On the groups $[X, S p(n)]$ with $\operatorname{dim} X \leq 4 n+2$

By

Tomoaki NAGAO

1. Introduction

Let G be a group-like space, that is, G satisfies all the axioms of groups up to homotopy, and let X be a based space. The based homotopy set $[X, G]$ becomes a group by the pointwise multiplication and moreover, when G is connected, G.W. Whitehead [15] shows that $[X, G]$ is a nilpotent group of class \leq cat X, where cat X stands for the L-S category of X normalized as $\operatorname{cat}(*)=0$. However, in general it is hard to understand the group $[X, G]$ further. It is of particular interest the case that G is a compact Lie group and it has been studied by many ([16], [2], [11], [12]). In particular, when $G=U(n)$ and X is a CW-complex with $\operatorname{dim} X \leq 2 n$, Hamanaka and Kono [8] give an explicit method to calculate $U_{n}(X)=[X, U(n)]$. Note that $U_{n}(X)$ is naturally isomorphic to $\widetilde{K}^{-1}(X)$ when $\operatorname{dim} X<2 n$. Then, when $\operatorname{dim} X=2 n, U_{n}(X)$ may contain the first unstable property and, in fact, Hamanaka and Kono [8] show that $U_{n}(X)$ is given by a central extension of $\widetilde{K}^{-1}(X)$. Moreover, the commutator in $U_{n}(X)$ is explicitly calculated. Later, Hamanaka and Kono developed this method further and give applications ([5], [9], [6], [7]).

The aim of this paper is to study the group $S p_{n}(X)=[X, S p(n)]$ when $\operatorname{dim} X \leq 4 n+2$ following Hamanaka and Kono [8]. In this paper, all cohomology groups have integral coefficients. We will prove:

Theorem 1.1. Let X be a $C W$-complex with $\operatorname{dim} X \leq 4 n+2$. There is an exact sequence

$$
\begin{equation*}
\widetilde{K S p}^{-2}(X) \xrightarrow{\Theta_{\sharp}} H^{4 n+2}(X) \rightarrow S p_{n}(X) \rightarrow \widetilde{K S p}^{-1}(X) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

which is natural with respect to X. Moreover, the induced sequence

$$
0 \rightarrow \mathbf{N}_{n}(X) \xrightarrow{\iota} S p_{n}(X) \rightarrow \widetilde{K S p}^{-1}(X) \rightarrow 0 .
$$

is a central extension, where $\mathbf{N}_{n}(X)=$ Coker $\Theta_{\mathbb{H}}$.
As in the case of $U_{n}(X)$ noted above, we can give the commutator in $S p_{n}(X)$ explicitly as follows. The cohomology of $S p(n)$ is:

$$
\begin{equation*}
H^{*}(S p(n))=\Lambda\left(y_{3}, y_{7}, \ldots, y_{4 n-1}\right), y_{4 i-1}=\sigma\left(q_{i}\right) \tag{1.2}
\end{equation*}
$$

where σ and q_{i} denote the cohomology suspension and the universal i-th symplectic Pontrjagin class respectively.

Theorem 1.2. Let X be a $C W$-complex with $\operatorname{dim} X \leq 4 n+2$ and let $\iota: \mathbf{N}_{n}(X) \rightarrow S p_{n}(X)$ be as in Theorem 1.1. For $\alpha, \beta \in S p_{n}(X)$, the commutator $[\alpha, \beta]$ in $S p_{n}(X)$ is given as

$$
[\alpha, \beta]=\iota\left(\left[\sum_{i+j=n+1} \alpha^{*}\left(y_{4 i-1}\right) \beta^{*}\left(y_{4 j-1}\right)\right]\right) .
$$

Denote by \mathbf{c}^{\prime} both the canonical inclusion $S p(n) \hookrightarrow U(2 n)$ and the induced map $\widetilde{K S p}^{*}(-) \rightarrow \widetilde{K}^{*}(-)$. We also denote by \mathbf{c}^{\prime} the composition of the inclusions

$$
S p(n) \stackrel{\mathrm{c}^{\prime}}{\hookrightarrow} U(2 n) \hookrightarrow U(2 n+1) .
$$

By using the above maps \mathbf{c}^{\prime}, we compare $S p_{n}(X)$ with $U_{2 n+1}(X)$ as:
Theorem 1.3. Let X be a $C W$-complex with $\operatorname{dim} X \leq 4 n+2$. Then there is a commutative diagram

which is natural with respect to X, where the top and the bottom rows are the exact sequences in Theorem 1.1 and in [8, Theorem 1.1] respectively.

As an application of the above results, we will give some special calculation (For a further application, see [10].).

Proposition 1.4. $\quad S p_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \cong \mathbb{Z} / 4(2 n+1)$.
Proposition 1.5. Let Q_{2} be the quasi-projective space of $S p(2)$. Denote by ϵ and ϵ_{3} respectively the inclusions $Q_{2} \rightarrow \operatorname{Sp}(2)$ and $S^{3} \rightarrow S p(2)$. Then the order of the Samelson product $\left\langle\epsilon_{3}, \epsilon\right\rangle$ is 40 .

Theorem 1.6. Let $S^{4 n-1} \xrightarrow{i} X \xrightarrow{p} S^{4 m-1}$ be a sphere bundle over a sphere such that $m+n$ is odd. Then $S p_{m+n-1}(X)$ is generated by three elements α, β, ϵ subject to the relations

$$
[\alpha, \epsilon]=[\beta, \epsilon]=(2(m+n)-1)!\epsilon=0,[\alpha, \beta]=2(2 m-1)!(2 n-1)!\epsilon .
$$

By applying Theorem 1.6 to the fiber bundle $S p(1) \rightarrow S p(2) \rightarrow S^{7}$, we obtain the following.

Corollary 1.7 (Mimura and Ōshima [14]). The group $[S p(2), S p(2)]$ is generated by three elements α, β, ϵ subject to the relations

$$
[\alpha, \epsilon]=[\beta, \epsilon]=5!\epsilon=0,[\alpha, \beta]=12 \epsilon
$$

The organization of this paper is as follows. In Section 2, we first recall some results of Hamanaka and Kono [8]. We follow their methods to prove Theorem 1.1 and Theorem 1.3. We also estimate the order of elements in $\mathbf{N}_{n}(X)$. In Section 3, we prove Theorem 1.2 quite similarly to the proof of $[8$, Theorem 1.4]. In Section 4, by exploiting the results obtained so far, we give the above special calculation as an application.

2. Exact sequences

Let us first recall some results of Hamanaka and Kono [8]. Let X be a CW-complex with $\operatorname{dim} X \leq 2 n$ and let W_{n} denote the infinite Stiefel manifold $U(\infty) / U(n)$. By applying $[X,-]$ to the fibration sequence

$$
\Omega U(\infty) \rightarrow \Omega W_{n} \rightarrow U(n) \xrightarrow{i} U(\infty) \xrightarrow{p} W_{n},
$$

we obtain the exact sequence

$$
\begin{equation*}
\widetilde{K}^{-2}(X) \rightarrow\left[X, \Omega X_{n}\right] \rightarrow U_{n}(X) \xrightarrow{i_{*}} \widetilde{K}^{-1}(X) \rightarrow\left[X, W_{n}\right], \tag{2.1}
\end{equation*}
$$

here we use the isomorphism

$$
\widetilde{K}^{-i}(X) \cong\left[\Sigma^{i} X, B U(\infty)\right] .
$$

Since W_{n} is $2 n$-connected and $\operatorname{dim} X \leq 2 n,\left[X, W_{n}\right]$ is trivial. Then i_{*} is epic.
It is well known that the cohomology of $U(n)$ is given by

$$
H^{*}(U(n))=\Lambda\left(x_{1}, \ldots, x_{2 n-1}\right), x_{2 i-1}=\sigma\left(c_{i}\right)
$$

where σ and c_{i} are the cohomology suspension and the universal i-th Chern class respectively. The cohomology of W_{n} is given as

$$
H^{*}\left(W_{n}\right)=\Lambda\left(\bar{x}_{2 n+1}, \bar{x}_{2 n+3}, \ldots\right), p^{*}\left(\bar{x}_{2 i-1}\right)=x_{2 i-1} \in H^{*}(U(\infty))
$$

Since W_{n} is $2 n$-connected, one can see that $H^{2 n}\left(\Omega W_{n}\right) \cong \mathbb{Z}$ which is generated by $a_{2 n}=\sigma\left(\bar{x}_{2 n+1}\right)$. We ambiguously write the representing map of $a_{2 n}$, that is, $\Omega W_{n} \rightarrow K(\mathbb{Z}, 2 n)$, by the same symbol $a_{2 n}$. Then, by definition, $a_{2 n}: \Omega W_{n} \rightarrow$ $K(\mathbb{Z}, 2 n)$ is a loop map. On the other hand, $a_{2 n}: \Omega W_{n} \rightarrow K(\mathbb{Z}, 2 n)$ is a $(2 n+1)$-equivalence. Then, by the J.H.C. Whitehead theorem, we have a group isomorphism

$$
\left(a_{2 n}\right)_{*}:\left[X, \Omega W_{n}\right] \stackrel{\cong}{\rightrightarrows} H^{2 n}(X)
$$

and hence the exact sequence (2.1) can be reformulated as

$$
\begin{equation*}
\widetilde{K}^{-2}(X) \xrightarrow{\Theta_{\mathrm{c}}} H^{2 n}(X) \rightarrow U_{n}(X) \rightarrow \widetilde{K}^{-1}(X) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

This exact sequence is, of course, the bottom row sequence of (1.3).
Let ω_{1} be the canonical line bundle over $S^{2}=\mathbb{C} P^{1}$ and let $\eta \in \widetilde{K}^{0}\left(S^{2}\right)$ denote $\omega_{1}-1_{\mathbb{C}}$, where $1_{\mathbb{C}}$ is the trivial complex line bundle. Then it is well known that

$$
\bar{\eta} \wedge: \widetilde{K}^{0}(X) \rightarrow \widetilde{K}^{-2}(X)
$$

is an isomorphism for any X, which is Bott periodicity.
We write the representing map of $\alpha \in \widetilde{K}^{0}(X)$, namely $X \rightarrow B U(\infty)$, by the same symbol α. Hamanaka and Kono [8] explicitly give the formula of $\Theta_{\mathbb{C}}$ in the above exact sequence (2.2) as:

Proposition 2.1 (Hamanaka and Kono [8, Proposition 3.1]). Let X be a $C W$-complex with $\operatorname{dim} X \leq 2 n$ and let $s_{n} \in H^{2 n}(B U(\infty))$ be the n-th power sum. Then, for $\alpha \in \widetilde{K}^{0}(X), \Theta_{\mathbb{C}}$ in (2.2) is given by

$$
\Theta_{\mathbb{C}}(\bar{\eta} \wedge \alpha)=(-1)^{n} s_{n}(\alpha)
$$

where $s_{n}(\alpha)=\alpha^{*}\left(s_{n}\right)$.
In order to make Proposition 2.1 more applicable, we give a formula of the power sum s_{n}.

Proposition 2.2 (Hamanaka and Kono [8, Lemma 3.2]). For $\theta_{1} \in$ $\widetilde{K}^{0}\left(X_{1}\right), \theta_{2} \in \widetilde{K}^{0}\left(X_{2}\right)$, we have

$$
s_{j}\left(\theta_{1} \wedge \theta_{2}\right)=\sum_{k=1}^{j-1}\binom{j}{k} s_{k}\left(\theta_{1}\right) \times s_{j-k}\left(\theta_{2}\right)
$$

Following the above method of constructing the exact sequence (2.2), we prove Theorem 1.1 and Theorem 1.3. Let X be a CW-complex with $\operatorname{dim} X \leq$ $4 n+2$. Consider the fibration sequence

$$
\Omega S p(\infty) \rightarrow \Omega X_{n} \xrightarrow{\Omega \delta} S p(n) \xrightarrow{i} S p(\infty) \xrightarrow{p} X_{n},
$$

where $X_{n}=S p(\infty) / S p(n)$. By applying $[X,-]$ to the above fibration sequence, we obtain the exact sequence

$$
\begin{equation*}
\widetilde{K S p}^{-2}(X) \rightarrow\left[X, \Omega X_{n}\right] \xrightarrow{\Omega \delta_{*}} S p_{n}(X) \xrightarrow{i_{*}} \widetilde{K S p}^{-1}(X) \rightarrow\left[X, X_{n}\right] \tag{2.3}
\end{equation*}
$$

as well as the above case of $U(n)$, where we use the isomorphism $\widetilde{K S p}^{-i}(X) \cong$ $\left[\Sigma^{i} X, B S p(\infty)\right]$. Since X_{n} is $(4 n+2)$-connected and $\operatorname{dim} X \leq 4 n+2,\left[X, X_{n}\right]$ is trivial and hence i_{*} in (2.3) is epic.

The cohomology of $S p(n)$ is given as (1.2). It is easily seen that

$$
H^{*}\left(X_{n}\right)=\Lambda\left(\bar{y}_{4 n+3}, \bar{y}_{4 n+7}, \ldots\right), p^{*}\left(\bar{y}_{4 i+3}\right)=y_{4 i+3} \in H^{*}(S p(\infty)) .
$$

Since X_{n} is $(4 n+2)$-connected, one has that $H^{4 n+2}\left(\Omega X_{n}\right) \cong \mathbb{Z}$ which is generated by $b_{4 n+2}=\sigma\left(\bar{y}_{4 n+3}\right)$. As above, we write the representing map of
$b_{4 n+2}$, that is, $\Omega X_{n} \rightarrow K(\mathbb{Z}, 4 n+2)$, by the same symbol $b_{4 n+2}$ and then, by definition, $b_{4 n+2}: \Omega X_{n} \rightarrow K(\mathbb{Z}, 4 n+2)$ is a loop map. On the other hand, $b_{4 n+2}: \Omega X_{n} \rightarrow K(\mathbb{Z}, 4 n+2)$ is a $(4 n+3)$-equivalence. Then, by the J.H.C. Whitehead theorem, we have a group isomorphism

$$
\left(b_{4 n+2}\right)_{*}:\left[X, \Omega X_{n}\right] \stackrel{\cong}{\rightrightarrows} H^{4 n+2}(X)
$$

and hence, from (2.3), we obtain the exact sequence

$$
\begin{equation*}
\widetilde{K S p}^{-2}(X) \xrightarrow{\Theta_{\mathbb{H}}} H^{4 n+2}(X) \rightarrow S p_{n}(X) \xrightarrow{i_{*}} \widetilde{K S p}^{-1}(X) \rightarrow 0 . \tag{2.4}
\end{equation*}
$$

Thus we have established the first part of Theorem 1.1.
Note that we have the homotopy commutative diagram

where $\overline{\mathbf{c}^{\prime}}: X_{n} \rightarrow W_{2 n+1}$ is the map induced by \mathbf{c}^{\prime}. Since $\left(B \mathbf{c}^{\prime}\right)^{*}\left(c_{2 n+2}\right)=$ $(-1)^{n+1} q_{n+1}$, one has $\left(\overline{\mathbf{c}}^{\prime}\right)^{*}\left(\bar{x}_{4 n+3}\right)=(-1)^{n+1} \bar{y}_{4 n+3}$. Then it follows that

$$
\begin{aligned}
\left(\Omega \overline{\mathbf{c}^{\prime}}\right)^{*}\left(a_{4 n+2}\right) & =\left(\Omega \overline{\mathbf{c}^{\prime}}\right)^{*}\left(\sigma\left(\bar{x}_{4 n+3}\right)\right)=\sigma\left(\left({\left.\left.\overline{\mathbf{c}^{\prime}}\right)^{*}\left(\bar{x}_{4 n+3}\right)\right)=(-1)^{n+1} \sigma\left(\bar{y}_{4 n+3}\right)}=(-1)^{n+1} b_{4 n+2}\right.\right.
\end{aligned}
$$

Hence, by the construction of the exact sequences (2.2) and (2.4), the proof of Theorem 1.3 is accomplished.

We continue to denote by X a CW-complex with $\operatorname{dim} X \leq 4 n+2$. Next, we prove the rest part of Theorem 1.1, that is,

$$
0 \rightarrow \mathbf{N}_{n}(X) \xrightarrow{\iota} S p_{n}(X) \xrightarrow{i_{*}} \widetilde{K S p}^{-1}(X) \rightarrow 0
$$

is a central extension, where $\mathbf{N}_{n}(X)=$ Coker $\Theta_{\mathbb{H}}$. For $\alpha: X \rightarrow S p(n)$ and $\beta: X \rightarrow \Omega X_{n}$, the commutator $[\alpha, \Omega \delta \circ \beta]$ in $S p_{n}(X)$ is the composition

$$
\begin{equation*}
X \xrightarrow{\Delta} X \wedge X \xrightarrow{\alpha \wedge \beta} S p(n) \wedge \Omega X_{n} \xrightarrow{1 \wedge \Omega \delta} S p(n) \wedge S p(n) \xrightarrow{\gamma} S p(n), \tag{2.5}
\end{equation*}
$$

where Δ and γ denote the diagonal map and the commutator map of $\operatorname{Sp}(n)$ respectively. Since $S p(n) \wedge \Omega X_{n}$ is $(4 n+4)$-connected and $\operatorname{dim} X \leq 4 n+2$, the $\operatorname{map}(\alpha \wedge \beta) \circ \Delta: X \rightarrow S p(n) \wedge \Omega X_{n}$ is null-homotopic. Then the commutator $[\alpha, \Omega \delta \circ \beta]$ is trivial and hence the proof of Theorem 1.1 is completed.

Remark 2.1. Let X be a CW-complex X with $\operatorname{dim} X \leq 4 n+4$. Then it follows from the above proof that

$$
0 \rightarrow N_{n}(X) \rightarrow S p_{n}(X) \rightarrow \operatorname{Im}\left\{i_{*}: S p_{n}(X) \rightarrow \widetilde{K S p}^{-1}(X)\right\} \rightarrow 0
$$

is a central extension and hence $S p_{n}(X)$ is a nilpotent group of class less than or equal to 2 .

For the last of this section, we estimate the order of elements in $\mathbf{N}_{n}(X)$.
Proposition 2.3. Let X and $\mathbf{N}_{n}(X)$ be as in Theorem 1.1. Then each element in the group $\mathbf{N}_{n}(X)$ is of order dividing $2(2 n+1)$! when n is odd and $(2 n+1)$! when n is even.

Proof. Consider the cofibration sequence

$$
X^{(4 n+1)} \rightarrow X \xrightarrow{p} \bigvee_{\alpha} S_{\alpha}^{4 n+2},
$$

where $X^{(4 n+1)}$ denotes the $(4 n+1)$-skeleton of X and p is the pinching map. Then it follows from Theorem 1.1 that, in the diagram

each row and column sequence is exact. Hence we have

$$
\begin{aligned}
\mathbf{N}_{n}(X) & \cong \operatorname{Im}\left\{\tilde{\iota}: H^{4 n+2}(X) \rightarrow S p_{n}(X)\right\} \\
& =\operatorname{Im}\left\{\tilde{\iota} \circ p^{*}: \prod_{\alpha} H^{4 n+2}\left(S_{\alpha}^{4 n+2}\right) \rightarrow S p_{n}(X)\right\} \\
& =\operatorname{Im}\left\{p^{*}: \prod_{\alpha} \pi_{4 n+2}(S p(n)) \rightarrow S p_{n}(X)\right\}
\end{aligned}
$$

One can easily deduce from the result of Borel and Hirzebruch [4] that

$$
\pi_{4 n+2}(S p(n)) \cong \begin{cases}\mathbb{Z} /(2 n+1)! & n \text { is even } \\ \mathbb{Z} / 2(2 n+1)! & n \text { is odd }\end{cases}
$$

and then we have established Proposition 2.3.

3. The commutator in $S p_{n}(X)$

Hamanaka and Kono [8] investigated the commutator in $U_{n}(X)$ by constructing a lift of the commutator $\operatorname{map} U(n) \wedge U(n) \rightarrow U(n)$ to ΩW_{n}. We follow this procedure to study the commutator in $S p_{n}(X)$. Let $\gamma: S p(n) \wedge S p(n) \rightarrow$ $S p(n)$ be the commutator of $S p(n)$ as in the previous section. Consider the fibration

$$
\Omega X_{n} \xrightarrow{\Omega \delta} S p(n) \xrightarrow{i} S p(\infty) .
$$

Since $S p(\infty)$ is homotopy abelian, $i \circ \gamma$ is null-homotopic. Then, by the homotopy lifting property of $i: S p(n) \rightarrow S p(\infty)$, we have a map $\tilde{\gamma}: S p(n) \wedge S p(n) \rightarrow$ ΩX_{n} satisfying the following homotopy commutative diagram.

We shall construct a special lift $\tilde{\gamma}$ to prove Theorem 1.2.
Define a map $\bar{\omega}: S p(n) * S p(n) \rightarrow \Sigma S p(n) \vee \Sigma S p(n)$ by

$$
\bar{\omega}(t, x, y)= \begin{cases}((1-2 t, x), e) & 0 \leq t \leq \frac{1}{2} \\ (e,(2 t-1, y)) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

where $X * Y$ denotes the join of X and Y, and e is the basepoint of $\Sigma S p(n)$. Let $\omega: \Sigma S p(n) \wedge S p(n) \rightarrow \Sigma S p(n) \vee \Sigma S p(n)$ be a homotopy inverse of the canonical map $S p(n) * S p(n) \rightarrow \Sigma S p(n) \wedge S p(n)$ followed by $\bar{\omega}$. Then the induced map

$$
\omega^{*}:[\Sigma S p(n), X] \times[\Sigma S p(n), X] \rightarrow[\Sigma S p(n) \wedge S p(n), X]
$$

gives the generalized Whitehead product in the sense of Arkowitz [1]. Hence it follows that, for $\alpha, \beta \in[\Sigma S p(n), X]$, one has

$$
\begin{equation*}
\operatorname{ad}\left(\omega^{*}(\alpha, \beta)\right)=\gamma \circ(\operatorname{ad}(\alpha) \wedge \operatorname{ad}(\beta)) \tag{3.1}
\end{equation*}
$$

where ad: $[\Sigma X, Y] \stackrel{\cong}{\Longrightarrow}[X, \Omega Y]$ takes the adjoint (See [1] for details).
Let I_{ω} and C_{ω} denote the mapping cylinder and the mapping cone of ω respectively. Arkowitz [1] showed that there is a homotopy equivalence $\phi: C_{\omega} \xrightarrow{\simeq} \Sigma S p(n) \times \Sigma S p(n)$ which satisfies the following homotopy commutative diagram.

where p_{1} and p_{2} are the pinching map and the projection respectively. Let j and k be the compositions

$$
\Sigma S p(n) \vee \Sigma S p(n) \xrightarrow{\operatorname{ad}^{-1}(1) \mathrm{Vad}^{-1}(1)} B S p(n) \vee B S p(n) \xrightarrow{\nabla} B S p(n)
$$

and
$\Sigma S p(n) \times \Sigma S p(n) \xrightarrow{\operatorname{ad}^{-1}(1) \times \mathrm{ad}^{-1}(1)} B S p(n) \times B S p(n) \xrightarrow{D} B S p(2 n) \xrightarrow{B i} B S p(\infty)$
respectively, where ∇ denotes the folding map and D is the induced map from the diagonal inclusion $S p(n) \times S p(n) \rightarrow S p(2 n)$. Let us consider the homotopy commutative diagram:

Here we choose $k \circ \phi$ to be basepoint preserving. By applying the homotopy lifting property of the fibration $B i: B S p(n) \rightarrow B S p(\infty)$ to the homotopy $B i \circ$ $j \circ p_{2} \sim k \circ \phi \circ p_{1}$, we can get a map $j^{\prime}: I_{\omega} \rightarrow B S p(n)$ satisfying $j^{\prime} \sim j \circ p_{2}$ and the strictly commutative diagram:

Then, since $X_{n}=B i^{-1}(*)$ for the basepoint $*$ of $B S p(\infty)$, one has the strictly commutative diagram

By definition, $j \circ \omega$ represents the generalized Whitehead product $\omega^{*}\left(\operatorname{ad}^{-1}(1)\right.$, $\left.\mathrm{ad}^{-1}(1)\right)$ and then it follows from (3.1) that ad $(j \circ \omega)$ represents the commutator γ. Thus, since $\delta \circ j^{\prime \prime} \sim j \circ \omega$, we can put

$$
\tilde{\gamma}=\operatorname{ad}\left(j^{\prime \prime}\right) .
$$

Now let us show the cohomological property of the above $\tilde{\gamma}$. Consider the commutative diagram

$$
\begin{aligned}
& \widetilde{H}^{4 n+3}(\Sigma S p(n) \wedge S p(n)) \xrightarrow{\partial} H^{4 n+4}\left(I_{\omega}, \Sigma S p(n) \wedge S p(n)\right) \stackrel{p_{1}^{*}}{\rightleftarrows} \widetilde{H}^{4 n+4}\left(C_{\omega}\right)
\end{aligned}
$$

where ∂ and ∂^{\prime} are the connecting homomorphisms. By definition, one has

$$
\partial^{\prime}\left(\bar{y}_{4 n+3}\right)=B i^{*}\left(q_{n+1}\right)
$$

and then

$$
\begin{aligned}
\partial \circ\left(j^{\prime \prime}\right)^{*}\left(\bar{y}_{4 n+3}\right) & =\left(j^{\prime}\right)^{*} \circ \partial^{\prime}\left(\bar{y}_{4 n+3}\right)=\left(j^{\prime}\right)^{*} \circ B i^{*}\left(q_{n+1}\right)=p_{1}^{*} \circ(k \circ \phi)^{*}\left(q_{n+1}\right) \\
& =p_{1}^{*} \circ \phi^{*}\left(\sum_{i+j=n+1} \Sigma\left(y_{4 i-1}\right) \times \Sigma\left(y_{4 j-1}\right)\right),
\end{aligned}
$$

where q_{i} and Σ denote the universal i-th symplectic Pontrjagin class and the suspension isomorphism respectively. Let $T: \Sigma^{2} S p(n) \wedge S p(n) \rightarrow \Sigma S p(n) \wedge$ $\Sigma S p(n)$ be the alternating map $T(s, t, x, y)=(t, x, s, y)$ for $s, t \in S^{1}$ and $x, y \in$ $S p(n)$. Then, for the construction of the homotopy equivalence ϕ, one has the following commutative diagram (See [1]).

$$
\begin{aligned}
& \widetilde{H}^{4 n+3}(\Sigma S p(n) \wedge S p(n)) \xrightarrow{\partial} H^{4 n+4}\left(I_{\omega}, \Sigma S p(n) \wedge S p(n)\right) \underset{\cong}{p_{1}^{*}} \widetilde{H}^{4 n+4}\left(C_{\omega}\right) \\
& \Sigma \downarrow \cong \quad \cong \phi^{*} \\
& \widetilde{H}^{4 n+4}\left(\Sigma^{2} S p(n) \wedge S p(n)\right) \stackrel{T^{*}}{\cong} \widetilde{H}^{4 n+4}(\Sigma S p(n) \wedge \Sigma S p(n)) \xrightarrow{\pi^{*}} \widetilde{H}^{4 n+4}(\Sigma S p(n) \times \Sigma S p(n))
\end{aligned}
$$

where $\pi: \Sigma S p(n) \times \Sigma S p(n) \rightarrow \Sigma S p(n) \wedge \Sigma S p(n)$ is the projection. Then it follows that

$$
\partial\left(\Sigma\left(\sum_{i+j=n+1} y_{4 i-1} \times y_{4 j-1}\right)\right)=\partial \circ\left(j^{\prime \prime}\right)^{*}\left(\bar{y}_{4 n+3}\right)
$$

Since π^{*} is monic, so is ∂. Then one can see that

$$
\left(j^{\prime \prime}\right)^{*}\left(\bar{y}_{4 n+3}\right)=\Sigma\left(\sum_{i+j=n+1} y_{4 i-1} \times y_{4 j-1}\right)
$$

and hence

$$
\left(\operatorname{ad}\left(j^{\prime \prime}\right)\right)^{*}\left(b_{4 n+2}\right)=\sum_{i+j=n+1} y_{4 i-1} \times y_{4 j-1} .
$$

Therefore we have obtained:
Lemma 3.1. There exists a map $\tilde{\gamma}: S p(n) \wedge S p(n) \rightarrow \Omega X_{n}$ such that $\Omega \delta \circ \tilde{\gamma} \sim \gamma$ and that

$$
\tilde{\gamma}^{*}\left(b_{4 n+2}\right)=\sum_{i+j=n+1} y_{4 i-1} \times y_{4 j-1} .
$$

Proof of Theorem 1.2. Note that, for $\alpha, \beta \in S p_{n}(X)$, the commutator $[\alpha, \beta]$ in $S p_{n}(X)$ is represented by the composition $\gamma \circ(\alpha \wedge \beta) \circ \Delta \sim \Omega \delta \circ \tilde{\gamma} \circ$ $(\alpha \wedge \beta) \circ \Delta$ as above, where $\tilde{\gamma}$ is as in Lemma 3.1. For the construction of the exact sequence (1.1), one can see that

$$
\iota\left(\left[(\tilde{\gamma} \circ(\alpha \wedge \beta) \circ \Delta)^{*}\left(b_{4 n+2}\right)\right]\right)=[\alpha, \beta],
$$

where ι is as in Theorem 1.1. Then Theorem 1.2 follows from Lemma 3.1.

4. Applications

As an application of the above results, we give three example calculations using Theorem 1.1, Theorem 1.2 and Theorem 1.3.

4.1. $\quad S p_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)$

Proof of Proposition 1.4. We calculate $S p_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)$. Consider the exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \widetilde{K S p}^{*}\left(S^{4 n+2}\right) \rightarrow \widetilde{K S p}^{*}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \rightarrow \widetilde{K S p}{ }^{*}\left(\Sigma^{2} \mathbb{H} P^{n-1}\right) \\
& \rightarrow \widetilde{K S p}^{*+1}\left(S^{4 n+2}\right) \rightarrow \cdots
\end{aligned}
$$

induced from the cofibration sequence $\Sigma^{2} \mathbb{H} P^{n-1} \rightarrow \Sigma^{2} \mathbb{H} P^{n} \rightarrow S^{4 n+2}$. Then it follows from $\widetilde{K S p}^{-1}\left(S^{4 n+2}\right)=0$ that $\widetilde{K S p}^{-1}\left(\Sigma^{2} \mathbb{H} P^{n}\right)=0$ inductively. Hence, for Theorem 1.1, one has

$$
S p_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \cong \mathbf{N}_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)
$$

Thus we shall calculate $\mathbf{N}_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)$.
For Theorem 1.3, we have the following commutative diagram.

Then one can deduce $\mathbf{N}_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)=$ Coker $\Theta_{\mathbb{H}}$ from $\Theta_{\mathbb{C}}$ and \mathbf{c}^{\prime} in the above diagram.

By using Proposition 2.1, we calculate $\Theta_{\mathbb{C}}: \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \rightarrow$ $H^{4 n+2}\left(\Sigma^{2} \mathbb{H} P^{n}\right)$. Let ξ_{n} be the canonical quaternionic line bundle over $\mathbb{H} P^{n}$ and let $\gamma_{n} \in \widetilde{K}^{0}\left(\mathbb{H} P^{n}\right)$ be $\mathbf{c}^{\prime}\left(\xi_{n}-1_{\mathbb{H}}\right)$, where $1_{\mathbb{H}}$ denotes the trivial quaternionic line bundle. It is straightforward to see that

$$
\begin{equation*}
K^{0}\left(\mathbb{H} P^{n}\right)=\mathbb{Z}\left[\gamma_{n}\right] /\left(\gamma_{n}^{n+1}\right) . \tag{4.1}
\end{equation*}
$$

Let $\pi: \mathbb{C} P^{2 n+1} \rightarrow \mathbb{H} P^{n}$ be the standard surjection and let ω_{n} be the canonical line bundle over $\mathbb{C} P^{n}$. Since π is the restriction of $B U(1) \rightarrow B S p(1)$, $\pi^{*}\left(\mathbf{c}^{\prime}\left(\xi_{n}\right)\right)=\omega_{2 n+1} \oplus \bar{\omega}_{2 n+1}$. In the commutative diagram

we have

$$
\begin{aligned}
\pi^{*}\left(s_{2 n}\left(\gamma_{n}\right)\right) & =s_{2 n}\left(\pi^{\prime *}\left(\gamma_{n}\right)\right) \\
& =s_{2 n}\left(\omega_{2 n+1} \oplus \bar{\omega}_{2 n+1}-2_{\mathbb{C}}\right) \\
& =s_{2 n}\left(\omega_{2 n+1}\right)+s_{2 n}\left(\bar{\omega}_{2 n+1}\right) \\
& =c_{1}\left(\omega_{2 n+1}\right)^{2 n}+\left(-c_{1}\left(\omega_{2 n+1}\right)\right)^{2 n} \\
& =2 c_{1}\left(\omega_{2 n+1}\right)^{2 n}
\end{aligned}
$$

for $n \geq 1$.
Let q denote the first symplectic Pontrjagin class of ξ_{n}. Since $\pi^{*}(q)=$ $c_{1}\left(\omega_{2 n+1}\right)^{2}, \pi^{*}$ is monic and $s_{2 l}\left(\gamma_{n}\right)=2 q^{l}$. For a dimensional reason, $s_{2 l+1}\left(\gamma_{n}\right)$ $=0$. Then it follows that

$$
\operatorname{ch}\left(\gamma_{n}^{k}\right)=\left(\operatorname{ch}\left(\gamma_{n}\right)\right)^{k}=\left(\sum_{l=1}^{\infty} \frac{s_{2 l}\left(\gamma_{n}\right)}{2 l!}\right)^{k}=\sum_{l=1}^{\infty} \sum_{\substack{i_{1}+\ldots+i_{k}=l \\ i_{1}, \ldots, i_{k}>0}} \frac{2^{k} q^{l}}{\left(2 i_{1}\right)!\cdots\left(2 i_{k}\right)!}
$$

Hence we obtain

$$
s_{2 n}\left(\gamma_{n}^{k}\right)=2^{k} \sum_{\substack{i_{1}+\cdots+i_{k}=n \\ i_{1}, \ldots, i_{k}>0}} \frac{(2 n)!}{\left(2 i_{1}\right)!\cdots\left(2 i_{k}\right)!} q^{n} .
$$

Thus, for Proposition 2.1 and Proposition 2.2, we have

$$
\begin{equation*}
\Theta_{\mathbb{C}}\left(\bar{\eta} \wedge \bar{\eta} \wedge \gamma_{n}^{k}\right)=-2^{k} \sum_{\substack{i_{1}+\ldots+i_{k}=n \\ i_{1}, \ldots, i_{k}>0}} \frac{(2 n+1)!}{\left(2 i_{1}\right)!\cdots\left(2 i_{k}\right)!} s_{1}(\bar{\eta}) \times q^{n} \tag{4.2}
\end{equation*}
$$

Here, for the result of Atiyah and Hirzebruch [3], $s_{1}(\bar{\eta})$ is a generator of $H^{2}\left(S^{2}\right)$.
Note that $\operatorname{Im}\left\{\mathbf{c}^{\prime}: \widetilde{K S p}^{-2}\left(\Sigma^{2} \mathbb{H} P^{1}\right) \rightarrow \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{1}\right)\right\}=2 \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{1}\right)$ and that, for (4.1), $\operatorname{Ker}\left\{i^{*}: \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \rightarrow \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{1}\right)\right\}$ is a free abelian group generated by $\bar{\eta} \wedge \bar{\eta} \wedge \gamma_{n}^{2}, \ldots, \bar{\eta} \wedge \bar{\eta} \wedge \gamma_{n}^{n}$, where $\bar{\eta}$ is as in Section 2. Then it follows from the commutative diagram

that

$$
\bar{\eta} \wedge \bar{\eta} \wedge \gamma_{n} \notin \operatorname{Im}\left\{\mathbf{c}^{\prime}: \widetilde{K S p}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \rightarrow \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right)\right\}
$$

On the other hand, there is $\alpha \in \widetilde{K O}^{0}\left(S^{4}\right)$ such that $\mathbf{c}(\alpha)=2 \bar{\eta} \wedge \bar{\eta}$, where c: $\widetilde{K O}^{0}\left(S^{4}\right) \rightarrow \widetilde{K}^{0}\left(S^{4}\right)$ is the complexification. Then one has

$$
\mathbf{c}^{\prime}\left(\alpha \wedge\left(\xi_{n}-1_{\mathbb{H}}\right)\right)=2 \bar{\eta} \wedge \bar{\eta} \wedge \gamma_{n} \in \operatorname{Im}\left\{\mathbf{c}^{\prime}: \widetilde{K S p}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right) \rightarrow \widetilde{K}^{-2}\left(\Sigma^{2} \mathbb{H} P^{n}\right)\right\}
$$

and hence, for (4.2),

$$
\mathbf{N}_{n}\left(\Sigma^{2} \mathbb{H} P^{n}\right)=\operatorname{Coker} \Theta_{\mathbb{C}} \cong \mathbb{Z} / 4(2 n+1)
$$

Therefore we have established Proposition 1.4.

4.2. Samelson product $\left\langle\epsilon_{3}, \epsilon\right\rangle$

Proof of Proposition 1.5. Let Q_{2} be the quasi-projective space of $S p(2)$, that is, Q_{2} is the 9 -skeleton of $S p(2)=S^{3} \cup e^{7} \cup e^{10}$. Denote the inclusions $S^{3} \hookrightarrow S p(2)$ and $Q_{2} \hookrightarrow S p(2)$ by ϵ_{3} and ϵ respectively. We calculate the order of the Samelson product $\left\langle\epsilon_{3}, \epsilon\right\rangle$. For Theorem 1.3, we have the following commutative diagram:

Then, in order to calculate the Coker $\Theta_{\mathbb{H}}$, we first consider the map c $\mathbf{c}^{\prime}: \widetilde{K S p}{ }^{-2}\left(S^{3}\right.$ $\left.\wedge Q_{2}\right) \rightarrow \widetilde{K}^{-2}\left(S^{3} \wedge Q_{2}\right)$. Consider the following commutative diagram of exact sequences induced from the cofibration sequence $S^{6} \rightarrow S^{3} \wedge Q_{2} \rightarrow S^{10}$.

Since $\widetilde{K S p}^{-2}\left(S^{4 n+2}\right) \cong \mathbb{Z}$ and $\widetilde{K}^{-2}\left(S^{2 n}\right) \cong \mathbb{Z}, \widetilde{K S p}^{-2}\left(S^{3} \wedge Q_{2}\right)=\mathbb{Z}\langle\alpha, \beta\rangle$ and $\widetilde{K}^{-2}\left(S^{3} \wedge Q_{2}\right)=\mathbb{Z}\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$, where $\mathbb{Z}\langle a, b, \ldots\rangle$ denote the free abelian group with a basis a, b, \ldots. Moreover, since $\mathbf{c}^{\prime}=1: \widetilde{K S p}^{-2}\left(S^{10}\right) \rightarrow \widetilde{K}^{-2}\left(S^{10}\right)$ and $\mathbf{c}^{\prime}=2: \widetilde{K S p}^{-2}\left(S^{6}\right) \rightarrow \widetilde{K}^{-2}\left(S^{6}\right)$, we can choose $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ such that $\mathbf{c}^{\prime}(\alpha)=2 \alpha^{\prime}$ and $\mathbf{c}^{\prime}(\beta)=\beta^{\prime}$.

We next calculate $\Theta_{\mathbb{C}}: \widetilde{K}^{-2}\left(S^{3} \wedge Q_{2}\right) \rightarrow H^{10}\left(S^{3} \wedge Q_{2}\right)$. Let $\hat{\mathbf{c}}^{\prime}: Q_{2} \rightarrow \Sigma \mathbb{C} P^{3}$ be the restriction of $\mathbf{c}^{\prime}: S p(2) \rightarrow S U(4)$ to their quasi-projective spaces. Then

$$
H^{*}\left(Q_{2}\right)=\mathbb{Z}\left\langle\hat{y}_{3}, \hat{y}_{7}\right\rangle, H^{*}\left(\Sigma \mathbb{C} P^{3}\right)=\mathbb{Z}\left\langle\hat{x}_{3}, \hat{x}_{5}, \hat{x}_{7}\right\rangle
$$

such that

$$
\hat{\mathbf{c}}^{\prime}\left(\hat{x}_{3}\right)=\hat{y}_{3}, \hat{\mathbf{c}}^{\prime}\left(\hat{x}_{5}\right)=0, \hat{\mathbf{c}}^{\prime}\left(\hat{x}_{7}\right)=\hat{y}_{7} .
$$

Let $\mu \in \widetilde{K}^{0}\left(\mathbb{C} P^{3}\right)$ denote $\omega_{3}-1_{\mathbb{C}}$, where ω_{3} is as in the previous subsection. $\widetilde{K}^{0}\left(\Sigma^{6} \mathbb{C} P^{3}\right)=\widetilde{K}^{-2}\left(\Sigma^{4} \mathbb{C} P^{3}\right)$ has three generators $\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge \mu^{i}(i=1,2,3)$, where $\bar{\eta}$ is as in Section 2. We can put $\alpha^{\prime}, \beta^{\prime}$ as

$$
\alpha^{\prime}=\hat{\mathbf{c}}^{\prime}(\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge \mu), \beta^{\prime}=\hat{\mathbf{c}}^{\prime}\left(\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge \mu^{3}\right) .
$$

Consider the commutative diagram

By Proposition 2.1, $\Theta_{\mathbb{C}}^{\prime}\left(\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge \mu^{i}\right)=-s_{5}\left(\bar{\eta} \wedge \bar{\eta} \wedge \mu^{i}\right)(i=1,2,3)$. Since

$$
\begin{gathered}
\operatorname{ch}(\bar{\eta} \wedge \bar{\eta} \wedge \mu)=s_{1}(\bar{\eta}) \otimes s_{1}(\bar{\eta}) \otimes\left(c_{1}+\frac{c_{1}^{2}}{2}+\frac{c_{1}^{3}}{6}\right) \\
\operatorname{ch}\left(\bar{\eta} \wedge \bar{\eta} \wedge \mu^{3}\right)=s_{1}(\bar{\eta}) \otimes s_{1}(\bar{\eta}) \otimes c_{1}^{3}
\end{gathered}
$$

it follows that $\Theta_{\mathbb{C}}^{\prime}(\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge \mu)=-20 s_{1}(\bar{\eta}) \otimes s_{1}(\bar{\eta}) \otimes c_{1}^{3}$ and $\Theta_{\mathbb{C}}^{\prime}(\bar{\eta} \wedge \bar{\eta} \wedge \bar{\eta} \wedge$ $\left.\mu^{3}\right)=-120 s_{1}(\bar{\eta}) \otimes s_{1}(\bar{\eta}) \otimes c_{1}^{3}$, where c_{1} is the first Chern class of ω_{3}. Since $s_{1}(\bar{\eta}) \otimes s_{1}(\bar{\eta}) \otimes c_{1}^{3} \in H^{10}\left(\Sigma^{4} \mathbb{C} P^{3}\right)$ is a generator, we have $\Theta_{\mathbb{H}}(\alpha)= \pm 40 u_{3} \otimes \hat{y}_{7}$ and $\Theta_{\mathcal{H}}(\beta)= \pm 120 u_{3} \otimes \hat{y}_{7}$.

Since $\left(p r_{1} \wedge p r_{2}\right) \circ \bar{\Delta}=1: S^{3} \wedge Q_{2} \rightarrow S^{3} \wedge Q_{2} \wedge S^{3} \wedge Q_{2} \rightarrow S^{3} \wedge Q_{2}$, the Samelson product $\left\langle\epsilon_{3}, \epsilon\right\rangle$ is equal to the commutator $\left[\epsilon_{3} \circ p r_{1}, \epsilon \circ p r_{2}\right]$ in the group $\left[S^{3} \wedge Q_{2}, S p(2)\right]$, where $\bar{\Delta}$ is the reduced diagonal and $p r_{1}$ and $p r_{2}$ are the first and the second projections respectively. By Theorem 1.2, the latter is given as $\left[\epsilon_{3} \circ p r_{1}, \epsilon \circ p r_{2}\right]=\iota\left(\left[\epsilon_{3}^{*}\left(y_{3}\right) \otimes \epsilon^{*}\left(y_{7}\right)\right]\right)=\iota\left(\left[u_{3} \otimes \hat{y}_{7}\right]\right)$. Hence the order of $\left\langle\epsilon_{3}, \epsilon\right\rangle$ is 40 and we have accomplished the proof of Proposition 1.5.

4.3. $\quad S p_{n}(X)$ when X is a sphere bundle over a sphere

We calculate $S p_{n}(X)$ when X is a specific sphere bundle over a sphere. Recall the cell decomposition of a sphere bundle over a sphere due to James and Whitehead [13].

Proposition 4.1 (James and Whitehead [13]). Let X be a sphere bundle over a sphere $S^{k} \xrightarrow{i} X \xrightarrow{p} S^{l}$. Then X has a cell decomposition

$$
\begin{equation*}
X=S^{k} \cup e^{l} \cup e^{k+l} \tag{4.3}
\end{equation*}
$$

such that p restricts to the map $S^{k} \cup e^{l} \rightarrow S^{l}$ which pinches $S^{k} \subset S^{k} \cup e^{l}$ to the basepoint.

Proof. Let $p_{i}: D^{i} \rightarrow S^{i}$ be the map which pinches the boundary of D^{i} to the basepoint of S^{i}. Since D^{l} is contractible, the induced bundle $p_{l}^{-1}(X)$ is the product bundle $D^{l} \times S^{k}$. Let $\psi: D^{l} \times S^{k}=p_{l}^{-1}(X) \rightarrow X$ denote the bundle map. Then the composition $h: D^{l} \times D^{k} \xrightarrow{1 \times p_{k}} D^{l} \times S^{k} \xrightarrow{\psi} X$ is a surjection. One can see that $\left.h\right|_{S^{l-1} \times D^{k}}$ is a surjection onto the fiber $p^{-1}(*)=S^{k}$, where $*$ is the basepoint of S^{l}. One can also see that $\left.h\right|_{S^{l-1} \times S^{k-1}}$ is the composition $S^{l-1} \times S^{k-1} \rightarrow S^{l-1} \rightarrow p^{-1}(*)=S^{k}$. Since $\partial\left(D^{l} \times D^{k}\right)=S^{l-1} \times D^{k} \cup D^{l} \times S^{k-1}$, we have obtained the cell decomposition (4.1). For the construction of this cell decomposition, p restricts to the pinching map $S^{k} \cup e^{l} \rightarrow S^{l}$.

In order to calculate $S p_{n}(X)$ when X is a sphere bundle over a sphere, we calculate $\widetilde{K S p}^{-1}(X)$ by using Proposition 4.1.

Lemma 4.2. Let X be a sphere bundle over a sphere $S^{4 n-1} \xrightarrow{i} X \xrightarrow{p}$ $S^{4 m-1}$ such that $m+n$ is odd. Then we have

$$
\widetilde{K S p}^{-1}(X)=\mathbb{Z}\langle\tilde{\alpha}, \tilde{\beta}\rangle
$$

such that

$$
i^{*}(\tilde{\alpha})=t_{n}, p^{*}\left(t_{m}\right)=\tilde{\beta},
$$

where $\mathbb{Z}\langle\alpha, \beta, \ldots\rangle$ denotes the free abelian group with a basis α, β, \ldots and t_{j} is a generator of $\widetilde{K S p}^{-1}\left(S^{4 j-1}\right) \cong \mathbb{Z}$.

Proof. We fix $N=m+n-1$. For Proposition 4.1, X has a cell decomposition

$$
X=S^{4 n-1} \cup e^{4 m-1} \cup e^{4 N+2}
$$

and p restricts to the pinching map $S^{4 n-1} \cup e^{4 m-1} \rightarrow S^{4 m-1}$. Let $X^{(4 N+1)}$ denote the $(4 N+1)$-skeleton of X. Then, for Proposition 4.1, the restriction of p,

$$
\begin{equation*}
S^{4 n-1} \xrightarrow{i} X^{(4 N+1)} \xrightarrow{\left.p\right|_{X}(4 N+1)} S^{4 m-1}, \tag{4.4}
\end{equation*}
$$

is a cofibration sequence and hence it induces the exact sequence

$$
\begin{aligned}
\cdots \rightarrow \widetilde{K S p}^{*}\left(S^{4 m-1}\right) \xrightarrow{\left(\left.p\right|_{X(4 N+1)}\right)^{*}} & \widetilde{K S p}^{*}\left(X^{(4 N+1)}\right) \rightarrow \\
& \xrightarrow{i^{*}} \widetilde{K S p}^{*}\left(S^{4 n-1}\right) \rightarrow \widetilde{K S p}^{*+1}\left(S^{4 m-1}\right) \rightarrow \cdots .
\end{aligned}
$$

Since $\widetilde{K S p}^{0}\left(S^{4 m-1}\right)=0, \widetilde{K S p}^{-1}\left(S^{4 n-1}\right) \cong \widetilde{K S p}^{-1}\left(S^{4 m-1}\right) \cong \mathbb{Z}$ and $\widetilde{K S p}^{-2}\left(S^{4 n-1}\right) \cong 0$ or $\mathbb{Z} / 2$, one has

$$
\begin{equation*}
\widetilde{K S p}^{-1}\left(X^{(4 N+1)}\right)=\langle\alpha, \beta\rangle \tag{4.5}
\end{equation*}
$$

such that $i^{*}(\alpha)=t_{n}$ and $\left(\left.p\right|_{X^{(4 N+1)}}\right)^{*}\left(t_{m}\right)=\beta$. Similarly the cofibration sequence

$$
\begin{equation*}
X^{(4 N+1)} \xrightarrow{j} X \rightarrow S^{4 N+2} \tag{4.6}
\end{equation*}
$$

induces the exact sequence

$$
\begin{aligned}
\cdots \rightarrow \widetilde{K S p}^{*}\left(S^{4 N+2}\right) \rightarrow \widetilde{K S p}^{*}(X) \xrightarrow{j^{*}} \widetilde{K S p}^{*}\left(X^{(4 N+1)}\right) & \\
& \rightarrow \widetilde{K S p}^{*+1}\left(S^{4 N+2}\right) \rightarrow \cdots .
\end{aligned}
$$

Since N is even, $\widetilde{K S p}^{-1}\left(S^{4 N+2}\right)=0$ and $\widetilde{K S p}^{0}\left(S^{4 N+2}\right)=0$. Then we have $j^{*}: \widetilde{K S p}^{-1}(X) \cong \widetilde{K S p}^{-1}\left(X^{(4 N+1)}\right)$ and hence Lemma 4.2 follows from (4.5).

Proof of Theorem 1.6. Fix $N=m+n-1$. Since the diagram (1.3) is natural for the pinching map $q: X \rightarrow S^{4 N+2}$, we have the following commutative diagram.

The left vertical arrow \mathbf{c}^{\prime} is an isomorphism since N is even. The cofibration sequence (4.4) induces the exact sequence

$$
\cdots \rightarrow \widetilde{K}^{-2}\left(S^{4 m-1}\right) \rightarrow \widetilde{K}^{-2}\left(X^{(4 N+1)}\right) \rightarrow \widetilde{K}^{-2}\left(S^{4 n-1}\right) \rightarrow \cdots
$$

Then it follows from $\widetilde{K}^{-2}\left(S^{4 m-1}\right)=\widetilde{K}^{-2}\left(S^{4 n-1}\right)=0$ that $\widetilde{K}^{-2}\left(X^{(4 N+1)}\right)=0$. Hence the bottom horizontal arrow q^{*} is epic since we have the exact sequence

$$
\cdots \rightarrow \widetilde{K}^{-2}\left(S^{4 N+2}\right) \xrightarrow{q^{*}} \widetilde{K}^{-2}(X) \rightarrow \widetilde{K}^{-2}\left(X^{(4 N+1)}\right) \rightarrow \cdots
$$

induced from the cofibration sequence (4.6). Thus the right vertical arrow \mathbf{c}^{\prime} is epic and one has

$$
\begin{aligned}
\operatorname{Coker} & \left\{\Theta_{\mathbb{H}}: \widetilde{K S p}^{-2}(X) \rightarrow H^{4 N+2}(X)\right\} \\
& =\operatorname{Coker}\left\{\Theta_{\mathbb{C}}: \widetilde{K}^{-2}(X) \rightarrow H^{4 N+2}(X)\right\} \\
& =\operatorname{Coker}\left\{\Theta_{\mathbb{C}} \circ q^{*}: \widetilde{K}^{-2}\left(S^{4 N+2}\right) \rightarrow H^{4 N+2}(X)\right\} \\
& =\operatorname{Coker}\left\{q^{*} \circ \Theta_{\mathbb{C}}: \widetilde{K}^{-2}\left(S^{4 N+2}\right) \rightarrow H^{4 N+2}(X)\right\} \\
& \cong \operatorname{Coker}\left\{\Theta_{\mathbb{C}}: \widetilde{K}^{-2}\left(S^{4 N+2}\right) \rightarrow H^{4 N+2}\left(S^{4 N+2}\right)\right\},
\end{aligned}
$$

here we use the fact that $q^{*}: H^{4 N+2}\left(S^{4 N+2}\right) \rightarrow H^{4 N+2}(X)$ is an isomorphism. For the result of Atiyah and Hirzebruch [3], we have $\operatorname{Coker}\left\{\Theta_{\mathbb{C}}: \widetilde{K}^{-2}\left(S^{4 N+2}\right) \rightarrow\right.$ $\left.H^{4 N+2}\left(S^{4 N+2}\right)\right\} \cong \mathbb{Z} /(2 N+1)$!. Therefore we have obtained

$$
\mathbf{N}_{N}(X)=\operatorname{Coker}\left\{\Theta_{\mathbb{H}}: \widetilde{K S p}^{-2}(X) \rightarrow H^{4 N+2}(X)\right\} \cong \mathbb{Z} /(2 N+1)!.
$$

For Theorem 1.1, we have the central extension

$$
0 \rightarrow \mathbb{Z} /(2 N+1)!\xrightarrow{\iota} S p_{N}(X) \xrightarrow{\pi} \widetilde{K S p}^{-1}(X) \rightarrow 0
$$

Then we have only to calculate the order of $[\alpha, \beta]$ in $\mathbb{Z} /(2 N+1)!\subset S p_{N}(X)$, where $\alpha, \beta \in S p(X)$ satisfy $\pi(\alpha)=\tilde{\alpha}, \pi(\beta)=\tilde{\beta}$ and $\tilde{\alpha}, \tilde{\beta} \in \widetilde{K S p}^{-1}(X)$ are as in Lemma 4.2.

It is obvious that

$$
H^{*}(X) \cong \Lambda\left(u_{4 n-1}^{\prime}, u_{4 m-1}^{\prime}\right)
$$

such that $i^{*}\left(u_{4 n-1}^{\prime}\right)=u_{4 n-1}$ and $u_{4 m-1}^{\prime}=p^{*}\left(u_{4 m-1}\right)$, where $u_{i} \in H^{i}\left(S^{i}\right)$ is a generator. Let $\epsilon \in S p_{N}(X)$ be a generator of $\operatorname{Coker}\left\{\Theta_{\mathbb{C}}: \widetilde{K}^{-2}(X) \rightarrow\right.$ $\left.H^{4 N+2}(X)\right\} \cong \mathbb{Z} /(2 N+1)$! represented by $u_{4 m-1}^{\prime} u_{4 n-1}^{\prime}$.

From Theorem 1.2, it follows that $[\alpha, \beta]=\iota([u])$ such that

$$
u=\sum_{i+j=m+n} \alpha^{*}\left(y_{4 i-1}\right) \beta^{*}\left(y_{4 j-1}\right) \in H^{4 N+2}(X) .
$$

Let t_{i}^{\prime} be a generator of $\pi_{4 i-1}(S p(N)) \cong \mathbb{Z}$ for $i \leq N$. Then we have

$$
i^{*} \circ \alpha^{*}\left(y_{4 i-1}\right)=\left(t_{n}^{\prime}\right)^{*}\left(y_{4 i-1}\right), \beta^{*}\left(y_{4 i-1}\right)=p^{*} \circ\left(t_{m}^{\prime}\right)^{*}\left(y_{4 i-1}\right) .
$$

Let v_{i} be a generator of $\pi_{2 i-1}(U(2 N)) \cong \mathbb{Z}$ for $i \leq 2 N$. Atiyah and Hirzebruch [3] showed that

$$
v_{i}^{*}\left(x_{2 i-1}\right)= \pm(i-1)!u_{2 i-1},
$$

where $x_{2 i-1}$ is as in Section 2. Since

$$
\mathbf{c}^{\prime}\left(t_{i}^{\prime}\right)= \begin{cases} \pm v_{2 i} & i \text { is odd } \\ \pm 2 v_{2 i} & i \text { is even }\end{cases}
$$

and $\left(\mathbf{c}^{\prime}\right)^{*}\left(x_{4 i-1}\right)=(-1)^{i} y_{4 i-1}$, we have

$$
u= \pm 2(2 n-1)!(2 m-1)!u_{4 n-1}^{\prime} u_{4 m-1}^{\prime}
$$

and then

$$
[\alpha, \beta]= \pm 2(2 n-1)!(2 m-1)!\epsilon
$$

Therefore the proof of Theorem 1.6 is completed.

Department of Mathematics

 Kyoto UniversityKyoto 606-8502, Japan
e-mail: tnagao@math.kyoto-u.ac.jp

References

[1] M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12-1 (1962), 7-23.
[2] M. Arkowitz, H. Ōshima and J. Strom, Noncommutativity of the group of self homotopy class of Lie groups, Topology Appl. 125 (2002), 87-96.
[3] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, Amer. Math. Soc., Providence, R.I. (1961), 7-38.
[4] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math. 81 (1959), 315-382.
[5] H. Hamanaka, On $[X, U(n)]$ when $\operatorname{dim} X$ is $2 n+1$, J. Math. Kyoto Univ. 44 (2004), 655-668.
\qquad , Nilpotency of unstable K-theory, Topology Appl. 154 (2007), 1368-1376.
[7] \qquad _ On Samelson products in p-localized unitary groups, Topology Appl. 154 (2007), 573-583.
[8] H. Hamanaka and A. Kono, On $[X, U(n)]$ when $\operatorname{dim} X$ is $2 n$, J. Math. Kyoto Univ. 43 (2003), 333-348.
[9] , Unstable K^{1}-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh. Sect. A 136 (2006), 149-155.
[10] H. Hamanaka, S. Kaji and A. Kono, Samelson products in $S p(2)$, preprint.
[11] H. Hamanaka, D. Kishimoto and A. Kono, Self homotopy groups with large nilpotency classes, Topology Appl. 153-14 (2006), 2425-2429.
[12] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups, Bull. London Math. Soc. 36-1 (2004), 37-52.
[13] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres, I, Proc. London Math. Soc. (3) 4 (1954), 196-218.
[14] M. Mimura and H. Ōshima, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan 51 (1999), 71-92.
[15] G. W. Whitehead, On mappings into group-like spaces, Comment. Math. Helv. 28 (1954), 320-328.
[16] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc. 25 (1993), 481-486.

