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On the groups [X, Sp(n)] with dim X ≤ 4n + 2

By

Tomoaki Nagao

1. Introduction

Let G be a group-like space, that is, G satisfies all the axioms of groups
up to homotopy, and let X be a based space. The based homotopy set [X,G]
becomes a group by the pointwise multiplication and moreover, when G is
connected, G.W. Whitehead [15] shows that [X,G] is a nilpotent group of
class ≤ catX, where catX stands for the L-S category of X normalized as
cat(∗) = 0. However, in general it is hard to understand the group [X,G]
further. It is of particular interest the case that G is a compact Lie group and
it has been studied by many ([16], [2], [11], [12]). In particular, when G = U(n)
and X is a CW-complex with dimX ≤ 2n, Hamanaka and Kono [8] give an
explicit method to calculate Un(X) = [X,U(n)]. Note that Un(X) is naturally
isomorphic to K̃−1(X) when dimX < 2n. Then, when dimX = 2n, Un(X)
may contain the first unstable property and, in fact, Hamanaka and Kono [8]
show that Un(X) is given by a central extension of K̃−1(X). Moreover, the
commutator in Un(X) is explicitly calculated. Later, Hamanaka and Kono
developed this method further and give applications ([5], [9], [6], [7]).

The aim of this paper is to study the group Spn(X) = [X,Sp(n)] when
dimX ≤ 4n+2 following Hamanaka and Kono [8]. In this paper, all cohomology
groups have integral coefficients. We will prove:

Theorem 1.1. Let X be a CW-complex with dimX ≤ 4n+2. There is
an exact sequence

(1.1) K̃Sp
−2

(X) ΘH−−→ H4n+2(X) → Spn(X) → K̃Sp
−1

(X) → 0

which is natural with respect to X. Moreover, the induced sequence

0 → Nn(X) ι−→ Spn(X) → K̃Sp
−1

(X) → 0.

is a central extension, where Nn(X) = Coker ΘH.

As in the case of Un(X) noted above, we can give the commutator in
Spn(X) explicitly as follows. The cohomology of Sp(n) is:
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150 Tomoaki Nagao

(1.2) H∗(Sp(n)) = Λ(y3, y7, . . . , y4n−1), y4i−1 = σ(qi),

where σ and qi denote the cohomology suspension and the universal i-th sym-
plectic Pontrjagin class respectively.

Theorem 1.2. Let X be a CW-complex with dimX ≤ 4n + 2 and let
ι : Nn(X) → Spn(X) be as in Theorem 1.1. For α, β ∈ Spn(X), the commuta-
tor [α, β] in Spn(X) is given as

[α, β] = ι

 ∑
i+j=n+1

α∗(y4i−1)β∗(y4j−1)

 .

Denote by c′ both the canonical inclusion Sp(n) ↪→ U(2n) and the induced
map K̃Sp

∗
(−) → K̃∗(−). We also denote by c′ the composition of the inclusions

Sp(n)
c′
↪→ U(2n) ↪→ U(2n+ 1).

By using the above maps c′, we compare Spn(X) with U2n+1(X) as:

Theorem 1.3. Let X be a CW-complex with dimX ≤ 4n + 2. Then
there is a commutative diagram
(1.3)

K̃Sp
−2

(X)
ΘH ��

c′

��

H4n+2(X) ��

(−1)n+1

��

Spn(X) ��

c′

��

K̃Sp
−1

(X) ��

c′

��

0

K̃−2(X)
ΘC �� H4n+2(X) �� U2n+1(X) �� K̃−1(X) �� 0

which is natural with respect to X, where the top and the bottom rows are the
exact sequences in Theorem 1.1 and in [8, Theorem 1.1] respectively.

As an application of the above results, we will give some special calculation
(For a further application, see [10].).

Proposition 1.4. Spn(Σ2HPn) ∼= Z/4(2n+ 1).

Proposition 1.5. Let Q2 be the quasi-projective space of Sp(2). Denote
by ε and ε3 respectively the inclusions Q2 → Sp(2) and S3 → Sp(2). Then the
order of the Samelson product 〈ε3, ε〉 is 40.

Theorem 1.6. Let S4n−1 i−→ X
p−→ S4m−1 be a sphere bundle over a

sphere such that m+n is odd. Then Spm+n−1(X) is generated by three elements
α, β, ε subject to the relations

[α, ε] = [β, ε] = (2(m+ n) − 1)!ε = 0, [α, β] = 2(2m− 1)!(2n− 1)!ε.

By applying Theorem 1.6 to the fiber bundle Sp(1) → Sp(2) → S7, we
obtain the following.
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Corollary 1.7 (Mimura and Ōshima [14]). The group [Sp(2), Sp(2)] is
generated by three elements α, β, ε subject to the relations

[α, ε] = [β, ε] = 5!ε = 0, [α, β] = 12ε.

The organization of this paper is as follows. In Section 2, we first recall
some results of Hamanaka and Kono [8]. We follow their methods to prove
Theorem 1.1 and Theorem 1.3. We also estimate the order of elements in
Nn(X). In Section 3, we prove Theorem 1.2 quite similarly to the proof of [8,
Theorem 1.4]. In Section 4, by exploiting the results obtained so far, we give
the above special calculation as an application.

2. Exact sequences

Let us first recall some results of Hamanaka and Kono [8]. Let X be a
CW-complex with dimX ≤ 2n and let Wn denote the infinite Stiefel manifold
U(∞)/U(n). By applying [X,−] to the fibration sequence

ΩU(∞) → ΩWn → U(n) i−→ U(∞)
p−→Wn,

we obtain the exact sequence

(2.1) K̃−2(X) → [X,ΩXn] → Un(X) i∗−→ K̃−1(X) → [X,Wn],

here we use the isomorphism

K̃−i(X) ∼= [ΣiX,BU(∞)].

Since Wn is 2n-connected and dimX ≤ 2n, [X,Wn] is trivial. Then i∗ is epic.
It is well known that the cohomology of U(n) is given by

H∗(U(n)) = Λ(x1, . . . , x2n−1), x2i−1 = σ(ci)

where σ and ci are the cohomology suspension and the universal i-th Chern
class respectively. The cohomology of Wn is given as

H∗(Wn) = Λ(x̄2n+1, x̄2n+3, . . . ), p∗(x̄2i−1) = x2i−1 ∈ H∗(U(∞)).

Since Wn is 2n-connected, one can see that H2n(ΩWn) ∼= Z which is generated
by a2n = σ(x̄2n+1). We ambiguously write the representing map of a2n, that is,
ΩWn → K(Z, 2n), by the same symbol a2n. Then, by definition, a2n : ΩWn →
K(Z, 2n) is a loop map. On the other hand, a2n : ΩWn → K(Z, 2n) is a
(2n + 1)-equivalence. Then, by the J.H.C. Whitehead theorem, we have a
group isomorphism

(a2n)∗ : [X,ΩWn]
∼=−→ H2n(X)

and hence the exact sequence (2.1) can be reformulated as

(2.2) K̃−2(X) ΘC−−→ H2n(X) → Un(X) → K̃−1(X) → 0.
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This exact sequence is, of course, the bottom row sequence of (1.3).
Let ω1 be the canonical line bundle over S2 = CP 1 and let η ∈ K̃0(S2)

denote ω1 − 1C, where 1C is the trivial complex line bundle. Then it is well
known that

η̄∧ : K̃0(X) → K̃−2(X)

is an isomorphism for any X, which is Bott periodicity.
We write the representing map of α ∈ K̃0(X), namely X → BU(∞), by

the same symbol α. Hamanaka and Kono [8] explicitly give the formula of ΘC

in the above exact sequence (2.2) as:

Proposition 2.1 (Hamanaka and Kono [8, Proposition 3.1]). Let X
be a CW-complex with dimX ≤ 2n and let sn ∈ H2n(BU(∞)) be the n-th
power sum. Then, for α ∈ K̃0(X), ΘC in (2.2) is given by

ΘC(η̄ ∧ α) = (−1)nsn(α),

where sn(α) = α∗(sn).

In order to make Proposition 2.1 more applicable, we give a formula of the
power sum sn.

Proposition 2.2 (Hamanaka and Kono [8, Lemma 3.2]). For θ1 ∈
K̃0(X1), θ2 ∈ K̃0(X2), we have

sj(θ1 ∧ θ2) =
j−1∑
k=1

(
j

k

)
sk(θ1) × sj−k(θ2).

Following the above method of constructing the exact sequence (2.2), we
prove Theorem 1.1 and Theorem 1.3. Let X be a CW-complex with dimX ≤
4n+ 2. Consider the fibration sequence

ΩSp(∞) → ΩXn
Ωδ−−→ Sp(n) i−→ Sp(∞)

p−→ Xn,

where Xn = Sp(∞)/Sp(n). By applying [X,−] to the above fibration sequence,
we obtain the exact sequence

(2.3) K̃Sp
−2

(X) → [X,ΩXn]
Ωδ∗−−→ Spn(X) i∗−→ K̃Sp

−1
(X) → [X,Xn]

as well as the above case of U(n), where we use the isomorphism K̃Sp
−i

(X) ∼=
[ΣiX,BSp(∞)]. Since Xn is (4n+ 2)-connected and dimX ≤ 4n+ 2, [X,Xn]
is trivial and hence i∗ in (2.3) is epic.

The cohomology of Sp(n) is given as (1.2). It is easily seen that

H∗(Xn) = Λ(ȳ4n+3, ȳ4n+7, . . . ), p∗(ȳ4i+3) = y4i+3 ∈ H∗(Sp(∞)).

Since Xn is (4n + 2)-connected, one has that H4n+2(ΩXn) ∼= Z which is gen-
erated by b4n+2 = σ(ȳ4n+3). As above, we write the representing map of
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b4n+2, that is, ΩXn → K(Z, 4n + 2), by the same symbol b4n+2 and then, by
definition, b4n+2 : ΩXn → K(Z, 4n + 2) is a loop map. On the other hand,
b4n+2 : ΩXn → K(Z, 4n + 2) is a (4n + 3)-equivalence. Then, by the J.H.C.
Whitehead theorem, we have a group isomorphism

(b4n+2)∗ : [X,ΩXn]
∼=−→ H4n+2(X)

and hence, from (2.3), we obtain the exact sequence

(2.4) K̃Sp
−2

(X) ΘH−−→ H4n+2(X) → Spn(X) i∗−→ K̃Sp
−1

(X) → 0.

Thus we have established the first part of Theorem 1.1.
Note that we have the homotopy commutative diagram

ΩSp(∞)

Ωc′

��

Ωp
�� ΩXn

��

Ωc̄′

��

Sp(n) ��

c′

��

Sp(∞)

c′

��

ΩU(∞)
Ωp′

�� ΩW2n+1
�� U(2n+ 1) �� U(∞),

where c̄′ : Xn → W2n+1 is the map induced by c′. Since (Bc′)∗(c2n+2) =
(−1)n+1qn+1, one has (c̄′)∗(x̄4n+3) = (−1)n+1ȳ4n+3. Then it follows that

(Ωc̄′)∗(a4n+2) = (Ωc̄′)∗(σ(x̄4n+3)) = σ((c̄′)∗(x̄4n+3)) = (−1)n+1σ(ȳ4n+3)

= (−1)n+1b4n+2.

Hence, by the construction of the exact sequences (2.2) and (2.4), the proof of
Theorem 1.3 is accomplished.

We continue to denote by X a CW-complex with dimX ≤ 4n + 2. Next,
we prove the rest part of Theorem 1.1, that is,

0 → Nn(X) ι−→ Spn(X) i∗−→ K̃Sp
−1

(X) → 0

is a central extension, where Nn(X) = CokerΘH. For α : X → Sp(n) and
β : X → ΩXn, the commutator [α,Ωδ ◦ β] in Spn(X) is the composition

(2.5) X
∆−→ X ∧X α∧β−−−→ Sp(n) ∧ ΩXn

1∧Ωδ−−−→ Sp(n) ∧ Sp(n)
γ−→ Sp(n),

where ∆ and γ denote the diagonal map and the commutator map of Sp(n)
respectively. Since Sp(n)∧ΩXn is (4n+4)-connected and dimX ≤ 4n+2, the
map (α ∧ β) ◦ ∆: X → Sp(n)∧ΩXn is null-homotopic. Then the commutator
[α,Ωδ ◦ β] is trivial and hence the proof of Theorem 1.1 is completed.

Remark 2.1. Let X be a CW-complex X with dimX ≤ 4n+ 4. Then
it follows from the above proof that

0 → Nn(X) → Spn(X) → Im{i∗ : Spn(X) → K̃Sp
−1

(X)} → 0

is a central extension and hence Spn(X) is a nilpotent group of class less than
or equal to 2.
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For the last of this section, we estimate the order of elements in Nn(X).

Proposition 2.3. Let X and Nn(X) be as in Theorem 1.1. Then each
element in the group Nn(X) is of order dividing 2(2n+ 1)! when n is odd and
(2n+ 1)! when n is even.

Proof. Consider the cofibration sequence

X(4n+1) → X
p−→
∨
α

S4n+2
α ,

where X(4n+1) denotes the (4n + 1)-skeleton of X and p is the pinching map.
Then it follows from Theorem 1.1 that, in the diagram

0

��

H4n+2(X)��

ι̃

��

∏
αH

4n+2(S4n+2
α )

��

p∗
��

Spn(X(4n+1))

��

Spn(X)��

��

∏
α π4n+2(Sp(n))

��

p∗
��

K̃Sp
−1

(X(4n+1)) K̃Sp
−1

(X)�� 0,��

each row and column sequence is exact. Hence we have

Nn(X) ∼= Im
{
ι̃ : H4n+2(X) → Spn(X)

}
= Im

{
ι̃ ◦ p∗ :

∏
α

H4n+2(S4n+2
α ) → Spn(X)

}
= Im

{
p∗ :

∏
α

π4n+2(Sp(n)) → Spn(X)
}
.

One can easily deduce from the result of Borel and Hirzebruch [4] that

π4n+2(Sp(n)) ∼=
{

Z/(2n+ 1)! n is even
Z/2(2n+ 1)! n is odd

and then we have established Proposition 2.3.

3. The commutator in Spn(X)

Hamanaka and Kono [8] investigated the commutator in Un(X) by con-
structing a lift of the commutator map U(n)∧U(n) → U(n) to ΩWn. We follow
this procedure to study the commutator in Spn(X). Let γ : Sp(n) ∧ Sp(n) →
Sp(n) be the commutator of Sp(n) as in the previous section. Consider the
fibration

ΩXn
Ωδ−−→ Sp(n) i−→ Sp(∞).
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Since Sp(∞) is homotopy abelian, i ◦ γ is null-homotopic. Then, by the homo-
topy lifting property of i : Sp(n) → Sp(∞), we have a map γ̃ : Sp(n)∧Sp(n) →
ΩXn satisfying the following homotopy commutative diagram.

ΩXn

Ωδ

��

Sp(n) ∧ Sp(n)
γ

��

γ̃
�������������
Sp(n)

We shall construct a special lift γ̃ to prove Theorem 1.2.
Define a map ω̄ : Sp(n) ∗ Sp(n) → ΣSp(n) ∨ ΣSp(n) by

ω̄(t, x, y) =

{
((1 − 2t, x), e) 0 ≤ t ≤ 1

2

(e, (2t− 1, y)) 1
2 ≤ t ≤ 1,

where X ∗Y denotes the join of X and Y , and e is the basepoint of ΣSp(n). Let
ω : ΣSp(n)∧Sp(n) → ΣSp(n)∨ΣSp(n) be a homotopy inverse of the canonical
map Sp(n) ∗ Sp(n) → ΣSp(n) ∧ Sp(n) followed by ω̄. Then the induced map

ω∗ : [ΣSp(n), X]× [ΣSp(n), X] → [ΣSp(n) ∧ Sp(n), X]

gives the generalized Whitehead product in the sense of Arkowitz [1]. Hence it
follows that, for α, β ∈ [ΣSp(n), X], one has

(3.1) ad(ω∗(α, β)) = γ ◦ (ad(α) ∧ ad(β)),

where ad: [ΣX,Y ]
∼=−→ [X,ΩY ] takes the adjoint (See [1] for details).

Let Iω and Cω denote the mapping cylinder and the mapping cone of
ω respectively. Arkowitz [1] showed that there is a homotopy equivalence
φ : Cω

�−→ ΣSp(n) × ΣSp(n) which satisfies the following homotopy commu-
tative diagram.

Iω
p1 ��

p2

��

Cω

φ

��

ΣSp(n) ∨ ΣSp(n) ⊂ ΣSp(n) × ΣSp(n),

where p1 and p2 are the pinching map and the projection respectively. Let j
and k be the compositions

ΣSp(n) ∨ ΣSp(n)
ad−1(1)∨ad−1(1)−−−−−−−−−−−→ BSp(n) ∨BSp(n) ∇−→ BSp(n)

and

ΣSp(n)×ΣSp(n)
ad−1(1)×ad−1(1)−−−−−−−−−−−→ BSp(n)×BSp(n) D−→ BSp(2n) Bi−−→ BSp(∞)
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respectively, where ∇ denotes the folding map and D is the induced map from
the diagonal inclusion Sp(n)×Sp(n) → Sp(2n). Let us consider the homotopy
commutative diagram:

Iω
p1 ��

j◦p2
��

Cω

k◦φ
��

BSp(n) Bi �� BSp(∞)

Here we choose k ◦ φ to be basepoint preserving. By applying the homotopy
lifting property of the fibration Bi : BSp(n) → BSp(∞) to the homotopy Bi ◦
j ◦ p2 ∼ k ◦φ ◦ p1, we can get a map j′ : Iω → BSp(n) satisfying j′ ∼ j ◦ p2 and
the strictly commutative diagram:

Iω
p1 ��

j′

��

Cω

k◦φ
��

BSp(n) Bi �� BSp(∞)

Then, since Xn = Bi−1(∗) for the basepoint ∗ of BSp(∞), one has the strictly
commutative diagram

ΣSp(n) ∧ Sp(n) ⊂

j′′

��

Iω
p1 ��

j′

��

Cω

k◦φ
��

Xn
δ �� BSp(n) Bi �� BSp(∞).

By definition, j ◦ ω represents the generalized Whitehead product ω∗(ad−1(1),
ad−1(1)) and then it follows from (3.1) that ad(j◦ω) represents the commutator
γ. Thus, since δ ◦ j′′ ∼ j ◦ ω, we can put

γ̃ = ad(j′′).

Now let us show the cohomological property of the above γ̃. Consider the
commutative diagram

eH4n+3(ΣSp(n) ∧ Sp(n))
∂ �� H4n+4(Iω, ΣSp(n) ∧ Sp(n)) eH4n+4(Cω)∼=

p∗
1��

eH4n+3(Xn)

(j′′)∗

��

∂′
�� H4n+4(BSp(n), Xn)

(j′)∗

��

eH4n+4(BSp(∞)),

(k◦φ)∗∼=

��

Bi∗��

where ∂ and ∂′ are the connecting homomorphisms. By definition, one has

∂′(ȳ4n+3) = Bi∗(qn+1)
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and then

∂ ◦ (j′′)∗(ȳ4n+3) = (j′)∗ ◦ ∂′(ȳ4n+3) = (j′)∗ ◦Bi∗(qn+1) = p∗1 ◦ (k ◦ φ)∗(qn+1)

= p∗1 ◦ φ∗
( ∑
i+j=n+1

Σ(y4i−1) × Σ(y4j−1)

)
,

where qi and Σ denote the universal i-th symplectic Pontrjagin class and the
suspension isomorphism respectively. Let T : Σ2Sp(n) ∧ Sp(n) → ΣSp(n) ∧
ΣSp(n) be the alternating map T (s, t, x, y) = (t, x, s, y) for s, t ∈ S1 and x, y ∈
Sp(n). Then, for the construction of the homotopy equivalence φ, one has the
following commutative diagram (See [1]).

eH4n+3(ΣSp(n)∧Sp(n))
∂ ��

Σ ∼=
��

H4n+4(Iω, ΣSp(n)∧Sp(n)) eH4n+4(Cω)
p∗
1

∼=
��

eH4n+4(Σ2Sp(n)∧Sp(n)) eH4n+4(ΣSp(n)∧ΣSp(n))
π∗

��T∗
∼=

�� eH4n+4(ΣSp(n) × ΣSp(n))

φ∗∼=

��

where π : ΣSp(n) × ΣSp(n) → ΣSp(n) ∧ ΣSp(n) is the projection. Then it
follows that

∂

(
Σ

( ∑
i+j=n+1

y4i−1 × y4j−1

))
= ∂ ◦ (j′′)∗(ȳ4n+3).

Since π∗ is monic, so is ∂. Then one can see that

(j′′)∗(ȳ4n+3) = Σ

( ∑
i+j=n+1

y4i−1 × y4j−1

)

and hence

(ad(j′′))∗(b4n+2) =
∑

i+j=n+1

y4i−1 × y4j−1.

Therefore we have obtained:

Lemma 3.1. There exists a map γ̃ : Sp(n) ∧ Sp(n) → ΩXn such that
Ωδ ◦ γ̃ ∼ γ and that

γ̃∗(b4n+2) =
∑

i+j=n+1

y4i−1 × y4j−1.

Proof of Theorem 1.2. Note that, for α, β ∈ Spn(X), the commutator
[α, β] in Spn(X) is represented by the composition γ ◦ (α ∧ β) ◦ ∆ ∼ Ωδ ◦ γ̃ ◦
(α ∧ β) ◦ ∆ as above, where γ̃ is as in Lemma 3.1. For the construction of the
exact sequence (1.1), one can see that

ι([(γ̃ ◦ (α ∧ β) ◦ ∆)∗(b4n+2)]) = [α, β],
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where ι is as in Theorem 1.1. Then Theorem 1.2 follows from Lemma 3.1.

4. Applications

As an application of the above results, we give three example calculations
using Theorem 1.1, Theorem 1.2 and Theorem 1.3.

4.1. Spn(Σ2HPn)

Proof of Proposition 1.4. We calculate Spn(Σ2HPn). Consider the exact
sequence

· · · → K̃Sp
∗
(S4n+2) → K̃Sp

∗
(Σ2

HPn) → K̃Sp
∗
(Σ2

HPn−1)

→ K̃Sp
∗+1

(S4n+2) → · · ·
induced from the cofibration sequence Σ2HPn−1 → Σ2HPn → S4n+2. Then it
follows from K̃Sp

−1
(S4n+2) = 0 that K̃Sp

−1
(Σ2

HPn) = 0 inductively. Hence,
for Theorem 1.1, one has

Spn(Σ2
HPn) ∼= Nn(Σ2

HPn).

Thus we shall calculate Nn(Σ2HPn).
For Theorem 1.3, we have the following commutative diagram.

K̃Sp
−2

(Σ2HPn)
ΘH ��

c′

��

H4n+2(Σ2HPn)

(−1)n+1

��

K̃−2(Σ2
HPn)

ΘC �� H4n+2(Σ2HPn)

Then one can deduce Nn(Σ2
HPn) = Coker ΘH from ΘC and c′ in the above

diagram.
By using Proposition 2.1, we calculate ΘC : K̃−2(Σ2HPn) →

H4n+2(Σ2HPn). Let ξn be the canonical quaternionic line bundle over HPn

and let γn ∈ K̃0(HPn) be c′(ξn−1H), where 1H denotes the trivial quaternionic
line bundle. It is straightforward to see that

(4.1) K0(HPn) = Z[γn]/(γn+1
n ).

Let π : CP 2n+1 → HPn be the standard surjection and let ωn be the canon-
ical line bundle over CPn. Since π is the restriction of BU(1) → BSp(1),
π∗(c′(ξn)) = ω2n+1 ⊕ ω̄2n+1. In the commutative diagram

K̃0(HPn)
π′∗

��

s2n

��

K̃0(CP 2n+1)

s2n

��

H4n(HPn) π∗
�� H4n(CP 2n+1),
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we have

π∗(s2n(γn)) = s2n(π′∗(γn))
= s2n(ω2n+1 ⊕ ω̄2n+1 − 2C)
= s2n(ω2n+1) + s2n(ω̄2n+1)

= c1(ω2n+1)2n + (−c1(ω2n+1))2n

= 2c1(ω2n+1)2n

for n ≥ 1.
Let q denote the first symplectic Pontrjagin class of ξn. Since π∗(q) =

c1(ω2n+1)2, π∗ is monic and s2l(γn) = 2ql. For a dimensional reason, s2l+1(γn)
= 0. Then it follows that

ch(γkn) = (ch(γn))k =

( ∞∑
l=1

s2l(γn)
2l!

)k
=

∞∑
l=1

∑
i1+···+ik=l
i1,...,ik>0

2kql

(2i1)! · · · (2ik)! .

Hence we obtain

s2n(γkn) = 2k
∑

i1+···+ik=n
i1,...,ik>0

(2n)!
(2i1)! · · · (2ik)!q

n.

Thus, for Proposition 2.1 and Proposition 2.2, we have

(4.2) ΘC(η̄ ∧ η̄ ∧ γkn) = −2k
∑

i1+···+ik=n
i1,...,ik>0

(2n+ 1)!
(2i1)! · · · (2ik)!s1(η̄) × qn.

Here, for the result of Atiyah and Hirzebruch [3], s1(η̄) is a generator of H2(S2).

Note that Im{c′ : K̃Sp
−2

(Σ2HP 1) → K̃−2(Σ2HP 1)} = 2K̃−2(Σ2HP 1) and
that, for (4.1), Ker{i∗ : K̃−2(Σ2HPn) → K̃−2(Σ2HP 1)} is a free abelian group
generated by η̄ ∧ η̄ ∧ γ2

n, . . . , η̄ ∧ η̄ ∧ γnn , where η̄ is as in Section 2. Then it
follows from the commutative diagram

K̃Sp
−2

(Σ2HPn)
i∗ ��

c′

��

K̃Sp
−2

(Σ2HP 1)

c′

��

K̃−2(Σ2HPn)
i∗ �� K̃−2(Σ2HP 1)

that

η̄ ∧ η̄ ∧ γn �∈ Im
{
c′ : K̃Sp

−2
(Σ2

HPn) → K̃−2(Σ2
HPn)

}
.

On the other hand, there is α ∈ K̃O
0
(S4) such that c(α) = 2η̄ ∧ η̄, where

c : K̃O
0
(S4) → K̃0(S4) is the complexification. Then one has

c′(α ∧ (ξn − 1H)) = 2η̄ ∧ η̄ ∧ γn ∈ Im
{
c′ : K̃Sp

−2
(Σ2

HPn) → K̃−2(Σ2
HPn)

}



�

�

�

�

�

�

�

�

160 Tomoaki Nagao

and hence, for (4.2),

Nn(Σ2
HPn) = CokerΘC

∼= Z/4(2n+ 1).

Therefore we have established Proposition 1.4.

4.2. Samelson product 〈ε3, ε〉
Proof of Proposition 1.5. Let Q2 be the quasi-projective space of Sp(2),

that is, Q2 is the 9-skeleton of Sp(2) = S3 ∪ e7 ∪ e10. Denote the inclusions
S3 ↪→ Sp(2) and Q2 ↪→ Sp(2) by ε3 and ε respectively. We calculate the
order of the Samelson product 〈ε3, ε〉. For Theorem 1.3, we have the following
commutative diagram:

K̃Sp
−2

(S3 ∧Q2)
ΘH ��

c′

��

H10(S3 ∧Q2)

−1

��

K̃−2(S3 ∧Q2)
ΘC �� H10(S3 ∧Q2).

Then, in order to calculate the CokerΘH, we first consider the map c′ : K̃Sp
−2

(S3

∧Q2) → K̃−2(S3 ∧Q2). Consider the following commutative diagram of exact
sequences induced from the cofibration sequence S6 → S3 ∧Q2 → S10.

0 �� K̃Sp
−2

(S10) ��

c′

��

K̃Sp
−2

(S3 ∧Q2)
��

c′

��

K̃Sp
−2

(S6) ��

c′

��

0

0 �� K̃−2(S10) �� K̃−2(S3 ∧Q2) �� K̃−2(S6) �� 0

Since K̃Sp
−2

(S4n+2) ∼= Z and K̃−2(S2n) ∼= Z, K̃Sp
−2

(S3 ∧Q2) = Z〈α, β〉 and
K̃−2(S3 ∧ Q2) = Z〈α′, β′〉, where Z〈a, b, . . . 〉 denote the free abelian group

with a basis a, b, . . . . Moreover, since c′ = 1: K̃Sp
−2

(S10) → K̃−2(S10) and

c′ = 2: K̃Sp
−2

(S6) → K̃−2(S6), we can choose α, β, α′, β′ such that c′(α) = 2α′

and c′(β) = β′.
We next calculate ΘC : K̃−2(S3∧Q2) → H10(S3∧Q2). Let ĉ′ : Q2 → ΣCP 3

be the restriction of c′ : Sp(2) → SU(4) to their quasi-projective spaces. Then

H∗(Q2) = Z〈ŷ3, ŷ7〉, H∗(ΣCP 3) = Z〈x̂3, x̂5, x̂7〉
such that

ĉ′(x̂3) = ŷ3, ĉ′(x̂5) = 0, ĉ′(x̂7) = ŷ7.

Let µ ∈ K̃0(CP 3) denote ω3−1C, where ω3 is as in the previous subsection.
K̃0(Σ6CP 3) = K̃−2(Σ4CP 3) has three generators η̄ ∧ η̄ ∧ η̄ ∧ µi (i = 1, 2, 3),
where η̄ is as in Section 2. We can put α′, β′ as

α′ = ĉ′(η̄ ∧ η̄ ∧ η̄ ∧ µ), β′ = ĉ′(η̄ ∧ η̄ ∧ η̄ ∧ µ3).
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Consider the commutative diagram

K̃−2(Σ4CP 3)
Θ′

C ��

ĉ′

��

H10(Σ4CP 3)

∼=
��

K̃−2(S3 ∧Q2)
ΘC �� H10(S3 ∧Q2).

By Proposition 2.1, Θ′
C
(η̄ ∧ η̄ ∧ η̄ ∧ µi) = −s5(η̄ ∧ η̄ ∧ µi) (i = 1, 2, 3). Since

ch(η̄ ∧ η̄ ∧ µ) = s1(η̄) ⊗ s1(η̄) ⊗
(
c1 +

c21
2

+
c31
6

)
ch(η̄ ∧ η̄ ∧ µ3) = s1(η̄) ⊗ s1(η̄) ⊗ c31,

it follows that Θ′
C
(η̄ ∧ η̄ ∧ η̄ ∧ µ) = −20s1(η̄) ⊗ s1(η̄) ⊗ c31 and Θ′

C
(η̄ ∧ η̄ ∧ η̄ ∧

µ3) = −120s1(η̄) ⊗ s1(η̄) ⊗ c31 , where c1 is the first Chern class of ω3. Since
s1(η̄)⊗ s1(η̄)⊗ c31 ∈ H10(Σ4CP 3) is a generator, we have ΘH(α) = ±40u3 ⊗ ŷ7
and ΘH(β) = ±120u3 ⊗ ŷ7.

Since (pr1 ∧ pr2) ◦ ∆̄ = 1: S3 ∧ Q2 → S3 ∧ Q2 ∧ S3 ∧ Q2 → S3 ∧ Q2 ,
the Samelson product 〈ε3, ε〉 is equal to the commutator [ε3 ◦ pr1, ε ◦ pr2] in the
group [S3 ∧ Q2, Sp(2)], where ∆̄ is the reduced diagonal and pr1 and pr2 are
the first and the second projections respectively. By Theorem 1.2, the latter is
given as [ε3 ◦ pr1, ε ◦ pr2] = ι([ε∗3(y3) ⊗ ε∗(y7)]) = ι([u3 ⊗ ŷ7]). Hence the order
of 〈ε3, ε〉 is 40 and we have accomplished the proof of Proposition 1.5.

4.3. Spn(X) when X is a sphere bundle over a sphere
We calculate Spn(X) when X is a specific sphere bundle over a sphere.

Recall the cell decomposition of a sphere bundle over a sphere due to James
and Whitehead [13].

Proposition 4.1 (James and Whitehead [13]). Let X be a sphere bun-
dle over a sphere Sk i−→ X

p−→ Sl. Then X has a cell decomposition

(4.3) X = Sk ∪ el ∪ ek+l

such that p restricts to the map Sk ∪ el → Sl which pinches Sk ⊂ Sk ∪ el to the
basepoint.

Proof. Let pi : Di → Si be the map which pinches the boundary of Di to
the basepoint of Si. Since Dl is contractible, the induced bundle p−1

l (X) is the
product bundle Dl × Sk. Let ψ : Dl × Sk = p−1

l (X) → X denote the bundle

map. Then the composition h : Dl ×Dk 1×pk−−−→ Dl × Sk
ψ−→ X is a surjection.

One can see that h|Sl−1×Dk is a surjection onto the fiber p−1(∗) = Sk, where
∗ is the basepoint of Sl. One can also see that h|Sl−1×Sk−1 is the composition
Sl−1×Sk−1 → Sl−1 → p−1(∗) = Sk. Since ∂(Dl×Dk) = Sl−1×Dk∪Dl×Sk−1,
we have obtained the cell decomposition (4.1). For the construction of this cell
decomposition, p restricts to the pinching map Sk ∪ el → Sl.
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In order to calculate Spn(X) when X is a sphere bundle over a sphere, we

calculate K̃Sp
−1

(X) by using Proposition 4.1.

Lemma 4.2. Let X be a sphere bundle over a sphere S4n−1 i−→ X
p−→

S4m−1 such that m+ n is odd. Then we have

K̃Sp
−1

(X) = Z〈α̃, β̃〉

such that

i∗(α̃) = tn, p
∗(tm) = β̃,

where Z〈α, β, . . . 〉 denotes the free abelian group with a basis α, β, . . . and tj is

a generator of K̃Sp
−1

(S4j−1) ∼= Z.

Proof. We fix N = m+ n− 1. For Proposition 4.1, X has a cell decom-
position

X = S4n−1 ∪ e4m−1 ∪ e4N+2

and p restricts to the pinching map S4n−1 ∪ e4m−1 → S4m−1. Let X(4N+1)

denote the (4N + 1)-skeleton of X. Then, for Proposition 4.1, the restriction
of p,

(4.4) S4n−1 i−→ X(4N+1)
p|

X(4N+1)−−−−−−→ S4m−1,

is a cofibration sequence and hence it induces the exact sequence

· · · → K̃Sp
∗
(S4m−1)

(p|
X(4N+1) )

∗

−−−−−−−−→ K̃Sp
∗
(X(4N+1)) →

i∗−→ K̃Sp
∗
(S4n−1) → K̃Sp

∗+1
(S4m−1) → · · · .

Since K̃Sp
0
(S4m−1) = 0, K̃Sp

−1
(S4n−1) ∼= K̃Sp

−1
(S4m−1) ∼= Z and

K̃Sp
−2

(S4n−1) ∼= 0 or Z/2, one has

(4.5) K̃Sp
−1

(X(4N+1)) = 〈α, β〉

such that i∗(α) = tn and (p|X(4N+1))∗(tm) = β. Similarly the cofibration se-
quence

(4.6) X(4N+1) j−→ X → S4N+2,

induces the exact sequence

· · · → K̃Sp
∗
(S4N+2) → K̃Sp

∗
(X)

j∗−→ K̃Sp
∗
(X(4N+1))

→ K̃Sp
∗+1

(S4N+2) → · · · .
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Since N is even, K̃Sp
−1

(S4N+2) = 0 and K̃Sp
0
(S4N+2) = 0. Then we have

j∗ : K̃Sp
−1

(X) ∼= K̃Sp
−1

(X(4N+1)) and hence Lemma 4.2 follows from (4.5).

Proof of Theorem 1.6. Fix N = m+n−1. Since the diagram (1.3) is nat-
ural for the pinching map q : X → S4N+2, we have the following commutative
diagram.

gKSp
−2

(S4N+2)
q∗

��

(−1)N+1c′

��

ΘH

��������������
gKSp

−2
(X)

ΘH
������������

(−1)N+1c′

��

H4N+2(S4N+2)
q∗

�� H4N+2(X)

eK−2(S4N+2)

ΘC

��������������
q∗

�� eK−2(X)

ΘC

		����������

The left vertical arrow c′ is an isomorphism since N is even. The cofibration
sequence (4.4) induces the exact sequence

· · · → K̃−2(S4m−1) → K̃−2(X(4N+1)) → K̃−2(S4n−1) → · · · .

Then it follows from K̃−2(S4m−1) = K̃−2(S4n−1) = 0 that K̃−2(X(4N+1)) = 0.
Hence the bottom horizontal arrow q∗ is epic since we have the exact sequence

· · · → K̃−2(S4N+2)
q∗−→ K̃−2(X) → K̃−2(X(4N+1)) → · · ·

induced from the cofibration sequence (4.6). Thus the right vertical arrow c′

is epic and one has

Coker{ΘH : K̃Sp
−2

(X) → H4N+2(X)}
= Coker{ΘC : K̃−2(X) → H4N+2(X)}
= Coker{ΘC ◦ q∗ : K̃−2(S4N+2) → H4N+2(X)}
= Coker{q∗ ◦ ΘC : K̃−2(S4N+2) → H4N+2(X)}
∼= Coker{ΘC : K̃−2(S4N+2) → H4N+2(S4N+2)},

here we use the fact that q∗ : H4N+2(S4N+2) → H4N+2(X) is an isomorphism.
For the result of Atiyah and Hirzebruch [3], we have Coker{ΘC : K̃−2(S4N+2) →
H4N+2(S4N+2)} ∼= Z/(2N + 1)!. Therefore we have obtained

NN (X) = Coker{ΘH : K̃Sp
−2

(X) → H4N+2(X)} ∼= Z/(2N + 1)!.

For Theorem 1.1, we have the central extension

0 → Z/(2N + 1)! ι−→ SpN (X) π−→ K̃Sp
−1

(X) → 0.
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Then we have only to calculate the order of [α, β] in Z/(2N + 1)! ⊂ SpN (X),

where α, β ∈ Sp(X) satisfy π(α) = α̃, π(β) = β̃ and α̃, β̃ ∈ K̃Sp
−1

(X) are as
in Lemma 4.2.

It is obvious that

H∗(X) ∼= Λ(u′4n−1, u
′
4m−1)

such that i∗(u′4n−1) = u4n−1 and u′4m−1 = p∗(u4m−1), where ui ∈ Hi(Si)
is a generator. Let ε ∈ SpN (X) be a generator of Coker{ΘC : K̃−2(X) →
H4N+2(X)} ∼= Z/(2N + 1)! represented by u′4m−1u

′
4n−1.

From Theorem 1.2, it follows that [α, β] = ι([u]) such that

u =
∑

i+j=m+n

α∗(y4i−1)β∗(y4j−1) ∈ H4N+2(X).

Let t′i be a generator of π4i−1(Sp(N)) ∼= Z for i ≤ N . Then we have

i∗ ◦ α∗(y4i−1) = (t′n)
∗(y4i−1), β∗(y4i−1) = p∗ ◦ (t′m)∗(y4i−1).

Let vi be a generator of π2i−1(U(2N)) ∼= Z for i ≤ 2N . Atiyah and Hirzebruch
[3] showed that

v∗i (x2i−1) = ±(i− 1)!u2i−1,

where x2i−1 is as in Section 2. Since

c′(t′i) =

{
±v2i i is odd
±2v2i i is even

and (c′)∗(x4i−1) = (−1)iy4i−1, we have

u = ±2(2n− 1)!(2m− 1)!u′4n−1u
′
4m−1

and then

[α, β] = ±2(2n− 1)!(2m− 1)!ε.

Therefore the proof of Theorem 1.6 is completed.
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