On the Bott suspension map for non-compact Lie groups

By
Takashi Watanabe

1. Introduction

The Bott suspension map ([1]) is a map from the suspension of a symmetric space H / K into another symmetric space G / H, and its adjoint $H / K \rightarrow$ $\Omega(G / H)$ for compact classical groups G is well known. But its analogue for non-compact Lie groups has not been so studied. In this paper we present two such maps.

A construction of the Bott suspension map in [6] can be applied to a non-compact group G. Precisely, we take two automorphisms σ, τ of G which commute and satisfy certain conditions. Then we have maps

$$
\begin{aligned}
& b_{0}: \boldsymbol{G} \boldsymbol{L}(n, \mathbb{C}) / \boldsymbol{O}(n, \mathbb{C}) \rightarrow \Omega(\boldsymbol{S p}(n, \mathbb{C}) / \boldsymbol{G} \boldsymbol{L}(n, \mathbb{C})) \\
& b_{0}: \boldsymbol{S p} \boldsymbol{p}(2 n, \mathbb{R}) / \boldsymbol{G} \boldsymbol{L}(2 n, \mathbb{R}) \rightarrow \Omega(\boldsymbol{S} \boldsymbol{L}(4 n, \mathbb{R}) / \boldsymbol{S p}(2 n, \mathbb{R}))
\end{aligned}
$$

and show that a certain diagram involving b_{0} is homotopy-commutative. Such a diagram appeared in a proof of the Bott periodicity theorems ([3]).

In Section 2, we revise some argument of [6] which we need. In Section 3, a key lemma is proved. In Section 4, main results are shown.

2. Preliminaries

For the argument of this section, we refer to Section 1 of [6].
Throughout this paper, G will be a connected Lie group that is not necessarily compact, and $e \in G$ will be the identity element of G.

Let $\sigma: G \rightarrow G$ be an automorphism. We denote by G^{σ} the subgroup of G left fixed by σ, i.e.,

$$
G^{\sigma}=\{g \in G \mid \sigma(g)=g\} .
$$

Let $\tau: G \rightarrow G$ be another automorphism. Consider the following six conditions:

[^0](1) σ and τ commute, i.e.,
$$
\sigma \circ \tau=\tau \circ \sigma
$$

This condition implies that $\sigma\left(G^{\tau}\right) \subset G^{\tau}$ and $\tau\left(G^{\sigma}\right) \subset G^{\sigma}$. If we write $G^{\sigma \tau}$ for

$$
\left(G^{\sigma}\right)^{\tau}=\left\{g \in G^{\sigma} \mid \tau(g)=g\right\},
$$

this condition also implies that $G^{\sigma \tau}=G^{\sigma} \cap G^{\tau}$.
(2) τ is inner and of order 2 . That is, there exists an element $x_{\tau} \in G$ such that

$$
\tau(g)=x_{\tau} g x_{\tau}^{-1} \quad \text { and } \quad x_{\tau}^{2} g x_{\tau}^{-2}=g
$$

for all $g \in G$. The last equality is equivalent to

$$
x_{\tau} g x_{\tau}^{-1}=x_{\tau}^{-1} g x_{\tau}
$$

for all $g \in G$. Note that $g \in G$ belongs to G^{τ} if and only if $g x_{\tau}=x_{\tau} g$.
(3) There is a one-parameter subgroup

$$
v_{\tau}: \mathbb{R} \rightarrow G
$$

such that $v_{\tau}(1)=x_{\tau}$. (This is not a trivial condition, because in non-compact groups G, the exponential map exp : $T_{e} G \rightarrow G$ is usually not surjective; see [2, p. 74].) Note that $v_{\tau}(t) \in G^{\tau}$ for all $t \in \mathbb{R}$.
(4) If $g \in G^{\sigma \tau}$, the relation

$$
g v_{\tau}(t)=v_{\tau}(t) g
$$

holds for all $t \in \mathbb{R}$. In other words, $G^{\sigma \tau}$ is contained in the centralizer of $\operatorname{Im} v_{\tau}=\left\{v_{\tau}(t) \mid t \in \mathbb{R}\right\}:$

$$
G^{\sigma \tau} \subset C_{G}\left(\operatorname{Im} v_{\tau}\right)
$$

(5) G^{σ} is not contained in $C_{G}\left(\operatorname{Im} v_{\tau}\right)$. That is, there are elements $g_{0} \in G^{\sigma}$ and $t_{0} \in \mathbb{R}$ such that

$$
g_{0} v_{\tau}\left(t_{0}\right) \neq v_{\tau}\left(t_{0}\right) g_{0}
$$

(6) $\operatorname{Im} v_{\tau}$ is not contained in G^{σ}. That is, there is an element $t_{1} \in \mathbb{R}$ such that

$$
\sigma\left(v_{\tau}\left(t_{1}\right)\right) \neq v_{\tau}\left(t_{1}\right) .
$$

Let us assume these conditions. Then by (3) we define a map

$$
\hat{b}_{0}: \Sigma\left(G^{\sigma} / G^{\sigma \tau}\right) \rightarrow G / G^{\sigma}
$$

by

$$
\hat{b}_{0}\left(\left[g G^{\sigma \tau}, t\right]\right)=v_{\tau}(t)^{-1} g v_{\tau}(t) G^{\sigma}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$ and $t \in[0,1]$, where Σ denotes the reduced suspension. By (4) this map is well defined.

Remark 1. If (5) or (6) is not satisfied, then b_{0} becomes a constant map. We need these two conditions only for excluding such a trivial case. Notice that, when we prove Lemma 2.1 below, the conditions (5) and (6) are not used.

In general, for any automorphism $\sigma: G \rightarrow G$, we have a map

$$
\xi_{\sigma}: G / G^{\sigma} \rightarrow G
$$

defined by $g G^{\tau} \mapsto g \sigma(g)^{-1}$. By virtue of (1), the map $\xi_{\tau}: G / G^{\tau} \rightarrow G$ can be restricted to $\xi_{\tau}: G^{\sigma} / G^{\sigma \tau} \rightarrow G^{\sigma}$. We have a fiber sequence

$$
G^{\sigma} \xrightarrow{i_{\sigma}} G \xrightarrow{p_{\sigma}} G / G^{\sigma} \xrightarrow{q_{\sigma}} B G^{\sigma},
$$

where $B G$ denotes a classifying space for G, and there is a (weak) homotopy equivalence between G and $\Omega B G$. The following result due to Harris [4] was given as Lemma 1 of [6]. But its proof was omitted there. We will give its details in the next section.

Lemma 2.1. Under the above conditions (1) to (6), the diagram

is homotopy-commutative.

3. Proof of Lemma 2.1

For a space X with base point $x_{0} \in X$, let $C X$ be the reduced cone of X, i.e.,

$$
C X=(X \times[0,1]) /\left(X \times\{0\} \cup\left\{x_{0}\right\} \times[0,1]\right) .
$$

There is an inclusion $i: X \rightarrow C X$ defined by $i(x)=[x, 1]$ for $x \in X$. Let ΣX be the reduced suspension of X, i.e.,

$$
\Sigma X=C X / X=(X \times[0,1]) /\left(X \times\{0,1\} \cup\left\{x_{0}\right\} \times[0,1]\right)
$$

We have a cofiber sequence

$$
X \xrightarrow{i} C X \xrightarrow{\pi} \Sigma X \xrightarrow{\simeq} \Sigma X .
$$

Define a map $\Xi: C\left(G^{\sigma} / G^{\sigma \tau}\right) \rightarrow G$ by

$$
\Xi\left(\left[g G^{\sigma \tau}, t\right]\right)=v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) \tau(g)^{-1}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$ and $t \in[0,1]$. This is well defined. For, first we show that, if $g \in G^{\sigma \tau}$, then $\Xi\left(\left[g G^{\sigma \tau}, t\right]\right)=\Xi\left(\left[G^{\sigma \tau}, t\right]\right)$ for all $t \in[0,1]$. Indeed, suppose that $g \in G^{\sigma \tau}$. Then we have

$$
\begin{aligned}
\Xi\left(\left[g G^{\sigma \tau}, t\right]\right) & =v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) \tau(g)^{-1} \\
& =v_{\tau}(1-t)^{-1} v_{\tau}(1-t) g \tau(g)^{-1} \quad \text { by }(4) \\
& =g \tau(g)^{-1}=g g^{-1}=e \quad \text { since } \tau(g)=g \\
& =v_{\tau}(1-t)^{-1} e v_{\tau}(1-t) \tau(e)^{-1} \\
& =\Xi\left(\left[G^{\sigma \tau}, t\right]\right) .
\end{aligned}
$$

Secondly we can show that $\Xi\left(\left[g G^{\sigma \tau}, 0\right]\right)=e$ for all $g \in G^{\sigma}$. Indeed,

$$
\begin{array}{rlr}
\Xi\left(\left[g G^{\sigma \tau}, 0\right]\right) & =v_{\tau}(1)^{-1} g v_{\tau}(1) \tau(g)^{-1} \\
& =x_{\tau}^{-1} g x_{\tau} \tau(g)^{-1} & \text { since } v_{\tau}(1)=x_{\tau} \\
& =x_{\tau} g x_{\tau}^{-1} \tau(g)^{-1} & \text { by the last equality in }(2) \\
& =\tau(g) \tau(g)^{-1} & \text { by }(2) \\
& =e .
\end{array}
$$

Lastly we have to show that $\Xi\left(\left[G^{\sigma \tau}, t\right]\right)=e$ for all $t \in[0,1]$. But we have already seen it .

Consider the diagram

where \hat{b}_{0} is the map whose adjoint is b_{0}, and $\hat{\xi}_{\tau}$ is the map whose adjoint is the composite

$$
G^{\sigma} / G^{\sigma \tau} \xrightarrow{\xi_{\tau}} G^{\sigma} \xrightarrow{\simeq} \Omega B G^{\sigma} .
$$

To prove Lemma 2.1 it is enough to show that the right-hand square is homo-topy-commutative.

The left-hand square is commutative, i.e., $i_{\sigma} \circ \xi_{\tau}=\Xi \circ i$. In fact,

$$
i_{\sigma} \circ \xi_{\tau}\left(g G^{\sigma \tau}\right)=i_{\sigma}\left(g \tau(g)^{-1}\right)=g \tau(g)^{-1}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$. On the other hand,

$$
\begin{aligned}
\Xi \circ i\left(g G^{\sigma \tau}\right) & =\Xi\left(\left[g G^{\sigma \tau}, 1\right]\right)=v_{\tau}(0)^{-1} g v_{\tau}(0) \tau(g)^{-1} \\
& =e^{-1} \operatorname{ge\tau }(g)^{-1} \quad \text { since } v_{\tau}(0)=e \\
& =g \tau(g)^{-1}
\end{aligned}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$.

The middle square is homotopy-commutative, i.e., $p_{\sigma} \circ \Xi \simeq \hat{b}_{0} \circ \pi$. In fact,

$$
\begin{aligned}
p_{\sigma} \circ \Xi\left(\left[g G^{\sigma \tau}, t\right]\right) & =p_{\sigma}\left(v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) \tau(g)^{-1}\right) \\
& =v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) \tau(g)^{-1} G^{\sigma}
\end{aligned}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$ and $t \in[0,1]$. On the other hand,

$$
\left(\hat{b}_{0} \circ \pi\right)\left(\left[g G^{\sigma \tau}, t\right]\right)=\hat{b}_{0}\left(\left[g G^{\sigma \tau}, t\right]\right)=v_{\tau}(t)^{-1} g v_{\tau}(t) G^{\sigma}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$ and $t \in[0,1]$. Define a map $H: C\left(G^{\sigma} / G^{\sigma \tau}\right) \times[0,1] \rightarrow$ G / G^{σ} by

$$
\begin{aligned}
& H\left(\left[g G^{\sigma \tau}, t\right], u\right) \\
& =v_{\tau}((1-t)(1-u)+t u)^{-1} g v_{\tau}((1-t)(1-u)+t u) v_{\tau}(1-u)^{-1} g^{-1} v_{\tau}(1-u) G^{\sigma}
\end{aligned}
$$

for $g G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}$ and $t, u \in[0,1]$. This H is a well-defined, desired homotopy. For, first we show that, if $g \in G^{\sigma \tau}$, then $H\left(\left[g G^{\sigma \tau}, t\right], u\right)=H\left(\left[G^{\sigma \tau}, t\right], u\right)$ for all $t, u \in[0,1]$. Indeed, suppose that $g \in G^{\sigma \tau}$. Then we can use (4) and have

$$
\begin{aligned}
& H\left(\left[g G^{\sigma \tau}, t\right], u\right) \\
& =v_{\tau}((1-t)(1-u)+t u)^{-1} v_{\tau}((1-t)(1-u)+t u) g g^{-1} v_{\tau}(1-u)^{-1} v_{\tau}(1-u) G^{\sigma} \\
& =G^{\sigma} \\
& =v_{\tau}((1-t)(1-u)+t u)^{-1} e v_{\tau}((1-t)(1-u)+t u) v_{\tau}(1-u)^{-1} e^{-1} v_{\tau}(1-u) G^{\sigma} \\
& =H\left(\left[G^{\sigma \tau}, t\right], u\right) .
\end{aligned}
$$

Secondly we have

$$
\begin{aligned}
& H\left(\left[g G^{\sigma \tau}, t\right], u\right) \\
& =v_{\tau}((1-t)(1-u)+t u)^{-1} e v_{\tau}((1-t)(1-u)+t u) v_{\tau}(1-u)^{-1} e^{-1} v_{\tau}(1-u) G^{\sigma} \\
& =G^{\sigma}
\end{aligned}
$$

for all $t, u \in[0,1]$. Thirdly we have

$$
\begin{aligned}
H\left(\left[g G^{\sigma \tau}, 0\right], u\right) & =v_{\tau}(1-u)^{-1} g v_{\tau}(1-u) v_{\tau}(1-u)^{-1} g^{-1} v_{\tau}(1-u) G^{\sigma} \\
& =G^{\sigma}
\end{aligned}
$$

for all $u \in[0,1]$. Fourthly, since $\tau(g)=x_{\tau} g x_{\tau}^{-1}=x_{\tau}^{-1} g x_{\tau}$ by (2), we have

$$
\begin{aligned}
H\left(\left[g G^{\sigma \tau}, t\right], 0\right) & =v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) v_{\tau}(1)^{-1} g^{-1} v_{\tau}(1) G^{\sigma} \\
& =v_{\tau}(1-t)^{-1} g v_{\tau}(1-t) \tau(g)^{-1} G^{\sigma} \\
& =p_{\sigma} \circ \Xi\left(\left[g G^{\sigma \tau}, t\right]\right)
\end{aligned}
$$

for all $t \in[0,1]$. Lastly, since $v_{\tau}(0)=e$ and $g^{-1} \in G^{\sigma}$, we have

$$
\begin{aligned}
H\left(\left[g G^{\sigma \tau}, t\right], 1\right) & =v_{\tau}(t)^{-1} g v_{\tau}(t) v_{\tau}(0)^{-1} g^{-1} v_{\tau}(0) G^{\sigma} \\
& =v_{\tau}(t)^{-1} g v_{\tau}(t) g^{-1} G^{\sigma} \\
& =v_{\tau}(t)^{-1} g v_{\tau}(t) G^{\sigma} \\
& =\hat{b}_{0} \circ \pi\left(\left[g G^{\sigma \tau}, t\right]\right)
\end{aligned}
$$

for all $t \in[0,1]$.
Consequently the right-hand square is homotopy-commutative, and the proof is completed.

4. Main results

Let I_{n} denote the unit $n \times n$ matrix. We put

$$
I_{n, n}=\left(\begin{array}{cc}
-I_{n} & O \\
O & I_{n}
\end{array}\right) \quad \text { and } \quad J_{n}=\left(\begin{array}{cc}
O & I_{n} \\
-I_{n} & O
\end{array}\right)
$$

Let \mathbb{K} be \mathbb{R} or \mathbb{C}, and let $M_{n}(\mathbb{K})$ be the set of all $n \times n$ matrices $g=\left(g_{i j}\right)$ with entries $g_{i j}$ in \mathbb{K}. The transpose of $g \in M_{n}(\mathbb{K})$ is denoted by ${ }^{t} g$. According to [5], the real and complex symplectic groups are defined by

$$
\boldsymbol{S p}(n, \mathbb{K})=\left\{\left.g \in M_{2 n}(\mathbb{K})\right|^{t} g J_{n} g=J_{n}\right\}
$$

for $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{C}$, respectively.
One of our main results is
Theorem 4.1. The diagram

$$
\begin{array}{ccc}
\boldsymbol{G} \boldsymbol{L}(n, \mathbb{C}) / \boldsymbol{O}(n, \mathbb{C}) & \xrightarrow{b_{0}} \Omega(\boldsymbol{S} \boldsymbol{p}(n, \mathbb{C}) / \boldsymbol{G} \boldsymbol{L}(n, \mathbb{C})) \\
\xi_{\tau} \downarrow & & \downarrow \Omega q_{\sigma} \\
\boldsymbol{G} \boldsymbol{L}(n, \mathbb{C}) & \simeq & \Omega B \boldsymbol{G} \boldsymbol{L}(n, \mathbb{C})
\end{array}
$$

is homotopy-commutative.
Proof. Consider the case $G=\boldsymbol{S p}(n, \mathbb{C})$. Then it is easy to see that J_{n} belongs to G, but $I_{n, n}$ does not. However, if \boldsymbol{i} denotes the imaginary unit, then $i I_{n, n}$ belongs to G. We take $\sigma: G \rightarrow G$ to be
the inner automorphism of G defined by $g \mapsto\left(i I_{n, n}\right) g\left(\boldsymbol{i} I_{n, n}\right)^{-1}$
and $\tau: G \rightarrow G$ to be
the inner automorphism of G defined by $g \mapsto J_{n} g J_{n}{ }^{-1}$.
In this case we shall show that the conditions (1) to (6) are satisfied.
Since

$$
\begin{equation*}
I_{n, n} J_{n}=-J_{n} I_{n, n} \tag{4.1}
\end{equation*}
$$

it follows that $\sigma \circ \tau=\tau \circ \sigma$. Thus the condition (1) is satisfied.
Since $J_{n}{ }^{2}=-I_{2 n}$, the condition (2) is satisfied.
Define a map $v_{\tau}: \mathbb{R} \rightarrow M_{2 n}(\mathbb{C})$ by

$$
v_{\tau}(t)=\left(\begin{array}{cc}
\left(\cos \frac{\pi}{2} t\right) I_{n} & \left(\sin \frac{\pi}{2} t\right) I_{n} \tag{4.2}\\
\left(-\sin \frac{\pi}{2} t\right) I_{n} & \left(\cos \frac{\pi}{2} t\right) I_{n}
\end{array}\right)
$$

for $t \in \mathbb{R}$. Then $v_{\tau}(1)=J_{n}$. Since

$$
v_{\tau}(t)^{-1}=\left(\begin{array}{cc}
\left(\cos \frac{\pi}{2} t\right) I_{n} & \left(-\sin \frac{\pi}{2} t\right) I_{n} \\
\left(\sin \frac{\pi}{2} t\right) I_{n} & \left(\cos \frac{\pi}{2} t\right) I_{n}
\end{array}\right)={ }^{t}\left(v_{\tau}(t)\right)
$$

for all $t \in \mathbb{R}$, we see that $\operatorname{Im} v_{\tau}$ is contained in G. It is clear that the relation

$$
v_{\tau}\left(t_{1}\right) v_{\tau}\left(t_{2}\right)=v_{\tau}\left(t_{1}+t_{2}\right)
$$

holds for all $t_{1}, t_{2} \in \mathbb{R}$. Thus v_{τ} may be viewed as a one-parameter subgroup of G. Thus the condition (3) is satisfied.

Writing $g \in G$ in the form

$$
g=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A, B, C, D are complex $n \times n$ matrices, by definition we have

$$
{ }^{t} A C={ }^{t} C A, \quad{ }^{t} B D={ }^{t} D B, \quad{ }^{t} A D-{ }^{t} C B=I_{n} .
$$

In terms of these block matrices, $\sigma: G \rightarrow G$ is given by

$$
\sigma\left(\left(\begin{array}{ll}
A & B \tag{4.3}\\
C & D
\end{array}\right)\right)=\left(\begin{array}{cc}
A & -B \\
-C & D
\end{array}\right)
$$

So we find that

$$
G^{\sigma}=\left\{\left.\left(\begin{array}{ll}
A & O \\
O & D
\end{array}\right) \right\rvert\, A, D \in M_{n}(\mathbb{C}),{ }^{t} A D=I_{n}\right\} .
$$

Therefore G^{σ} may be identified with the general linear group $\boldsymbol{G} \boldsymbol{L}(n, \mathbb{C})$ by

$$
\left(\begin{array}{ll}
A & O \\
O & D
\end{array}\right) \longleftrightarrow A
$$

Similarly $\tau: G \rightarrow G$ is given by

$$
\tau\left(\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right)=\left(\begin{array}{cc}
D & -C \\
-B & A
\end{array}\right)
$$

So we find that

$$
G^{\tau}=\left\{\left.\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right) \right\rvert\, A, B \in M_{n}(\mathbb{C}),{ }^{t} A B={ }^{t} B A,{ }^{t} A A+{ }^{t} B B=I_{n}\right\}
$$

Since $G^{\sigma \tau}=G^{\sigma} \cap G^{\tau}$ by (1), it follows that

$$
G^{\sigma \tau}=\left\{\left.\left(\begin{array}{ll}
A & O \\
O & A
\end{array}\right) \right\rvert\, A \in M_{n}(\mathbb{C}),{ }^{t} A A=I_{n}\right\}
$$

Therefore $G^{\sigma \tau}$ may be identified with the complex orthogonal group $\boldsymbol{O}(n, \mathbb{C})$ by

$$
\left(\begin{array}{cc}
A & O \\
O & A
\end{array}\right) \longleftrightarrow A
$$

Suppose that $g \in G^{\sigma \tau}$. Then

$$
g=\left(\begin{array}{ll}
A & O \\
O & A
\end{array}\right)
$$

for some $A \in M_{n}(\mathbb{C})$. Using this and (4.2), one readily checks that $g v_{\tau}(t)=$ $v_{\tau}(t) g$ for all $t \in \mathbb{R}$. Thus the condition (4) is satisfied.

Consider the case when $g_{0}=\boldsymbol{i} I_{n, n}$ and $t_{0}=1$ in (5). Then by (4.1) we see that the condition (5) is satisfied.

Consider the case when $t_{1}=1$ in (6). Then by (4.3) we see that the condition (6) is satisfied.

In this way we can apply Lemma 2.1 to obtain a desired homotopycommutative diagram, and the proof is completed.

The other of our main results is
Theorem 4.2. The diagram

$$
\begin{array}{ccc}
\boldsymbol{S} \boldsymbol{p}(2 n, \mathbb{R}) / \boldsymbol{G} \boldsymbol{L}(2 n, \mathbb{R}) & \xrightarrow{b_{0}} \Omega(\boldsymbol{S} \boldsymbol{L}(4 n, \mathbb{R}) / \boldsymbol{S} \boldsymbol{p}(2 n, \mathbb{R})) \\
\xi_{\tau} \downarrow & & \downarrow \Omega q_{\sigma} \\
\boldsymbol{S} \boldsymbol{p}(2 n, \mathbb{R}) & \longrightarrow & \Omega B \boldsymbol{S} \boldsymbol{p}(2 n, \mathbb{R})
\end{array}
$$

is homotopy-commutative.
Proof. Consider the case $G=\boldsymbol{S} \boldsymbol{L}(4 n, \mathbb{R})$. Then it is easy to see that both $I_{2 n, 2 n}$ and $J_{2 n}$ belong to G. We take $\sigma: G \rightarrow G$ to be
the outer automorphism of G defined by $g \mapsto J_{2 n}\left({ }^{t} g^{-1}\right) J_{2 n}{ }^{-1}$
and $\tau: G \rightarrow G$ to be
the inner automorphism of G defined by $g \mapsto\left(I_{2 n, 2 n}\right) g\left(I_{2 n, 2 n}\right)^{-1}$.

In this case we shall show that the conditions (1) to (6) are satisfied.
Since ${ }^{t} I_{2 n, 2 n}=I_{2 n, 2 n}=I_{2 n, 2 n}{ }^{-1}$, it follows from (4.1) that $\sigma \circ \tau=\tau \circ \sigma$. Thus the condition (1) is satisfied.

Since $\left(I_{2 n, 2 n}\right)^{2}=I_{4 n}$, the condition (2) is satisfied.
Define a map $u_{\tau}: \mathbb{R} \rightarrow M_{2 n}(\mathbb{R})$ by

$$
u_{\tau}(t)=\left(\begin{array}{cc}
(\cos \pi t) I_{n} & (\sin \pi t) I_{n} \\
(-\sin \pi t) I_{n} & (\cos \pi t) I_{n}
\end{array}\right)
$$

for $t \in \mathbb{R}$, and define a map $v_{\tau}: \mathbb{R} \rightarrow M_{4 n}(\mathbb{R})$ by

$$
v_{\tau}(t)=\left(\begin{array}{cc}
u_{\tau}(t) & O \tag{4.4}\\
O & I_{2 n}
\end{array}\right)
$$

for $t \in \mathbb{R}$. Then $v_{\tau}(1)=I_{2 n, 2 n}$. Since $\operatorname{det} u_{\tau}(t)=1$ for all $t \in \mathbb{R}$, we see that $\operatorname{Im} v_{\tau}$ is contained in G. It is clear that the relation

$$
v_{\tau}\left(t_{1}\right) v_{\tau}\left(t_{2}\right)=v_{\tau}\left(t_{1}+t_{2}\right)
$$

holds for all $t_{1}, t_{2} \in \mathbb{R}$. Thus v_{τ} may be viewed as a one-parameter subgroup of G. Thus the condition (3) is satisfied.

An element $g \in G$ belongs to G^{σ} if and only if $J_{2 n}\left({ }^{t} g^{-1}\right) J_{2 n}{ }^{-1}=g$, which is equivalent to ${ }^{t} g J_{2 n} g=J_{2 n}$. So we find that

$$
\begin{aligned}
G^{\sigma} & =\boldsymbol{S} \boldsymbol{p}(2 n, \mathbb{R}) \\
& =\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \left\lvert\, \begin{array}{l}
A, B, C, D \in M_{2 n}(\mathbb{R}),{ }^{t} A C={ }^{t} C A, \\
{ }^{t} B D={ }^{t} D B,{ }^{t} A D-{ }^{t} C B=I_{2 n}
\end{array}\right.\right\} .
\end{aligned}
$$

Since $\tau: G \rightarrow G$ is given by

$$
\tau\left(\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right)=\left(\begin{array}{cc}
A & -B \\
-C & D
\end{array}\right)
$$

we find that

$$
G^{\tau}=\left\{\left.\left(\begin{array}{ll}
A & O \\
O & D
\end{array}\right) \right\rvert\, A, D \in M_{2 n}(\mathbb{R}),(\operatorname{det} A)(\operatorname{det} D)=1\right\}
$$

Similarly it follows from (1) that

$$
G^{\sigma \tau}=\left\{\left.\left(\begin{array}{ll}
A & O \\
O & D
\end{array}\right) \right\rvert\, A, D \in M_{2 n}(\mathbb{R}),{ }^{t} A D=I_{2 n}\right\}
$$

Therefore $G^{\sigma \tau}$ may be identified with the general linear group $\boldsymbol{G} \boldsymbol{L}(2 n, \mathbb{R})$ by

$$
\left(\begin{array}{cc}
A & O \\
O & D
\end{array}\right) \longleftrightarrow A .
$$

Suppose that $g \in G^{\sigma \tau}$. Then

$$
g=\left(\begin{array}{ll}
A & O \\
O & D
\end{array}\right)
$$

for some $A, D \in M_{2 n}(\mathbb{R})$. Using this and (4.4), one readily checks that $g v_{\tau}(t)=$ $v_{\tau}(t) g$ for all $t \in \mathbb{R}$. Thus the condition (4) is satisfied.

Using (4.1), we easily see that the conditions (5) and (6) are satisfied.
In this way we can apply Lemma 2.1 to obtain a desired homotopycommutative diagram, and the proof is completed.

Department of Applied Mathematics Faculty of Science Osaka Women's University Daisen, Sakai, Osaka 590-0035, Japan e-mail: takashiw@appmath.osaka-wu.ac.jp

References

[1] R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337.
[2] R. Carter, G. Segal and I. Macdonald, Lectures on Lie groups and Lie algebras, Cambridge Univ. Press, 1995.
[3] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pure Appl. 54 (1961), 231-254.
[4] B. Harris, The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc. 131 (1968), 323-332.
[5] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.
[6] T. Watanabe, The induced homomorphism of the Bott map on K-theory, J. Math. Kyoto Univ. 36-3 (1996), 539-552.

[^0]: 1991 Mathematics Subject Classification(s). 55P35, 55R45, 57S20
 Communicated by Prof. Akira Kono
 Received July 8, 2002

