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The secant varieties of nilpotent orbits
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∗

Abstract

Let g be a complex simple Lie algebra. We have the adjoint rep-
resentation of the adjoint group G on g. Then G acts on the projective
space Pg. We consider the closure X of the image of a nilpotent orbit
in Pg. The i-secant variety Sec(i)X of a projective variety X is the clo-
sure of the union of projective subspaces of dimension i in the ambient
space P spanned by i + 1 points on X. In particular we call the 1-secant
variety the secant variety. In this paper we give explicit descriptions of
the secant and the higher secant varieties of nilpotent orbits of complex
classical simple Lie algebras.

1. Introduction

Let G be a connected complex simple algebraic group, g its Lie algebra,
h its Cartan subalgebra, W its Weyl group. When we want to exhibit corre-
sponding Lie algebra, we denote h by hg and W by Wg. We have the adjoint
action of G on g. Taking a composition of the categorical quotient g → g//G
and an isomorphism g//G � h/W given by Chevalley’s theorem for which we
refer to [5], we have a map

p : g → h/W.

This map is called the adjoint quotient. For the detail about the adjoint quo-
tient we refer to [10]. The Lie group G acts on the projective space Pg naturally
under the projection,

π : g�{0} → Pg.

For any nonzero nilpotent element x ∈ g we set

X := π(G · x) ⊂ Pg.

Hence X is an irreducible G-invariant projective variety in Pg. The i-secant
variety Sec(i)X of the projective variety X is the closure of the union of projec-
tive subspaces of dimension i in the ambient space Pg spanned by i + 1 points
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50 Yasuhiro Omoda

on X. If X is irreducible, then Sec(i)X is also irreducible. In particular we
call the 1-secant variety the secant variety SecX. We refer to the monograph
[12] by F. L. Zak for general results about the secant and the higher secant
varieties.

In this paper we give explicit descriptions of the secant and the higher
secant varieties of nilpotent orbits of complex classical simple Lie algebras
except for the nilpotent orbits [2r, 1s] in son. The descriptions we give are
characterized by the rank of matrices, determinantal varieties. Some results
are known about the secant and the higher secant varieties of nilpotent orbits.
Kaji-Yasukura [6] proved that if x is a minimal nilpotent element, we have
SecX = G · π(h). Here h is a semisimple element of a sl2-triple containing x.
Baur-Draisma [2] presented explicit descriptions of the higher secant varieties
of the minimal nilpotent orbits of classical simple Lie algebras.

We remark that Theorem 4.7 is the result of K.Nishiyama [9]. The author
wishes like to express his hearty thanks to K.Nishiyama for permitting the
author to describe his result in this paper.

2. Preparation

In this section we recall well known results about nilpotent elements and
their orbits in g. (See e.g. [3].) Nilpotent elements and corresponding orbits in
Lie algebras sln, son, spn are parametrized by partitions [r1, r2, . . . , rs] of n

r1 ≥ r2 ≥ · · · ≥ rs,
s∑

i=1

ri = n.

Then we denote the nilpotent elements and corresponding orbits by
[r1, r2, . . . , rs]. This parametrization is given by using the Jordan normal forms
as follows, 


Dr1 0

Dr2

. . .
0 Drs


 .

Here Di is the i × i Jordan block whose eigenvalue is zero.

Proposition 2.1. Nilpotent orbits in sln are parametrized by the parti-
tions of n.

Proposition 2.2. Nilpotent orbits in so2n+1 are parametrized by the
partitions of 2n + 1 in which even parts occur with even multiplicity.

Proposition 2.3. Nilpotent orbits in so2n correspond to partitions of
2n in which all even parts occur with even multiplicity, but each “very even”
partition which has only even parts with even multiplicity comes from two orbits.

Proposition 2.4. Nilpotent orbits in sp2n are parametrized by the par-
titions of 2n in which odd parts occur with even multiplicity.
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We define a partial order on the set of partitions of n. Given two partitions
u = [u1, u2, . . . , us] and v = [v1, v2, . . . , vt], we say that u ≤ v if the following
condition holds: ∑

1≤j≤k

uj ≤
∑

1≤j≤k

vj for any k ≥ 1.

Moreover if u �= v, we say that u < v. Then we have the following proposition.

Proposition 2.5. Let g be a classical Lie algebra over C. Assume that
the nilpotent orbits Ou,Ov correspond to the partitions u,v. Then the closure
of Ov contains Ou and Ov �= Ou if and only if u < v.

Definition 2.6. Let g be a complex simple Lie algebra. We define an
element x to be regular if and only if its orbit in g has maximal dimension.

Next proposition is well known. (See e.g. [10].)

Proposition 2.7. Let g be a complex simple Lie algebra. When we
consider the adjoint quotient p : g → h/W , p is flat and each fiber p−1(t) for
t ∈ h/W contains exactly one orbit of regular elements which is dense and open
in p−1(t).

We use the same notation [r1, r2, . . . , rs] for the projective variety X =
π([r1, r2, . . . , rs]) obtained from a nilpotent orbit [r1, r2, . . . , rs]. Moreover we
use the same notation SecX for cone varieties π−1(SecX) in g as SecX in Pg.

We give two propositions and one corollary which are used many times in
this paper.

Proposition 2.8. Let g be a simple Lie subalgebra in gln. (Here gln is
a Lie algebra consisting of all n× n matrices.) If x is a nilpotent element with
rank k, Then we have

Sec(i)X ⊂ {A ∈ g| rank A ≤ k(i + 1)}.
Proof. The rank of the sum of i + 1 matrices with rank k is not greater

than k(i+1). Then we obtain the proposition by the definition of Sec(i)X.

Next proposition is well known. (See e.g. [1].)

Proposition 2.9. Let X be a closed G-variety in g. If X contains h,
we have X = g.

Then Proposition 2.7 shows the following corollary.

Corollary 2.10. Let X be a closed G-variety in g and p : g → h/W the
adjoint quotient. If p(X) = h/W , we have X = g.

3. Distinguished case

We recall the definition and the properties of distinguished nilpotent ele-
ments and their orbits in g. (See e.g. [3].)
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Definition 3.1. Let g be a complex simple Lie algebra. We define a
nilpotent element x or its orbit to be distinguished if and only if the only Levi
subalgebra of g containing x is g itself.

For any nilpotent element x we have a sl2-triple {x, h, y} such that

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Put eigenspaces of h as

gi := {z ∈ g| ad(h)z = iz}.

Then we have a finite decomposition,

g =
⊕

i

gi, x ∈ g2.

Under this decomposition we have following maps

ad(x) : gi → gi+2.

Then the next propositions are well known.

Proposition 3.2. Let gx be the centralizer of a nilpotent element x in
g. Then we have

gx ⊂
⊕
i≥0

gi.

Proposition 3.3. x is distinguished if and only if ad(x) : g0 → g2 is
bijective.

Combining these propositions and the equality dim g−2 = dim g2, we have
the following proposition.

Proposition 3.4. If x is distinguished, we have ad(x) : g−2 → g0 is
bijective.

If a nilpotent element x is distinguished, from the above proposition we
obtain

SecX ⊃ TX ⊃ [g, x] ⊃ [g−2, x] = g0 ⊃ h.

Since X = π(G · x) is closed and G-invariant, by Proposition 2.9 we have

SecX ⊃ G · h = g.

Then we have the following proposition.

Proposition 3.5. If a nilpotent element x is distinguished, we have
SecX = g.
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The secant varieties of nilpotent orbits 53

In particular the regular nilpotent orbit is distinguished. Then we have
the following corollary.

Corollary 3.6. If a nilpotent element x is regular, then we have SecX
= g.

Example 3.7. Let g be sl2 and let x be
(

0 1
0 0

)
. Then SecX = sl2.

4. The case of sln

In this section we consider the case of sln;

sln = {A = (aij) ∈ Mn(C)| trA = 0}.
Here Mn(C) is the set of all n × n complex matrices. Let hsln be the set of
all diagonal matrices in sln. If n1 + n2 + · · · + ns ≤ n, for (X1, . . . , Xs) ∈
sln1 × · · · × slns

the mapping from sln1 × · · · × slns
to sln defined by,

(X1, . . . , Xs) 	→




X1 0
. . .

Xs

0 0




gives a natural embedding sln1 × · · · × slns
↪→ sln. By this embedding we

identify sln1 × · · · × slns
with the image in sln. We also consider corresponding

embeddings of the Cartan subalgebra hsln1
× · · · × hslns

into hsln and the Lie
group SLn1 × · · · × SLns

into SLn.

Lemma 4.1.

SLN · hsln = {x ∈ slN | rank(x) ≤ n}. (2 ≤ n ≤ N)

Proof. If N = n, the assertion holds by Proposition 2.9. Then we may
assume N ≥ n+1. Let x be an element of slN whose rank is n. Let Dik

(ai) be
the ik × ik Jordan block whose eigenvalue is ai. Consider the Jordan normal
form of x


Di1(a1) 0

Di2(a2)
. . .

0 Dis
(as)


 , |a1| ≥ |a2| ≥ · · · ≥ |as|.

Let k be the number such that ak �= 0 and ak+1 = 0. If ik+1 = · · · = is = 1,
then we have x ∈ SLN · sln. Otherwise we put

A :=
s∑

l=k+1

rankDil
(al) =

s∑
l=k+1

(il − 1).
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Let y be an element in sln+1 ⊂ slN whose Jordan normal form is


Di1(a1)
. . . 0

Dik
(ak)

0 DA+1(0)
0




Hence we have

x ∈ SLN · y ⊂ SLN · sln+1.

Then it is enough to prove the case where n = N − 1. The inclusion:

SLN · hslN−1 ⊂ {x ∈ slN | rank(x) ≤ N − 1}

is obvious. Next we shall prove the inverse inclusion. We consider the adjoint
quotient p : slN → hslN /WslN . Since generic elements in hslN−1 are regular in
slN , by Proposition 2.7 we have

SLN · hslN−1 ⊃ p−1(p(hslN−1)).

Then we want to show p−1(p(hslN−1)) ⊃ {x ∈ slN | rank(x) ≤ N − 1}. We
consider any element of {x ∈ slN | rank(x) ≤ N−1}. The rank of its semisimple
part is not more than N−1. So the image by the adjoint quotient p is contained
in p(hslN−1). Hence we have

p−1(p(hslN−1)) ⊃ {x ∈ slN | rank(x) ≤ N − 1}.

Then we have

SLN · hslN−1 ⊃ {x ∈ slN | rank(x) ≤ N − 1}.

Then the result has be shown.

Lemma 4.2. Let g be sln (n ≥ 3).

Sec[3, 1n−3] = {x ∈ sln| rank(x) ≤ 4}.

Proof. When n = 3 a nilpotent element [3] is regular. Then Sec[3] = sl3.
Proposition 2.8 shows

Sec[3, 1n−3] ⊂ {x ∈ sln| rank(x) ≤ 4}.

If the result holds when n = 4, we have Sec[3, 1] = sl4. Under the natural
embedding sl4 ⊂ sln we can regard a nilpotent element [3, 1n−3] ∈ sln as a
nilpotent element [3, 1] ∈ sl4 ⊂ sln. Then we have

sln ⊃ Sec[3, 1n−3] ⊃ sl4 ⊃ hsl4 .
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Hence by Lemma 4.1 we obtain the required result. So it is enough to prove
the case where n = 4. We can regard a nilpotent element [3, 1] as a nilpotent
element [3] ∈ sl3 ⊂ sl4 under the natural embedding sl3 ⊂ sl4. Since a nilpotent
element [3] is regular in sl3, Sec[3] = sl3. Then we have

sl4 ⊃ Sec[3, 1] ⊃ sl3 ⊃ hsl3 = {a11 + a22 + a33 = 0, a44 = 0}.
The condition that there is some number i such that aii = 0 is stable under
the action of the Weyl group Wsl4 in hsl4 . Then the image p(hsl3) of hsl3 of the
adjoint quotient p : sl4 → hsl4/Wsl4 is an irreducible subvariety of codimension
1 in hsl4/Wsl4 and does not contain the image of any element whose determinant
is not equal to zero. If there exists an element in Sec[3, 1] whose determinant
is non-zero, we obtain the result by the irreducibility of Sec[3, 1]. Actually we
can find such element as follows. We consider the nilpotent orbit [22]. The
nilpotent orbit [22] is included in the closure of the nilpotent orbit [3, 1]. So the
sum of any two elements of the nilpotent orbit [22] is an element of Sec[3, 1].
Now we take

y =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 +




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 ∈ Sec[3, 1].

The determinant of y is non-zero. So p(hsl3) never contain p(y). By the ir-
reducibility of Sec[3, 1] we obtain p(Sec[3, 1]) = hsl4/Wsl4 . Then by Corollary
2.10 we have Sec[3, 1] = sl4.

Lemma 4.3. Let g be sl5.

Sec[3, 2] = sl5.

Proof. The closure of the nilpotent orbit [3, 2] contains the nilpotent orbit
[3, 12]. We can regard a nilpotent element [3, 12] as a nilpotent element [3, 1] ∈
sl4 under the natural embedding sl4 ⊂ sl5. Since Sec[3, 1] = sl4 by Lemma 4.2,
we have

sl5 ⊃ Sec[3, 2] ⊃ Sec[3, 12] ⊃ sl4 ⊃ hsl4 = {a11 + a22 + a33 + a44 = 0, a55 = 0}.
The condition that there is some number i such that aii = 0 is stable under
the action of the Weyl group Wsl5 in hsl5 . Then the image p(hsl4) of hsl4 of the
adjoint quotient p : sl5 → hsl5/Wsl5 is an irreducible subvariety of codimension
1 in hsl5/Wsl5 and does not contain the image of any element whose determinant
is not equal to zero. We can regard a nilpotent element [3, 2] ∈ sl5 as a nilpotent
element [3] × [2] ∈ sl3 × sl2 ⊂ sl5. Since Sec[3] = sl3 and Sec[2] = sl2, we have

sl5 ⊃ Sec[3, 2] ⊃ hsl3 × hsl2 = {a11 + a22 + a33 = 0, a44 + a55 = 0}.
The image p(hsl3 × hsl2) contains some elements whose determinants are not
equal to zero. Then the image p(hsl4) is not a subset of p(hsl3 × hsl2). Since
Sec[3, 2] is irreducible, we obtain p(Sec[3, 2]) = hsl5/Wsl5 . Then by Corollary
2.10 we obtain Sec[3, 2] = sl5.
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Lemma 4.4. Let g be sln (n ≥ 5).

Sec[3, 2, 1n−5] = {x ∈ sln| rank(x) ≤ 6}.
Proof. If n = 5, the statement is proved in Lemma 4.3. Then by the

similar argument as the argument in the proof of Lemma 4.2 it is enough to
prove the case where n = 6. We can regard a nilpotent element x = [3, 2, 1] ∈ sl6
as a nilpotent element [3, 2] ∈ sl5 under the natural embedding sl5 ⊂ sl6. Since
Sec[3, 2] = sl5 by Lemma 4.3, we have

sl6 ⊃ Sec[3, 2, 1] ⊃ sl5 ⊃ hsl5 = {a11 + a22 + a33 + a44 + a55 = 0, a66 = 0}.
The condition that there is some number i such that aii = 0 is stable under the
action of the Weyl group Wsl6 in hsl6 . The image p(hsl5) of hsl5 of the adjoint
quotient p : sl6 → hsl6/Wsl6 is an irreducible subvariety of codimension 1 in
hsl6/Wsl6 and does not contain the image of any element whose determinant
is not equal to zero. We take a sum of two nilpotent elements of the type of
[3, 2, 1],

y =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




+




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




∈ Sec[3, 2, 1].

The determinant of y is non-zero. So p(hsl5) never contain p(y). By the irre-
ducibility of Sec[3, 2, 1] we obtain p(Sec[3, 2, 1]) = hsl6/Wsl6 . Hence by Corol-
lary 2.10 we obtain

Sec[3, 2, 1] = sl6.

Then we proved the assertion.

Proposition 4.5. Let g be sln. (n = 2r + s + 3)

Sec[3, 2r, 1s] = {x ∈ sln| rank(x) ≤ 2r + 4}.
Proof. By the similar argument as the argument in the proof of Lemma

4.2 it is enough to prove the cases where s = 0, 1. We prove this proposition
by induction on r. By Lemma 4.3 and 4.4 the cases where r = 1 and s = 0, 1
are proved. We assume that the assertion holds if r = k and s = 0, 1. First we
study the case where r = k + 1 and s = 0. We consider a nilpotent element
x = [3, 2k, 12] ∈ sl2k+5. The closure of the orbit [3, 2k+1] contains the orbit
[3, 2k, 12]. Since Sec[3, 2k, 1] = sl2k+4 by the assumption, we have

sl2k+5 ⊃ Sec[3, 2k+1] ⊃ Sec[3, 2k, 12] ⊃ sl2k+4 ⊃ hsl2k+4 ,

and

hsl2k+4 = {a11 + a22 + · · · + a2k+4,2k+4 = 0, a2k+5,2k+5 = 0}.
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The condition that there is some number i such that aii = 0 is stable under
the action of the Weyl group Wsl2k+5 in hsl2k+5 . Then the image p(hsl2k+4) of
hsl2k+4 of the adjoint quotient p : sl2k+5 → hsl2k+5/Wsl2k+5 is an irreducible
subvariety of codimension 1 in hsl2k+5/Wsl2k+5 and does not contain the image
of any element whose determinant is not equal to zero.

We can regard a nilpotent element x = [3, 2k+1] ∈ sl2k+5 as a nilpotent
element [3, 2k] × [2] ∈ sl2k+3 × sl2 ⊂ sl2k+5. Since Sec[3, 2k] = sl2k+3 by the
assumption and Sec[2] = sl2, we have

sl2k+5 ⊃ Sec[3, 2k+1] ⊃ sl2k+3 × sl2 ⊃ hsl2k+3 × hsl2 ,

and

hsl2k+5 ⊃ hsl2k+3 × hsl2

= {a11 + a22 + · · · + a2k+3,2k+3 = 0, a2k+4,2k+4 + a2k+5,2k+5 = 0}.
Since the set p(hsl2k+3 ×hsl2) contains the image of elements whose determinant
is not equal to zero, the set p(hsl2k+3 × hsl2) is not a subset of p(hsl2k+4). Then
by the irreducibility of Sec[3, 2k+1] we obtain

p(Sec[3, 2k+1]) = hsl2k+5/W2k+5.

Hence by Corollary 2.10 we have

Sec[3, 2k+1] = sl2k+5.

Next we study the case where r = k + 1, s = 1. We can regard a nilpotent
element x = [3, 2k+1, 1] ∈ sl2k+6 as a nilpotent element [3, 2k+1] ∈ sl2k+5 ⊂
sl2k+6. Since we proved Sec[3, 2k+1] = sl2k+5, we have

sl2k+6 ⊃ Sec[3, 2k+1, 1] ⊃ hsl2k+5 = {a11+· · ·+a2k+5,2k+5 = 0, a2k+6,2k+6 = 0}.
The condition that there is some number i such that aii = 0 is stable under the
action of the Weyl group Wsl2k+6 in hsl2k+6 . Then the image p(hsl2k+5) of hsl2k+5

of the adjoint quotient p : sl2k+6 → hsl2k+6/Wsl2k+6 is an irreducible subvariety
of codimension 1 in hsl2k+6/Wsl2k+6 and does not contain the image of any
element whose determinant is not equal to zero. On the other hand we regard
a nilpotent element x = [3, 2k+1, 1] as [3, 2k, 1] × [2] ∈ sl2k+4 × sl2 ⊂ sl2k+6.
Similarly we have

sl2k+6 ⊃ Sec[3, 2k+1, 1] ⊃ sl2k+4 × sl2 ⊃ hsl2k+4 × hsl2 ,

and

hsl2k+4 × hsl2 = {a11 + a22 + · · ·+ a2k+4,2k+4 = 0, a2k+5,2k+5 + a2k+6,2k+6 = 0}.
The image p(hsl2k+4 × hsl2) contains the images of some elements whose deter-
minants are not equal to zero. Then the image p(hsl2k+5) is not a subset of
p(hsl2k+4 × hsl2). Then by the irreducibility of Sec[3, 2k+1, 1] we obtain

p(Sec[3, 2k+1, 1]) = hsl2k+6/W2k+6.
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Then by Corollary 2.10 we obtain

Sec[3, 2k+1, 1] = sl2k+6.

This shows the result.

Theorem 4.6. Let x be a nilpotent element ( �= [2k, 1n−2k]) in sln with
rank(x) = k. Then we have

SecX = {x ∈ sln| rank(x) ≤ 2k}.

Proof. With respect to the closure relation the smallest nilpotent orbit
with fixed rank k except [2k, 1n−2k] is [3, 2k−1, 1n−2k−1]. Then Lemma 4.1 and
4.5 show the result.

K.Nishiyama[9] proved the next theorem.

Theorem 4.7. Let x be [2r, 1s] ∈ sln. (n = 2r + s)

SecX = {x ∈ sln| rank(x) ≤ 2r, det(λIn − x) = λn−2rf(λ), f(λ)
is an even function.}.

Here In is the n × n unit matrix.

Proof. We consider any element whose rank is 2r and whose eigen poly-
nomial is an even function. By the similar argument as the argument in the
proof of Lemma 4.1, it is included in the closure of an orbit of some element
with same properties in sl2r+1 ⊂ sln. Hence it is enough to prove the case
where s = 0, 1. First we study the case where s = 0. Let x = [2r] be a matrix
which decomposes into blocks of 2× 2 matrices such that if i is not equal to j,

(i, j)-block is Aij =
(

0 0
0 0

)
, and otherwise, Aii =

(
0 1
0 0

)
. Then

sl2r ⊃ SecX ⊃ sl2 × sl2 × · · · × sl2 ⊃ hsl2 × hsl2 × · · · × hsl2 (r times).

Generic elements of hsl2 × · · · × hsl2 (r times) are regular in sl2r. When we
consider the adjoint quotient p : sl2r → hsl2r

/Wsl2r
, by Proposition 2.7 we have

sl2r ⊃ SecX ⊃ p−1(p(hsl2 × hsl2 × · · · × hsl2)).

This shows

SecX ⊃ {x ∈ sl2r| rank(x) ≤ 2r, det(λI2r − x) is an even function}.

We calculate the eigen polynomial of x+g−1xg for the above nilpotent element
x = [2r] in sl2r and g ∈ SL2r,

det(λI2r − x − g−1xg) = det(λg − gx − xg).
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We divide λg − gx − xg into blocks of 2 × 2 matrices. Put g = (gkl). Then
(i, j)-block is as follows.(

λg2i−1,2i−1 − g2i,2i−1 λg2i−1,2i − g2i−1,2i−1 − g2i,2i

λg2i,2i−1 λg2i,2i − g2i,2i−1

)
.

We add each even row × 1
λ to the upper odd row. Then (i, j)-block is

(
λg2i−1,2i−1 λg2i−1,2i − g2i−1,2i−1 − 1

λg2i,2i−1

λg2i,2i−1 λg2i,2i − g2i,2i−1

)
.

Next we add each odd column × 1
λ to the right even column. Then (i, j)-block

is (
λg2i−1,2i−1 λg2i−1,2i − 1

λg2i,2i−1

λg2i,2i−1 λg2i,2i

)
.

Finally we multiply all odd columns by 1
λ and all even columns by λ. Then

(i, j)-block becomes(
g2i−1,2i−1 λ2g2i−1,2i − g2i,2i−1

g2i,2i−1 λ2g2i,2i

)
.

Then the eigen polynomial is an even function. In the case where s = 0, we
have

SecX ⊂ {x ∈ sl2r| rank(x) ≤ 2r, det(λI2r − x) is an even function}.

Next we consider the case where s = 1 i.e. x = [2r, 1]. Generic elements of
hsl2 × · · · × hsl2(r times) are regular in sl2r+1. When we consider the adjoint
quotient p : sl2r+1 → hsl2r+1/Wsl2r+1 , by Proposition 2.7 we have

SL2r+1 · (hsl2 × · · · × hsl2) = p−1(p(hsl2 × · · · × hsl2)).

This shows

SecX ⊂ {x ∈ sl2r+1| rank(x) ≤ 2r, det(λIn − x) = λf(λ), f(λ)
is an even function}.

By the similar calculations as the case where s = 0 we can prove the inverse
inclusion. Then the proof is complete.

For two varieties X, Y in Pg we define the join X + Y by

X + Y := π({x + y | x ∈ π−1(X), y ∈ π−1(Y )}), π : g�{0} → Pg.

We recall that we use the same notation [r1, . . . , rs] for the corresponding pro-
jective and the corresponding cone varieties to the nilpotent orbit [r1, . . . , rs].
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Lemma 4.8. Let g be sln. For nilpotent orbits [r, 1n−r], [2, 1n−2](r ≥
2), we have

[r, 1n−r] + [2, 1n−2] = {x ∈ sln| rank(x) ≤ r} (n ≥ 2).

Proof. By Lemma 4.1 it is enough to prove the case where n = r. Example
3.7 shows the result of the case where n = 2. Assume the assertion holds when
n = k. The closure of the nilpotent orbit [k + 1] contains the nilpotent orbit
[k, 1]. Then we have

[k + 1] + [2, 1k−1] ⊃ [k, 1] + [2, 1k−1].

Since [k] + [2, 1k−2] = {x ∈ slk| rank(x) ≤ k} = slk by the assumption, under
the natural embedding slk ⊂ slk+1, we have

slk+1 ⊃ [k + 1] + [2, 1k−1] ⊃ slk ⊃ hslk ,

and

slk+1 ⊃ hslk+1 ⊃ hslk = {a11 + a22 + · · · + ak,k = 0, ak+1,k+1 = 0}.

The condition that there is some number i such that aii = 0 is stable under
the action of the Weyl group Wslk+1 in hslk+1 . Then the image p(hslk) of hslk

of the adjoint quotient p : slk+1 → hslk+1/Wslk+1 is an irreducible subvariety of
codimension 1 in hslk+1/Wslk+1 and does not contain the image of any element
whose determinant is not equal to zero. Take nilpotent elements x = [k + 1]
and y = [2, 1k−1],

x =




0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0




, y =




0 · · · · · · · · · 0
...

. . .
...

...
. . .

...

0
. . .

...
1 0 · · · · · · 0




.

Then the determinant of x + y is not equal to zero. So p(hslk) never contain
p(x+y). By the irreducibility of [k+1]+[2, 1k−1] we obtain p([k+1]+[2, 1k−2]) =
hslk+1/Wslk+1 . Then by Corollary 2.10 we obtain

[k + 1] + [2, 1k−2] = slk+1.

Then the result follows.

Lemma 4.9. Let g be sln. For the nilpotent orbits [r, 1n−r], [2s, 1n−2s]
(r ≥ s + 1), we have

[r, 1n−r] + [2s, 1n−2s] = {x ∈ sln| rank(x) ≤ r + s − 1}.
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Proof. When t ≤ s, we have [2t, 1n−2t] ⊂ [2s, 1n−2s]. Then if r+s > n, it
is enough to prove the statement for nilpotent orbits [r, 1n−r], [2n−r+1, 12r−n−2].
Hence we can assume that r + s ≤ n. Moreover by Lemma 4.1 it is enough to
prove the case where n = r + s − 1. Lemma 4.8 shows the result of the case
where s = 1. Assume the assertion holds in the case where s = k. We consider
the case where s = k + 1. In this case n = r + (k + 1)− 1 = r + k. The closure
of the nilpotent orbit [2k+1, 1n−2k−2] contains the nilpotent orbit [2k, 1n−2k].
Then by the assumption we have

[r, 1n−r] + [2k+1, 1n−2k−2] ⊃ [r, 1n−r] + [2k, 1n−2k]
⊃ {x ∈ sln| rank(x) ≤ r + k − 1 = n − 1}.

Since {x ∈ sln| rank(x) ≤ r + k − 1 = n − 1} ⊃ hsln−1 , we obtain,

sln ⊃ [r, 1n−r]+[2k+1, 1n−2k−2] ⊃ hsln−1 = {a11+· · ·+an−1,n−1 = 0, an,n = 0}.
The condition that there is some number i such that aii = 0 is stable under
the action of the Weyl group Wsln in hsln . The image p(hsln−1) of hsln−1

of the adjoint quotient p : sln → hsln/Wsln is an irreducible subvariety of
codimension 1 in hsln/Wsln and does not contain the image of any element
whose determinant is not equal to zero. The closure of the nilpotent orbit
[r, 1n−r] contains the orbits [r − k, 2k, 1n−r−k] = [r − k, 2k]. Take nilpotent
elements x = [r − k, 2k] and y = [2k+1, 1n−2k−2] as follows,

x =

0
BBBBBBBBB@

D2

D2 0

. . .

D2

0 Dr−k

1
CCCCCCCCCA

, y =

0
BBBBBBBBBBB@

0
D2 0

. . .

D2

0

0
. . .

1 0

1
CCCCCCCCCCCA

.

Here Di is the i × i nilpotent Jordan block. Then the determinant of x + y ∈
[r, 1n−r] + [2k+1, 1n−2k−2] is not equal to zero. Since p(hsln−1) never contain
p(x + y) and [r, 1n−r] + [2k+1, 1n−2k−2] is irreducible, we obtain p([r, 1n−r] +
[2k+1, 1n−2k−2]) = hsln/Wsln . Then by Corollary 2.10 we obtain

[r, 1n−r] + [2k+1, 1n−2k−2] = sln.

Then the required result follows.

Hence we have the following proposition.

Proposition 4.10. Let g be sln.

Sec(i)[2k, 1n−2k] = {x ∈ sln| rank(x) ≤ k(i + 1)} (i ≥ 2).

Proof. It is enough to consider the case of k(i+1) ≤ n. We can construct
a nilpotent element [ki + 1, 1n−ki−1] as a sum of i nilpotent elements of the
type of [2k, 1n−2k]. Then we obtain the theorem by Lemma 4.9.

Then we have the following theorem.
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Theorem 4.11. Let g be sln and x a nilpotent element whose rank is
k.

Sec(i)X = {x ∈ sln| rank(x) ≤ k(i + 1)} (i ≥ 2).

Proof. The nilpotent orbit [2k, 1n−2k] is minimal among orbits which are
constructed from nilpotent elements with fixed rank k. Hence Sec(i)X contains
Sec(i)[2k, 1n−2k] for any nilpotent element x whose rank is k. Then we obtain
the theorem.

5. The case of son

We may realize son as follows,

so2n =
{(

A1 A2

A3 −tA1

)
| Ai ∈ Mn, A2 and A3 are skew symmetric.

}
,

and

so2n+1 =

{
 0 −tv −tu

u A1 A2

v A3 −tA1




| u, v ∈ Cn, Ai ∈ Mn, A2 and A3 are skew symmetric.

}
.

In this realization the Cartan subalgebra hson
is realized as the set of all diag-

onal matrices in son. In the case of son we shall use similar embeddings as the
case of sln.

Lemma 5.1. If N ≥ 2n, in soN we have

SON · so2n = {x ∈ soN | rank(x) ≤ 2n}.
Proof. The case where N = 2n is obvious. Then we consider the case

where N ≥ 2n + 1. The inclusion:

SON · so2n ⊂ {x ∈ soN | rank(x) ≤ 2n}
is obvious. Then we shall prove the inverse inclusion. Under the natural em-
bedding so2n ⊂ so2n+1 as the 1-st row and column are zero, we can identify
hso2n with hso2n+1 . Then we have

SON · so2n = SON · so2n+1.

We consider an element x ∈ soN whose rank is 2n. Let Di(ai) be the i × i
Jordan block whose eigenvalue is ai. Consider the Jordan normal form of x


Di1(a1) 0

Di2(a2)
. . .

0 Dis
(as)


 , |a1| ≥ |a2| ≥ · · · ≥ |as|.
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Let k be the number such that ak �= 0 and ak+1 = 0. If ik+1 = · · · = is = 1,
we have x ∈ SON · so2n. Otherwise we put

A :=
s∑

l=k+1

rankDil
(al) =

s∑
l=k+1

(il − 1).

Then A is even. Moreover for any nonzero lj ∈ {a1, . . . , ak} we put

blj :=
∑

at=lj

it.

Then we have the set of non-zero complex numbers {l1, . . . , lu} and correspond-
ing non negative integers {bl1 , . . . , blu}. Let y be an element in so2n+1 ⊂ soN

whose Jordan normal form is


Dbl1
(l1)

. . . 0
Dblu

(lu)
0 DA+1(0)

0


 .

Then x is contained in SON · y. So we have

x ∈ SON · so2n+1 = SON · so2n.

Then this shows

SON · so2n ⊃ {x ∈ soN | rank(x) ≤ 2n}.
Hence the result follows.

Lemma 5.2. Let g be soN (N = 3, 4, 5, 6).

Sec[3] = so3, Sec[3, 1] = so4, Sec[3, 12] = so5, Sec[32] = so6.

Proof. If n = 3 the nilpotent orbit [3] is regular. Then corollary 3.6 shows

Sec[3] = so3.

When n = 4 there is an isomorphism so4 � sl2 × sl2. Under this isomorphism
the nilpotent orbit [3, 1] in so4 corresponds to the nilpotent orbit [2] × [2] in
sl2 × sl2. Since Sec([2] × [2]) = sl2 × sl2, we have

Sec[3, 1] = so4.

When n = 5 under the natural embedding so4 ⊂ so5 we can identify their
Cartan subalgebras. Since Sec[3, 1] = so4, we have

so5 ⊃ Sec[3, 12] ⊃ so4 ⊃ hso4 = hso5 .
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Then by Proposition 2.9 we have

Sec[3, 12] = so5.

When n = 6 there is an isomorphism so6 � sl4. Under this isomorphism the
nilpotent orbit [32] in so6 corresponds to the nilpotent orbit [3, 1] in sl4. Since
Sec[3, 1] = sl4, we have

Sec[32] = so6.

Lemma 5.3. Let g be soN (N ≥ 3).

Sec[3, 22(n−1)] = so4n−1, Sec[3, 22(n−1), 1] = so4n,

Sec[3, 22(n−1), 12] = so4n+1, Sec[32, 22(n−1)] = so4n+2.

Proof. Lemma 5.2 shows the result of the case where n = 1. We prove
this lemma by induction on n. We assume that the assertion holds if n = k−1.
First we study the case of so4k−1. We consider so4(k−1) as a Lie subalgebra of
all matrices in so4k−1 whose 1-,2k- and (4k − 1)-th rows and columns are zero.
Let x be [3, 22(k−1)] in so4k−1. The closure of the nilpotent orbit [3, 22(k−1)]
contains the nilpotent orbit [3, 22(k−2), 14]. We can regard a nilpotent ele-
ment [3, 22(k−2), 14] ∈ so4k−1 as a nilpotent element [3, 22(k−2), 1] ∈ so4(k−1) ⊂
so4k−1. Since Sec[3, 22(k−2), 1] = so4(k−1) by the assumption, we have

so4k−1 ⊃ Sec[3, 22(k−1)] ⊃ so4(k−1) ⊃ hso4(k−1) .

The Cartan subalgebra hso4(k−1) is realized as a subalgebra of all diagonal matri-
ces in so4k−1 whose (2k, 2k)- and (4k−1, 4k−1)-entries are zero. The condition
that there is some number i except i = 1 such that aii = 0 is stable under the
action of the Weyl group Wso4k−1 in hso4k−1 . Then the image p(hso4(k−1)) of
hso4(k−1) of the adjoint quotient p : so4k−1 → hso4k−1/Wso4k−1 is an irreducible
subvariety of codimension 1 in hso4k−1/Wso4k−1 and does not contain the image
of any element which has the eigenvalue 0 whose multiplicity is less than 3.
Take a following matrix as a nilpotent element [3, 22(k−1)],

x =




0 0 0 · · · 0 1 0 · · · 0
−1 0 0 · · · 0 0 0 · · · 0
0 0 0 0 · · · 0
...

... Ak−1

...
...

. . .
...

0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0
...

...
...

. . .
...

... −tAk−1

0 0 0 · · · 0 0




.
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Here Ai is the following 2i × 2i matrix

Ai =




D2 0
. . .

0 D2


 .

Taking a sum y = x +t x ∈ Sec[3, 22(k−1)], we have

det(λI4k−1 − y) = λ(λ2 − 2)(λ2 − 1)2(k−1).

Since the multiplicity of eigenvalue 0 of y is 1, the image p(hso4(k−1)) never
contain p(y). By the irreducibility of Sec[3, 22(k−1)] we obtain

p(Sec[3, 22(k−1)]) = hso4k−1/Wsl4k−1 .

Then by Corollary 2.10 we have

Sec[3, 22(k−1)] = so4k−1.

We consider the case of so4k. Let x be [3, 22(k−1), 1] ∈ so4k. Since Sec[3, 22(k−1)]
= so4k−1, under the natural embedding so4(k−1)+2 ⊂ so4k, we have

so4k ⊃ Sec[3, 22(k−1), 1] ⊃ so4k−1 ⊃ so4(k−1)+2 ⊃ hso4(k−1)+2 .

The Cartan subalgebra hso4(k−1)+2 is realized as a subalgebra of all diagonal
matrices in so4k whose (2k, 2k)- and (4k, 4k)-entries are zero. The condition
that there is some number i such that aii = 0 is stable under the action of
the Weyl group Wso4k

in hso4k
. Then the image p(hso4(k−1)+2) of hso4(k−1)+2

of the adjoint quotient p : so4k → hso4k
/Wso4k

is an irreducible subvariety of
codimension 1 in hso4k

/Wso4k
and does not contain the image of any element

whose determinant is not equal to zero. We consider a nilpotent element [22k] ∈
so4k. The closure of the orbit [3, 22(k−1), 1] contains the orbit [22k]. Let’s take
a following y as a nilpotent element [22k],

y =
(

Ak 0
0 −tAk

)
.

Take a sum z = y+ty ∈ Sec[3, 22(k−1), 1]. Then the determinant of this element
z is non-zero. So p(hso4(k−1)+2) never contain p(z). By the irreducibility of
Sec[3, 22(k−1), 1] we obtain

p(Sec[3, 22(k−1), 1]) = hso4k
/Wsl4k

.

Then by Corollary 2.10 we have

Sec[3, 22(k−1), 1] = so4k.

We consider the case of so4k+1. Under the natural embedding so4k ⊂ so4k+1

we can identify hso4k+1 with hso4k
. Since Sec[3, 22(k−1), 1] = so4k, we obtain

so4k+1 ⊃ Sec[3, 22(k−1), 12] ⊃ so4k ⊃ hso4k
= hso4k+1 .
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Then by Proposition 2.9 we have

Sec[3, 22(k−1), 12] = so4k+1.

Finally we consider the case of so4k+2. The closure of the nilpotent orbit
[32, 22(k−1)] contains the nilpotent orbit [32, 22(k−2), 14]. The closure of the
nilpotent orbit [32, 22(k−2), 14] contains the nilpotent orbit [3, 22(k−1), 13]. Since
Sec[3, 22(k−1), 1] = so4k, we have

so4k+2 ⊃ Sec[32, 22(k−1)] ⊃ so4k ⊃ hso4k
.

The Cartan subalgebra hso4k
is realized as a subalgebra of all diagonal matri-

ces in so4k+2 whose (2k + 1, 2k + 1)- and (4k + 2, 4k + 2)-entries are zero. The
condition that there is some number i such that aii = 0 is stable under the
action of Wso4k+2 in hso4k+2 . Then the image p(hso4k

) of hso4k
of the adjoint

quotient p : so4k+2 → hso4k+2/Wso4k+2 is an irreducible subvariety of codimen-
sion 1 in hso4k+2/Wso4k+2 and does not contain the image of any element whose
determinant is not equal to zero. We consider the embedding

sl2k+1 =
{(

A 0
0 −tA

)
| A ∈ sl2k+1

}
⊂ so4k+2.

Using a nilpotent element [3, 2k−1] ∈ sl2k+1 we can realize a nilpotent element
x = [32, 22(k−1)] ∈ so4k+2 as

x =
(

[3, 2k−1] 0
0 −t[3, 2k−1]

)
.

In sl2k+1 we have Sec[3, 2k−1] = sl2k−1. Then in so4k+2 we have

Sec[32, 22(k−1)] ⊃ sl2k+1 =
{ (

A 0
0 −tA

)
|A ∈ sl2k+1

}
.

Hence Sec[32, 22(k−1)] contains an element whose determinant is not zero. Then
the image of this element is not contained in p(hso4k

). By the irreducibility of
Sec[32, 22(k−1)] we obtain

p(Sec[32, 22(k−1)]) = hso4k+2/Wso4k+2 .

Then by Corollary 2.10 we obtain

Sec[32, 22(k−1)] = so4k+2.

Then we proved the lemma.

Theorem 5.4. Let x be a nilpotent element ( �= [22k, 1n−4k]) in son of
rank(x) = 2k.

SecX = {x ∈ son| rank(x) ≤ 2k}
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Proof. When 2k > n
2 , X contain some element y whose rank is [n

2 ] and
which is not [2[ n

2 ], 1n−2[ n
2 ]]. If Sec(SOn · y) = son, we have SecX = son.

Then it is enough to prove the case where 2k ≤ n
2 . Hence we assume that

2k ≤ n
2 . Then the minimal nilpotent orbit with a fixed rank 2k except [22k, 1s]

is [3, 22(k−1), 1s+1] or [32, 22(k−2)]. Then by Lemma 5.1 and 5.3 we obtain the
theorem.

By Theorem 5.4 we have the following corollary.

Corollary 5.5. Let x be a nilpotent element x ( �= [22k, 1n−4k]) in son

of rank(x) = 2k.

Sec(i)X = {x ∈ son| rank(x) ≤ 2k(i + 1)} (i ≥ 1).

Proof. We prove the assertion by induction on i. When i = 1, the as-
sertion is Theorem 5.4. We assume that the theorem holds when i = s. We
consider the case where i = s + 1. By the assumption we have

Sec(s)X = {x ∈ son| rank(x) ≤ 2k(s + 1)} = SOn · so2k(s+1).

Then we have

son ⊃ Sec(s+1)X = Sec(s)X + X ⊃ SOn · so2k(s+1) + X.

Hence if 2k(s + 2) ≤ n, we have

SOn · so2k(s+1) + X ⊃ hso2k(s+2) .

Otherwise we have

SOn · so2k(s+1) + X ⊃ hson .

Then by Lemma 5.1 we obtain

Sec(s+1)X = {x ∈ son| rank(x) ≤ 2k(s + 2)}.

This show the assertion of the corollary.

In the case [22r, 1n−4r] ∈ son we have only partial results. We know the
following inequality for any projective variety X,

dim SecX ≤ 2 dimX + 1.

(See e.g. [12].) Then we have

Sec[22r, 1n−4r] �= son,

because the data about the dimensions of orbits in [3] shows

2 dim[22r, 1n−4r] < dim son
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for any r.

6. The case of sp2n

We may realize sp2n as the following set of matrices,

sp2n =
{(

A1 A2

A3 −tA1

)
| Ai ∈ Mn, A2 and A3 are symmetric

}
.

In this realization the Cartan subalgebra hsp2n
is realized as the set of all

diagonal matrices. In the case of sp2n we shall use similar embeddings as the
case of sln and son.

Proposition 6.1. Let g be sp2n.

Sec[2n] = sp2n

Proof. We prove this proposition by induction on n. When n = 1, a
nilpotent element [2] is regular. Then by Corollary 3.6 we have Sec[2] = sp2.
We assume that the assertion holds if n = k − 1. We consider sp2(k−1) as a
Lie subalgebra of all matrices in sp2k whose (k, k)- and (2k, 2k)-th rows and
columns are zero. Let x be [2k] in sp2k. The closure of nilpotent orbit [2k]
contains the nilpotent orbit [2k−1, 12]. We can regard a nilpotent element
x = [2k−1, 12] ∈ sp2k as a nilpotent element [2k−1] ∈ sp2(k−1) ⊂ sp2k. Since
Sec[2k−1] = sp2(k−1) by the assumption, we have

sp2k ⊃ Sec[2k] ⊃ sp2(k−1) ⊃ hsp2(k−1)
.

The Cartan subalgebra hsp2(k−1)
is realized as a subalgebra of all diagonal ma-

trices of sp2k whose (k, k)- and (2k, 2k)-entries are zero. The condition that
there is some number i such that aii = 0 is stable under the action of the Weyl
group Wsp2k

in hsp2k
. The image p(hsp2(k−1)

) of hsp2(k−1)
of the adjoint quo-

tient p : sp2k → hsp2k
/Wsp2k

is an irreducible subvariety of codimension 1 in
hsp2k

/Wsp2k
and does not contain the image of any element whose determinant

is not equal to zero. Let x = [2k] ∈ sp2k be

x =
(

0 Ik

0 0

)
.

Here Ik is k × k unit matrix. Take a sum y = x +t x ∈ Sec[2k]. Then
the determinant of y is non-zero. So p(hsp2(k−1)

) never contain p(y). By the
irreducibility of Sec[2k] we obtain p(Sec[2k]) = hsp2k

/Wsp2k
. Then by Corollary

2.10 we obtain

Sec[2k] = sp2k.

Then the proof is complete.
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Lemma 6.2. Let g be sp2n.

[2n−1, 12] + [2n−1, 12] ⊃ [2n − 2, 2]. (n ≥ 2)

Proof. Let’s take two nilpotent elements x, y of the type of [2n−1, 12]. If
n is odd,

x =

0
BBBBBBBBBBB@

0
A n−3

2
0

0 1 0
0 0 1

0 0 0
−tA n−3

2
0 0

0

1
CCCCCCCCCCCA

, y =

0
BBB@

A n−1
2

0

0
−tA n−1

2
0 0

1
CCCA .

If n is even,

x =

0
BBBBBBB@

0
A n−2

2
0

0 1
0 0

0 −tA n−2
2

0

1
CCCCCCCA

, y =

0
BBBBBBB@

A n−2
2

0

0 1 0
0 0 0

−tA n−2
2

0 0
0

1
CCCCCCCA

.

Here we used the same notation as the case of soN . Then x + y is a
nilpotent element of the type of [2n − 2, 2].

Theorem 6.3. Let x be a nilpotent element in sp2n of rank(x) = r.

SecX = {x ∈ sp2n| rank(x) ≤ 2r}.
Proof. The minimal nilpotent orbit which is constructed from a nilpotent

element with rank r with respect to the closure relation is the nilpotent orbit
[2r, 12n−2r]. Then it is enough to prove the assertion of the case of a nilpotent
element [2r, 12n−2r]. The inclusion:

SecX ⊂ {x ∈ sp2n| rank(x) ≤ 2r}
is obvious, since rank(x) is r. Next we shall prove the inverse inclusion. We
consider an element y whose rank is 2r. Take a Jordan normal form of y


Di1(a1) 0

Di2(a2)
. . .

0 Dis
(as)


 , |a1| ≥ |a2| ≥ · · · ≥ |as|.

Here we used the same notation as the case of soN . Let k be the number such
that ak �= 0 and ak+1 = 0. If ik+1 = · · · = is = 1, we have x ∈ SP2n · sp2r.
Otherwise we put

A :=
s∑

l=k+1

rankDil
(al) =

s∑
l=k+1

(il − 1).
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Then A is even. Moreover for any nonzero lj ∈ {a1, . . . , ak} we put

blj :=
∑

at=lj

it.

Then we have the set of non-zero complex numbers {l1, . . . , lu} and correspond-
ing non negative integers {bl1 , . . . , blu}. Let z be an element in sp2(r+1) ⊂ sp2n

whose Jordan normal form is

z =




Dbl1
(l1)

. . . 0
Dblu

(lu)
DA(0)

0 D2(0)
0




.

Then SP2n · z contains y. Put l1+ · · ·+ lu = 2m. Under the natural embedding
sp2m × sp2(n−m) ⊂ sp2n we can regard a nilpotent element [2r, 12n−2r] as a
nilpotent element [2m]×[2r−m, 12n−2r] ∈ sp2m×sp2(n−m) ⊂ sp2n. Then Lemma
6.1 and 6.2 show that z ∈ Sec[2r, 12n−2r]. Hence we obtain

Sec[2r, 12n−2r] ⊃ {x ∈ sp2n| rank(x) ≤ 2r}.
Then we proved the theorem.

By Theorem 6.3 and the similar arguments as the argument in the proof
of Theorem 5.4 we have the following corollary.

Corollary 6.4. Let x be a nilpotent element x in sp2n with rank(x) = r.

Sec(i)X = {x ∈ sp2n| rank(x) ≤ r(i + 1)}. (i ≥ 1)
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