈ E2)

with ‖αk‖2 ≤ ε‖vk‖2. So

s∑
k=1

ek ⊗ vk =
s∑

k=1

l∑
j=1

ek ⊗ bkj∆P2(tj)w +
s∑

k=1

ek ⊗ αk.

But ∥∥∥∥∥
s∑

k=1

ek ⊗ αk

∥∥∥∥∥
2

H

=
s∑

k=1

‖αk‖2
2 ≤ ε2

s∑
k=1

‖vk‖2
2.

Thus vectors of the form

(3.5) h0 =
s∑

k=1

l∑
j=1

ek ⊗ bkj∆P2(tj)w
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are dense in H. Furthermore, due to (3.3),

‖Bn
1 (λ)h0‖2

H

=
s∑

k=1

l∑
j=1

|bkj |2
∫ ∞

−∞
‖(T1(s, λ)V1)nek‖2

1d〈P2(s)∆P2(tj)w,∆P2(tj)w〉2

≤
s∑

k=1

l∑
j=1

|bkj |2
(θ(1)

n |V1|nY1
)2

ρ2n(D,λ)

∫ ∞

−∞
d〈P2(s)∆P2(tj)w,∆P2(tj)w〉2

=
(θ(1)

n |V1|nY1
)2

ρ2n(D,λ)

s∑
k=1

l∑
j=1

|bkj |2‖∆P2(tj)w‖2
2.

But according to (3.5)

‖h0‖2
H =

s∑
k=1

l∑
j=1

|bkj |2‖∆P2(tj)w‖2
2.

Thus

‖Bn
1 (λ)h0‖H ≤ θ

(1)
1n |V1|nY1

ρn(D,λ)
‖h0‖H .

Since vectors of the form (3.5) are dense in H, we have

‖Bn
1 (λ)‖H ≤ θ

(1)
1n |V1|nY1

ρn(D,λ)
.

Similarly,

‖Bn
2 (λ)‖H ≤ θ

(2)
n |V2|nY2

ρn(D,λ)
.

Now (2.1) implies

(3.6) ‖(B1(λ) +B2(λ))n‖H = ‖Qn
λ‖H ≤ bn(A, Y )

ρn(D,λ)
,

where

(3.7) bn(A, Y ) :=
n∑

k=0

Ck
nθ

(1)
n−kθ

(2)
k |V1|n−k

Y1
|V2|kY2

.

Relations (3.2) imply

‖(A− λI)−1‖H ≤ ‖(D − λI)−1‖H

∞∑
n=0

‖Qn
λ‖H .

According to (3.6) we get
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Lemma 3.1. Under conditions (1.2) through (1.4) and (2.3), the
inequality

‖(A− λI)−1‖ ≤
∞∑

n=0

bn(A, Y )
ρn+1(D,λ)

is valid for any regular point λ of D.

Lemma 3.2. Under conditions (1.2) through (1.4) and (2.3) the rela-
tion σ(D) = σ(A) is true.

Proof. Let λ be a regular point of D. Then due to the previous lemma λ
is a regular point of A.

Now we are going to prove that from µ ∈ σ(D) it follows that µ ∈ σ(A).
First, let µ be the eigenvalue of D and h the corresponding eigenvector.

Then according to (1.4), P (t, s) has a jump ∆P corresponding the eigenspace,
such that D∆P = µ∆P and ∆Ph = h. In addition, VA can have the zero
eigenvalues, only, since it is quasinilpotent. So ∆PVA∆P = 0. We thus, have
Dh = µh, 〈VAh, VAh〉H = 0 and due to (1.7),

〈(A− µ)h, (A− µ)h〉H = 〈(D + VA − µ)h, (D + VA − µ)h〉H
= 〈VAh, VAh〉H = 0.

Therefore µ ∈ σ(A).
Let now µ ∈ σ(D) be a point of the continuous spectrum. Then according

to (1.4) µ = w(t1, s1) for some real t1, s1. For a δ > 0, put

∆̃P = P (t1 + δ, s1 + δ) − P (t1, s1).

Then

(D − µ)∆̃Pv =
∫ s1+δ

s1

∫ t1+δ

t1

w(t, s)dP (t, s).

Since P is continuous in a neighborhood of point (t1, s1), for any ε > 0, there
is a δ, such that

‖(D − µ)∆̃P‖H ≤ ε and ‖∆̃PVA∆̃P‖H ≤ ε,

since VA is quasinilpotent. Hence,

|〈(D − µ)∆̃Pv, VA∆̃Pv〉H | = |〈(D − µ)∆̃Pv, ∆̃PVA∆̃Pv〉H |
≤ ε2‖v‖2

H (v ∈ H)

and according to (1.7),

〈(A− µ)∆̃Pv, (A− µ)∆̃Pv〉H = 〈(D + VA − µ)∆̃Pv, (D + VA − µ)∆̃Pv〉H
≤ 2ε2 + 〈(D − µ)∆̃Pv, (D − µ)∆̃Pv〉H

+ (〈VA∆̃Pv, VA∆̃Pv〉H ≤ 4ε2.
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Take v ∈ ∆̃PH. Then ‖(A−µ)v‖2
H ≤ 4ε2‖v‖2

H . Since ε is arbirary, this proves
that µ ∈ σ(A). Since we also have proved that any regular point of D is a
regular point of A, the proof of the lemma is complete.

Lemmas 3.1 and 3.2 imply the main result of the paper.

Theorem 3.3. Under conditions (1.2) through (1.4) and (2.3), the
inequality

(3.8) ‖(A− λI)−1‖ ≤
∞∑

n=0

bn(A, Y )
ρn+1(A, λ)

is valid for any regular point λ of A.

If A = D is normal, that is, V1 = V2 = 0, then we have the exact relation

‖(A− λI)−1‖H =
1

ρ(A, λ)
(λ �∈ σ(A)).

Note that according to (2.5), we can replace bn(A, Y ) in (3.8) by

b̃n(Y ) :=
n1∑

k=n2

Ck
nθ

(1)
n−kθ

(2)
k |V1|n−k

Y1
|V2|kY2

,

where n1, n2 are defined by (2.6).
Theorem 3.3 and Corollary 2.3 imply

Corollary 3.4. Under conditions (1.2) through (1.4) and (2.11), the
inequality

(3.9) ‖(A− λI)−1‖ ≤
∞∑

n=0

bn(A, C̃2p)
ρn+1(A, λ)

(λ �∈ σ(A))

is valid with

(3.10) bn(A, C̃2p) :=
n∑

k=0

Ck
nN

k
2p(V1)Nn−k

2p (V2)√
[(n− k)/p]![k/p]!

.

Note that according to (2.5), in (3.9) we can replace bn(A, C̃2p) by

b̃n(C̃2p) :=
n1∑

k=n2

Ck
nN

k
2p(V1)Nn−k

2p (V2)√
[(n− k)/p]![k/p]!

.

Moreover, if V1, V2 are Hilbert-Schmidt operators, due to (2.9) we have

(3.11) ‖(A− λI)−1‖ ≤
∞∑

n=0

[
√

2(N2(V1) +N2(V2))]n√
n!ρn+1(A, λ)

(λ �∈ σ(A)).
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By the Schwarz inequality
∞∑

n=0

bn√
n!xn

=
∞∑

n=0

(
√

2b)n

2n/2
√
n!xn

≤
[ ∞∑

n=0

2nb2n

n!x2n

]1/2 [ ∞∑
n=0

2−n

]1/2

=
√

2 exp
[
b2

x2

]
(b, x > 0).

This relation and (3.11) imply

(3.12)

‖(A−λI)−1‖ ≤
√

2
ρ(A, λ)

exp
[
2(N2(V1) +N2(V2))2

ρ2(A, λ)

]
(V1, V2 ∈ C̃2; λ �∈ σ(A)).

4. Spectrum of perturbed operators

Let us consider the perturbed operator B = A+Z, where operator A has
the form (1.2) and Z is a bounded operator in H with a “sufficiently small”
norm q := ‖Z‖. So

(4.1) B = D + V1 ⊗ I2 + I1 ⊗ V2 + Z.

Denote

(4.2) ψ(A, x) :=
∞∑

k=0

bk(A, Y )
xk+1

(x > 0),

where bk(A, Y ) are defined by (3.7).

Theorem 4.1. Under conditions (1.2) through (1.4) and (2.3), let

qψ(A, ρ(D,λ)) < 1.

Then λ is a regular point of B. Moreover,

‖Rλ(B)‖H ≤ ψ(A, ρ(A, λ))
1 − qψ(A, ρ(D,λ))

.

Proof. It is simple to check that under conditions q‖Rλ(A)‖ < 1, λ is a
regular point of operator B = A+ Z and

‖Rλ(B)‖H ≤ ‖Rλ(A)‖H

1 − q‖Rλ(A)‖H
.

Now the result is due to Theorem 3.3.

Furthermore, under (2.11), set

ψp(A, x) :=
∞∑

k=0

bk(A, C̃2p)
xk+1

.

Recall that bk(A, C̃2p) are defined by (3.10). Now Theorem 4.1 and Corollary
3.4 imply
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Corollary 4.2. Under conditions (1.2) through (1.4) and (2.11), let

qψp(A, ρ(D,λ)) < 1.

Then λ is a regular point of B. Moreover,

‖Rλ(B)‖ ≤ ψp(A, ρ(D,λ))
1 − qψp(A, ρ(D,λ))

.

Let A and B be arbitrary linear operators in H. The quantity

svA(B) := sup
µ∈σ(B)

inf
λ∈σ(A)

|µ− λ|

is said to be the spectral variation of a linear operator B with respect to a linear
operator A.

Theorem 4.3. Let conditions (1.2) through (1.4), (2.3) and (4.1) hold.
Then, svD(B) ≤ z(A, q), where z(A, q) is the extreme right-hand (nonnegative)
root of the equation

(4.3) 1 = qψ(A, x).

In particular, α(B) ≤ α(D) + z(A, q). If, in addition, D is bounded, then
rs(B) ≤ rs(D) + z(A, q).

Proof. This result follows from [5, Lemma 4.1.4] and Theorem 3.3 with
Lemma 3.2 taken into account.

If V1 = V2 = 0, then z(A, q) = q and svD(B) ≤ q.
To estimate z(A, q), let us consider the equation

(4.4)
∞∑

k=1

akz
k = 1,

where the coefficients ak are nonnegative and have the property

γ0 ≡ 2 max
k

k
√
ak <∞.

Due to Lemma 3.4 from [7], the unique nonnegative root z0 of equation (4.4)
satisfies the estimate

(4.5) z0 ≥ 1/γ0.

Hence it follows

(4.6) z(A, q) ≤ δ(A, q) := 2 max
k

k+1
√
qbk(A, Y ).

Now Theorem 4.1 implies
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Corollary 4.4. Let conditions (1.2) through (1.4), (2.3) and (4.1) hold.
Then svD(B) ≤ δ(A, q). In particular, α(B) ≤ α(D) + δ(A, q). If in addition,
D is bounded, then rs(B) ≤ rs(D) + δ(A, q).

Furthermore, due to Corollary 3.4, Theorem 4.1 and inequality (4.5) imply.

Corollary 4.5. Let conditions (1.2) through (1.4), (2.11) and (4.1)
hold. Let zp(A, q) be the extreme right-hand root of the equation

(4.7) 1 = qψp(A, x).

Then, svD(B) ≤ zp(A, q) ≤ δp(A, q), where

δp(A, q) := 2 max
k

k+1
√
qbk(A, C̃2p).

In particular, α(B) ≤ α(D) + zp(A, q) ≤ α(D) + δp(A, q). If in addition, D is
bounded, then

rs(B) ≤ rs(D) + zp(A, q) ≤ rs(D) + δp(A, q).

Let us assume that V1, V2 are Hilbert-Schmidt operators. According to
(3.12), z2(A, q) ≤ z̃2(A, q), where z̃2(A, q) is the extreme right-hand root of the
equation

(4.8) 1 = q
√

2x−1exp

[
2(N2(V1) +N2(V2))2

x2

]
.

Let us use the following

Lemma 4.6. The unique positive root z0 of the equation

(4.9) zez = a (a = const > 0)

satisfies the estimate

(4.10) z0 ≥ ln [1/2 +
√

1/4 + a].

If, in addition, the condition a ≥ e holds, then z0 ≥ ln a− ln ln a.

For the proof see [7, Lemma 4.3]. Equation (4.8) is equivalent to the
following one:

1 = 2q2x−2exp

[
4(N2(V1) +N2(V2))2

x2

]
.

Substituting

y =
4(N2(V1) +N2(V2))2

x2

we have equation (4.9). Now (4.10) gives us the inequality z̃2(A, q) ≤ δ̃(A, q),
where

(4.11) δ̃(A, q) :=
2(N2(V1) +N2(V2))

ln1/2

[
1
2

+

√
1
4

+
2(N2(V1) +N2(V2))2

q2

] .
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Now the previous Corollary yields.

Corollary 4.7. Let the conditions (1.2) through (1.4), (4.1) and V1, V2 ∈
C̃2 hold. Then, svD(B) ≤ δ̃2(A, q). In particular, α(B) ≤ α(D) + δ̃2(A, q). If
in addition, D is bounded, then rs(B) ≤ rs(D) + δ̃2(A, q).

5. Example 1. A partial integral operator

Let us consider in the complex space H ≡ L2([0, 1] × [0, 1]) the operator
B defined by

(Bu)(x, y) = a(x, y)u(x, y) +
∫ 1

0

K1(x, x1)u(x1, y)dx1

+
∫ 1

0

K2(y, y1)u(x, y1)dy1,
(5.1)

where K1,K2 are scalar Hilbert-Schmidt kernels, and a(x, y) is scalar bounded
measurable function defined on [0, 1]2. Such operators arose in various appli-
cations, (cf. [2], [10]). In the considered case E1 = E2 = L2[0, 1].

Rewrite B as B = A+ Z, where

(5.2)

(Au)(x, y) = a(x, y)u(x, y)+
∫ x

0

K1(x, x1)u(x1, y)dx1+
∫ y

0

K2(y, y1)u(x, y1)dy1

and

(Zu)(x, y) =
∫ 1

x

K1(x, x1)u(x1, y)dx1 +
∫ 1

y

K2(y, y1)u(x, y1)dy1.

In this case (1.2) holds with D defined by (Du)(x, y) = a(x, y)u(x, y) and

(5.3) (Vjv)(x) =
∫ x

0

Kj(x, x1)v(x1)dx1 (j = 1, 2; v ∈ L2[0, 1]).

So

(5.4) N2(Vj) ≡
[∫ 1

0

∫ x

0

|Kj(x, x1)|2dx1 dx

]1/2

<∞.

For 0 ≤ t ≤ 1, define P1(t) and P2(t) by

(5.5) (P1(t)u)(x) = (P2(t)u)(x) =

{
0 if t < x ≤ 1,
u(x) for 0 ≤ x < t if 0 ≤ x < t.

In addition, put Pj(t) = Ij for t > 1 and Pj(t) = 0 for t < 0; j = 1, 2. Clearly,

σ(D) = {z ∈ C : z = a(x, y), 0 ≤ x, y ≤ 1}.
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Then due to Corollary 4.7

σ(B) ⊂ {z ∈ C : |z − a(x, y)| ≤ z2(A, q) ≤ δ2(A, q), 0 ≤ x, y ≤ 1},

where q = ‖Z‖, z̃2(A, q) is the unique positive root of the equation (4.8) and
δ̃2(A, q) is defined by (4.11) with (5.4) taken into account. Simple calculations
show that

q ≤
[∫ 1

0

∫ 1

x

|K1(x, x1)|2dx1 dx

]1/2

+
[∫ 1

0

∫ 1

x

|K2(x, x1)|2dx1 dx

]1/2

.

In particular Corollary 4.7 gives us the inequality

(5.6) rs(B) ≤ max
x,y

|a(x, y)| + z̃2(A, q) ≤ max
x,y

|a(x, y)| + δ̃2(A, q)

and

α(B) ≤ max
x,y

Re a(x, y) + z̃2(A, q) ≤ max
x,y

Re a(x, y) + δ̃2(A, q).

An arbitrary linear operator A is said to be stable, if α(A) < 0.
Thus, the operator defined by (5.1) is stable, provided a(x, y)+δ̃2(A, q) < 0

for all x, y ∈ [0, 1].
Clearly, instead of (5.2), we can take

(Au)(x, y) = a(x, y)u+
∫ 1

x

K1(x, x1)u(x1, y)dx1 +
∫ 1

y

K2(y, y1)u(x, y1)dy1

and

(Zu)(x, y) =
∫ x

0

K1(x, x1)u(x1, y)dx1 +
∫ y

0

K2(y, y1)u(x, y1)dy1.

Similarly, we can consider operators of the type

(Bu)(x, y) = a(x, y)u+
∫ 1

0

K1(x, x1)u(x1, y)dx1 +
∫ 1

0

K2(y, y1)u(x, y1)dy1

+
∫ 1

0

∫ 1

0

K2(x, x1, y, y1)u(x1, y1)dy1 dx1.

Moreover, Theorem 4.3 allows us to investigate operators with unbounded
a(·, ·).

6. Example 2. An integro-differential operator

Let us consider in H ≡ L2([0, 1] × [0, 1]) the operator

(6.1) (Bu)(x, y) :=
∂2u(x, y)
∂y2

+
∫ 1

0

K1(x, x1)u(x1, y)dx1 (u ∈ Dom(B))
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with

Dom (B) =
{
u ∈ H :

∂2u

∂y2
∈ H; u(x, 0) = u(x, 1) = 0

}
.

Here K1 is a Hilbert-Schmidt kernel. We can write out B = A+ Z, where

(6.2) (Au)(x, y) =
∂2u(x, y)
∂y2

+
∫ x

0

K1(x, x1)u(x1, y)dx1 (u ∈ Dom(B))

and

(Zu)(x, y) =
∫ 1

x

K1(x, x1)u(x1, y)dx1.

In this case (1.2) holds with V1 defined by (5.3), V2 = 0 and

(Du)(x, y) =
∂2u(x, y)
∂y2

(u ∈ Dom (B)).

Take P1 as in (5.5) and

(P2(t)v)(y) = (P2(n)v))(y) =
n∑

k=1

sin (kπy)
∫ 1

0

v(y1)sin (kπy1)v(y1)dy1.

(n = 1, 2, . . .). Clearly, σ(D) = {−π2k2; k = 1, 2, . . .}. Then due to Corollary
4.7

σ(B) ⊂ {z ∈ C : |z + π2m2| ≤ z̃2(A, q) ≤ δ̃2(A, q), m = 1, 2, . . .},

where

q = ‖Z‖H ≤
[∫ 1

0

∫ 1

x

|K1(x, x1)|2dx1 dx

]1/2

,

z̃2(A, q) is the unique positive root of the equation (4.8) and δ̃2(A, q) is defined
by (4.11) with (5.4) taken into account. In particular,

α(B) ≤ −π2 + z̃2(A, q) ≤ −π2 + δ̃2(A, q).

Thus, B is stable, provided −π2 + δ̃2(A, q) < 0.
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