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3-graded decompositions of exceptional Lie
algebras g and group realizations of

Jev, 90 and Hed
Part 11, G = E7, Case 5

By

Toshikazu M1YASHITA and Ichiro YOKOTA

According to M. Hara [1], there are five cases of 3-graded decompositions
g=0-3Pg_2Dg_1 D go D g1 ® g2 ® g3 of simple Lie algebra g of type E7. In
the preceding papers [2] and [3], we gave the group realization of Lie sualgebras
Jev =0 2D gD g2,00 and geq = g3 go D g3 of g of Cases 1, 2, 3 and 4. In
the present paper, we give the group realization of g, go and g.q of Case 5.
We rewrite the results of g, go and geq of the remainder Case 5.

Case 5 g Gev o
Ged dim g1, dim go, dim g3
¢ 5l(8,0) C ®sl(3,0) @sl(5,0)
s((3,C) @ sl(6,C)  30,15,5
e7(7) s((8, R) R®sl(3,R) @sl(5, R)
sl(3,R) ®sl(6,R) 30,15,5

Our results of Case 5 are as follows:

Case 5 G Gev Go
Ged
E:¢ SL(8,C)/Z- (C* x SL(3,C) x SL(5,C))/ Z30
(SL(3,C) x SL(6,C))/ Z3
Exy SL(8,R)/Z> x 2 (R* x SL(3,R) x SL(5, R)) x 2

SL(3,R) x SL(6, R)

This paper is a continuation of [3], so the numbering of sections starts from
4.5.

Together with the preceding papers [2], [3] and the present paper, the group
realization of Hara’s table [1] of 3-graded decompositions of type E7 have been
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completed. The group realizations in the cases of types Ga, Fy and Eg are
already given in [6], so the group realizations of Hara’s table [1] of exceptional
Lie algebras are completed except type Eg.

4.5. Subgroups of type A;°,C® A, & A,° and A,° @ A;C of E;©

We use the same notations as that in [2], [3], [4], [5] and [6]. Here although
the definitions of the C-linear transformations ws, A and ¢ of B are already
given in [2] and [3], we express just those definitions again. The C-linear
transformations ws, A and ¢ of P are defined by

’LU3(X7 Y?é-an) = (U}3X7 wSKé-?n)a
/\(X7 Y»f,n) = (Y7 7X7 77775)7

UX,Y, &) = (—iX, 1Y, —i€,in), (X,Y,&n) € P,

respectively, where ws of the right side is defined by ws : ¢ = CY @ (CC)3 -
Q:C = CC D (00)37 U)3(a/+m) _ a+w1m, wy = 6271'61/3.

In the Lie algebra ¢;€, let

1
7 = ’L@( — (G45 + GG?), (3E1 + Ey + Eg), 5(3E1 + Fy + Eg),O)

1
2
Theorem 4.5.  The 3-graded decomposition of ey = (ez€)™ 1 (or

c
er”)

7

e7(7) =93P g2DPg-1Pgo D g1 D g2 D g3

1 1
with respect to adZ, 7 = i@( — (Gus +Gor), =5 (3E1 + By + By), S (3B1 + Ez +

E3),0>, is given by

iGo1, Go2,1Go3, 1G12, G13, 1Ga3,
iGus, Gag + Gsr, i(Gar — Gsg), 1Ger,
A}(l), i{ll(elv), Al(ez)j iAl(e;v;), R
iEk — iEk, iFl(l) — iFl(l), iFl(ek) — iFl(ek), k= 1,2,3,
—2iF1(64 —ies) + Fy(eq — ies) + ) (eq — ie5),
721'}?11(66 — i67) + Fl(eﬁ - ’L‘€7) + Fl (66 - i67),
—2iF1 (64 + i€5) — Fl (64 + ’i€5) — F1(84 + i65),
—2iF1 (66 + i€7> — F1(66 + i67) — ﬁ'l(eﬁ + i€7)7
807 21451 —ieq) + Fa(1 —ier) — Fo(1 — dey),
—21'/12(62 — i€3) + FQ(CQ — i€3) — FQ(EQ — ieg),
—2iAy(1 4 iey) — Fo(1 +ier) + Fa(1 +iey),
—2iAs(eq +ies) — Fa(ea +ies) + Fa(ea + ies),
—2iA3(1 +iey) + F3(1 +iey) — F3(1 +ieq),
—2iAg(ey + ies) + Fs(eg + ies) — Fg(&g + ies),
—2iA3(1 —iey) — F3(1 —iey) + F3(1 —iey),

(

—2iA3 €y — ieg) — Fg(eg - i€3) + F3(62 - i€3> 33
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g-3=

g1 =

Gos — iGos, Gos — 1Gor, iG1a + G15,1G16 + G,
Gaq — iGas, Gag — iGar, iG3a + G35,1G36 + Gar,
A1(€4 — i65), A1(66 — i67),
§M<&+QE2—E@N+ET+Ey+ﬂ7
%K—El—Ez+ZEﬁ”+Eb+Eb+iL

iF1(64 + ies) — iﬁ1(64 + i€5), iF1(66 + i€7) — iF1(€6 + i67),
2iFy (1) + Fy (1) + Fi (1),

2iF) (ex) + Fi(ex) + Filer), k=1,2,3,

2iF2(1 +ie1) + Fo(1 4ier) + Fz(l +iey),

QiFQ(eg — 283) + FQ(@Q — 263) + FQ(@Q — 263)

2iF3(1 —ier) + Fy(1 —iep) + Fg(l —iey),

QiFg(GQ — ’Leg) + F3(€2 — Zeg) + F3(62 — 163)

QiAQ(ek) FQ(Ek) —|—F2(€k) k=4,5,6,7,

2iA3(e ) — F3(e;€)+F3(e;€) k=4,5,6,7

(Gas — Gs7) +i(Gar + Gse),

2@F1(e4 —ies) + Fl(e4 —ies) + Fl(e4 —ies),

2i Fy (eg — ie7) + Fi(eg — ier) + Fl(eG —ieq),
2iFy(e) + Fa(er) + Faler), k = 4,5,6,7,
QJy%y+&@w+Pa%)k_4567
—2iAy(1 —iey) + Fo(1 —idey) — F2(1 —iey),
—2iA2(62 + 263) + FQ(@Q + 7,63) F2(62 =+ 263),
72@43(14’161) F3(1+’L€1)+F3(1+’L€1)
~2iA3(eq +iez) — Fy(ea +iez) + Fy(en + ie3) 15

%mm—@—&r+m+ﬁ+u

2iF5(1 —ier) + Fy(1 —idep) + Fg(l —ie1),

QZFQ(CQ +ie3) + Fy(ea + ies) + Fg(@g + ie3),
2iF3( +ier) — F3(1+iey) — F3(1+Z€1)

2iF3(62 +Z€3) +F3(62+Z€3)+F3(62 +Z€3) 5

T(g—1)7, g2 =7(g-2)7, @g3="T(9-3)T.

123

30

By using the differential mapping ¢, : su(8, CC) — ¢79 of the mapping
@ :8U(8,C%) — E;°, we have

. 1 1
iZ = O((Gas + Ger), 5(3E1 + Es + Es), —5(3E1 + E2 + Es),0)

= Px (dlag(5€1/4, 561/47 561/4a _361/4a _361/47 _361/47 _361/47 _361/4))

Hence

271
. 5 5 5 5 5 5 5 5
2’2=€Xp—2 Zzw(dlag(ws ,Wg ", Wg~, Wg~, Wg ~, Wg ~, Wg~, W ))

-y, wg =e

el /4
)
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211
. 5 5 5 -3 -
Z4 = €XD TZ = <p(d1ag(w16 ,Wie , W16 ,W16 ,Wi6 ,Wie ,Wie

wi6~%)), wie = ™8,

211 .
23 = exp ?Z = @(dlag(e‘r’”el/(j, /6 Srer/6 ol el —eq, —er, —eq)).

z3 is conjugate to —ws in E7C:
23 ~ —Ws.
1 1
Indeed, Z = Z‘@(*(G45 + G67), *5(3E1 + E2 + Eg), 5(3E1 + E2 + Eg),()) is
1 1
conjugate to Z' = i®(—(Go1 + Ga3), —5(3E1 + Eo + E3), 5(3E1 + E3 + E3),0)
under the action § = exp (g@((Gm + G5 + Gog + G37),0,0, 0)) S E7C, that
is,
7' =617
1 1
Since we have 17 = @(Gt)l + Ggg, 5(3E1 + E2 + Eg), 75(3E1 + E2 + Eg), 0) =
p«(diag(be1/4,5e1/4,e1/4,e1/4,—Te1/4,e1/4,—3e1/4,—3e1/4), so
2
23" = exp iz
3
= p(diag(—e1w1?, —e1w;”, —eywy, —eywy, —e1wi %, —eywy, —e1, —ey))
= @((diag(w127 U}12, w1, Wy, U}12, wy, 17 1))90((d1ag(_617 —€1, —€1,—€1,
— €1, —€1, —€1, —61))
= —p(diag(w:i®, wi?, w1, wi, w1, wy, 1, 1)).

On the other hand, we know that ws is given by
274
wy = exp (Z-B((262 — G5 — Ger),0,0,0))

(Cf. [2]) Since @((QGQ?, — G45 — G67),0,0,0) = <p*(diag(0,0, —€1,€1,—€1,€1,
—eq,e1)), we see that
ws = p(diag(1, 1, w1, w1, w1, wi, w1, wy)).

Let ¢’ = ¢(P), where

00 -1 0000 0

00 0 01000

00 0 10000

00 0 00100 .
P=1o 0 0 000 1 0f€5VBC

00 0 00001

10 0 00000

01 0 00000
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then we have 5’71(723’)5’ = ws. Thus we have z3 = 55’(71113)5’715_1, that is,
zZ3 ~ —Ws.
We use —ws instead of z3.

Since (e7%)es = (e79)%2 = (e79) 7 = (1), (6790 = (7)1, (¢79)ea

= (e79)7"s = (¢;9)"3, we shall determine the structure of groups
(Br)ew = (Br9)™ = (B;9)™ = (B:O)™, (B0 = (B-°)™,
(Br9)ea = (B79) 7" = (E9)"s.

Theorem 4.5.1. (1) (F;%)e, = SL(8,C)/Zy, Zy = {E,—E}.

(2) (B7%)o = (C*xSL(3,C)xSL(5,0))/(Z2x Z15), Zo = {(1,E, E), (-1,
E, E)}, Z15 = {(w15k,w15_5kE, w153kE) | k= O7 1, ey 14}, w1y = 627”/15.

(3) (Br%)ea = (SL(3,C) x SL(6,C))/ Z3, Zs = {(E. E), (wE,wE), (v"E,
W2 E)}, w = e2/3,

Proof. (1) The fact that (E;)*\ = SL(8,C)/Zy is already used (cf. [3]).
That is, the mapping ¢ : SU(8,C%) — (E;°)M,

e(A)P = x""(A(xP)'A), PeP®

induces the isomorphism (E7)e, = (E;9)M = SU(8,C°)/Zy = SL(8,C)/ Zs,
Zy = {E,—E} (the last isomorphism is given by f : SL(8,C) — SU(8,C°),
f(A) = 1tA+T A7 0= (1 +idep)/2).

(2) We define a mapping ¢ : S(U(3,C%) x U(5,C°)) — (E;°)* by

¢(B1, B2)P = x~'((B1, B2)(xP)'(B1, B)), P e P,
as the restriction mapping ¢ : SU(S,CC) — E;%, where (B1, B2) means

(BE)l 39 ) € SU(8,C%). Then ¢ is well-defined and is a homomorphism.
2

Ker o = {(E,E),(-E,—E)} = Z,. Since (E;“)* is connected and

dim((e7€)o) = 33 (Theorem 4.5) = 9 + 25 — 1 = dim(s(u(3,C°) @ u(5,C%))),
o is onto. Thus we have

(B-€)* = S(U(3,C%) x U(5,C°))/Z
>~ S(GL(3,C) x GL(5,C))/ Z>.
The mapping h : C* x SL(3,C) x SL(5,C) — S(GL(3,C) x GL(5,C)),
22A 0
induces an isomorphism (C* x SL(3,C) x SL(5,C))/Z15 = S(GL(3,C) x

GL(5, C)), Zi5 = {(w15k,w15*5kE,w153kE) | k=0,1,..., 14} Thus we have
(E:%)o = (B;9)% 2= (C* x SL(3,C) x SL(5,C))/(Z2 x Z15).



126 Toshikazu Miyashita and Ichiro Yokota

(3) (B;9)~ws = (B;%)ws = (SL(3,C) x SL(6,C))/Z5 is shown in [2].
However, for later use, we review the outline of the proof. Let SU(6, CC) =
(E7C)w3’51752’73. By using the mapping ¢3; : SU(3, CC) — F;%, we define a
mapping @., : SU(3,C¢) x SU(6,CY) — (E;“)"s by

Puy (A, B) = p3,1(A)B.
Then ¢, induces the isomorphism (E;%)%s = (SU(3,C%) x SU(6,C°))/Z3,

Z3={(E,E), (wiE,u E), (w?E,w;2E)} (w; = e*™1/3) = (SL(3,C) x SL(6,
C))/Zs, Z3 = {(E,E),(WE,wE), (WE,w?E)} (cf. [2, Theorem 4.1.3]). O

4.5.1. Subgroups of type 147(7)7 R® Ag(g) 5) A4(4) and A2(2) (5] A5(5) of
B

Since (e7(7))ev = (67%)ew N (e79)™7 = (790 N (e29) ™7, (er(7))o =
(670)0 N (e7C)T>\L’Yl = (e7C)Z4 N (270)7—)@71’ (27(7))6(1 — (270)6,1 N (67C)TAL’V1 _
(e79)%3 M (e79)™ 71| we shall determine the structure of groups

(Brn))ew = (Br%)ey 0 (BfO)™1 = ()M 0 (B)™n,
(Brery)o = (B<%)o N (BC)™ 1 = (B;C)* (B, C)™m,
(E7(7))ed (Br%)ea N (B79)™M = (B79)"2 0 (e9)7A
Theorem 4.5.1.1. (1) (Er(7))ev = SL(8,R)/Z2x{1,72}, Z> = {E,—E}.

(2) (Br(r))o = (R x SL(3,R) x SL(5, R)) x {1,72}.
(3) (Br(r))ea =2 SL(3, R) x SL(6, R).

Proof. (1) For a € (Er(z))en C (Er%)ew = (E79)M, there exists A €
SL(8,C) such that & = ¢(A) (Theorem 4.5.1. (1)). Now, from 7 Ay~ A1
T = a, that is, TAry10(A)y1t AT = ¢(A), we have p(T7A) = ¢(A) (cf. [3,
Theorem 4.2.1.1.(2)]). Hence

TA=A, or TA=-A.

In the former case, A € SL(8, R). Hence the group of the former case is
SL(8,R)/Z>,Z> = {E,—E}. In the latter case, A = I, (I = diag(—1,1,—1,1,
—1,1,—1,1)) satisfies the condition TA = —A and ¢(il) = 7. Therefore
(E7(7))5U ~ SL8,R)/Za x {1,72}.

(2) For o € (E7(7))o C (E79)o, there exists (By, Bs) € S(U(3,C°) x
U(5,CC)) such that a = ¢(By, Bs) (Theorem 4.5.1.(2)). From 7Aryiay;e™!
A1 = q, that is, TAvy19( By, Ba)yit ' A~17 = (B, Bs), we have (7B, 7B3)
= (B, Bz) (cf. [3, Theorem 4.2.1.1.(2)]). Hence

T§1 = Bl T§1 = _Bl
— or —
TBQZBQ, TBQZ—BQ.



3-graded decompositions of exceptional Lie algebras g and group realizations 127

In the former case, By € U(3,C") and By € U(5,C"). Hence the group of the

former case is

S(UB,C"Y xU(5,C")/Zy= S(GL(3,R) x GL(5,R))/ Z>,
Zy = {(E,E)»(iE’ 7E)}

The mapping h : R* x SL(3, R) x SL(5,R) — S(GL(3, R) x GL(5, R)),
2°A 0
h(Z7AaB): ( 0 Z_3B>

induces an isomorphism R* x SL(3, R) x SL(5, R) = S(GL(3, R) x GL(5, R)).
Thus we have (E7%)o = (R* x SL(3,R) x SL(5,R))/Z (Z2 = {1, E, E), (-1,
E,E)}) = R x SL(3, R) xSL(5, R). In the latter case, il satisfies the condi-
tion and ¢(il) = v2. Thus we have (E7())o = (R x SL(3, R) x SL(5, R)) x
{172}

(3) For a € (E7(7))ea C (E79)ea = (E79)"s, there exist A € SU(3,C°)
and (€ (B;%)wse1e2m = SU(6,CY) (cf. [2, Proposition 1.3.7]) such that
a = @uy (A, B) = @3.(A)3 (cf. [2, Theorem 4.1.3]). From TAtyiay1c A71r =
a, that is, TAy1¢03,(A)By1e I AT = 3, (A)B. Hence

i T’VIA = A) ii T’YlA = w1A7
A By AT = 3, T Y1 By AT = w B,

T’YlA:wle,
(iii) vl o
TN Byt AT T = wi o,

Case (i) From 7914 = A, we have A € SU(3,C’). To determine the struc-
ture of the group {3 € SU(6,CY) | Ay A\ "1r = 8} = SU(6,CC)™ 0,

we consider a correspondence

f : (E7C)w3751,52,73,7—71 — (E7C)U’3751752)7377'>\Wl, f(a) _ 52_10452,

where 0y = exp@(O, %E, %E,O) e E7,52_17'7152 = —7Aty1. Then f gives

an isomophism (E;C)ws-e1e2:95. 70 o (frC)ws.ene275m0 > ST (6, C')(cf. [2,
Theorem 4.2 (3)]). Therefore the group of Case (i) is SU(3,C") x SU(6,C") =
SL(3,R) x SL(6, R).

Case (ii)) p(unE,unE) = 1.

Case (iii) @(wi?E,w%E) = 1.

Thus we have the rquired isomorphism (Er(7))eqs = SU(3,C") x SU(6,C")
~ SL(3, R) x SL(6, R). O
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