On the Bott suspension map for non-compact Lie groups

By

Takashi WATANABE

1. Introduction

The Bott suspension map ([1]) is a map from the suspension of a symmetric space H/K into another symmetric space G/H, and its adjoint $H/K \rightarrow \Omega(G/H)$ for compact classical groups G is well known. But its analogue for non-compact Lie groups has not been so studied. In this paper we present two such maps.

A construction of the Bott suspension map in [6] can be applied to a non-compact group G. Precisely, we take two automorphisms σ, τ of G which commute and satisfy certain conditions. Then we have maps

$$b_0: \boldsymbol{GL}(n, \mathbb{C})/\boldsymbol{O}(n, \mathbb{C}) \to \Omega(\boldsymbol{Sp}(n, \mathbb{C})/\boldsymbol{GL}(n, \mathbb{C})), b_0: \boldsymbol{Sp}(2n, \mathbb{R})/\boldsymbol{GL}(2n, \mathbb{R}) \to \Omega(\boldsymbol{SL}(4n, \mathbb{R})/\boldsymbol{Sp}(2n, \mathbb{R}))$$

and show that a certain diagram involving b_0 is homotopy-commutative. Such a diagram appeared in a proof of the Bott periodicity theorems ([3]).

In Section 2, we revise some argument of [6] which we need. In Section 3, a key lemma is proved. In Section 4, main results are shown.

2. Preliminaries

For the argument of this section, we refer to Section 1 of [6].

Throughout this paper, G will be a connected Lie group that is not necessarily compact, and $e \in G$ will be the identity element of G.

Let $\sigma: G \to G$ be an automorphism. We denote by G^{σ} the subgroup of G left fixed by σ , i.e.,

$$G^{\sigma} = \{ g \in G \mid \sigma(g) = g \}.$$

Let $\tau: G \to G$ be another automorphism. Consider the following six conditions:

¹⁹⁹¹ Mathematics Subject Classification(s). 55P35, 55R45, 57S20

Communicated by Prof. Akira Kono

Received July 8, 2002

(1) σ and τ commute, i.e.,

$$\sigma \circ \tau = \tau \circ \sigma.$$

This condition implies that $\sigma(G^{\tau}) \subset G^{\tau}$ and $\tau(G^{\sigma}) \subset G^{\sigma}$. If we write $G^{\sigma\tau}$ for

$$(G^{\sigma})^{\tau} = \{g \in G^{\sigma} \mid \tau(g) = g\},\$$

this condition also implies that $G^{\sigma\tau} = G^{\sigma} \cap G^{\tau}$.

(2) τ is inner and of order 2. That is, there exists an element $x_{\tau} \in G$ such that

$$\tau(g) = x_{\tau} g x_{\tau}^{-1}$$
 and $x_{\tau}^2 g x_{\tau}^{-2} = g$

for all $g \in G$. The last equality is equivalent to

$$x_{\tau} g x_{\tau}^{-1} = x_{\tau}^{-1} g x_{\tau}$$

for all $g \in G$. Note that $g \in G$ belongs to G^{τ} if and only if $g x_{\tau} = x_{\tau} g$.

(3) There is a one-parameter subgroup

$$v_{\tau}: \mathbb{R} \to G$$

such that $v_{\tau}(1) = x_{\tau}$. (This is not a trivial condition, because in non-compact groups G, the exponential map $\exp : T_e G \to G$ is usually not surjective; see [2, p. 74].) Note that $v_{\tau}(t) \in G^{\tau}$ for all $t \in \mathbb{R}$.

(4) If $g \in G^{\sigma\tau}$, the relation

$$g v_{\tau}(t) = v_{\tau}(t) g$$

holds for all $t \in \mathbb{R}$. In other words, $G^{\sigma\tau}$ is contained in the centralizer of $\operatorname{Im} v_{\tau} = \{v_{\tau}(t) \mid t \in \mathbb{R}\}$:

$$G^{\sigma\tau} \subset C_G(\operatorname{Im} v_{\tau}).$$

(5) G^{σ} is not contained in $C_G(\operatorname{Im} v_{\tau})$. That is, there are elements $g_0 \in G^{\sigma}$ and $t_0 \in \mathbb{R}$ such that

$$g_0 v_\tau(t_0) \neq v_\tau(t_0) g_0.$$

(6) Im v_{τ} is not contained in G^{σ} . That is, there is an element $t_1 \in \mathbb{R}$ such that

$$\sigma(v_{\tau}(t_1)) \neq v_{\tau}(t_1).$$

Let us assume these conditions. Then by (3) we define a map

$$\hat{b}_0: \Sigma(G^\sigma/G^{\sigma\tau}) \to G/G^\sigma$$

by

$$\hat{b}_0([gG^{\sigma\tau},t]) = v_\tau(t)^{-1}gv_\tau(t)G^{\sigma\tau}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$ and $t \in [0, 1]$, where Σ denotes the reduced suspension. By (4) this map is well defined.

Remark 1. If (5) or (6) is not satisfied, then b_0 becomes a constant map. We need these two conditions only for excluding such a trivial case. Notice that, when we prove Lemma 2.1 below, the conditions (5) and (6) are not used.

In general, for any automorphism $\sigma: G \to G$, we have a map

$$\xi_{\sigma}: G/G^{\sigma} \to G$$

defined by $gG^{\tau} \mapsto g \sigma(g)^{-1}$. By virtue of (1), the map $\xi_{\tau} : G/G^{\tau} \to G$ can be restricted to $\xi_{\tau} : G^{\sigma}/G^{\sigma\tau} \to G^{\sigma}$. We have a fiber sequence

$$G^{\sigma} \xrightarrow{i_{\sigma}} G \xrightarrow{p_{\sigma}} G/G^{\sigma} \xrightarrow{q_{\sigma}} BG^{\sigma}$$

where BG denotes a classifying space for G, and there is a (weak) homotopy equivalence between G and ΩBG . The following result due to Harris [4] was given as Lemma 1 of [6]. But its proof was omitted there. We will give its details in the next section.

Lemma 2.1. Under the above conditions (1) to (6), the diagram

is homotopy-commutative.

3. Proof of Lemma 2.1

For a space X with base point $x_0 \in X$, let CX be the reduced cone of X, i.e.,

$$CX = (X \times [0,1]) / (X \times \{0\} \cup \{x_0\} \times [0,1]).$$

There is an inclusion $i: X \to CX$ defined by i(x) = [x, 1] for $x \in X$. Let ΣX be the reduced suspension of X, i.e.,

$$\varSigma X = CX/X = (X \times [0,1])/(X \times \{0,1\} \cup \{x_0\} \times [0,1]).$$

We have a cofiber sequence

 $X \xrightarrow{i} CX \xrightarrow{\pi} \Sigma X \xrightarrow{\simeq} \Sigma X.$

Define a map $\varXi: C(G^{\sigma}/G^{\sigma\tau}) \to G$ by

$$\Xi([gG^{\sigma\tau},t]) = v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)\tau(g)^{-1}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$ and $t \in [0, 1]$. This is well defined. For, first we show that, if $g \in G^{\sigma\tau}$, then $\Xi([gG^{\sigma\tau}, t]) = \Xi([G^{\sigma\tau}, t])$ for all $t \in [0, 1]$. Indeed, suppose that $g \in G^{\sigma\tau}$. Then we have

$$\begin{split} \Xi([gG^{\sigma\tau},t]) &= v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)\tau(g)^{-1} \\ &= v_{\tau}(1-t)^{-1}v_{\tau}(1-t)g\tau(g)^{-1} \quad \text{by (4)} \\ &= g\tau(g)^{-1} = gg^{-1} = e \quad \text{since } \tau(g) = g \\ &= v_{\tau}(1-t)^{-1}ev_{\tau}(1-t)\tau(e)^{-1} \\ &= \Xi([G^{\sigma\tau},t]). \end{split}$$

Secondly we can show that $\Xi([gG^{\sigma\tau}, 0]) = e$ for all $g \in G^{\sigma}$. Indeed,

$$\Xi([gG^{\sigma\tau}, 0]) = v_{\tau}(1)^{-1}gv_{\tau}(1)\tau(g)^{-1}$$

= $x_{\tau}^{-1}gx_{\tau}\tau(g)^{-1}$ since $v_{\tau}(1) = x_{\tau}$
= $x_{\tau}gx_{\tau}^{-1}\tau(g)^{-1}$ by the last equality in (2)
= $\tau(g)\tau(g)^{-1}$ by (2)
= $e.$

Lastly we have to show that $\Xi([G^{\sigma\tau},t]) = e$ for all $t \in [0,1]$. But we have already seen it .

Consider the diagram

where \hat{b}_0 is the map whose adjoint is b_0 , and $\hat{\xi}_{\tau}$ is the map whose adjoint is the composite

$$G^{\sigma}/G^{\sigma\tau} \xrightarrow{\xi_{\tau}} G^{\sigma} \xrightarrow{\simeq} \Omega B G^{\sigma}$$

To prove Lemma 2.1 it is enough to show that the right-hand square is homo-topy-commutative.

The left-hand square is commutative, i.e., $i_{\sigma} \circ \xi_{\tau} = \Xi \circ i$. In fact,

$$i_{\sigma} \circ \xi_{\tau}(gG^{\sigma\tau}) = i_{\sigma}(g\tau(g)^{-1}) = g\tau(g)^{-1}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$. On the other hand,

$$\Xi \circ i(gG^{\sigma\tau}) = \Xi([gG^{\sigma\tau}, 1]) = v_{\tau}(0)^{-1}gv_{\tau}(0)\tau(g)^{-1}$$

= $e^{-1}ge\tau(g)^{-1}$ since $v_{\tau}(0) = e$
= $g\tau(g)^{-1}$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$.

The middle square is homotopy-commutative, i.e., $p_{\sigma} \circ \Xi \simeq \hat{b}_0 \circ \pi$. In fact,

$$p_{\sigma} \circ \Xi([gG^{\sigma\tau}, t]) = p_{\sigma}(v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)\tau(g)^{-1})$$
$$= v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)\tau(g)^{-1}G^{\sigma}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$ and $t \in [0,1]$. On the other hand,

$$(\hat{b}_0 \circ \pi)([gG^{\sigma\tau}, t]) = \hat{b}_0([gG^{\sigma\tau}, t]) = v_\tau(t)^{-1}gv_\tau(t)G^{\sigma\tau}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$ and $t \in [0,1]$. Define a map $H: C(G^{\sigma}/G^{\sigma\tau}) \times [0,1] \to G/G^{\sigma}$ by

$$H([gG^{\sigma\tau}, t], u) = v_{\tau}((1-t)(1-u) + tu)^{-1}gv_{\tau}((1-t)(1-u) + tu)v_{\tau}(1-u)^{-1}g^{-1}v_{\tau}(1-u)G^{\sigma\tau}$$

for $gG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$ and $t, u \in [0, 1]$. This H is a well-defined, desired homotopy. For, first we show that, if $g \in G^{\sigma\tau}$, then $H([gG^{\sigma\tau}, t], u) = H([G^{\sigma\tau}, t], u)$ for all $t, u \in [0, 1]$. Indeed, suppose that $g \in G^{\sigma\tau}$. Then we can use (4) and have

$$H([gG^{\sigma\tau}, t], u) = v_{\tau}((1-t)(1-u) + tu)^{-1}v_{\tau}((1-t)(1-u) + tu)gg^{-1}v_{\tau}(1-u)^{-1}v_{\tau}(1-u)G^{\sigma}$$

= G^{σ}
= $v_{\tau}((1-t)(1-u) + tu)^{-1}ev_{\tau}((1-t)(1-u) + tu)v_{\tau}(1-u)^{-1}e^{-1}v_{\tau}(1-u)G^{\sigma}$
= $H([G^{\sigma\tau}, t], u).$

Secondly we have

$$H([gG^{\sigma\tau}, t], u) = v_{\tau}((1-t)(1-u) + tu)^{-1}ev_{\tau}((1-t)(1-u) + tu)v_{\tau}(1-u)^{-1}e^{-1}v_{\tau}(1-u)G^{\sigma}$$

= G^{σ}

for all $t, u \in [0, 1]$. Thirdly we have

$$H([gG^{\sigma\tau}, 0], u) = v_{\tau}(1-u)^{-1}gv_{\tau}(1-u)v_{\tau}(1-u)^{-1}g^{-1}v_{\tau}(1-u)G^{\sigma}$$

= G^{σ}

for all $u \in [0, 1]$. Fourthly, since $\tau(g) = x_{\tau}gx_{\tau}^{-1} = x_{\tau}^{-1}gx_{\tau}$ by (2), we have

$$H([gG^{\sigma\tau}, t], 0) = v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)v_{\tau}(1)^{-1}g^{-1}v_{\tau}(1)G^{\sigma}$$
$$= v_{\tau}(1-t)^{-1}gv_{\tau}(1-t)\tau(g)^{-1}G^{\sigma}$$
$$= p_{\sigma} \circ \Xi([gG^{\sigma\tau}, t])$$

for all $t \in [0, 1]$. Lastly, since $v_{\tau}(0) = e$ and $g^{-1} \in G^{\sigma}$, we have

Takashi Watanabe

$$H([gG^{\sigma\tau}, t], 1) = v_{\tau}(t)^{-1}gv_{\tau}(t)v_{\tau}(0)^{-1}g^{-1}v_{\tau}(0)G^{\sigma}$$

= $v_{\tau}(t)^{-1}gv_{\tau}(t)g^{-1}G^{\sigma}$
= $v_{\tau}(t)^{-1}gv_{\tau}(t)G^{\sigma}$
= $\hat{b}_{0} \circ \pi([gG^{\sigma\tau}, t])$

for all $t \in [0, 1]$.

Consequently the right-hand square is homotopy-commutative, and the proof is completed. $\hfill \Box$

4. Main results

Let I_n denote the unit $n \times n$ matrix. We put

$$I_{n,n} = \begin{pmatrix} -I_n & O \\ O & I_n \end{pmatrix}$$
 and $J_n = \begin{pmatrix} O & I_n \\ -I_n & O \end{pmatrix}$.

Let \mathbb{K} be \mathbb{R} or \mathbb{C} , and let $M_n(\mathbb{K})$ be the set of all $n \times n$ matrices $g = (g_{ij})$ with entries g_{ij} in \mathbb{K} . The transpose of $g \in M_n(\mathbb{K})$ is denoted by tg . According to [5], the real and complex symplectic groups are defined by

$$\boldsymbol{Sp}(n,\mathbb{K}) = \{g \in M_{2n}(\mathbb{K}) \mid {}^{t}g J_{n} g = J_{n}\}$$

for $\mathbb{K} = \mathbb{R}$ and $\mathbb{K} = \mathbb{C}$, respectively.

One of our main results is

Theorem 4.1. The diagram

is homotopy-commutative.

Proof. Consider the case $G = Sp(n, \mathbb{C})$. Then it is easy to see that J_n belongs to G, but $I_{n,n}$ does not. However, if i denotes the imaginary unit, then $iI_{n,n}$ belongs to G. We take $\sigma : G \to G$ to be

the inner automorphism of G defined by $g \mapsto (iI_{n,n}) g (iI_{n,n})^{-1}$

and $\tau: G \to G$ to be

the inner automorphism of G defined by $g \mapsto J_n g J_n^{-1}$.

In this case we shall show that the conditions (1) to (6) are satisfied. Since

(4.1)
$$I_{n,n} J_n = -J_n I_{n,n},$$

it follows that $\sigma \circ \tau = \tau \circ \sigma$. Thus the condition (1) is satisfied. Since $J_n^2 = -I_{2n}$, the condition (2) is satisfied.

Define a map $v_{\tau} : \mathbb{R} \to M_{2n}(\mathbb{C})$ by

(4.2)
$$v_{\tau}(t) = \begin{pmatrix} \left(\cos\frac{\pi}{2}t\right)I_n & \left(\sin\frac{\pi}{2}t\right)I_n \\ \left(-\sin\frac{\pi}{2}t\right)I_n & \left(\cos\frac{\pi}{2}t\right)I_n \end{pmatrix}$$

for $t \in \mathbb{R}$. Then $v_{\tau}(1) = J_n$. Since

$$v_{\tau}(t)^{-1} = \begin{pmatrix} \left(\cos\frac{\pi}{2}t\right)I_n & \left(-\sin\frac{\pi}{2}t\right)I_n \\ \left(\sin\frac{\pi}{2}t\right)I_n & \left(\cos\frac{\pi}{2}t\right)I_n \end{pmatrix} = {}^t(v_{\tau}(t))$$

for all $t \in \mathbb{R}$, we see that $\operatorname{Im} v_{\tau}$ is contained in G. It is clear that the relation

$$v_{\tau}(t_1) v_{\tau}(t_2) = v_{\tau}(t_1 + t_2)$$

holds for all $t_1, t_2 \in \mathbb{R}$. Thus v_{τ} may be viewed as a one-parameter subgroup of G. Thus the condition (3) is satisfied.

Writing $g \in G$ in the form

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where A, B, C, D are complex $n \times n$ matrices, by definition we have

$${}^{t}AC = {}^{t}CA, \qquad {}^{t}BD = {}^{t}DB, \qquad {}^{t}AD - {}^{t}CB = I_{n}.$$

In terms of these block matrices, $\sigma: G \to G$ is given by

(4.3)
$$\sigma\left(\begin{pmatrix}A & B\\ C & D\end{pmatrix}\right) = \begin{pmatrix}A & -B\\ -C & D\end{pmatrix}.$$

So we find that

$$G^{\sigma} = \left\{ \begin{pmatrix} A & O \\ O & D \end{pmatrix} \middle| A, D \in M_n(\mathbb{C}), \ ^t A D = I_n \right\}.$$

Therefore G^{σ} may be identified with the general linear group $GL(n, \mathbb{C})$ by

$$\begin{pmatrix} A & O \\ O & D \end{pmatrix} \longleftrightarrow A.$$

Similarly $\tau: G \to G$ is given by

$$\tau\left(\begin{pmatrix}A & B\\C & D\end{pmatrix}\right) = \begin{pmatrix}D & -C\\-B & A\end{pmatrix}.$$

So we find that

$$G^{\tau} = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \middle| A, B \in M_n(\mathbb{C}), \ {}^tAB = {}^tBA, \ {}^tAA + {}^tBB = I_n \right\}.$$

Since $G^{\sigma\tau} = G^{\sigma} \cap G^{\tau}$ by (1), it follows that

$$G^{\sigma\tau} = \left\{ \begin{pmatrix} A & O \\ O & A \end{pmatrix} \middle| A \in M_n(\mathbb{C}), \ ^tAA = I_n \right\}.$$

Therefore $G^{\sigma\tau}$ may be identified with the complex orthogonal group $O(n, \mathbb{C})$ by

$$\begin{pmatrix} A & O \\ O & A \end{pmatrix} \longleftrightarrow A.$$

Suppose that $g \in G^{\sigma\tau}$. Then

$$g = \begin{pmatrix} A & O \\ O & A \end{pmatrix}$$

for some $A \in M_n(\mathbb{C})$. Using this and (4.2), one readily checks that $g v_\tau(t) = v_\tau(t) g$ for all $t \in \mathbb{R}$. Thus the condition (4) is satisfied.

Consider the case when $g_0 = iI_{n,n}$ and $t_0 = 1$ in (5). Then by (4.1) we see that the condition (5) is satisfied.

Consider the case when $t_1 = 1$ in (6). Then by (4.3) we see that the condition (6) is satisfied.

In this way we can apply Lemma 2.1 to obtain a desired homotopy-commutative diagram, and the proof is completed. $\hfill \Box$

The other of our main results is

Theorem 4.2. The diagram

is homotopy-commutative.

Proof. Consider the case $G = SL(4n, \mathbb{R})$. Then it is easy to see that both $I_{2n,2n}$ and J_{2n} belong to G. We take $\sigma : G \to G$ to be

the outer automorphism of G defined by $g \mapsto J_{2n}({}^tg^{-1})J_{2n}{}^{-1}$

and $\tau:G\to G$ to be

the inner automorphism of G defined by $g \mapsto (I_{2n,2n}) g (I_{2n,2n})^{-1}$.

In this case we shall show that the conditions (1) to (6) are satisfied.

Since ${}^{t}I_{2n,2n} = I_{2n,2n} = I_{2n,2n}^{-1}$, it follows from (4.1) that $\sigma \circ \tau = \tau \circ \sigma$. Thus the condition (1) is satisfied.

Since $(I_{2n,2n})^2 = I_{4n}$, the condition (2) is satisfied. Define a map $u_{\tau} : \mathbb{R} \to M_{2n}(\mathbb{R})$ by

$$u_{\tau}(t) = \begin{pmatrix} (\cos \pi t)I_n & (\sin \pi t)I_n \\ (-\sin \pi t)I_n & (\cos \pi t)I_n \end{pmatrix}$$

for $t \in \mathbb{R}$, and define a map $v_{\tau} : \mathbb{R} \to M_{4n}(\mathbb{R})$ by

(4.4)
$$v_{\tau}(t) = \begin{pmatrix} u_{\tau}(t) & O\\ O & I_{2n} \end{pmatrix}$$

for $t \in \mathbb{R}$. Then $v_{\tau}(1) = I_{2n,2n}$. Since det $u_{\tau}(t) = 1$ for all $t \in \mathbb{R}$, we see that Im v_{τ} is contained in G. It is clear that the relation

$$v_{\tau}(t_1) v_{\tau}(t_2) = v_{\tau}(t_1 + t_2)$$

holds for all $t_1, t_2 \in \mathbb{R}$. Thus v_{τ} may be viewed as a one-parameter subgroup of G. Thus the condition (3) is satisfied.

An element $g \in G$ belongs to G^{σ} if and only if $J_{2n}({}^tg^{-1})J_{2n}{}^{-1} = g$, which is equivalent to ${}^tg J_{2n} g = J_{2n}$. So we find that

$$G^{\sigma} = \boldsymbol{Sp}(2n, \mathbb{R})$$

=
$$\left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \middle| \begin{array}{c} A, B, C, D \in M_{2n}(\mathbb{R}), \ ^{t}AC = {}^{t}CA, \\ {}^{t}BD = {}^{t}DB, \ ^{t}AD - {}^{t}CB = I_{2n} \end{array} \right\}.$$

Since $\tau: G \to G$ is given by

$$\tau\left(\begin{pmatrix}A & B\\ C & D\end{pmatrix}\right) = \begin{pmatrix}A & -B\\ -C & D\end{pmatrix},$$

we find that

$$G^{\tau} = \left\{ \begin{pmatrix} A & O \\ O & D \end{pmatrix} \middle| A, D \in M_{2n}(\mathbb{R}), \ (\det A)(\det D) = 1 \right\}.$$

Similarly it follows from (1) that

$$G^{\sigma\tau} = \left\{ \begin{pmatrix} A & O \\ O & D \end{pmatrix} \middle| A, D \in M_{2n}(\mathbb{R}), \ ^{t}A D = I_{2n} \right\}.$$

Therefore $G^{\sigma\tau}$ may be identified with the general linear group $GL(2n,\mathbb{R})$ by

$$\begin{pmatrix} A & O \\ O & D \end{pmatrix} \longleftrightarrow A.$$

Suppose that $g \in G^{\sigma\tau}$. Then

$$g = \begin{pmatrix} A & O \\ O & D \end{pmatrix}$$

for some $A, D \in M_{2n}(\mathbb{R})$. Using this and (4.4), one readily checks that $gv_{\tau}(t) = v_{\tau}(t)g$ for all $t \in \mathbb{R}$. Thus the condition (4) is satisfied.

Using (4.1), we easily see that the conditions (5) and (6) are satisfied.

In this way we can apply Lemma 2.1 to obtain a desired homotopy-commutative diagram, and the proof is completed. $\hfill \Box$

DEPARTMENT OF APPLIED MATHEMATICS FACULTY OF SCIENCE OSAKA WOMEN'S UNIVERSITY DAISEN, SAKAI, OSAKA 590-0035, JAPAN e-mail: takashiw@appmath.osaka-wu.ac.jp

References

- R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313–337.
- [2] R. Carter, G. Segal and I. Macdonald, *Lectures on Lie groups and Lie algebras*, Cambridge Univ. Press, 1995.
- [3] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pure Appl. 54 (1961), 231–254.
- [4] B. Harris, The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc. 131 (1968), 323–332.
- [5] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.
- T. Watanabe, The induced homomorphism of the Bott map on K-theory, J. Math. Kyoto Univ. 36-3 (1996), 539–552.