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The k-Buchsbaum property for some
polynomial ideals
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Henrik Bresinsky and Lê Tuân Hoa∗

Introduction

In order to define the topic of the title, we always assume that R is a
standard graded ring over a field k and m is the maximal homogeneous ideal.
k-Buchsbaum graded modules M over R can be defined as having their local
cohomology modules Hi

m(M), 0 ≤ i ≤ d, annihilated by mk, where d + 1 is the
Krull-dimension of M . (For undefined terminology see [E].) They are natural
generalizations of Cohen-Macaulay modules, which have Hi

m(M) = 0, 0 ≤ i ≤
d. A more workable definition for k-Buchsbaum ideals a ⊂ K[x0, . . . , xr] =:
Rr+1, where a is a homogeneous ideal (δ(xi) := degree(xi) = 1, 0 ≤ i ≤ r),
is given below. An algorithm to test if such an ideal is perfect (i.e. Rr+1/a
is Cohen-Macaulay) or Buchsbaum (i.e. Rr+1/a and Rr+1/(a, F0, . . . , Fi), 0 ≤
i ≤ d, are 1-Buchsbaum for any system of parameters (s.o.p.) {F0, . . . , Fd})
was given in [BV1] and [BV2]. Thus both of these papers deal with a fixed
k ∈ {0, 1} and do not address the question of an upper bound k, if a is to be
k-Buchsbaum for some k. The purpose of the present paper is to investigate
this question without explicit computation of Ext-modules or local cohomology
modules. We obtain an algorithm for certain binomial ideals. Although in [BH]
it was shown, that no conclusive information about the k-Buchsbaum property
of a can be obtained from in(a) (the ideal of initial terms), our algorithm is
based on the Gröbner bases calculations.

1. Homogeneous k-Buchsbaum ideals

We assume Rr+1 := K[x0, . . . , xr], K an infinite field, a ⊂ Rr+1 a homoge-
neous ideal (with respect to the standard grading), dim(a) = Krull-dim(Rr+1/a)
= d + 1, without loss of generality {x0, . . . , xd} a s.o.p. for a since K is infinite
(i.e. the images {x̄0, . . . , x̄d} form a s.o.p. in Rr+1/a).
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Definition 1.1. Let {y0, . . . , yd} be any s.o.p. for a. For a m-primary
ideal q, {y0, . . . , yd} is said to be a q-weak sequence for a, if a : y0 ⊆ a :
q, (a, y0, . . . , yi−1) : yi ⊆ (a, y0, . . . , yi−1) : q, 0 ≤ i ≤ d.

Definition 1.2. For k ≥ 0 a is said to be k-Buchsbaum if every s.o.p.
{y0, . . . , yd} ⊆ m2k for a is an mk-weak sequence for a.

It is clear from the definition and the theorem below, that if a is k-
Buchsbaum then it is k′-Buchsbaum for all k′ ≥ k, and a is a generalized
Cohen-Macaulay ideal (i.e. all local cohomology modules Hi

m(Rr+1/a), i ≤ d,
are of finite length) iff a is k-Buchsbaum for k � 0.

Theorem 1.3 ([FV]). The following are equivalent :
(i) a is k-Buchsbaum.
(ii) For every s.o.p. {y0, . . . , yd} ⊆ m2k for a, {y0, . . . , yd} is an mk-weak

sequence for a.
(iii) For a s.o.p. {y0, . . . , yd} ⊆ m2k for a, {y0, . . . , yd} is an mk-weak

sequence for a.
(iv) mkHi

m(Rr+1/a) = 0, 0 ≤ i ≤ d, Hi
m(Rr+1/a) the i-th local cohomology

module of Rr+1/a with respect to m.

Proof. See [FV].

Theorem 1.4. Assume a is as before, {x0, . . . , xd} a s.o.p. for a. Let
j = (j0, . . . , jd) be an arbitrary, but fixed vector of non-negative integers, 0 ≤
i ≤ d. The following are equivalent :

(i) a is k-Buchsbaum.
(ii) (a, x2k+j0

0 , . . . , x
2k+ji−1
i−1 ) : x2k+γi

i ⊆ (a, x2k+j0
0 , . . . , x

2k+ji−1
i−1 ) : mk, 0 ≤

i ≤ d, for all γi ∈ N.
(iii) (a, x2k+j0

0 , . . . , x
2k+ji−1
i−1 ) : xk

i = (a, x2k+j0
0 , . . . , x

2k+ji−1
i−1 ) : xk+1

i = (a,

x2k+j0
0 , . . . , x

2k+ji−1
i−1 ) : mk = (a, x2k+j0

0 , . . . , x
2k+ji−1
i−1 ) : mk+1, 0 ≤ i ≤ d.

Proof. (i) iff (ii) by Theorem 1.3, (iii) implies (ii) is immediate.
(ii) ⇒ (iii). For short, let A = (a, x2k+j0

0 , . . . , x
2k+ji−1
i−1 ).

Let k = 0. Then A : m ⊆ A : xi = A (by (ii)) ⊆ A : m. Hence
A = A : xi = A : m.

Assume k ≥ 1. Then A : mk ⊆ A : xk
i ⊆ A : xk+1

i ⊆ A : x2k
i ⊆ A :

mk (by (ii)). Hence A : mk = A : xk
i = A : xk+1

i ⊇ A : mk+1, which implies
A : mk = A : mk+1.

Definition 1.5. Let b and c be ideals in Rr+1, S = {z1, . . . , zs} ⊆ Rr+1

and for t ≥ 1, St = {zt
1, . . . , z

t
s}. (b, St) is said to stabilize with respect to c, if

there exist positive integers T and k such that (b, St) : ck = (b, St) : ck+1 for
all t ≥ T . For such a pair (T, k), we also will say that (b, St) : cu stabilizes at
(T, k) (here t and u are integer variables).

Clearly, if (b, St) : cu stabilizes at (T, k), then it stabilizes at (T ′, k′) for
any T ′ ≥ T and k′ ≥ k. Moreover, in this case we have

(b, St) : cu = (b, St) : c∞ := ∪∞
i=1(b, St) : ci,
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for all t ≥ T and u ≥ k.

Theorem 1.6. Assume b ⊆ Rr+1 is a homogeneous ideal and {x0, . . . ,
xd} a s.o.p. for b. If b is k-Buchsbaum for some k, then for T ≥ 2k

a) (b, xT
0 , . . . , xT

i−1) : xk
i = (b, xT

0 , . . . , xT
i−1) : xk+1

i , 0 ≤ i ≤ d.
b) (b, xT

0 , . . . , xT
i−1) : xk

i ⊆ (b, xT
0 , . . . , xT

i−1) : xk
l , 0 ≤ i, l ≤ d.

a’) (b, xt
j0

, . . . , xt
ji−1

) : xu
ji

stabilizes at (T, k) for all parts of all permuta-
tions (j0, . . . , jd) of (0, . . . , d), 0 ≤ i ≤ d,

b’) (b, xt
j0

, . . . , xt
ji−1

) : xk
ji

⊆ (b, xt
j0

, . . . , xt
ji−1

) : xk
l for all parts of all

permutations (j0, . . . , jd) of (0, . . . , d), 0 ≤ i, l ≤ d, and for all t ≥ T .
Conversely, if a) and b) (or a’) and b’)) hold for some T ≥ 2k ∈ N, then

b is γ-Buchsbaum, where γ is the least integer such that mγ ⊆ (xk
0 , . . . , xk

d)+ b.

Proof. Note that for all permutations (j0, . . . , jd) of (0, . . . , d), xj0 , . . . , xjd

is again a s.o.p for b. Hence, the necessity of a) and a’) follows from Theorem
1.4 (iii), then the necessity of b) and b’) from a) and a’), respectively, and from
Theorem 1.3 (ii). Clearly a’) and b’) imply a) and b). Assume therefore a) and
b). Let

q = (xk
0 , . . . , xk

d) and b(i − 1, T ) := (b, xT
0 , . . . , xT

i−1).

Since T ≥ 2k, xT
0 , . . . , xT

d ⊆ q2. For all 0 ≤ i ≤ d we have:

b(i − 1, T ) : xT
i = b(i − 1, T ) : xk

i (by a))

⊆ b(i − 1, T ) : xk
l , 0 ≤ l ≤ d (by b)).

Hence b(i− 1, T ) : xT
i = b(i − 1, T ) : q. This means {xT

0 , . . . , xT
i−1} is a q-weak

sequence. By Proposition 13 in the Appendix of [SV], qHi
m(Rr+1/b) = 0, 0 ≤

i < d. Let γ be an integer such that mγ ⊆ q + b. Then mγHi
m(Rr+1/b) =

0, 0 ≤ i < d. By Theorem 1.3 (iv), b is γ-Buchsbaum.

Example 1.7. Let b = (x2
1−x0x2, x3x2−x0x2, x

2
2−x0x2). A s.o.p. for

b is {x0, x3}. Let > be the reverse lexicographical term order with x2 > x1 >
x3 > x0. A Gröbner basis calculation gives {x2

1−x0x2, x3x2−x0x2, x
2
2−x0x2} as

the reduced Gröbner basis of b and {x2
1−x0x2, x3x2−x0x2, x

2
2−x0x2, x

t
3, x

t
0x2}

as the reduced Gröbner basis of (b, xt
3). Hence

(b, xt
3) : x∞

0 = (x2
1, x2, x

t
3) 
= (b, xt

3) : xk
0

for all t > k. Thus (b, xt
3) does not stabilize with respect to x0.

In this paper the reduced Gröbner basis always means a minimal Gröbner
basis {g1, . . . , gs} such that all in(g1), . . . , in(gs) are terms and no term of gi is
divisible by in(gj), j 
= i.

Example 1.8. Let b = (x1, x
2
2, x

2
3) ∩ (x2, x3) ⊆ R4 = K[x0, x1, x2, x3].

A s.o.p. for b is {x0, x1} since b = (x1x2, x1x3, x
2
2, x

2
3). b is not k-Buchsbaum

for any k, since b has a nontrivial embedded component ([SV, Lemma I.2.2]).
b : x0 = b : x2

0 = b and (b, xt
0) : x1 = (x2, x3, x

t
0) = (b, xt

0) : x2
1, thus b stabilizes

with respect to x0 and (b, xt
0) with respect to x1. However one condidtion in

b) is not satisfied : (b, xt
0) : xk

1 
⊆ (b, xt
0) : xk

0 for all k > 0.
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Remark 1.9. If b is 1-dimensional, then a) in Theorem 1.6 is vacuously
true and b) readily obtained algorithmically. Thus in the sequel dim b ≥ 2.

2. Stabilization of binomial ideals

Definition 2.1. A monomial in Rr+1 is a polynomial m = cxα0
0 · · ·xαr

r ,
c 
= 0. A term is a monomial with c = 1. The set of terms in Rr+1 is denoted
by Tr+1.

Definition 2.2. For m1 = c1x
α01
0 · · ·xαr1

r , m2 = c2x
α02
0 · · ·xαr2

r , c1c2 
=
0, g.c.d.(m1, m2) = xδ0

0 · · ·xδr
r , δi = min{αi1, αi2}, 0 ≤ i ≤ r.

Definition 2.3. An ideal 0 
= b ⊂ Rr+1 (for us) is a binomial ideal if:
(i) b is generated by binomials and monomials,
(ii) If b is a binomial generator of b, assume b = m1 − m2, m1 a term, m2

a monomial,
(iii) b is homogeneous with respect to some nonnegative grading,
(iv) For an admissible term order >, we assume m1 > (1/c2)m2, c2 ∈

K \ {0}, and we will write in(b) = m1. B ∪ M is the reduced Gröbner basis of
b, where B consists of binomials and M consists of terms.

(v) The variables x0, . . . , xd form a s.o.p. for b.

Note. We also use {X, Y } and {X, u, v, . . .} to denote the sets X ∪ Y
and X ∪ {u, v, . . .}, respectively.

Definition 2.4. Assume > is a term order, b = m1 − m2 a binomial,
m1 > (1/c2)m2, m1, m ∈ Tr+1. Let m1 = q1d, m = qd, d = g.c.d.(m1, m).
s(b, m) = qm2 is the successor polynomial of b and m. (By abuse of notation,
we sometimes identify s(b, m) and (1/c2)s(b, m) ∈ Tr+1).

Note that the s-polynomial formation above is only a particular case of
the s-polynomial formation of an arbitrary pair of polynomials in Buchberger’s
algorithm, defined as s(f1, f2) = m2f1 − m1f2, where m1 = in(f1)/m, m2 =
in(f2)/m and m = g. c. d(in(f1), in(f2)). We will use this remark in the proof
of Lemma 2.10.

Definition 2.5. Assume m is a monomial, b = m1 − m2 a binomial,
m1 ∈ Tr+1 such that m1 | m, i.e. m = qm1. qm2 = m̃ is said to be a reduction
of m mod b and m is said to reduce to m̃mod b. We write

m
b→ m̃.

For a sequence of reductions

m
b1→ m̃1

b2→ · · · bn→ m̃n, {b1, . . . , bn} ⊆ B,

we write
m

B→ m̃n
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and say m̃n is a reduction of m mod B and m reduces to m̃n. Monomials
not reducible mod b (respectively not reducible for any b ∈ B) are said to be
irreducible mod b (respectively irreducible mod B). If, in addition, they are not
divisible by a monomial of M , they are said to be irreducible modB ∪M . We
write irr. mod b (respectively irr. mod B and irr. modB ∪ M).

Lemma 2.6. Fix a term order on Rr+1 and a variable y ∈ {x0, . . . , xr}.
Let b be a binomial ideal with the reduced Gröbner basis B ∪ M with

∆ = max
b∈B∪M

{δ(b)}.

Then, for an arbitrary integer τ ≥ ∆, the reduced Gröbner basis of the ideal
a(τ ) = (b, yτ ) has the form

{B ∪ M, G(τ )},
where G(τ ) ⊆ Tr+1 \ M .

Proof. Note that a(τ ) = (B ∪ M, yτ ). Since B ∪ M is a Gröbner basis
(of b) and τ ≥ ∆, all new elements in Buchberger’s algorithm, applied to
{B, M, yτ} are monomials of degree at least τ . Hence, no term of b ∈ B and
no monomial of M is divisible by a new monomial. Since B ∪ M is already
the reduced Gröbner basis, the set G(τ ) of all new terms together with B ∪M
forms the reduced Gröbner basis of a(τ ). Clearly G(τ ) ∩ M = ∅.

Using the notation G(τ ), τ ≥ ∆, we will give a criterion for the stabiliza-
tion of ideals of the type a(τ ) with respect to an ideal generated by a certain
single variable.

Lemma 2.7. Assume > is a term order, b, B ∪M as specified. Fix an
integer t0 ≥ ∆ and let G(t0) denote the corresponding set of terms given by the
previous lemma. Then

(1) m ∈ G(t0) implies δ(m) ≥ δ(b) for all b ∈ B ∪ M .
(2) m ∈ G(t0) implies m = yt0 or δy(m) < t0 (δy(m) denotes the degree of

m in y).
(3) Let

∆y = max
b∈B∪M

{δy(in(b)}.

Assume if m ∈ G(t0), then δy(m) ≥ ∆y. Then for t ≥ 0, G(t0 + t) = ytG(t0).
(4) Assume the monomial m ∈ (B ∪ M, yt0), b = m1 − m2 ∈ B, in(b) =

m1, δy(m) ≥ δy(m1). Let t ≥ 0. Then ytm is irr. mod B ∪ M implies
s(b, ytm) → 0 mod{B, ytG(t0)}.

Proof. (1) follows from the proof of Lemma 2.6.
(2) As in (1), for any term m obtained in the Buchberger algorithm, start-

ing with {B ∪M, yt0}, δ(m) ≥ δ(yt0). Therefore if yt0 is irr. mod B ∪M , then
yt0 ∈ G(t0) and the conclusion in (2) follows. If yt0 is not irr. modB ∪ M ,
then any term m, such that yt0 | m, is not irr. modB ∪ M , thus m 
∈ G(t0).



�

�

�

�

�

�

�

�

704 Henrik Bresinsky and Lê Tuân Hoa

(3) Let m ∈ G(t0). Write m = yδy(m)m̄. For b ∈ B, let

b = m1 − m2, in(b) = m1 = yδy(m1)m̄1, m̄ = q̄d, m̄1 = q̄1d, d = g.c.d(m̄, m̄1).

Then
s(b, m) = q̄yδy(m)−δy(m1)m2

B→ m̃

such that there exists m∗ ∈ G(t0) ∪ M with the property m∗ | m̃. We have

s(b, ytm) = q̄yδy(m)−δy(m1)+tm2
B→ ytm̃.

If m∗ ∈ M , s(b, ytm) reduces to 0 w.r.t. B ∪M (in the Buchberger algorithm).
If m∗ ∈ G(t0), then ytm∗ | ytm̃, ytm∗ ∈ ytG(t0), and s(b, ytm) reduces to 0
w.r.t. B ∪ M, ytG(t0). Thus {B ∪ M, ytG(t0)} is a Gröbner basis, which is
reduced since each ytm ∈ ytG(t) is clearly irr. mod B∪M (from the conditions
m ∈ G(t0) and δy(m) ≥ ∆y).

(4) The conclusion in (4) follows immediately from the proof in (3).

Definition 2.8. Assume b, B ∪M, t0, G(t0) are as before. m ∈ G(t0)
is said to be absolutely irreducible (a. irr.) mod B ∪M if ytm is irr. mod B ∪M
for all t ≥ 0. m ∈ G(t0) is said to be stable if ytm ∈ G(t0 + t), t ≥ 0.

From now on in this section (unless otherwise specified), > is the reverse
lexicographical term order (rev. lex.) with y > x the smallest linear terms,
{x, y} ⊆ {x0, . . . , xr}. δx(m) denotes the degree of a monomial m in x.

Lemma 2.9. For m a monomial and an element b ∈ B, δx(s(b, m)) ≥
δx(m).

Proof. Let b = m1 − m2. Since m1 = in(b) (see Definition 2.3) with
respect to the term order rev. lex., always δx(m2) ≥ δx(m1). Let m1 =
q1d, m = qd, d = g.c.d(m1, m). Then qm1 = q1m and δx(m2) ≥ δx(m1)
imply δx(s(b, m)) = δx(qm2) ≥ δx(qm1) = δx(q1m) ≥ δx(m).

Lemma 2.10. If there is N ∈ N such that δx(m) ≤ N for all m ∈
G(t) and for all t ≥ T ≥ ∆, then δy(m) ≥ ∆y for all m ∈ G(t0) and t0 ≥
max{T, ∆y(N + 1)}.

Proof. Assume t0 ≥ max{T, ∆y(N + 1)}. Let m ∈ G(t0). Then there is
a sequence of reductions:

n0 = yt0 , n1 = s(b0, n0), . . . , np = s(bp−1, np−1) = m; b1, . . . , bp ∈ B.

We first show that for all i ≥ 0 in this sequence we have:

(1) δy(ni)/∆y + δx(ni) ≥ N + 1.

Induction on i. The case i = 0 is trivial. Assume δy(ni)/∆y + δx(ni) ≥ N + 1
and i < p. Let bi = m1 − m2 (see Definition 2.3).
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If δy(m1) ≤ δy(m2), then δy(ni+1) ≥ δy(ni). By Lemma 2.9 and induction
we have

δy(ni+1)/∆y + δx(ni+1) ≥ δy(ni)/∆y + δx(ni) ≥ N + 1.

If δy(m1) > δy(m2), then since y > x, we have δx(m1) < δx(m2). Analyz-
ing the proof of Lemma 2.9 we even have δx(ni+1) ≥ δx(ni) + 1. Moreover if
ni = dn′

i, d = g. c. d(ni, m1), then

δy(ni+1) ≥ δy(n′
i) = δy(ni) − δy(d) ≥ δy(ni) − ∆y.

Hence

δy(ni+1)/∆y + δx(ni+1) ≥ δy(ni)/∆y − 1 + δx(ni) + 1 ≥ N + 1.

The induction is completed.
Now, by assumption, δx(m) ≤ N for all m ∈ G(t0). Hence, by (1), δy(m) ≥

∆y.

Theorem 2.11. Consider the following conditions :
(i) For all m ∈ G(t) and for all t ≥ T ≥ ∆, δx(m) ≤ N ∈ N.
(ii) For all m ∈ G(t) and for all t ≥ t0 ≥ ∆, m is stable.

Then (i) implies (ii) for t0 = max{T, ∆y(N + 1)}; and (ii) implies (i) for
T = t0 + ∆y and N = max{δx(m); m ∈ G(t0)}.

Proof. (ii) ⇒ (i). Let T = t0 + ∆y and m ∈ G(t0). Then y∆ym ∈
(B∪M, G(T )). By hypothesis yty∆ym = yt+∆ym ∈ G(t+∆y + t0) = G(T + t).
In particular yty∆ym is irr. mod B ∪ M . Hence, by Lemma 2.7 (4) elements
yty∆ym, m ∈ G(t0) and B ∪ M form a Gröbner basis of (B ∪ M, yT+t), i.e.
G(T + t) = yt+∆yG(t0) for all t ≥ 0. From this G(T + t) = ytG(T ), t ≥ 0,
which implies (i).

(i) ⇒ (ii) Let t ≥ t0 := max{T, ∆y(N + 1)}. In the proof of Lemma
2.10 we have shown that for all m ∈ G(t0), δy(m) ≥ ∆y. By Lemma 2.7 (3),
G(t + t0) = ytG(t0)) which implies (ii).

Lemma 2.12. Let M = (m1, . . . , ms) ⊆ Rr+1 be a monomial ideal,
mi ∈ Tr+1, 1 ≤ i ≤ s, x ∈ {x0, . . . , xr}. Then

M : xk = (m1/ g. c. d(m1, x
k), . . . , ms/ g. c. d(ms, x

k)).

In particular for k ≥ max{δx(mi); 1 ≤ i ≤ s},

M : xk = (m1/xδx(m1), . . . , ms/xδx(ms)) = (M|x=1),

and k = max{δx(mi) 1 ≤ i ≤ s} is minimal such that M : xk = M : xk+1.
Here (M|x=1) mean the variable x is replaced by 1 in all monomials of M.

Proof. This is immediate by [KR, Satz 5’].
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Definition 2.13. Assume b, B∪M, t0, G(t0) are as specified before. If
for some a(t0) = (b, yt0) with reduced Gröbner basis {B∪M, G(t0)}, a(t0+t) =
(b, yt0+t) has reduced Gröbner basis {B∪M, ytG(t0)} (i.e. G(t+t0) = ytG(t0))
for all t ≥ 0, then we say that the Buchberger algorithm stabilizes for a(t) at
t0.

The Buchberger algorithm stabilizes at t0 only if every m ∈ G(t0) is stable,
and it stabilizes at any t′0 ≥ t0.

Theorem 2.14. Let t0, t
∗ ≥ ∆ and

k ≥ ∆x := max
b∈B∪M

{δx(in(b)}.

Consider the following conditions :
(i) a(t) stabilizes at (t0, k) with respect to x, i.e. a(t0 + t) : xk = a(t0 + t) :

xk+1 for all t ≥ 0.
(ii) δx(m) ≤ k ∈ N for all m ∈ G(t) and all t ≥ t0.
(iii) The Buchberger algorithm stabilizes for a(t) at t∗.

Then
a) (i) is equivalent to (ii).
b) (ii) implies (iii) for t∗ = max{t0, ∆y(k + 1)}.
c) (iii) implies (ii) for t0 = t∗ + ∆y and k = max{δx(m); m ∈ G(t∗)}.

Moreover if δy(m) ≥ ∆y for all m ∈ G(t∗) we may take t0 = t∗.

Proof. b) and c) follow from Theorem 2.11. If already δy(m) ≥ ∆y for
all m ∈ G(t∗), then δy(m) ≥ δy(m1) for all b = m1 −m2 ∈ B. Hence, from the
proof of (ii) ⇒ (i) of Theorem 2.11, every m ∈ G(t∗) is stable.

We show a). For an ideal c let c : x∞ := ∪n≥1c : xn. We always have c :
xk ⊆ c : x∞. Recall that the term order under consideration is rev. lex. and x is
the smallest term. By Proposition 15.12 and its application in Exercise 15.41 a.
in [E], a(t0+t) : xk = a(t0+t) : x∞ iff in(a(t0+t)) : xk = in(a(t0+t)) : x∞. Since
in(a(t0+t)) is minimally generated by {in(b); b ∈ B} ∪M ∪G(t0+t), by Lemma
2.12 in(a(t0 + t)) : xk = in(a(t0 + t)) : x∞ iff k ≥ max{δx(in(b)), δx(m); b ∈
B, m ∈ M ∪ G(t∗)}. By hypothesis k ≥ ∆x = maxb∈B∪M{δx(in(b))}. Hence
(i) iff (ii).

Below is a criterion for the stabilization of the Buchberger algorithm:

Proposition 2.15. If the Buchberger algorithm stabilizes at t0 then for
all m ∈ G(t0+∆y), δy(m) ≥ ∆y. Conversely, if δy(m) ≥ ∆y for all m ∈ G(t0),
then the Buchberger algorithm stabilizes at t0.

Proof. ⇒ is immediate from the formula G(t0 + ∆y) = y∆yG(t0).
⇐. Assume if m ∈ G(t0), then δy(m) ≥ ∆y. Then, as before by Lemma
2.10 (3), G(t0 + t) = ytG(t0).

Remark 2.16. Assume b : y = b. Then one can show that the Buch-
berger algorithm does not stabilize at any t0 iff for every t ≥ ∆ there exists
m ∈ G(t) which is not divisible by y. Thus, the stability conditions of the
above proposition can be weakened in this case.
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We collect the preceding into:

Algorithm A. Let t0 = ∆ and n = 0.
(i) Calculation of G(t0 + n∆y) from B and y∆yG(t0 + (n − 1)∆y).
(ii) If δy(m) ≥ ∆y for all m ∈ G(t0 + n∆y): stop;

Otherwise increase n by one and repeat (i).

Thus if Algorithm A stops at the n-th step, the Buchberger algorithm
stabilizes at ∆ + n∆y, and by Theorem 2.14, a(t) stabilizes at (∆ + n∆y, k),
where

k = max{∆x, δx(m); m ∈ G(∆ + n∆y)}.

From the proof of Theorem 2.14 we also get that this is the smallest possible
value of k for the stabilization of a(t).

In the last section we will determine the number of steps needed to decide
if Algorithm A stops at some n, or will never stop.

3. The k-Buchsbaum property for some binomial ideals

Assume b is as before. In this section we will relate the stabilization of
ideals aj(t) := (b, xt

j) with respect to xk
i , 0 ≤ i 
= j ≤ d, to the k-Buchsbaum

property of b.

Lemma 3.1. Assume M is a set of monomials and M̄ a generating set
for the ideal of all monomials in (b,M). For a monomial m ∈ Rr+1 we have

(b,M̄) : m = (b + (M̄)) : m = b : m + (M̄) : m.

Proof. (b + (M̄)) : m ⊇ b : m + (M̄) : m follows trivially. Let v ∈
(b + (M̄)) : m. Write v = v1 + · · · + vs + v′1 + · · · + v′t, s, t ≥ 0, such that
mv1, . . . , mvs 
∈ b+(M̄) and mv′1, . . . , mv′t ∈ b+(M̄). Since (M̄) is the ideal of
all monomials in (b,M), mv′1, . . . , mv′t ∈ (M̄), which yields v′1, . . . , v

′
t ∈ (M̄) :

m. On the other hand, by Proposition 1.10 in [ES], mv1 + · · ·+mvs ∈ b, which
implies v1 + · · · + vs ∈ b : m. Thus v ∈ b : m + (M̄) : m, as required.

Proposition 3.2. For b a binomial ideal as defined, (b, xt
s0

, . . . , xt
si−1

) :
xki

si
stabilizes at (T, k) for all parts of permutations (s0, . . . , sd) of (0, . . . , d),

0 < i ≤ d iff (b, xt
j) : xkl

l stabilizes at (T, k) for each l, j such that 0 ≤ j 
= l ≤ d.

Proof. The implication ⇒ is trivial by taking i = 1, s0 = j, s1 = l.
We show the converse. W.l.o.g. one may assume (s0, . . . , sd) = (0, . . . , d).
Let (M̄j(t)), 0 ≤ j ≤ i − 1, be the ideal of all monomials in (b, xt

j). Then∑i−1
j=0(M̄j(t)) = (∪i−1

j=0M̄j(t)) is the ideal of all monomials in (b, xt
0, . . . , x

t
i−1)
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([ES, Corollary 1.6 (b)]). Therefore

(b, xt
0, . . . , x

t
i−1) : xki

i =


b,

i−1∑
j=0

(M̄j(t))


 : xki

i

= b : xki
i +


i−1∑

j=0

(M̄j(t)) : xki
i


 (by Lemma 3.1)

= b : xki
i +


i−1∑

j=0

(M̄j(t) : xki
i )


 (by [KR, Satz 5])

=
i−1∑
j=0

((b + (M̄j(t))) : xki
i ) (by Lemma 3.1)

=
i−1∑
j=0

((b,M̄j(t)) : xki
i )

=
i−1∑
j=0

((b, xt
j) : xki

i ).

Since (b, xt
j) : xki

i stabilizes at (T, k) for each j, 0 ≤ j ≤ i − 1, from the above
equality it follows that (b, xt

0, . . . , x
t
i−1) : xki

i stabilizes at (T, k).

Recall that b(i − 1, T ) := (b, xT
0 , . . . , xT

i−1). The following result clarifies
the relationship between the stabilization considered in the previous section
and being l-Buchsbaum for l � 0.

Theorem 3.3. Assume that the ideal aj(t) := (b, xt
j) stabilizes at (T, k)

with respect to xi for all 0 ≤ i 
= j ≤ d and for some T ≥ 2k. Then b is l-
Buchsbaum for l � 0 if and only if the following conditions are satisfied :

b(i − 1, T ) : xk
i ⊆ b(i − 1, T ) : xk

j for all 0 ≤ i 
= j ≤ d.

In this case b is already γ-Buchsbaum, where γ is the least integer such that
mγ ⊆ (xk

0 , . . . , xk
d) + b.

Proof. ⇐. By the stabilization and Proposition 3.2, b(i − 1, T ) : xk
i =

b(i − 1, T ) : xk+1
i . We also have

b : xk
i = (∩t≥T (b, xt

j)) : xk
i = ∩t≥T ((b, xt

j) : xk
i )

= ∩t≥T ((b, xt
j) : xk+1

i ) (by stabilization)

= (∩t≥T (b, xt
j)) : xk+1

i = b : xk+1
i .

Thus b(i − 1, T ) : xk
i = b(i − 1, T ) : xk+1

i holds for all 0 ≤ i ≤ d (where
b(−1, T ) := b), i.e. the condition a) of Theorem 1.6 is satisfied. b(i − 1, T ) :
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xk
i ⊆ b(i − 1, T ) : xk

j for all 0 ≤ i 
= j ≤ d is exactly b) in Theorem 1.6. Hence
b is γ-Buchsbaum with γ as above.

⇒. Assume b is l-Buchsbaum. We may assume that l ≥ k. and 2l ≥ T .
Then for all 0 ≤ i 
= j ≤ d we have

b(i − 1, 2l) : xk
i = b(i − 1, 2l) : x2l

i (by stabilization)

⊆ b(i − 1, 2l) : ml (by Theorem 1.3 (ii))

⊆ b(i − 1, 2l) : xl
j , 0 ≤ j ≤ d

⊆ b(i − 1, 2l) : xk
j , 0 ≤ j ≤ d (by stabilization).

As shown in the proof of Theorem 1.6, this implies that (xk
0 , . . . , xk

d)Hi
m(Rr+1/b)

= 0, 0 ≤ i < d. Again by Proposition 13 in the Appendix of [SV], we get
b(i − 1, T ) : xk

i ⊆ b(i − 1, T ) : xk
j (since T ≥ 2k).

To formulate the following result we need some more notation. For all
i, j, 0 ≤ j < i, {Bij ∪ Mij , Gij(t)}, Gij(t) ⊆ Tr+1, is a reduced Gröbner basis
of aj(t) = (b, xt

j) with respect to rev. lex. and xj > xi as smalles linear terms,
for t ≥ max{δ(b); b ∈ Bij ∪ Mij} as specified in Lemma 2.6. (Note: the order
depends on i and j, so Gröbner bases also depend on i and j.) Under an
additional assumption, the condition in the previous theorem can be checked
as follows:

Proposition 3.4. Let b be a binomial ideal such that b : xi = b for all
0 ≤ i ≤ d. Assume that the ideal aj(t) := (b, xt

j) stabilizes at (T, k) with respect
to xi for all 0 ≤ i 
= j ≤ d for some T, k. For a fixed h, 0 ≤ h 
= i ≤ d, the
following are equivalent :

(i) b(i − 1, T ) : xk
i ⊆ b(i − 1, T ) : xk

h.
(ii) Gij(T )|xi=1 ⊆ (b(i − 1, T ) : xk

h), 0 ≤ j ≤ i − 1. Here Gij(T )|xi=1

means the variable xi is replaced by 1 in all monomials of Gij(T ).

Proof. We start by proving

Claim. M̄j(T )|xi=1 ⊆ b(i − 1, T ) : xk
h, 0 ≤ j ≤ i − 1 iff Gij(T )|xi=1 ⊆

b(i− 1, T ) : xk
h, 0 ≤ j ≤ i− 1, where M̄j(T ) denotes the ideal generated by all

monomials in (b, xT
j ).

⇒. This follows since Gij(T ) is contained in M̄j(t).
⇐. Let m ∈ M̄j(T ). If δxi

(m) = 0, then

m|xi=1 = m ∈ (b, xT
j ) ⊆ b(i − 1, T ) ⊆ b(i − 1, T ) : xk

h,

(since j ≤ i − 1). Assume δxi
(m) > 0, and m

Bij→ m̃, m̃ irr. mod Bij . Then
there exists m̄ ∈ Gij(T )∪Mij such that m̄|m̃ (since m̃ ∈ aj(T ) and {Bij ∪Mij ,
Gij(t)} is a reduced Gröbner basis of this ideal). By Lemma 2.9, δxi

(m) ≤
δxi

(m̃). If m̃ = qm̄, then

x
δxi

(m)

i (m|xi=1) − x
δxi

(m̃)

i [(q|xi=1)(m̄|xi=1)] = m − m̃ ∈ (Bij) ⊆ b.
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Since b : xi = b, we have

m|xi=1 − x
δxi

(m̃)−δxi
(m)

i [(q|xi=1)(m̄|xi=1)] ∈ b.

If x
δxi

(m̄)

i (m̄|xi=1) = m̄ ∈ Mij ⊆ b, then again m̄|xi=1 ∈ b ⊆ b(i − 1, T ).
Otherwise m̄ ∈ Gij(T ), and by induction assumption xk

h(m̄|xi=1) ∈ b(i− 1, T ).
Therefore, in both cases, xk

h(m|xi=1) ∈ b(i − 1, T ), as required.

Proof of Proposition 3.4. Since
∑i−1

j=0 M̄j(T ) is the ideal of all monomials
in b(i − 1, T ) and b : xi = b, we have:

(2) b(i − 1, T ) : xk
i ⊆ b(i − 1, T ) : xk

h

iff

b(i − 1, T ) ⊇ xk
h(b(i − 1, T ) : xk

i )

= xk
h




b,

i−1∑
j=0

M̄j(T )


 : xk

i




= xk
h


b +

i−1∑
j=0

(M̄j(T ) : xk
i )


 (by Lemma 3.1 and [KR, Satz 5])

iff

(3) xk
h(M̄j(T ) : xk

i ) ⊆ b(i − 1, T ) for all 0 ≤ j ≤ i − 1

(since xk
hb ∈ b(i − 1, T )). By stabilization, we may also replace M̄j(T ) : xk

i in
(3) by M̄j(T ) : x∞

i = M̄j(T )|xi=1. Hence, by the initial claim, (2) is equivalent
to Gij(T )|xi=1 ⊆ b(i − 1, T ) : xk

h for all 0 ≤ j ≤ i − 1.

4. Local cohomology and stabilization

The rest of this paper is devoted to the termination of Algorithm A. For
short we also use R to denote Rr+1. For a homogeneous ideal c ⊆ R, denote

ai(R/c) =

{
max{t; [Hi

m(R/c)]t 
= 0} if Hi
m(R/c) 
= 0,

−∞ if Hi
m(R/c) = 0,

where [ · ]t denotes the t-th graded part. As usual, dim c = d+1 ≥ 2 and c 
= 0.

Lemma 4.1. There exist z0, . . . , zd ∈ [R]1 such that α0z0 + · · · + αdzd

is a parameter element for c for all (α0, . . . , αd) ∈ Kd+1 \ {(0, . . . , 0)}.
Proof. The vector space [R]1 = Kx0 ⊕ · · · ⊕ Kxr has dimension r + 1 >

d + 1. Let p1, . . . , ps be all highest dimension associated prime ideals of R/c.
Then p1∩ [R]1, . . . , ps∩ [R]1 are proper linear subspaces of [R]1 of dimension at
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most r − d. Since K is infinite, one can find a subspace H ⊂ [R]1 of dimension
d + 1 such that H ∩ p1 = · · · = H ∩ ps = 0. Any basis z0, . . . , zd of H will
satisfy the conclusion of the lemma.

A special case (when d = 1) of the following result is Proposition 2.8 in
[M], which was proved by a different method.

Proposition 4.2. Assume that R/c is a generalized Cohen-Macaulay
ideal of dimension d + 1 ≥ 2 and n ≤ 0. Then

dimK [H1
m(R/c)]n−1 ≤ max{0, dimK [H1

m(R/c)]n − d}.

Proof. Choose a s.o.p. z0, . . . , zd ∈ [R]1 of R/c as in Lemma 4.1. Let
(α0, . . . , αd) ∈ Kd+1 \ {(0, . . . , 0)} and z = α0z0 + · · · + αdzd. Then z is a
parameter element for c, and by Definition 1.2, dimK(0 :R/c z) < ∞. Since
[H0

m(R/(c, z))]n = 0 for n ≤ 0, from the exact sequence

0 → R/(c : z)(−1) ·z−→ R/c → R/(c, z) → 0,

we get an injective map

0 → [H1
m(R/c)]n−1

·z−→ [H1
m(R/c)]n

for all n ≤ 0 and all z. By [Br1, Lemma 3.1], we get

dimK [H1
m(R/c)]n−1 ≤ max{0, dimK [H1

m(R/c)]n − d}.

Corollary 4.3. Under the assumptions of Proposition 4.2,

[H1
m(R/c)]n = 0 for all n ≤ −dimK [H1

m(R/c)]0
d

.

We would like to mention that Brodmann already gave in [Br2], Theorem
5.6 a priori lower bound for the vanishing of [H1

m(R/c)]n in negative degrees.
His bound, which works under a much weaker assumption, is worse than the
above bound.

Lemma 4.4. Let α be an arbitrary integer such that

α ≥ max{a0(R/c), a1(R/c)} + 1,

and z ∈ [R]α be a parameter element of R/c such that dimK(0 :R/c z) < ∞.
Then

dimK [H1
m(R/c)]0 = dimK

[
(c, z) : m∞

(c, z)

]
α

.
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Proof. Note that [H0
m(R/c)]α = [H1

m(R/c)]α = 0. Hence, from the exact
sequence

0 → R/(c : z)(−α) ·z−→ R/c → R/(c, z) → 0,

we get an isomorphism

[H0
m(R/(c, z))]α ∼= [H1

m(R/c)]0.

By definition

[H0
m(R/(c, z))]α =

[
(c, z) : m∞

(c, z)

]
α

,

which completes the proof.

Recall that the Castelnuovo-Mumford regularity of R/c is the number

reg(R/c) = max{ai(R/c) + i; 0 ≤ i ≤ d + 1}.
This invariant can be computed using a minimal free resolution of R/c, thus via
a Gröbner basis calculation (see [E, Chapter 20]). For the next theorem, the
initial ideal is taken with respect to a rev. lex. term order with x0 the smallest
linear term. For an integer a, let β(a) be the smallest integer such that

β(a) ≥ 1
d

dimK

[
(in(b)|x0=1)

(in(b) + xa
1(in(b)|x0=1 : xa

1))

]
a

.

Theorem 4.5. Let b be a binomial ideal as in Section 2. Assume that
b is a generalized Cohen-Macaulay ideal. Let

k = β(reg(R/b) + 1) + 2 reg(R/b).

Then
(i) aj(t) = (b, xt

j) stabilizes at (1, k) w.r.t. xi for all 0 ≤ i 
= j ≤ d, and
(ii) b is a k-Buchsbaum ideal.
The same conclusions remain true for k′ = β((r + 1)(D − 1) + 1) + 2(r +

1)(D−1), where D is the maximal degree of a reduced Gröbner base of b (w.r.t.
any term order).

Proof. For short, let ai = ai(R/b), i = 0, 1. Then a0 ≤ reg(R/b) and
a1 + 1 ≤ reg(R/b). By [HT, Corollary 1.3], we also have reg(R/b) ≤ (r +
1)(D−1). On the other hand, let a ≥ 1 be any integer. Since b is a generalized
Cohen-Macaulay ideal, dimK(0 :R/b xa

1) < ∞, and (b, xa
1) : m∞ = (b, xa

1) : x∞
0 .

Recall that x0 is the smallest term. By [E, Proposition 15.12], we have

dimK

[
(b, xa

1) : m∞

(b, xa
1)

]
a

= dimK

[
(b, xa

1) : x∞
0

(b, xa
1)

]
a

= dimK

[
(in(b) : x∞

0 , xa
1)

(in(b), xa
1)

]
a

= dimK

[
(in(b)|x0=1)

(in(b) + xa
1(in(b)|x0=1 : xa

1))

]
a

.
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Hence by Lemma 4.4,

β(reg(R/b) + 1) = β((r + 1)(D − 1) + 1) ≥ 1
d

dimK [H1
m(R/b)]0.

In particular k′ ≥ k and we only have to show (i) and (ii) for k.
By Lemma 4.3 we get [H1

m(R/b)]n = 0 for all n ≤ −β(reg(R/b) + 1). By
definition of a1, [H1

m(R/b)]n = 0 for all n ≥ a1 + 1. Hence

(4) mβ(reg(R/b)+1)+a1+1H1
m(R/b) = 0.

Since [H0
m(R/b)]n = 0 for all n ≤ 0,

(5) ma0H0
m(R/b) = 0.

Let t ≥ 1 and 0 ≤ j ≤ d. From the exact sequence

0 → R/(b : xt
j)

·xt
j−−→ R/b → R/(b, xt

j) → 0,

we get an exact sequence

(6) H0
m(R/b) → H0

m(R/(b, xt
j)) → H1

m(R/b).

Since β(reg(R/b)+1)+a1+1+a0 ≤ k, (4), (5) and (6) imply mkH0
m(R/(b, xt

j))
= 0. Therefore

(7) (b, xt
j) : mk = (b, xt

j) : m∞.

Note that (b, xt
j) is also a generalized Cohen-Macaulay ideal. By Definition 1.2

and (7) for any 0 ≤ i 
= j ≤ d the following holds:

(8) (b, xt
j) : mk ⊆ (b, xt

j) : xk
i ⊆ (b, xt

j) : x∞
i ⊆ (b, xt

j) : m∞ ⊆ (b, xt
j) : mk.

Hence (b, xt
j) : xk

i = (b, xt
j) : x∞

i , i.e. aj(t) = (b, xt
j) stabilizes at (1, k). Thus

(i) is proven.
Finally let t = 2k. In the proof of Proposition 3.2 we have shown that

b(i − 1, t) : xt
i =

i−1∑
j=0

(b, xt
j) : xt

i ⊆
i−1∑
j=0

(b, xt
j) : xk

i .

By (8) we can conclude that mk(b(i − 1, t) : xt
i) ⊆ b(i − 1, t) for all 0 ≤ i ≤ d.

Using Theorem 1.3, we then get (ii).

Note that in the above theorem all parameters can be computed via
Gröbner bases. Under an additional assumption we get the following nice
result.

Theorem 4.6. Let b be as in the above theorem. Moreover assume that
it is reduced. Then
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(i) aj(t) = (b, xt
j) stabilizes at (1, reg(R/b)) w.r.t. xi for all 0 ≤ i 
= j ≤ d,

and
(ii) b is a reg(R/b)-Buchsbaum ideal.

Proof. b reduced implies H0
m(R/b) = 0. Moreover, by [HSV, Lemma

1 (ii) (a)], [H1
m(R/b)]n = 0 for all n < 0 and n ≥ reg(R/b)) ≥ a1 + 1. Thus

mreg(R/b)H1
m(R/b) = 0.

The exact sequence (6) even gives an injection:

0 → H0
m(R/(b, xt

j)) → H1
m(R/b).

From this
(b, xt

j) : mreg(R/b) = (b, xt
j) : m∞,

and we can repeat the last part of the above proof.

In spite of this theorem, it would be nice to have a similar result for
arbitrary generalized Cohen-Macaulay homogeneous ideals.

Now we can state the main two theorems of this paper.

Theorem 4.7. If Algorithm A applied to any aj(t), 0 ≤ j ≤ d, does
not stop after β(reg(R/b) + 1) + 2 reg(R/b) + 1 (or β((r + 1)(D− 1) + 1) + 2(r
+1)(D − 1) + 1) steps, then b is not a l-Buchsbaum ideal for any l. Moreover,
if b is reduced, only reg(R/b) + 1 (or 2(r + 1)(D − 1) + 1) steps are required.

Proof. Fix an index j, 0 ≤ j ≤ d. For simplicity we use the same notation
as in Section 2 for aj(t), namely a(t) = aj(t). If b is a l-Buchsbaum ideal for
some l, then by Theorem 4.5, aj(t) stabilizes at (1, k), where

k = β(reg(R/b) + 1) + 2 reg(R/b).

By Theorems 2.14 and Lemma 2.10, δy(m) ≥ ∆y for all m ∈ G(∆+∆y(k+1)).
Thus Algorithm A must stop not later than the (k + 1)-st step.

Similarly, using Theorems 4.5 and 4.6, one can get other statements.

This theorem together with Theorem 3.3 implies

Theorem 4.8. Assume b be as in Section 2. There exists an algorithm
to determine if b is �-Buchsbaum for some �. In this case the algorithm also
gives the smallest value of such �.

Following Algorithm A we have to do many Gröbner bases calculation, if
aj does not stabilize for some j. One can avoid it by using the following result.
However here also the calculations could become too large.

Proposition 4.9. Assume the notation of Theorem 4.5. Let e denote
the multiplicity of R/b. Then b is a generalized Cohen-Macaulay ideal iff

(9) �(R/(b, x4k
0 , . . . , x4k

d )) − �(R/(b, x2k
0 , . . . , x2k

d )) = (2k)d+1(2d+1 − 1)e.
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Proof. If (9) holds, then x2k
0 , . . . , x2k

d is a so-called standard s.o.p. of
R/b, and thus b is generalized Cohen-Macaulay (see Theorem and Definition
17 in the Appendix of [SV]). Conversely, if b is generalized Cohen-Macaulay,
by Theorem 4.5 it is k-Buchsbaum. From Proposition 13 and Theorem and
Definition 17 in the Appendix of [SV] it follows that x2k

0 , . . . , x2k
d is a standard

s.o.p., and therefore (9) is satisfied.

Example 4.10. a) Theorem 4.8 is applicable to all simplicial semi-
groups. For this assume the prime ideal p ⊆ R = K[x0, . . . , xr] has generic
zero as follows:

x0 = tα00
0 · · · tα0d

d , . . . , xi = tαi0
0 · · · tαid

d , . . . , xr = tαr0
0 · · · tαrd

d ,

such that
(i) r > d,
(ii)

∑d
j=0 αij = D, 0 ≤ i ≤ r,

(iii) There are exactly d + 1 variables of the form xjh
= tDh , 0 ≤ h ≤ d.

Then by [CLO] a generating set for p is algorithmically defined, thus p satisfies
the conditions of Theorem 4.8. However in this case the theoretical part of
Theorem 4.6 is not new, because we already know from the proof of Lemma
4.11 in [TH] that the local cohomology modules Hi

m(R/p) = 0 for all i 
= 1, d+1
iff R/p is a generalized Cohen-Macaulay ideal, and H1

m(R/p) may have only
positive degrees. Moreover one can derive from the proof of Lemma 4.11 in
[TH] a simple combinatorial characterization for R/p to be a generalized Cohen-
Macaulay ideal. Note that for this class of ideals there is a good bound on the
Castelnuovo-Mumford regularity. Namely it was recently shown in [HS] that

reg(R/p) ≤ dim(R/p)(degree(R/p) − codim(R/p) − 2) + 3.

On the other hand if we modify p slightly by adding some monomials or
binomials not containing variables specialized in (iii) above, then one cannot
apply the theory of affine semigroup rings, but Theorem 4.8 remains valid.
In this case it is not clear how the Castelnuovo-Mumford regularity could be
bounded.

b) Example 1.7 is an example of the following binomial ideals: b =
(B), B a binomial generating set. Assume V1 = {xi1 , . . . , xik

} and V2 =
{xjk+1 , . . . , xijr+1

} are disjoint sets of variables and B decomposes into two
disjoint sets of binomials B1 and B2 such that:

1. B1 = {b; b = x
αih

ih
− mih

, 1 ≤ h ≤ k, xjt
|mih

for some jt, k + 1 ≤
t ≤ r + 1} is the set of binomials with a pure power term.

2. b ∈ B2 = B \ B1 implies xjt

 |b, k + 1 ≤ t ≤ r + 1.

3. Let <jt
be the term order rev. lex. with xjl

<jt
xih

, 1 ≤ h ≤
k, k+1 ≤ l ≤ r+1, and xjt

as smallest linear term. For every such
<jt

and b1 = m11 − m12, b2 = m21 − m22 in B either in(b1) and
in(b2) are relatively prime or their g.c.d. d divides m12 and m22,
thus by 2. d is a term in K[xi1 , . . . , xik

].
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Then 1. implies V1 is a s.o.p. for b, 3. implies B is a Gröbner basis since
s-polynomials reduce to 0 and therefore by 2. b : xjt

= b, k + 1 ≤ t ≤ r + 1.
So Proposition 3.4 could be applied.
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