Spectrum perturbations of operators on tensor products of Hilbert spaces

By

M. I. GIL ${ }^{*}$

Abstract

We investigate the spectrum perturbations and spectrum localization of a class of operators on a tensor product of separable Hilbert spaces. In particular, estimates for the spectral radius and norm of the resolvent are derived. Applications to partial integral and integrodifferential operators are also discussed.

1. Introduction and notation

Operators on tensor products of Hilbert spaces arise in various problems of pure and applied mathematics, cf. [4], [11], and references therein. In many applications, for example, in numerical mathematics and stability analysis, bounds for the spectrum of operators on tensor products are very important. But for the best of our knowledge, the bounds are not investigated. In the present paper we consider a class of linear operators on tensor products of Hilbert spaces. The spectrum perturbations and localization are investigated. In particular, we suggest estimates for the spectral radius and the norm of the resolvent. Applications to partial integral operators and integro-differential operators are also discussed.

A few words about the contents. In Section 2, estimates for quasinilpotent operators are derived. They are needed to prove the main result of the paperTheorem 3.3 on an estimate for the resolvent. By virtue of Theorem 3.3, in Section 4, we establish bounds for the spectrum. Section 5 deals with partial integral operators. Section 6 is devoted to integro-differential operators.

Let E_{1} and E_{2} be separable Hilbert spaces with the scalar products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, respectively and norms $\|\cdot\|_{j}=\sqrt{\langle\cdot, \cdot\rangle_{j}}(j=1,2)$. Let $H=E_{1} \otimes E_{2}$ be a tensor product of E_{1} and E_{2}. This means that H is the collection of all

[^0]formal sums of the form
\[

$$
\begin{equation*}
u=\sum_{j} y_{j} \otimes h_{j} \quad\left(y_{j} \in E_{1}, h_{j} \in E_{2}\right) \tag{1.1}
\end{equation*}
$$

\]

with the understanding that

$$
\begin{gathered}
\lambda(y \otimes h)=(\lambda y) \otimes h=y \otimes(\lambda h),\left(y+y_{1}\right) \otimes h=y \otimes h+y_{1} \otimes h, \\
y \otimes\left(h+h_{1}\right)=y \otimes h+y \otimes h_{1} .
\end{gathered}
$$

Here $y, y_{1} \in E_{1} ; h, h_{1} \in E_{2}$, and λ is a number. The scalar product in H is defined as

$$
\left\langle y \otimes h, y_{1} \otimes h_{1}\right\rangle_{H}=\left\langle y, y_{1}\right\rangle_{1}\left\langle h, h_{1}\right\rangle_{2} \quad\left(y, y_{1} \in E_{1}, h, h_{1} \in E_{2}\right)
$$

and the cross norm $\|\cdot\|_{H}=\sqrt{\langle\cdot, \cdot\rangle_{H}}$. From the theory of tensor products we only need the basic definition and elementary facts which can be found in [4].

For a linear operator $A, \sigma(A)$ is the spectrum, $\operatorname{Dom}(A)$ is the domain, $r_{s}(A)$ denotes the spectral radius, $\alpha(A)=\sup \operatorname{Re} \sigma(A)$ and

$$
\rho(A, \lambda):=\inf _{t \in \sigma(A)}|t-\lambda|
$$

is the distance between $\sigma(A)$ and a $\lambda \in \mathbf{C}$.
A linear operator V is said to be quasinilpotent if $\sigma(V)=\{0\} . V$ is called a Volterra operator, if it is quasinilpotent and compact. In addition, $I=I_{H}$ and I_{j} mean the unit operator in H and E_{j}, respectively.

Let us consider the operator

$$
\begin{equation*}
A=D+V_{1} \otimes I_{2}+I_{1} \otimes V_{2} \tag{1.2}
\end{equation*}
$$

where D is a normal operator, V_{1} and V_{2} are Volterra operators in E_{1} and E_{2}, respectively. A wide classes of linear operators on tensor products of Hilbert spaces can be represented as perturbations of operators of type (1.2).

Recall that a maximal resolution of the identity (m.r.i.) $\tilde{P}(t)(-\infty \leq t \leq$ $\infty)$ is a left continuous orthogonal resolution of the identity, such that any gap $\tilde{P}\left(t_{0}+0\right)-\tilde{P}\left(t_{0}\right)$ of $\tilde{P}(t)$ (if it exists) is one-dimensional, cf. the books by Brodskii [3], Gohberg and Krein [9] and Gil' [5, p. 69]. It is assumed that there are m.r.i. $P_{j}(t)(j=1,2)$ in E_{j}, such that

$$
\begin{equation*}
P_{j}(t) V_{j} P_{j}(t)=V_{j} P_{j}(t) \quad(-\infty \leq t \leq \infty) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(t, s) d P(t, s) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
P(t, s):=P_{1}(t) \otimes P_{2}(s) \quad(t, s \in \mathbf{R}) \tag{1.5}
\end{equation*}
$$

and w is a P-measurable scalar-valued function defined on \mathbf{R}^{2}. Below we will check that

$$
\begin{equation*}
V_{A}:=V_{1} \otimes I_{2}+I_{1} \otimes V_{2} \tag{1.6}
\end{equation*}
$$

is a quasinilpotent operator. In the sequel, $P(t, s), D$ and V_{A} will be called the spectral measure, diagonal part and nilpotent part of A, respectively. In addition, the equality

$$
\begin{equation*}
A=D+V_{A} \tag{1.7}
\end{equation*}
$$

is said to be the triangular representation of A.

2. Powers of quasinilpotent operators

Everywhere below, ni(V) denotes the nilpotency index of a nilpotent operator V, so that $V^{n i(V)}=0 \neq V^{n i(V)-1}$; if V is quasinilpotent but not nilpotent we write $n i(V)=\infty$. Recall the following formula for the spectral radius of an operator A, cf. [4]

$$
r_{s}(A)=\lim _{m \rightarrow \infty} \sqrt[m]{\left\|A^{m}\right\|}
$$

Thus a quasinilpotent operator V satisfies the relation

$$
\lim _{m \rightarrow \infty} \sqrt[m]{\left\|V^{m}\right\|}=0
$$

Let W_{1}, W_{2} be commuting operators in H. Then, clearly,

$$
\begin{equation*}
\left(W_{1}+W_{2}\right)^{n}=\sum_{k=0}^{n} C_{n}^{k} W_{1}^{k} W_{2}^{n-k} \tag{2.1}
\end{equation*}
$$

Here and below $C_{n}^{k}=n!/ k!(n-k)$! are the binomial coefficients. Let $c_{j k}:=$ $\left\|W_{j}^{k}\right\|$ and

$$
\sqrt[k]{c_{j k}} \rightarrow 0 \quad(j=1,2 ; k=1,2, \ldots)
$$

So W_{1}, W_{2} are quasinilpotent operators. Then $W_{1}+W_{2}$ is a quasinilpotent operator. Indeed, due to (2.1),

$$
\left\|\left(W_{1}+W_{2}\right)^{n}\right\| \leq c_{3 n}:=\sum_{k=0}^{n} C_{n}^{k} c_{1 k} c_{2, n-k}
$$

since W_{1}, W_{2} commute. Since, $c_{1 k}, c_{2, k}$ are coefficients of some entire functions $f_{1}(z)$ and $f_{2}(z)$, and

$$
\sum_{k=0}^{n} c_{1 k} c_{2, n-k}
$$

are coefficients of the entire function $f_{1}(z) f_{2}(z)$, taking into account that $C_{n}^{k} \leq$ $2^{n}(k \leq n)$, we can assert that $\sqrt[n]{c_{3 n}} \rightarrow 0$. So $W_{1}+W_{2}$ is really a quasinilpotent operator.

Recall that a norm ideal $Y_{j}(j=1,2)$ of compact operators acting in a E_{j} is algebraically a two-sided ideal, which is complete in an auxiliary norm $|\cdot|_{Y_{j}}$ for which $|C B|_{Y_{j}}$ and $|B C|_{Y_{j}}$ are both dominated by $\|C\|_{j}|B|_{Y_{j}}$ for a bounded operator C in E_{j} and a $B \in Y_{j}$, cf. [9]. Assume, in addition, that there are positive constants $\theta_{k}^{(j)}(k \in \mathbf{N})$, with

$$
\sqrt[k]{\theta_{k}^{(j)}} \rightarrow 0
$$

for which, for an arbitrary Volterra operator $\tilde{V} \in Y_{j}$

$$
\begin{equation*}
\left\|\tilde{V}^{k}\right\|_{j} \leq \theta_{k}^{(j)}|\tilde{V}|_{Y_{j}}^{k} \quad(k=1,2, \ldots, n i(\tilde{V})-1 ; j=1,2) \tag{2.2}
\end{equation*}
$$

Below we will check that the Neumann-Schatten ideal has the property (2.2). Let us suppose that

$$
\begin{equation*}
V_{j} \in Y_{j} \quad(j=1,2) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{1}=V_{1} \otimes I_{2} \quad \text { and } \quad W_{2}=I_{1} \otimes V_{2} \tag{2.4}
\end{equation*}
$$

Then

$$
\left\|W_{j}^{k}\right\|_{H}=\left\|V_{j}^{k}\right\|_{j} \leq \theta_{k}^{(j)}\left|V_{j}\right|_{Y_{j}}^{k} \quad\left(k=1,2, \ldots, n i\left(V_{j}\right)-1 ; j=1,2\right)
$$

Thus,

$$
\begin{equation*}
\left\|\left(W_{1}+W_{2}\right)^{n}\right\|_{H} \leq \sum_{k=n_{2}}^{n_{1}} C_{n}^{k} \theta_{k}^{(1)} \theta_{n-k}^{(2)}\left|V_{1}\right|_{Y_{1}}^{k}\left|V_{2}\right|_{Y_{2}}^{n-k} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{1}=\min \left\{n, n i\left(V_{1}\right)-1\right\}, n_{2}=\max \left\{0, n-n i\left(V_{2}\right)+1\right\} . \tag{2.6}
\end{equation*}
$$

Here we have $\left(W_{1}+W_{2}\right)^{n}=0$ if $n_{1}<n_{2}$. We thus have proved
Lemma 2.1. Let W_{1} and W_{2} be quasinilpotent and commuting operators. Then the operator $W_{1}+W_{2}$ is quasinilpotent. Moreover, conditions (2.3) and (2.4) imply inequality (2.5).

In particular, let

$$
\begin{equation*}
V_{j} \in \tilde{C}_{2} \quad(j=1,2) \tag{2.7}
\end{equation*}
$$

where $\tilde{C}_{2}=C_{2}\left(E_{j}\right)$ is the ideal of Hilbert-Schmidt operators in E_{j} with the Hilbert-Schmidt norm

$$
N_{2}(K) \equiv\left[\text { Trace } K^{*} K\right]^{1 / 2} \quad\left(K \in C_{2}\right)
$$

The asterisk means the adjoint operation. Due to Lemma 2.3.1 from [5], any quasinilpotent operator $\tilde{V} \in C_{2}$ in E_{j} satisfies the inequality

$$
\begin{equation*}
\left\|\tilde{V}^{k}\right\|_{j} \leq \frac{N_{2}^{k}(\tilde{V})}{\sqrt{k!}} \quad(k=1,2, \ldots, n i(\tilde{V})-1) \tag{2.8}
\end{equation*}
$$

Now Lemma 2.1 implies
Corollary 2.2. Under conditions, (2.4) and (2.7), we have

$$
\left\|\left(W_{1}+W_{2}\right)^{n}\right\|_{H} \leq \sum_{k=n_{2}}^{n_{1}} C_{n}^{k} \frac{N_{2}^{k}\left(V_{1}\right) N_{2}^{n-k}\left(V_{2}\right)}{\sqrt{(n-k)!k!}} .
$$

Since, $C_{n}^{k} \leq 2^{n}(k \leq n)$, we have

$$
\begin{align*}
\left\|\left(W_{1}+W_{2}\right)^{n}\right\|_{H} & \leq \frac{1}{\sqrt{n!}} \sum_{k=0}^{n} C_{n}^{k} \sqrt{C_{n}^{k}} N_{2}^{k}\left(V_{1}\right) N_{2}^{n-k}\left(V_{2}\right) \\
& \leq \frac{2^{n / 2}}{\sqrt{n!}} \sum_{k=0}^{n} C_{n}^{k} N_{2}^{k}\left(V_{1}\right) N_{2}^{n-k}\left(V_{2}\right) \tag{2.9}\\
& =\frac{\left[\sqrt{2}\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)\right]^{n}}{\sqrt{n!}} \quad\left(V_{1}, V_{2} \in \tilde{C}_{2}\right) .
\end{align*}
$$

Let now $\tilde{C}_{p}=C_{p}\left(E_{j}\right)$ be the Neumann-Schatten ideal in E_{j} with some $p>0$.
That is,

$$
N_{p}(K):=\left[\text { Trace }\left(K^{*} K\right)^{p / 2}\right]^{1 / p}<\infty \quad\left(K \in \tilde{C}_{p}\right)
$$

Recall that for an arbitrary natural $r \geq 1$,

$$
N_{p / r}\left(K^{r}\right) \leq N_{p}^{r}(K) \quad\left(K \in \tilde{C}_{p}\right)
$$

(cf. [8, Section III.7]). According to this inequality and (2.8), for any quasinilpotent operator $V \in \tilde{C}_{2 p}\left(E_{j}\right)$ with a natural $p>1$, we have

$$
\left\|V^{m p}\right\|_{j} \leq \frac{N_{2}^{m}\left(V^{p}\right)}{\sqrt{m!}} \leq \frac{N_{2 p}^{p m}(V)}{\sqrt{m!}} \quad(m=1,2, \ldots)
$$

Hence, for any $k=i+m p(i=0, \ldots, p-1 ; m=0,1,2, \ldots)$, we have

$$
\left\|V^{k}\right\|_{j}=\left\|V^{i+p m}\right\|_{j} \leq \frac{\left\|V^{i}\right\|_{j} N_{2}^{m}\left(V^{p}\right)}{\sqrt{m!}} \leq \frac{N_{2 p}^{i+p m}(V)}{\sqrt{m!}}
$$

This inequality can be written as

$$
\begin{equation*}
\left\|V^{k}\right\|_{j} \leq \frac{N_{2 p}^{k}(V)}{\sqrt{[k / p]!}} \quad\left(V \in \tilde{C}_{2 p} ; k=1,2, \ldots\right) \tag{2.10}
\end{equation*}
$$

where $[x]$ means the integer part of a number $x>0$.

Corollary 2.3. Under the conditions (2.4) and

$$
\begin{equation*}
V_{j} \in \tilde{C}_{2 p} \quad(j=1,2 ; p=1,2, \ldots) \tag{2.11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\left(W_{1}+W_{2}\right)^{n}\right\|_{H} \leq \sum_{k=0}^{n} C_{n}^{k} \frac{N_{2 p}^{k}\left(V_{1}\right) N_{2 p}^{n-k}\left(V_{2}\right)}{\sqrt{[k / p]![[(n-k) / p]!}} \tag{2.12}
\end{equation*}
$$

Under condition (2.11) we can also derive estimate similar to (2.9).

3. Estimates for resolvents

Simple calculations show that

$$
\begin{equation*}
\left\|A_{1} \otimes A_{2}\right\|_{H}=\|A\|_{1}\left\|A_{2}\right\|_{2} \tag{3.1}
\end{equation*}
$$

for all bounded operators A_{j} acting in $E_{j}(j=1,2)$. Again consider the operator A defined by (1.2) under conditions (1.3), (1.4). Due to the triangular representation (1.7) we have

$$
\begin{equation*}
(A-\lambda I)^{-1}=\left(D+V_{A}-\lambda I\right)^{-1}=\left(I+Q_{\lambda}\right)^{-1}(D-\lambda I)^{-1} \quad(\lambda \notin \sigma(A)), \tag{3.2}
\end{equation*}
$$

where

$$
Q_{\lambda}=(D-\lambda I)^{-1} V_{A} .
$$

According to (1.4),

$$
(D-I \lambda)^{-1}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(w(t, s)-\lambda)^{-1} d P(t, s) \quad(\lambda \notin \sigma(D))
$$

Or

$$
(D-I \lambda)^{-1}=\int_{-\infty}^{\infty} d P_{1}(t) \otimes T_{2}(t, \lambda)=\int_{-\infty}^{\infty} T_{1}(s, \lambda) \otimes d P_{2}(s),
$$

where

$$
T_{1}(s, \lambda)=\int_{-\infty}^{\infty}(w(t, s)-\lambda)^{-1} d P_{1}(t)
$$

and

$$
T_{2}(t, \lambda)=\int_{-\infty}^{\infty}(w(t, s)-\lambda)^{-1} d P_{2}(s)
$$

Then $Q_{\lambda}=B_{1}(\lambda)+B_{2}(\lambda)$, where

$$
B_{1}(\lambda):=(D-\lambda)^{-1}\left(V_{1} \otimes I_{2}\right)=\int_{-\infty}^{\infty} T_{1}(s, \lambda) V_{1} \otimes d P_{2}(s)
$$

and

$$
B_{2}(\lambda):=(D-\lambda)^{-1}\left(I_{1} \otimes V_{2}\right)=\int_{-\infty}^{\infty} d P_{1}(t) \otimes T_{2}(t, \lambda) V_{2}
$$

It can be directly checked that operators $B_{1}(\lambda)$ and $B_{2}(\lambda)$ commute and that

$$
B_{1}^{n}(\lambda)=\int_{-\infty}^{\infty}\left(T_{1}(s, \lambda) V_{1}\right)^{n} \otimes d P_{2}(s) \quad(n=1,2, \ldots)
$$

Since $T_{j}(s, \lambda)$ and V_{j} have the same m.r.i. P_{j}, due to Lemma 3.2.4 from [5] $T_{j}(s, \lambda) V_{j}$ are qausinilpotent operators. So

$$
\begin{equation*}
\left\|\left(T_{j}(s, \lambda) V_{j}\right)^{n}\right\|_{j} \leq \theta_{n}^{(j)}\left|V_{j}\right|_{Y_{j}}^{n}\left\|T_{j}(s, \lambda)\right\|_{j}^{n} \leq \frac{\theta_{n}^{(j)}\left|V_{j}\right|_{Y_{j}}^{n}}{\rho^{n}(D, \lambda)} \quad(j=1,2) \tag{3.3}
\end{equation*}
$$

Let $\left\{e_{k}\right\}$ be an orthogonal normal basis in E_{1} and $\left\{d_{k}\right\}$ an orthogonal normal basis in E_{2}. Vectors of the form

$$
\begin{equation*}
\tilde{h}=\sum_{j=1}^{s} \sum_{k=1}^{s} c_{k j} e_{k} \otimes d_{j}=\sum_{k=1}^{s} e_{k} \otimes v_{k} \tag{3.4}
\end{equation*}
$$

are dense in H. Here

$$
v_{k}=\sum_{k=1}^{s} c_{k j} d_{j} .
$$

Now let $w \in E_{2}$ be a generating vector. That is, for any $h_{2} \in E_{2}$ and $\epsilon>0$, there are numbers $c_{k} \in \mathbf{C}$ and

$$
-\infty<t_{0}<t_{1}<\cdots<t_{s}<\infty
$$

such that

$$
\left\|h_{2}-\sum_{k=1}^{s} c_{k} \Delta P_{2}\left(t_{k}\right) w\right\|_{2} \leq \epsilon\left(\Delta P_{2}\left(t_{k}\right)=P_{2}\left(t_{k}\right)-P_{2}\left(t_{k-1}\right)\right)
$$

(cf. [1, Section VI.83]). Thus, there are coefficients $b_{k j}, j=1, \ldots, l$, such that

$$
v_{k}=\sum_{j=1}^{l} b_{k j} \Delta P_{2}\left(t_{j}\right) w+\alpha_{k} \quad\left(\alpha_{k} \in E_{2}\right)
$$

with $\left\|\alpha_{k}\right\|_{2} \leq \epsilon\left\|v_{k}\right\|_{2}$. So

$$
\sum_{k=1}^{s} e_{k} \otimes v_{k}=\sum_{k=1}^{s} \sum_{j=1}^{l} e_{k} \otimes b_{k j} \Delta P_{2}\left(t_{j}\right) w+\sum_{k=1}^{s} e_{k} \otimes \alpha_{k}
$$

But

$$
\left\|\sum_{k=1}^{s} e_{k} \otimes \alpha_{k}\right\|_{H}^{2}=\sum_{k=1}^{s}\left\|\alpha_{k}\right\|_{2}^{2} \leq \epsilon^{2} \sum_{k=1}^{s}\left\|v_{k}\right\|_{2}^{2}
$$

Thus vectors of the form

$$
\begin{equation*}
h_{0}=\sum_{k=1}^{s} \sum_{j=1}^{l} e_{k} \otimes b_{k j} \Delta P_{2}\left(t_{j}\right) w \tag{3.5}
\end{equation*}
$$

are dense in H. Furthermore, due to (3.3),

$$
\begin{aligned}
& \left\|B_{1}^{n}(\lambda) h_{0}\right\|_{H}^{2} \\
& \quad=\sum_{k=1}^{s} \sum_{j=1}^{l}\left|b_{k j}\right|^{2} \int_{-\infty}^{\infty}\left\|\left(T_{1}(s, \lambda) V_{1}\right)^{n} e_{k}\right\|_{1}^{2} d\left\langle P_{2}(s) \Delta P_{2}\left(t_{j}\right) w, \Delta P_{2}\left(t_{j}\right) w\right\rangle_{2} \\
& \quad \leq \sum_{k=1}^{s} \sum_{j=1}^{l}\left|b_{k j}\right|^{2} \frac{\left(\theta_{n}^{(1)}\left|V_{1}\right|_{Y_{1}}^{n}\right)^{2}}{\rho^{2 n}(D, \lambda)} \int_{-\infty}^{\infty} d\left\langle P_{2}(s) \Delta P_{2}\left(t_{j}\right) w, \Delta P_{2}\left(t_{j}\right) w\right\rangle_{2} \\
& \quad=\frac{\left(\theta_{n}^{(1)}\left|V_{1}\right|_{Y_{1}}^{n}\right)^{2}}{\rho^{2 n}(D, \lambda)} \sum_{k=1}^{s} \sum_{j=1}^{l}\left|b_{k j}\right|^{2}\left\|\Delta P_{2}\left(t_{j}\right) w\right\|_{2}^{2} .
\end{aligned}
$$

But according to (3.5)

$$
\left\|h_{0}\right\|_{H}^{2}=\sum_{k=1}^{s} \sum_{j=1}^{l}\left|b_{k j}\right|^{2}\left\|\Delta P_{2}\left(t_{j}\right) w\right\|_{2}^{2}
$$

Thus

$$
\left\|B_{1}^{n}(\lambda) h_{0}\right\|_{H} \leq \frac{\theta_{1 n}^{(1)}\left|V_{1}\right| Y_{Y_{1}}^{n}}{\rho^{n}(D, \lambda)}\left\|h_{0}\right\|_{H} .
$$

Since vectors of the form (3.5) are dense in H, we have

$$
\left\|B_{1}^{n}(\lambda)\right\|_{H} \leq \frac{\theta_{1 n}^{(1)}\left|V_{1}\right|_{Y_{1}}^{n}}{\rho^{n}(D, \lambda)}
$$

Similarly,

$$
\left\|B_{2}^{n}(\lambda)\right\|_{H} \leq \frac{\theta_{n}^{(2)}\left|V_{2}\right|_{Y_{2}}^{n}}{\rho^{n}(D, \lambda)}
$$

Now (2.1) implies

$$
\begin{equation*}
\left\|\left(B_{1}(\lambda)+B_{2}(\lambda)\right)^{n}\right\|_{H}=\left\|Q_{\lambda}^{n}\right\|_{H} \leq \frac{b_{n}(A, Y)}{\rho^{n}(D, \lambda)} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n}(A, Y):=\sum_{k=0}^{n} C_{n}^{k} \theta_{n-k}^{(1)} \theta_{k}^{(2)}\left|V_{1}\right|_{Y_{1}}^{n-k}\left|V_{2}\right|_{Y_{2}}^{k} . \tag{3.7}
\end{equation*}
$$

Relations (3.2) imply

$$
\left\|(A-\lambda I)^{-1}\right\|_{H} \leq\left\|(D-\lambda I)^{-1}\right\|_{H} \sum_{n=0}^{\infty}\left\|Q_{\lambda}^{n}\right\|_{H} .
$$

According to (3.6) we get

Lemma 3.1. Under conditions (1.2) through (1.4) and (2.3), the inequality

$$
\left\|(A-\lambda I)^{-1}\right\| \leq \sum_{n=0}^{\infty} \frac{b_{n}(A, Y)}{\rho^{n+1}(D, \lambda)}
$$

is valid for any regular point λ of D.
Lemma 3.2. Under conditions (1.2) through (1.4) and (2.3) the relation $\sigma(D)=\sigma(A)$ is true.

Proof. Let λ be a regular point of D. Then due to the previous lemma λ is a regular point of A.

Now we are going to prove that from $\mu \in \sigma(D)$ it follows that $\mu \in \sigma(A)$.
First, let μ be the eigenvalue of D and h the corresponding eigenvector. Then according to (1.4), $P(t, s)$ has a jump ΔP corresponding the eigenspace, such that $D \Delta P=\mu \Delta P$ and $\Delta P h=h$. In addition, V_{A} can have the zero eigenvalues, only, since it is quasinilpotent. So $\Delta P V_{A} \Delta P=0$. We thus, have $D h=\mu h,\left\langle V_{A} h, V_{A} h\right\rangle_{H}=0$ and due to (1.7),

$$
\begin{aligned}
\langle(A-\mu) h,(A-\mu) h\rangle_{H} & =\left\langle\left(D+V_{A}-\mu\right) h,\left(D+V_{A}-\mu\right) h\right\rangle_{H} \\
& =\left\langle V_{A} h, V_{A} h\right\rangle_{H}=0 .
\end{aligned}
$$

Therefore $\mu \in \sigma(A)$.
Let now $\mu \in \sigma(D)$ be a point of the continuous spectrum. Then according to (1.4) $\mu=w\left(t_{1}, s_{1}\right)$ for some real t_{1}, s_{1}. For a $\delta>0$, put

$$
\tilde{\Delta} P=P\left(t_{1}+\delta, s_{1}+\delta\right)-P\left(t_{1}, s_{1}\right) .
$$

Then

$$
(D-\mu) \tilde{\Delta} P v=\int_{s_{1}}^{s_{1}+\delta} \int_{t_{1}}^{t_{1}+\delta} w(t, s) d P(t, s)
$$

Since P is continuous in a neighborhood of point $\left(t_{1}, s_{1}\right)$, for any $\epsilon>0$, there is a δ, such that

$$
\|(D-\mu) \tilde{\Delta} P\|_{H} \leq \epsilon \quad \text { and } \quad\left\|\tilde{\Delta} P V_{A} \tilde{\Delta} P\right\|_{H} \leq \epsilon
$$

since V_{A} is quasinilpotent. Hence,

$$
\begin{aligned}
\left|\left\langle(D-\mu) \tilde{\Delta} P v, V_{A} \tilde{\Delta} P v\right\rangle_{H}\right| & =\left|\left\langle(D-\mu) \tilde{\Delta} P v, \tilde{\Delta} P V_{A} \tilde{\Delta} P v\right\rangle_{H}\right| \\
& \leq \epsilon^{2}\|v\|_{H}^{2} \quad(v \in H)
\end{aligned}
$$

and according to (1.7),

$$
\begin{aligned}
\langle(A-\mu) \tilde{\Delta} P v,(A-\mu) \tilde{\Delta} P v\rangle_{H}= & \left\langle\left(D+V_{A}-\mu\right) \tilde{\Delta} P v,\left(D+V_{A}-\mu\right) \tilde{\Delta} P v\right\rangle_{H} \\
\leq & 2 \epsilon^{2}+\langle(D-\mu) \tilde{\Delta} P v,(D-\mu) \tilde{\Delta} P v\rangle_{H} \\
& +\left(\left\langle V_{A} \tilde{\Delta} P v, V_{A} \tilde{\Delta} P v\right\rangle_{H} \leq 4 \epsilon^{2} .\right.
\end{aligned}
$$

Take $v \in \tilde{\Delta} P H$. Then $\|(A-\mu) v\|_{H}^{2} \leq 4 \epsilon^{2}\|v\|_{H}^{2}$. Since ϵ is arbirary, this proves that $\mu \in \sigma(A)$. Since we also have proved that any regular point of D is a regular point of A, the proof of the lemma is complete.

Lemmas 3.1 and 3.2 imply the main result of the paper.
Theorem 3.3. Under conditions (1.2) through (1.4) and (2.3), the inequality

$$
\begin{equation*}
\left\|(A-\lambda I)^{-1}\right\| \leq \sum_{n=0}^{\infty} \frac{b_{n}(A, Y)}{\rho^{n+1}(A, \lambda)} \tag{3.8}
\end{equation*}
$$

is valid for any regular point λ of A.
If $A=D$ is normal, that is, $V_{1}=V_{2}=0$, then we have the exact relation

$$
\left\|(A-\lambda I)^{-1}\right\|_{H}=\frac{1}{\rho(A, \lambda)} \quad(\lambda \notin \sigma(A))
$$

Note that according to (2.5), we can replace $b_{n}(A, Y)$ in (3.8) by

$$
\tilde{b}_{n}(Y):=\sum_{k=n_{2}}^{n_{1}} C_{n}^{k} \theta_{n-k}^{(1)} \theta_{k}^{(2)}\left|V_{1}\right|_{Y_{1}}^{n-k}\left|V_{2}\right|_{Y_{2}}^{k},
$$

where n_{1}, n_{2} are defined by (2.6).
Theorem 3.3 and Corollary 2.3 imply
Corollary 3.4. Under conditions (1.2) through (1.4) and (2.11), the inequality

$$
\begin{equation*}
\left\|(A-\lambda I)^{-1}\right\| \leq \sum_{n=0}^{\infty} \frac{b_{n}\left(A, \tilde{C}_{2 p}\right)}{\rho^{n+1}(A, \lambda)} \quad(\lambda \notin \sigma(A)) \tag{3.9}
\end{equation*}
$$

is valid with

$$
\begin{equation*}
b_{n}\left(A, \tilde{C}_{2 p}\right):=\sum_{k=0}^{n} \frac{C_{n}^{k} N_{2 p}^{k}\left(V_{1}\right) N_{2 p}^{n-k}\left(V_{2}\right)}{\sqrt{[(n-k) / p]![k / p]!}} \tag{3.10}
\end{equation*}
$$

Note that according to (2.5), in (3.9) we can replace $b_{n}\left(A, \tilde{C}_{2 p}\right)$ by

$$
\tilde{b}_{n}\left(\tilde{C}_{2 p}\right):=\sum_{k=n_{2}}^{n_{1}} \frac{C_{n}^{k} N_{2 p}^{k}\left(V_{1}\right) N_{2 p}^{n-k}\left(V_{2}\right)}{\sqrt{[(n-k) / p]![k / p]!}} .
$$

Moreover, if V_{1}, V_{2} are Hilbert-Schmidt operators, due to (2.9) we have

$$
\begin{equation*}
\left\|(A-\lambda I)^{-1}\right\| \leq \sum_{n=0}^{\infty} \frac{\left[\sqrt{2}\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)\right]^{n}}{\sqrt{n!} \rho^{n+1}(A, \lambda)} \quad(\lambda \notin \sigma(A)) . \tag{3.11}
\end{equation*}
$$

By the Schwarz inequality

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{b^{n}}{\sqrt{n!} x^{n}} & =\sum_{n=0}^{\infty} \frac{(\sqrt{2} b)^{n}}{2^{n / 2} \sqrt{n!} x^{n}} \\
& \leq\left[\sum_{n=0}^{\infty} \frac{2^{n} b^{2 n}}{n!x^{2 n}}\right]^{1 / 2}\left[\sum_{n=0}^{\infty} 2^{-n}\right]^{1 / 2}=\sqrt{2} \exp \left[\frac{b^{2}}{x^{2}}\right] \quad(b, x>0)
\end{aligned}
$$

This relation and (3.11) imply
$\left\|(A-\lambda I)^{-1}\right\| \leq \frac{\sqrt{2}}{\rho(A, \lambda)} \exp \left[\frac{2\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)^{2}}{\rho^{2}(A, \lambda)}\right] \quad\left(V_{1}, V_{2} \in \tilde{C}_{2} ; \lambda \notin \sigma(A)\right)$.

4. Spectrum of perturbed operators

Let us consider the perturbed operator $B=A+Z$, where operator A has the form (1.2) and Z is a bounded operator in H with a "sufficiently small" norm $q:=\|Z\|$. So

$$
\begin{equation*}
B=D+V_{1} \otimes I_{2}+I_{1} \otimes V_{2}+Z \tag{4.1}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\psi(A, x):=\sum_{k=0}^{\infty} \frac{b_{k}(A, Y)}{x^{k+1}} \quad(x>0) \tag{4.2}
\end{equation*}
$$

where $b_{k}(A, Y)$ are defined by (3.7).
Theorem 4.1. Under conditions (1.2) through (1.4) and (2.3), let

$$
q \psi(A, \rho(D, \lambda))<1 .
$$

Then λ is a regular point of B. Moreover,

$$
\left\|R_{\lambda}(B)\right\|_{H} \leq \frac{\psi(A, \rho(A, \lambda))}{1-q \psi(A, \rho(D, \lambda))}
$$

Proof. It is simple to check that under conditions $q\left\|R_{\lambda}(A)\right\|<1, \lambda$ is a regular point of operator $B=A+Z$ and

$$
\left\|R_{\lambda}(B)\right\|_{H} \leq \frac{\left\|R_{\lambda}(A)\right\|_{H}}{1-q\left\|R_{\lambda}(A)\right\|_{H}}
$$

Now the result is due to Theorem 3.3.
Furthermore, under (2.11), set

$$
\psi_{p}(A, x):=\sum_{k=0}^{\infty} \frac{b_{k}\left(A, \tilde{C}_{2 p}\right)}{x^{k+1}} .
$$

Recall that $b_{k}\left(A, \tilde{C}_{2 p}\right)$ are defined by (3.10). Now Theorem 4.1 and Corollary 3.4 imply

Corollary 4.2. Under conditions (1.2) through (1.4) and (2.11), let

$$
q \psi_{p}(A, \rho(D, \lambda))<1
$$

Then λ is a regular point of B. Moreover,

$$
\left\|R_{\lambda}(B)\right\| \leq \frac{\psi_{p}(A, \rho(D, \lambda))}{1-q \psi_{p}(A, \rho(D, \lambda))}
$$

Let A and B be arbitrary linear operators in H. The quantity

$$
s v_{A}(B):=\sup _{\mu \in \sigma(B)} \inf _{\lambda \in \sigma(A)}|\mu-\lambda|
$$

is said to be the spectral variation of a linear operator B with respect to a linear operator A.

Theorem 4.3. Let conditions (1.2) through (1.4), (2.3) and (4.1) hold. Then, $s v_{D}(B) \leq z(A, q)$, where $z(A, q)$ is the extreme right-hand (nonnegative) root of the equation

$$
\begin{equation*}
1=q \psi(A, x) . \tag{4.3}
\end{equation*}
$$

In particular, $\alpha(B) \leq \alpha(D)+z(A, q)$. If, in addition, D is bounded, then $r_{s}(B) \leq r_{s}(D)+z(A, q)$.

Proof. This result follows from [5, Lemma 4.1.4] and Theorem 3.3 with Lemma 3.2 taken into account.

If $V_{1}=V_{2}=0$, then $z(A, q)=q$ and $s v_{D}(B) \leq q$.
To estimate $z(A, q)$, let us consider the equation

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} z^{k}=1 \tag{4.4}
\end{equation*}
$$

where the coefficients a_{k} are nonnegative and have the property

$$
\gamma_{0} \equiv 2 \max _{k} \sqrt[k]{a_{k}}<\infty
$$

Due to Lemma 3.4 from [7], the unique nonnegative root z_{0} of equation (4.4) satisfies the estimate

$$
\begin{equation*}
z_{0} \geq 1 / \gamma_{0} \tag{4.5}
\end{equation*}
$$

Hence it follows

$$
\begin{equation*}
z(A, q) \leq \delta(A, q):=2 \max _{k} \sqrt[k+1]{q b_{k}(A, Y)} \tag{4.6}
\end{equation*}
$$

Now Theorem 4.1 implies

Corollary 4.4. Let conditions (1.2) through (1.4), (2.3) and (4.1) hold. Then $\operatorname{sv}_{D}(B) \leq \delta(A, q)$. In particular, $\alpha(B) \leq \alpha(D)+\delta(A, q)$. If in addition, D is bounded, then $r_{s}(B) \leq r_{s}(D)+\delta(A, q)$.

Furthermore, due to Corollary 3.4, Theorem 4.1 and inequality (4.5) imply.
Corollary 4.5. Let conditions (1.2) through (1.4), (2.11) and (4.1) hold. Let $z_{p}(A, q)$ be the extreme right-hand root of the equation

$$
\begin{equation*}
1=q \psi_{p}(A, x) . \tag{4.7}
\end{equation*}
$$

Then, $s v_{D}(B) \leq z_{p}(A, q) \leq \delta_{p}(A, q)$, where

$$
\delta_{p}(A, q):=2 \max _{k} \sqrt[k+1]{q b_{k}\left(A, \tilde{C}_{2 p}\right)} .
$$

In particular, $\alpha(B) \leq \alpha(D)+z_{p}(A, q) \leq \alpha(D)+\delta_{p}(A, q)$. If in addition, D is bounded, then

$$
r_{s}(B) \leq r_{s}(D)+z_{p}(A, q) \leq r_{s}(D)+\delta_{p}(A, q)
$$

Let us assume that V_{1}, V_{2} are Hilbert-Schmidt operators. According to (3.12), $z_{2}(A, q) \leq \tilde{z}_{2}(A, q)$, where $\tilde{z}_{2}(A, q)$ is the extreme right-hand root of the equation

$$
\begin{equation*}
1=q \sqrt{2} x^{-1} \exp \left[\frac{2\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)^{2}}{x^{2}}\right] . \tag{4.8}
\end{equation*}
$$

Let us use the following
Lemma 4.6. The unique positive root z_{0} of the equation

$$
\begin{equation*}
z e^{z}=a \quad(a=\text { const }>0) \tag{4.9}
\end{equation*}
$$

satisfies the estimate

$$
\begin{equation*}
z_{0} \geq \ln [1 / 2+\sqrt{1 / 4+a}] . \tag{4.10}
\end{equation*}
$$

If, in addition, the condition $a \geq e$ holds, then $z_{0} \geq \ln a-\ln \ln a$.
For the proof see [7, Lemma 4.3]. Equation (4.8) is equivalent to the following one:

$$
1=2 q^{2} x^{-2} \exp \left[\frac{4\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)^{2}}{x^{2}}\right] .
$$

Substituting

$$
y=\frac{4\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)^{2}}{x^{2}}
$$

we have equation (4.9). Now (4.10) gives us the inequality $\tilde{z}_{2}(A, q) \leq \tilde{\delta}(A, q)$, where

$$
\begin{equation*}
\tilde{\delta}(A, q):=\frac{2\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)}{\ln ^{1 / 2}\left[\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{2\left(N_{2}\left(V_{1}\right)+N_{2}\left(V_{2}\right)\right)^{2}}{q^{2}}}\right]} . \tag{4.11}
\end{equation*}
$$

Now the previous Corollary yields.
Corollary 4.7. Let the conditions (1.2) through (1.4), (4.1) and $V_{1}, V_{2} \in$ \tilde{C}_{2} hold. Then, $s v_{D}(B) \leq \tilde{\delta}_{2}(A, q)$. In particular, $\alpha(B) \leq \alpha(D)+\tilde{\delta}_{2}(A, q)$. If in addition, D is bounded, then $r_{s}(B) \leq r_{s}(D)+\tilde{\delta}_{2}(A, q)$.

5. Example 1. A partial integral operator

Let us consider in the complex space $H \equiv L^{2}([0,1] \times[0,1])$ the operator B defined by

$$
\begin{align*}
(B u)(x, y)= & a(x, y) u(x, y)+\int_{0}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1} \\
& +\int_{0}^{1} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1}, \tag{5.1}
\end{align*}
$$

where K_{1}, K_{2} are scalar Hilbert-Schmidt kernels, and $a(x, y)$ is scalar bounded measurable function defined on $[0,1]^{2}$. Such operators arose in various applications, (cf. [2], [10]). In the considered case $E_{1}=E_{2}=L^{2}[0,1]$.

Rewrite B as $B=A+Z$, where
$(A u)(x, y)=a(x, y) u(x, y)+\int_{0}^{x} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1}+\int_{0}^{y} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1}$ and

$$
(Z u)(x, y)=\int_{x}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1}+\int_{y}^{1} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1}
$$

In this case (1.2) holds with D defined by $(D u)(x, y)=a(x, y) u(x, y)$ and

$$
\begin{equation*}
\left(V_{j} v\right)(x)=\int_{0}^{x} K_{j}\left(x, x_{1}\right) v\left(x_{1}\right) d x_{1} \quad\left(j=1,2 ; v \in L^{2}[0,1]\right) \tag{5.3}
\end{equation*}
$$

So

$$
\begin{equation*}
N_{2}\left(V_{j}\right) \equiv\left[\int_{0}^{1} \int_{0}^{x}\left|K_{j}\left(x, x_{1}\right)\right|^{2} d x_{1} d x\right]^{1 / 2}<\infty \tag{5.4}
\end{equation*}
$$

For $0 \leq t \leq 1$, define $P_{1}(t)$ and $P_{2}(t)$ by

$$
\left(P_{1}(t) u\right)(x)=\left(P_{2}(t) u\right)(x)= \begin{cases}0 & \text { if } t<x \leq 1 \tag{5.5}\\ u(x) \text { for } 0 \leq x<t & \text { if } 0 \leq x<t\end{cases}
$$

In addition, put $P_{j}(t)=I_{j}$ for $t>1$ and $P_{j}(t)=0$ for $t<0 ; j=1,2$. Clearly,

$$
\sigma(D)=\{z \in \mathbf{C}: z=a(x, y), 0 \leq x, y \leq 1\} .
$$

Then due to Corollary 4.7

$$
\sigma(B) \subset\left\{z \in \mathbf{C}:|z-a(x, y)| \leq z_{2}(A, q) \leq \delta_{2}(A, q), 0 \leq x, y \leq 1\right\},
$$

where $q=\|Z\|, \tilde{z}_{2}(A, q)$ is the unique positive root of the equation (4.8) and $\tilde{\delta}_{2}(A, q)$ is defined by (4.11) with (5.4) taken into account. Simple calculations show that

$$
q \leq\left[\int_{0}^{1} \int_{x}^{1}\left|K_{1}\left(x, x_{1}\right)\right|^{2} d x_{1} d x\right]^{1 / 2}+\left[\int_{0}^{1} \int_{x}^{1}\left|K_{2}\left(x, x_{1}\right)\right|^{2} d x_{1} d x\right]^{1 / 2}
$$

In particular Corollary 4.7 gives us the inequality

$$
\begin{equation*}
r_{s}(B) \leq \max _{x, y}|a(x, y)|+\tilde{z}_{2}(A, q) \leq \max _{x, y}|a(x, y)|+\tilde{\delta}_{2}(A, q) \tag{5.6}
\end{equation*}
$$

and

$$
\alpha(B) \leq \max _{x, y} \operatorname{Re} a(x, y)+\tilde{z}_{2}(A, q) \leq \max _{x, y} \operatorname{Re} a(x, y)+\tilde{\delta}_{2}(A, q)
$$

An arbitrary linear operator A is said to be stable, if $\alpha(A)<0$.
Thus, the operator defined by (5.1) is stable, provided $a(x, y)+\tilde{\delta}_{2}(A, q)<0$ for all $x, y \in[0,1]$.

Clearly, instead of (5.2), we can take

$$
(A u)(x, y)=a(x, y) u+\int_{x}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1}+\int_{y}^{1} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1}
$$

and

$$
(Z u)(x, y)=\int_{0}^{x} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1}+\int_{0}^{y} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1} .
$$

Similarly, we can consider operators of the type

$$
\begin{aligned}
(B u)(x, y)= & a(x, y) u+\int_{0}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1}+\int_{0}^{1} K_{2}\left(y, y_{1}\right) u\left(x, y_{1}\right) d y_{1} \\
& +\int_{0}^{1} \int_{0}^{1} K_{2}\left(x, x_{1}, y, y_{1}\right) u\left(x_{1}, y_{1}\right) d y_{1} d x_{1}
\end{aligned}
$$

Moreover, Theorem 4.3 allows us to investigate operators with unbounded $a(\cdot, \cdot)$.

6. Example 2. An integro-differential operator

Let us consider in $H \equiv L^{2}([0,1] \times[0,1])$ the operator

$$
\begin{equation*}
(B u)(x, y):=\frac{\partial^{2} u(x, y)}{\partial y^{2}}+\int_{0}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1} \quad(u \in \operatorname{Dom}(B)) \tag{6.1}
\end{equation*}
$$

with

$$
\operatorname{Dom}(B)=\left\{u \in H: \frac{\partial^{2} u}{\partial y^{2}} \in H ; u(x, 0)=u(x, 1)=0\right\} .
$$

Here K_{1} is a Hilbert-Schmidt kernel. We can write out $B=A+Z$, where

$$
\begin{equation*}
(A u)(x, y)=\frac{\partial^{2} u(x, y)}{\partial y^{2}}+\int_{0}^{x} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1} \quad(u \in \operatorname{Dom}(B)) \tag{6.2}
\end{equation*}
$$

and

$$
(Z u)(x, y)=\int_{x}^{1} K_{1}\left(x, x_{1}\right) u\left(x_{1}, y\right) d x_{1} .
$$

In this case (1.2) holds with V_{1} defined by (5.3), $V_{2}=0$ and

$$
(D u)(x, y)=\frac{\partial^{2} u(x, y)}{\partial y^{2}} \quad(u \in \operatorname{Dom}(B)) .
$$

Take P_{1} as in (5.5) and

$$
\left.\left(P_{2}(t) v\right)(y)=\left(P_{2}(n) v\right)\right)(y)=\sum_{k=1}^{n} \sin (k \pi y) \int_{0}^{1} v\left(y_{1}\right) \sin \left(k \pi y_{1}\right) v\left(y_{1}\right) d y_{1} .
$$

$(n=1,2, \ldots)$. Clearly, $\sigma(D)=\left\{-\pi^{2} k^{2} ; k=1,2, \ldots\right\}$. Then due to Corollary 4.7

$$
\sigma(B) \subset\left\{z \in \mathbf{C}:\left|z+\pi^{2} m^{2}\right| \leq \tilde{z}_{2}(A, q) \leq \tilde{\delta}_{2}(A, q), m=1,2, \ldots\right\}
$$

where

$$
q=\|Z\|_{H} \leq\left[\int_{0}^{1} \int_{x}^{1}\left|K_{1}\left(x, x_{1}\right)\right|^{2} d x_{1} d x\right]^{1 / 2}
$$

$\tilde{z}_{2}(A, q)$ is the unique positive root of the equation (4.8) and $\tilde{\delta}_{2}(A, q)$ is defined by (4.11) with (5.4) taken into account. In particular,

$$
\alpha(B) \leq-\pi^{2}+\tilde{z}_{2}(A, q) \leq-\pi^{2}+\tilde{\delta}_{2}(A, q) .
$$

Thus, B is stable, provided $-\pi^{2}+\tilde{\delta}_{2}(A, q)<0$.
Acknowledgement. The author is very grateful to the referee for his very helpful remarks.

> Department of Mathematics
> Ben Gurion University of the Negev P.O. Box 653 , Beer-Sheva 84105 , Israel e-mail: gilmi@cs.bgu.ac.il

References

[1] N. I. Ahiezer and I. M. Glazman, Theory of Linear Operators in a Hilbert Space, Pitman Advanced Publishing Program, Boston, 1981.
[2] J. Appel, A. Kalitvin and P. P. Zabreiko, Partial Integral Operators and Integro-differential Equations, Marcel Dekker Inc. New York, 2000.
[3] M. S. Brodskii, Triangular and Jordan Representations of Linear Operators, Transl. Math. Monogr. 32, Amer. Math. Soc. Providence R1, 1971.
[4] N. Dunford and J. T. Schwartz, Linear Operators, part I. General Theory, Wiley Interscience Publishers, New York, 1966.
[5] M. I. Gil', Norm Estimations for Operator-valued Functions and Applications, Marcel Dekker Inc., New York, 1995.
[6] __, Invertibility conditions and bounds for spectra of matrix integral operators, Monatshefte für Mathematik 129 (2000), 15-24.
[7] _, Invertibility and spectrum localization of nonselfadjoint operators, Adv. Appl. Math. 28 (2002), 40-58.
[8] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. 18, Amer. Math. Soc. R.I., 1969.
[9] \qquad , Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc. R.I., 1970.
[10] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[11] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag, Berlin, 2002

[^0]: 2000 AMS (MOS) Subject Classification(s). 47A55, 47A75, 47G10, 47G20
 Key words: linear operators, Hilbert spaces, tensor products, spectrum, partial integral operators, integro-differential operators
 Received September 9, 2002
 Revised May 26, 2003
 *This research was supported by the Kamea Fund.

