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On the Bott suspension map for non-compact
Lie groups

By

Takashi Watanabe

1. Introduction

The Bott suspension map ([1]) is a map from the suspension of a symmet-
ric space H/K into another symmetric space G/H, and its adjoint H/K →
Ω(G/H) for compact classical groups G is well known. But its analogue for
non-compact Lie groups has not been so studied. In this paper we present two
such maps.

A construction of the Bott suspension map in [6] can be applied to a
non-compact group G. Precisely, we take two automorphisms σ, τ of G which
commute and satisfy certain conditions. Then we have maps

b0 : GL(n, C)/O(n, C)→ Ω(Sp(n, C)/GL(n, C)),
b0 : Sp(2n, R)/GL(2n, R)→ Ω(SL(4n, R)/Sp(2n, R))

and show that a certain diagram involving b0 is homotopy-commutative. Such
a diagram appeared in a proof of the Bott periodicity theorems ([3]).

In Section 2, we revise some argument of [6] which we need. In Section 3,
a key lemma is proved. In Section 4, main results are shown.

2. Preliminaries

For the argument of this section, we refer to Section 1 of [6].
Throughout this paper, G will be a connected Lie group that is not neces-

sarily compact, and e ∈ G will be the identity element of G.
Let σ : G→ G be an automorphism. We denote by Gσ the subgroup of G

left fixed by σ, i.e.,
Gσ = {g ∈ G | σ(g) = g}.

Let τ : G→ G be another automorphism. Consider the following six conditions:
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(1) σ and τ commute, i.e.,

σ ◦ τ = τ ◦ σ.

This condition implies that σ(Gτ ) ⊂ Gτ and τ (Gσ) ⊂ Gσ. If we write Gστ for

(Gσ)τ = {g ∈ Gσ | τ (g) = g},

this condition also implies that Gστ = Gσ ∩Gτ .
(2) τ is inner and of order 2. That is, there exists an element xτ ∈ G such

that
τ (g) = xτ g x−1

τ and x2
τ g x−2

τ = g

for all g ∈ G. The last equality is equivalent to

xτ g x−1
τ = x−1

τ g xτ

for all g ∈ G. Note that g ∈ G belongs to Gτ if and only if g xτ = xτ g.
(3) There is a one-parameter subgroup

vτ : R→ G

such that vτ (1) = xτ . (This is not a trivial condition, because in non-compact
groups G, the exponential map exp : TeG→ G is usually not surjective; see [2,
p. 74].) Note that vτ (t) ∈ Gτ for all t ∈ R.

(4) If g ∈ Gστ , the relation

g vτ (t) = vτ (t) g

holds for all t ∈ R. In other words, Gστ is contained in the centralizer of
Im vτ = {vτ (t) | t ∈ R}:

Gστ ⊂ CG(Im vτ ).

(5) Gσ is not contained in CG(Im vτ ). That is, there are elements g0 ∈ Gσ

and t0 ∈ R such that
g0 vτ (t0) �= vτ (t0) g0.

(6) Im vτ is not contained in Gσ. That is, there is an element t1 ∈ R such
that

σ(vτ (t1)) �= vτ (t1).

Let us assume these conditions. Then by (3) we define a map

b̂0 : Σ(Gσ/Gστ )→ G/Gσ

by
b̂0([gGστ , t]) = vτ (t)−1gvτ (t)Gσ

for gGστ ∈ Gσ/Gστ and t ∈ [0, 1], where Σ denotes the reduced suspension.
By (4) this map is well defined.
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Remark 1. If (5) or (6) is not satisfied, then b0 becomes a constant
map. We need these two conditions only for excluding such a trivial case.
Notice that, when we prove Lemma 2.1 below, the conditions (5) and (6) are
not used.

In general, for any automorphism σ : G→ G, we have a map

ξσ : G/Gσ → G

defined by gGτ �→ g σ(g)−1. By virtue of (1), the map ξτ : G/Gτ → G can be
restricted to ξτ : Gσ/Gστ → Gσ. We have a fiber sequence

Gσ iσ−−−−→ G
pσ−−−−→ G/Gσ qσ−−−−→ BGσ,

where BG denotes a classifying space for G, and there is a (weak) homotopy
equivalence between G and ΩBG. The following result due to Harris [4] was
given as Lemma 1 of [6]. But its proof was omitted there. We will give its
details in the next section.

Lemma 2.1. Under the above conditions (1) to (6), the diagram

(2.1)

Gσ/Gστ b0−−−−→ Ω(G/Gσ)

ξτ

� �Ωqσ

Gσ −−−−→� ΩBGσ,

is homotopy-commutative.

3. Proof of Lemma 2.1

For a space X with base point x0 ∈ X, let CX be the reduced cone of X,
i.e.,

CX = (X × [0, 1])/(X × {0} ∪ {x0} × [0, 1]).

There is an inclusion i : X → CX defined by i(x) = [x, 1] for x ∈ X. Let ΣX
be the reduced suspension of X, i.e.,

ΣX = CX/X = (X × [0, 1])/(X × {0, 1} ∪ {x0} × [0, 1]).

We have a cofiber sequence

X
i−−−−→ CX

π−−−−→ ΣX
�−−−−→ ΣX.

Define a map Ξ : C(Gσ/Gστ )→ G by

Ξ([gGστ , t]) = vτ (1− t)−1gvτ (1− t)τ (g)−1



�

�

�

�

�

�

�

�

692 Takashi Watanabe

for gGστ ∈ Gσ/Gστ and t ∈ [0, 1]. This is well defined. For, first we show that,
if g ∈ Gστ , then Ξ([gGστ , t]) = Ξ([Gστ , t]) for all t ∈ [0, 1]. Indeed, suppose
that g ∈ Gστ . Then we have

Ξ([gGστ , t]) = vτ (1− t)−1gvτ (1− t)τ (g)−1

= vτ (1− t)−1vτ (1− t)gτ (g)−1 by (4)

= gτ (g)−1 = gg−1 = e since τ (g) = g

= vτ (1− t)−1evτ (1− t)τ (e)−1

= Ξ([Gστ , t]).

Secondly we can show that Ξ([gGστ , 0]) = e for all g ∈ Gσ. Indeed,

Ξ([gGστ , 0]) = vτ (1)−1gvτ (1)τ (g)−1

= x−1
τ gxττ (g)−1 since vτ (1) = xτ

= xτgx−1
τ τ (g)−1 by the last equality in (2)

= τ (g)τ (g)−1 by (2)
= e.

Lastly we have to show that Ξ([Gστ , t]) = e for all t ∈ [0, 1]. But we have
already seen it .

Consider the diagram

Gσ/Gστ i−−−−→ C(Gσ/Gστ ) π−−−−→ Σ(Gσ/Gστ ) �−−−−→ Σ(Gσ/Gστ )

ξτ

� �Ξ

�b̂0

�ξ̂τ

Gσ −−−−→
iσ

G −−−−→
pσ

G/Gσ −−−−→
qσ

BGσ,

where b̂0 is the map whose adjoint is b0, and ξ̂τ is the map whose adjoint is the
composite

Gσ/Gστ ξτ−−−−→ Gσ �−−−−→ ΩBGσ.

To prove Lemma 2.1 it is enough to show that the right-hand square is homo-
topy-commutative.

The left-hand square is commutative, i.e., iσ ◦ ξτ = Ξ ◦ i. In fact,

iσ ◦ ξτ (gGστ ) = iσ(gτ (g)−1) = gτ (g)−1

for gGστ ∈ Gσ/Gστ . On the other hand,

Ξ ◦ i(gGστ ) = Ξ([gGστ , 1]) = vτ (0)−1gvτ (0)τ (g)−1

= e−1geτ(g)−1 since vτ (0) = e

= gτ (g)−1

for gGστ ∈ Gσ/Gστ .
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The middle square is homotopy-commutative, i.e., pσ ◦ Ξ � b̂0 ◦ π. In fact,

pσ ◦ Ξ([gGστ , t]) = pσ(vτ (1− t)−1gvτ (1− t)τ (g)−1)
= vτ (1− t)−1gvτ (1− t)τ (g)−1Gσ

for gGστ ∈ Gσ/Gστ and t ∈ [0, 1]. On the other hand,

(b̂0 ◦ π)([gGστ , t]) = b̂0([gGστ , t]) = vτ (t)−1gvτ (t)Gσ

for gGστ ∈ Gσ/Gστ and t ∈ [0, 1]. Define a map H : C(Gσ/Gστ ) × [0, 1] →
G/Gσ by

H([gGστ , t], u)

= vτ ((1− t)(1− u) + tu)−1gvτ ((1− t)(1− u) + tu)vτ (1− u)−1g−1vτ (1− u)Gσ

for gGστ ∈ Gσ/Gστ and t, u ∈ [0, 1]. This H is a well-defined, desired homo-
topy. For, first we show that, if g ∈ Gστ , then H([gGστ , t], u) = H([Gστ , t], u)
for all t, u ∈ [0, 1]. Indeed, suppose that g ∈ Gστ . Then we can use (4) and
have

H([gGστ , t], u)
= vτ ((1 − t)(1 − u) + tu)−1vτ ((1 − t)(1 − u) + tu)gg−1vτ (1 − u)−1vτ (1 − u)Gσ

= Gσ

= vτ ((1 − t)(1 − u) + tu)−1evτ ((1 − t)(1 − u) + tu)vτ (1 − u)−1e−1vτ (1 − u)Gσ

= H([Gστ , t], u).

Secondly we have

H([gGστ , t], u)
= vτ ((1 − t)(1 − u) + tu)−1evτ ((1 − t)(1 − u) + tu)vτ (1 − u)−1e−1vτ (1 − u)Gσ

= Gσ

for all t, u ∈ [0, 1]. Thirdly we have

H([gGστ , 0], u) = vτ (1− u)−1gvτ (1− u)vτ (1− u)−1g−1vτ (1− u)Gσ

= Gσ

for all u ∈ [0, 1]. Fourthly, since τ (g) = xτgx−1
τ = x−1

τ gxτ by (2), we have

H([gGστ , t], 0) = vτ (1− t)−1gvτ (1− t)vτ (1)−1g−1vτ (1)Gσ

= vτ (1− t)−1gvτ (1− t)τ (g)−1Gσ

= pσ ◦ Ξ([gGστ , t])

for all t ∈ [0, 1]. Lastly, since vτ (0) = e and g−1 ∈ Gσ, we have
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H([gGστ , t], 1) = vτ (t)−1gvτ (t)vτ (0)−1g−1vτ (0)Gσ

= vτ (t)−1gvτ (t)g−1Gσ

= vτ (t)−1gvτ (t)Gσ

= b̂0 ◦ π([gGστ , t])

for all t ∈ [0, 1].
Consequently the right-hand square is homotopy-commutative, and the

proof is completed. �

4. Main results

Let In denote the unit n× n matrix. We put

In,n =
(−In O

O In

)
and Jn =

(
O In

−In O

)
.

Let K be R or C, and let Mn(K) be the set of all n×n matrices g = (gij) with
entries gij in K. The transpose of g ∈ Mn(K) is denoted by tg. According to
[5], the real and complex symplectic groups are defined by

Sp(n, K) = {g ∈M2n(K) | tg Jn g = Jn}
for K = R and K = C, respectively.

One of our main results is

Theorem 4.1. The diagram

GL(n, C)/O(n, C) b0−−−−→ Ω(Sp(n, C)/GL(n, C))

ξτ

� �Ωqσ

GL(n, C) −−−−→� ΩBGL(n, C)

is homotopy-commutative.

Proof. Consider the case G = Sp(n, C). Then it is easy to see that Jn

belongs to G, but In,n does not. However, if i denotes the imaginary unit, then
iIn,n belongs to G. We take σ : G→ G to be

the inner automorphism of G defined by g �→ (iIn,n) g (iIn,n)−1

and τ : G→ G to be

the inner automorphism of G defined by g �→ Jn g Jn
−1.

In this case we shall show that the conditions (1) to (6) are satisfied.
Since

(4.1) In,n Jn = −Jn In,n,
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it follows that σ ◦ τ = τ ◦ σ. Thus the condition (1) is satisfied.
Since Jn

2 = −I2n, the condition (2) is satisfied.
Define a map vτ : R→M2n(C) by

(4.2) vτ (t) =




(
cos

π

2
t
)

In

(
sin

π

2
t
)

In(
− sin

π

2
t
)

In

(
cos

π

2
t
)

In




for t ∈ R. Then vτ (1) = Jn. Since

vτ (t)−1 =




(
cos

π

2
t
)

In

(
− sin

π

2
t
)

In(
sin

π

2
t
)

In

(
cos

π

2
t
)

In


 = t(vτ (t))

for all t ∈ R, we see that Im vτ is contained in G. It is clear that the relation

vτ (t1) vτ (t2) = vτ (t1 + t2)

holds for all t1, t2 ∈ R. Thus vτ may be viewed as a one-parameter subgroup
of G. Thus the condition (3) is satisfied.

Writing g ∈ G in the form

g =
(

A B
C D

)
,

where A, B, C, D are complex n× n matrices, by definition we have

tA C = tC A, tB D = tD B, tA D − tC B = In.

In terms of these block matrices, σ : G→ G is given by

(4.3) σ

((
A B
C D

))
=

(
A −B
−C D

)
.

So we find that

Gσ =
{(

A O
O D

)∣∣∣∣ A, D ∈Mn(C), tA D = In

}
.

Therefore Gσ may be identified with the general linear group GL(n, C) by
(

A O
O D

)
←→ A.

Similarly τ : G→ G is given by

τ

((
A B
C D

))
=

(
D −C
−B A

)
.
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So we find that

Gτ =
{(

A B
−B A

)∣∣∣∣ A, B ∈Mn(C), tA B = tB A, tA A + tB B = In

}
.

Since Gστ = Gσ ∩Gτ by (1), it follows that

Gστ =
{(

A O
O A

)∣∣∣∣ A ∈Mn(C), tA A = In

}
.

Therefore Gστ may be identified with the complex orthogonal group O(n, C)
by (

A O
O A

)
←→ A.

Suppose that g ∈ Gστ . Then

g =
(

A O
O A

)

for some A ∈ Mn(C). Using this and (4.2), one readily checks that g vτ (t) =
vτ (t) g for all t ∈ R. Thus the condition (4) is satisfied.

Consider the case when g0 = iIn,n and t0 = 1 in (5). Then by (4.1) we see
that the condition (5) is satisfied.

Consider the case when t1 = 1 in (6). Then by (4.3) we see that the
condition (6) is satisfied.

In this way we can apply Lemma 2.1 to obtain a desired homotopy-
commutative diagram, and the proof is completed.

The other of our main results is

Theorem 4.2. The diagram

Sp(2n, R)/GL(2n, R) b0−−−−→ Ω(SL(4n, R)/Sp(2n, R))

ξτ

� �Ωqσ

Sp(2n, R) −−−−→� ΩBSp(2n, R)

is homotopy-commutative.

Proof. Consider the case G = SL(4n, R). Then it is easy to see that both
I2n,2n and J2n belong to G. We take σ : G→ G to be

the outer automorphism of G defined by g �→ J2n(tg−1)J2n
−1

and τ : G→ G to be

the inner automorphism of G defined by g �→ (I2n,2n) g (I2n,2n)−1.
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In this case we shall show that the conditions (1) to (6) are satisfied.
Since tI2n,2n = I2n,2n = I2n,2n

−1, it follows from (4.1) that σ ◦ τ = τ ◦ σ.
Thus the condition (1) is satisfied.

Since (I2n,2n)2 = I4n, the condition (2) is satisfied.
Define a map uτ : R→M2n(R) by

uτ (t) =
(

(cosπt)In (sin πt)In

(− sin πt)In (cos πt)In

)

for t ∈ R, and define a map vτ : R→M4n(R) by

(4.4) vτ (t) =
(

uτ (t) O
O I2n

)

for t ∈ R. Then vτ (1) = I2n,2n. Since detuτ (t) = 1 for all t ∈ R, we see that
Im vτ is contained in G. It is clear that the relation

vτ (t1) vτ (t2) = vτ (t1 + t2)

holds for all t1, t2 ∈ R. Thus vτ may be viewed as a one-parameter subgroup
of G. Thus the condition (3) is satisfied.

An element g ∈ G belongs to Gσ if and only if J2n(tg−1)J2n
−1 = g, which

is equivalent to tg J2n g = J2n. So we find that

Gσ = Sp(2n, R)

=
{(

A B
C D

)∣∣∣∣ A, B, C, D ∈M2n(R), tA C = tC A,
tB D = tD B, tA D − tC B = I2n

}
.

Since τ : G→ G is given by

τ

((
A B
C D

))
=

(
A −B
−C D

)
,

we find that

Gτ =
{(

A O
O D

)∣∣∣∣ A, D ∈M2n(R), (detA)(detD) = 1
}

.

Similarly it follows from (1) that

Gστ =
{(

A O
O D

)∣∣∣∣ A, D ∈M2n(R), tA D = I2n

}
.

Therefore Gστ may be identified with the general linear group GL(2n, R) by(
A O
O D

)
←→ A.

Suppose that g ∈ Gστ . Then

g =
(

A O
O D

)
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for some A, D ∈M2n(R). Using this and (4.4), one readily checks that g vτ (t) =
vτ (t) g for all t ∈ R. Thus the condition (4) is satisfied.

Using (4.1), we easily see that the conditions (5) and (6) are satisfied.
In this way we can apply Lemma 2.1 to obtain a desired homotopy-

commutative diagram, and the proof is completed.
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