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DISTINGUISHING k-CONFIGURATIONS

FEDERICO GALETTO, YONG-SU SHIN AND ADAM VAN TUYL

Dedicated to the memory of A. V. Geramita

Abstract. A k-configuration is a set of points X in P
2 that

satisfies a number of geometric conditions. Associated to a k-
configuration is a sequence (d1, . . . , ds) of positive integers, called

its type, which encodes many of its homological invariants. We

distinguish k-configurations by counting the number of lines that

contain ds points of X. In particular, we show that for all inte-
gers m � 0, the number of such lines is precisely the value of

ΔHmX(mds − 1). Here, ΔHmX(−) is the first difference of the

Hilbert function of the fat points of multiplicity m supported
on X.

1. Introduction

In the late 1980’s, Roberts and Roitman [13] introduced special config-
urations of points in P

2 which they named k-configurations. We recall this
definition:

Definition 1.1. A k-configuration of points in P
2 is a finite set X of

points in P
2 which satisfies the following conditions: there exist integers 1≤

d1 < · · ·< ds, subsets X1, . . . ,Xs of X, and distinct lines L1, . . . ,Ls ⊆ P
2 such

that:

(1) X=
⋃s

i=1Xi;
(2) |Xi|= di and Xi ⊆ Li for each i= 1, . . . , s, and;
(3) Li (1< i≤ s) does not contain any points of Xj for all 1≤ j < i.
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In this case, the k-configuration is said to be of type (d1, . . . , ds).

This definition was first extended to P
3 by Harima [12], and later to all

P
n by Geramita, Harima, and Shin (see [8], [9]). As shown by Roberts and

Roitman [13, Theorem 1.2], all k-configurations of type (d1, . . . , ds) have the
same Hilbert function (which can be computed from the type). This result
was later generalized by Geramita, Harima, and Shin [7, Corollary 3.7] to
show that all the graded Betti numbers of the associated graded ideal IX only
depend upon the type.

Interestingly, k-configurations of the same type can have very different geo-
metric properties. Figure 1 shows various examples of k-configurations of type
(1,2,3). Note that the different shapes correspond to different sets of Xi, i.e.,
the star is the point of X1, the squares are the two points of X2, and the
circles are the three points X3. From a geometric point-of-view, these configu-
rations are all qualitatively different in that the number of lines containing 3
points in each configuration is different (e.g., there are four lines that contain
3 points of X in the first configuration, but only one such line in the last
configuration). However, from an algebraic point-of-view, because these sets
of points are all k-configurations of type (1,2,3), the graded resolutions (and
consequently, the Hilbert functions) of these sets of points are all the same.

Figure 1. Four different k-configurations of type (1,2,3).
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So the algebra does not “see” these lines, and so we cannot distinguish these
k-configurations.

Our goal in this paper is to determine how one can distinguish these k-
configurations from an algebraic point-of-view. In particular, we wish to dis-
tinguish k-configurations by the number of lines that contain ds points of X. It
can be shown (see Remark 2.12) that the first difference function of the Hilbert
function of X produces only an upper bound on the number of lines. We show
that one can obtain an exact value if one instead considers the Hilbert func-
tion of the set of fat points supported on the k-configuration. Precisely, we
prove the following theorem.

Theorem 1.2. Let X ⊆ P
2 be a k-configuration of type d = (d1, . . . , ds) �=

(1). Then there exists an integer m0 such that for all m≥m0,

ΔHmX(mds − 1) = number of lines containing exactly ds points of X,

where ΔHmX(−) is the first difference function of the Hilbert function of fat
points of multiplicity m supported on X. Furthermore, if ds > s, then m0 = 2,
and if ds = s, then m0 = s+ 1.

In other words, the number of lines that contain ds points of X is encoded
in the Hilbert function of fat points supported on X. This provides us with
an algebraic method to differentiate k-configurations. Note we exclude the
k-configuration of type d = (1) since X is a single point, and there are an
infinite number of lines through this point. Thematically, this paper is similar
to works of Bigatti, Geramita, and Migliore [2], and Chiantini and Migliore [4]
which derived geometric consequences about points from the Hilbert function.

We now give an outline of the paper. In Section 2, we define all the
relevant terminology involving k-configurations, and some properties of k-
configurations. We also recall a procedure to bound values of the Hilbert
function of a set of fat points due to Cooper, Harbourne, and Teitler [5],
which will be our main tool. In Section 3, we focus on the case ds > s and
prove Theorem 1.2 in this case. In Section 4, we focus on the case that ds = s.
A more subtle argument is needed to prove Theorem 1.2 since an extra line
may come into play. We will also require a result of Catalisano, Trung, and
Valla [3] to complete this case. In the final section, we give a reformulation of
Theorem 1.2, and make a connection to a question of Geramita, Migliore, and
Sabourin [10] on the number of Hilbert functions of fat points whose support
has a fixed Hilbert function.

2. Background results

This section collects the necessary background results. We first review
Hilbert functions and ideals of (fat) points in P

2. We then introduce a number
of lemmas describing k-configurations. Throughout the remainder of this pa-
per, R= k[x0, x1, x2] is a polynomial ring over an algebraically closed field k.



418 E. GALETTO, Y. S. SHIN AND A. VAN TUYL

2.1. Points in P
2 and Hilbert functions. We recall some general facts

about (fat) points in P
2 and their Hilbert functions. These results will be used

later in our study of k-configurations.
Let X = {P1, . . . , Ps} be a set of distinct points in P

2. If IPi is the ideal
associated to Pi in R = k[x0, x1, x2], then the homogeneous ideal associated
to X is the ideal IX = IP1 ∩ · · · ∩ IPs . Given s positive integers m1, . . . ,ms (not
necessarily distinct), the scheme defined by the ideal IZ = Im1

P1
∩ · · · ∩ Ims

Ps
is

called a set of fat points. We say that mi is the multiplicity of the point Pi.
If m1 = · · · = ms = m, then we say Z is a homogeneous set of fat points of
multiplicity m. In this case, we normally write mX for Z, and ImX for IZ.

Note that it can be shown that ImX = I
(m)
X

, the mth symbolic power of the
ideal IX. If X= {P}, then we sometimes write ImP for ImX. As well, since IP is

a complete intersection, it follows that ImP = I
(m)
P = ImP (see Zariski–Samuel

[14, Appendix 6, Lemma 5]).
An ongoing problem at the intersection of commutative algebra and alge-

braic geometry is to study and classify the Hilbert functions arising from the
homogeneous ideals of sets of fat points. Recall that if I ⊆R= k[x0, x1, x2] is
any homogeneous ideal, then the Hilbert function of R/I , denoted HR/I , is
the numerical function HR/I :N→N defined by

HR/I(t) := dimkRt − dimk It,

where Rt, respectively It, denotes the tth graded component of R, respectively
I . If I = IZ is the defining ideal of a set of (fat) points Z, then we usually write
HZ forHR/IZ . The first difference of the Hilbert functionHR/I , is the function

ΔHR/I(t) :=HR/I(t)−HR/I(t− 1)

for all t≥ 0 where HR/I(t) = 0 for all t < 0.

Given a set of points Z⊆ P
2, Cooper, Harbourne, and Teitler [5] described

a procedure by which one can find both upper and lower bounds on HZ(t)
for all t ≥ 0. This procedure, which we describe below, will be instrumental
in the proof of our main results.

Let Z = Z0 be a fat point subscheme of P
2. Choose a sequence of lines

L1, . . . ,Lr and define Zi to be the residual of Zi−1 with respect to the line
Li (i.e., the subscheme of P

2 defined by the ideal IZi : ILi). Define the as-
sociated reduction vector v = (v1, . . . , vr) by taking vi = deg(Li ∩ Zi−1). In
particular, vi is the sum of the multiplicities of the points in Li ∩Zi−1. Given
v= (v1, . . . , vr), we define functions

(2.1) fv(t) =

r−1∑
i=0

min(t− i+ 1, vi+1)
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and

(2.2) Fv(t) = min
0≤i≤r

((
t+ 2

2

)
−

(
t− i+ 2

2

)
+

r∑
j=i+1

vj

)
.

Theorem 2.1 (Cooper–Harbourne–Teitler [5, Theorem 1.1]). Let Z= Z0

be a fat point scheme in P
2 with reduction vector v = (v1, . . . , vr) such that

Zr+1 =∅. Then the Hilbert function HZ(t) of Z is bounded by fv(t)≤HZ(t)≤
Fv(t).

Example 2.2. Let X be the k-configuration of type (1,3,4,5) in Figure 2.
We illustrate how to use Theorem 2.1 to compute H2X(8). We take Z= 2X,
that is, we assume that each point has multiplicity two; this is indicated by
the 2 by each point.

We apply Theorem 2.1 using the sequence of lines H1, . . . ,H8, where H1 =
L4, H2 = L3, H3 = L2, H4 = L1, H5 = L4, H6 = L3, H7 = L2, and H8 = L1.
The reduction vector is v= (10,9,8,3,3,3,2,1). To see this, note that Z0 = 2X,
so H1 ∩Z0 consists of the five double points on L4, so deg(H1 ∩Z0) = 10. We
form Z1 from Z0 by reducing the multiplicity of each point on H1 = L4 by one.
Then H2 ∩ Z1 = L3 ∩ Z1 consists of 4 double points and one reduced point,
so deg(H2 ∩ Z1) = 2 · 4 + 1 = 9. Figure 2 illustrates the first two steps of this
procedure. Continuing in this fashion allows us to compute v, ending when
we reach Z9 =∅.

To compute the lower bound fv(8) using Equation (2.1), we compare the
values of 8− i+ 1 and vi+1 in the table below (the minimum is in bold).

i 0 1 2 3 4 5 6 7

8− i+ 1 9 8 7 6 5 4 3 2

vi+1 10 9 8 3 3 3 2 1

Figure 2. The Cooper–Harbourne–Teitler bound computation.
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Adding up the minimum values gives fv(8) = 36. To compute an upper
bound, we take i= 3 in Equation (2.2); then we have

Fv(8)≤
(
8 + 2

2

)
−

(
5 + 2

2

)
+

8∑
j=4

vj = 36.

This implies that fv(8) = Fv(8) =H2X(8) = 36.

Remark 2.3. In Example 2.2, we have used the procedure of [5] to find
actual values of the Hilbert function. In general, however, one can only expect
to find bounds.

2.2. Properties of k-configurations. In this section, we record a number
of useful facts about k-configurations.

Lemma 2.4. Suppose that X⊆ P
2 is a k-configuration of type (d1, . . . , ds).

Then

(i) dj ≤ ds − s+ j for j = 1, . . . , s;
(ii) if ds = s, then (d1, . . . , ds) = (1, . . . , s);
(iii) for any line L in P

2, |L∩X| ≤ ds.

Proof. Statements (i) and (ii) follow directly from the definition of k-
configurations since 1≤ d1 < d2 < · · ·< ds. Statement (iii) is [13, Lemma 1.3].

�
By definition, there is at least one line L in P

2 that meets a k-configuration
X of type (d1, . . . , ds) at ds points, namely, the line Ls. As mentioned in the
Introduction, our goal is to enumerate the lines that meet X at exactly ds
points. We begin with some useful necessary conditions for a line L to contain
ds points.

Lemma 2.5. Suppose that X⊆ P
2 is a k-configuration of type (d1, . . . , ds),

and L1, . . . ,Ls are the lines used to define X. Let L be any line in P
2 such

that |L∩X|= ds.

(i) If ds > s, then L ∈ {L1, . . . ,Ls}.
(ii) If L= Li, then dj = ds − s+ j for j = i, . . . , s.

Proof. (i) If L /∈ {L1, . . . ,Ls}, then L ∩ X ⊆
⋃s

i=1(L ∩ Li). So if s < ds,
|L∩X| ≤

∑s
i=1 |L∩Li|= s < ds. In other words, if |L∩X|= ds, then L must

be in {L1, . . . ,Ls}.
(ii) Suppose L= Li contains ds points of X. By definition, Li contains the

di points of Xi ⊆ X. Furthermore, this line cannot contain any of the points
in X1, . . . ,Xi−1. In addition, Li can contain at most one point of Xi+1, . . . ,Xs.
So ds = |Li ∩X| ≤ di + (s− i). But by Lemma 2.4, we have di + (s− i)≤ ds,
so ds = di + (s− i). To complete the proof, note that di < di+1 < · · ·< ds is a
set of s− i+ 1 strictly increasing integers with di = ds − (s− i). This forces
dj = ds − (s− j) for all j = i, . . . , s. �
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Remark 2.6. If X is a k-configuration of type (d1, . . . , ds) with ds−1 <
ds − 1, the above lemma implies that there is exactly one line containing ds
points of X, namely Ls.

If ds > s, Lemma 2.5 implies that the lines we want to count are among
the Li’s, and consequently, there are at most s such lines. The next result
shows that when ds = s (or equivalently, the type is (1,2, . . . , s)) the situation
is more subtle. In particular, if there is a line L that contains s points that is
not among the Li’s, then it must be one of two lines.

Lemma 2.7. Suppose that X⊆ P
2 is a k-configuration of type (1,2, . . . , s)

with s≥ 2. Let X1, . . . ,Xs be the subsets of X; let L1, . . . ,Ls be the lines used
to define X; let X1 = {P} be the point on L1; and let X2 = {Q1,Q2} be the
two points on L2. If L is a line in P

2 such that |L ∩ X| = ds = s, and if
L /∈ {L1, . . . ,Ls}, then L must either be the line through P and Q1, or the line
through P and Q2.

Proof. Suppose |L ∩ X| = ds = s. Since L /∈ {L1, . . . ,Ls}, we have s =
|L ∩ X| ≤ |L ∩ L1| + · · · + |L ∩ Ls| = s. In other words, L ∩ Li is a point of
Xi ⊆X for i= 1, . . . , s. So L must pass through P and either Q1 or Q2. �

Corollary 2.8. Suppose that X ⊆ P
2 is a k-configuration of type

(1,2, . . . , s) with s ≥ 2. Then there are at most s + 1 lines that contain s
points of X.

Proof. The only candidates for the lines that contain s points are the s
lines L1, . . . ,Ls that define the k-configuration, and by Lemma 2.7, the two
lines LPQ1 and LPQ2 , i.e., the lines that go through the point of X1 = {P} and
one of the two points of X2 = {Q1,Q2}. This gives us s+ 2 lines. However, if
the lines LPQ1 and LPQ2 both contain s points, then either L1 is one of these
two lines, or does not contain s points. Indeed if L1 contains s points, then
s= |L1∩X|= |X1|+ |L1∩L2|+ · · ·+ |L1∩Ls|= s. In particular, |L1∩L2|= 1,
that is, L1 must contain one of the two points of X2, and so L1 = LPQ1 or
LPQ2 . So, there are at most s+ 1 lines that contain s points X. �

We finish this section with a useful lemma for relabelling a k-configuration.
This lemma exploits the fact that the lines and subsets defining a k-
configuration need not be unique.

Lemma 2.9. Suppose that X⊆ P
2 is a k-configuration of type (d1, d2, . . . , ds)

with s≥ 2. Let X1, . . . ,Xs be the subsets of X, and L1, . . . ,Ls the lines used to
define X. Suppose that

• |Ls−k ∩X|= ds for k = 0, . . . , j,
• |Ls−k ∩X|< ds for k = j + 1, . . . , i− 1, and
• |Ls−i ∩X|= ds.

Set T= Ls−i ∩ (Xs−j−1 ∪Xs−j−2 ∪ · · · ∪Xs−i+1).
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Then the k-configuration X can also be defined using the subsets X′
1, . . . ,X

′
s

and lines L
′
1, . . . ,L

′
s where

• X
′
k =Xk and L

′
k = Lk for k = 1, . . . , s− i− 1,

• X
′
k =Xk+1 \T and L

′
k = Lk+1 for k = s− i, . . . , s− j − 2,

• X
′
s−j−1 =Xs−i ∪T and L

′
s−j−1 = Ls−i, and

• X
′
k =Xk and L

′
k = Lk for k = s− j, . . . , s.

Proof. We need to verify that the subsets X′
i and lines L′

i define the same
k-configuration, that is, we need to see if they satisfy the conditions (1), (2),
and (3) of Definition 1.1.

We first note that condition (1) holds since

s⋃
i=1

X
′
k = (X1 ∪ · · · ∪Xs−i−1)∪

(
s−j−2⋃
k=s−i

(Xk+1 \T)
)

∪ (Xs−i ∪T)∪ (Xs−j ∪ · · · ∪Xs)

= X1 ∪ · · · ∪Xs =X.

For condition (2), it is clear that X
′
k ⊆ L

′
k for all k. We now verify that

|X′
k|= dk for all k. For k = 1, . . . , s− i−1 and k = s− j, . . . , s this is immediate

since X
′
k =Xk. Because |Ls−i ∩X|= ds, it follows by Lemma 2.5 that ds−k =

ds − s + (s − k) = ds − k for k = i, . . . , j + 1. Moreover, as in the proof of
Lemma 2.5, Ls−i ∩Ls−k ∈Xs−k for all k = j + 1, . . . , i− 1. So |T|= i− 1− j,
and thus∣∣X′

s−j+1

∣∣ = |Xs−i ∪T|= ds − i+ i− 1− j = ds − (j + 1) = ds−j+1.

Also, again since Ls−i ∩Ls−k ∈Xs−k for k = j + 1, . . . , i− 1, we have∣∣X′
k

∣∣ = |Xk+1 \T|= dk+1 − 1 = ds − s+ k+ 1− 1 = ds − s+ k = dk

for k = s− i, . . . , s− j − 2.
Finally, for condition (3), we only need to check the line L

′
s−j−1 since

the result is true for the other lines by the construction of X using the lines
L1, . . . ,Ls. Now L

′
s−j−1 = Ls−i, and we know that it does not intersect with

the points X
′
k = Xk with k < s − i. Also, by construction, L′

s−j−1 does not
intersect with the points of X′

s−i, . . . ,X
′
s−j−2. So condition (3) holds. �

Example 2.10. Figure 3 gives an example of the relabelling. As before,
the shapes denote which points belong to the subsets Xi.

Corollary 2.11. Suppose that X ⊆ P
2 is a k-configuration of type

(d1, d2, . . . , ds) with s ≥ 2. Let L1, . . . ,Ls be the lines used to define X. Af-
ter relabelling, we can assume that there is an r such that |Ls−j ∩X|= ds for
all 0≤ j ≤ r− 1, but |Ls−j ∩X|< ds for all r ≤ j ≤ s− 1.
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Figure 3. Relabelling lines of a k-configuration of type (1,3,4,5,6).

Proof. In the assumptions of Lemma 2.9, we are assuming that Ls, . . . ,Ls−j

all meet X at ds points, but Ls−j−1 does not. After applying the relabelling of
Lemma 2.9, the lines L′

s, . . . ,L
′
s−j−1 now meet X at ds points. By reiterating

Lemma 2.9, we arrive at the conclusion. �

Remark 2.12. In the Introduction, we mentioned that the number of lines
that contain ds points is bounded by a value of the first difference of the
Hilbert function. Specifically, the number of lines that contain ds points is
bounded above by ΔHX(ds − 1) + 1.

We sketch out how to prove this result. Roberts and Roitman [13, The-
orem 1.2] give a formula for the Hilbert function HX of a k-configuration
in terms of the type (d1, d2, . . . , ds). It follows from this formula that
HX(ds − 1) =

∑s
i=1 di, and HX(ds − 2) = (

∑s
i=1 di)− t where t is the number

of consecutive integers at the end of (d1, d2, . . . , ds). So,

ΔHX(ds − 1) =HX(ds − 1)−HX(ds − 2) = t.

Note that if ds = s, then t= s. It follows by Lemma 2.5 that if ds > s, then t is
an upper bound on the number of lines that contain ds points, and if ds = s,
then by Corollary 2.8, t+ 1 = s+ 1 is an upper bound. We can combine this
information in the statement that number of lines that contain ds points is
bounded above by ΔHX(ds − 1) + 1.

3. The case ds > s

In this section, we prove Theorem 1.2 in the case the k-configuration X has
type (d1, . . . , ds) with ds > s.

Theorem 3.1. Let X⊆ P
2 be a k-configuration of type d= (d1, . . . , ds), and

assume that there are r lines containing exactly ds points of X. If ds > s, then
r =ΔHmX(mds − 1) for all m≥ 2.
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Proof. By Lemma 2.5(i), the lines containing ds points of X fall among
the lines L1, . . . ,Ls defining the k-configuration. By Corollary 2.11, we may
assume that the lines containing exactly ds points of X are Ls, . . . ,Ls−r+1,
while the lines Ls−r, . . . ,L1 contain less than ds points of X.

We will apply Theorem 2.1 to compute certain values of HmX. Towards
this goal, we obtain the reduction vector v of X using the sequence of lines

Ls, . . . ,L1,Ls, . . . ,L1, . . . ,Ls, . . . ,L1,

where the subsequence Ls, . . . ,L1 is repeated m times.
We claim that, for i= 1, . . . , r, we have

vi =mds − i+ 1.

Let Z0 =mX. Since |Ls ∩X|= ds, we have

v1 = deg(Ls ∩Z0) =mds.

Now let Z1 be the residual of Z0 with respect to the line Ls. The line Ls−1

contains the ds−1 points of Xs−1, and the point Xs∩Ls−1. The multiplicity of
the point Xs ∩Ls−1 in Z1 is m− 1, while the points of Xs−1 have multiplicity
m in Z1. Thus, we get

v2 = deg(Ls−1 ∩Z1) =mds−1 +m− 1 =m(ds − 1) +m− 1 =mds − 1,

where ds−1 = ds − 1 by Lemma 2.5(ii). Continuing in this fashion, for i =
3, . . . , r, we have a scheme Zi−1. The line Ls−i+1 contains the ds−i+1 points
of Xs−i+1, and the points Xs ∩Ls−i+1, Xs−1 ∩Ls−i+1, . . . , Xs−i+2 ∩Ls−i+1.
The former have multiplicity m in Zi−1, while the latter have multiplicity
m− 1 in Zi−1. Thus, for i= 1, . . . , r, we get

vi = deg(Ls−i+1 ∩Zi−1) =mds−i+1 + (m− 1)(i− 1)

=m(ds − i+ 1) + (m− 1)(i− 1) =mds − i+ 1.

Next, we claim that, for i= r+ 1, . . . , s, we have

vi ≤mds − i.

The line Ls−i+1 contains the ds−i+1 points of Xs−i+1, and e points at the
intersections Xt ∩Ls−i+1 for t > s− i+ 1. Note that ds−i+1 + e < ds because
we assumed that, for i = r + 1, . . . , s, the line Ls−i+1 contains less than ds
points of X. The points of Xs−i+1 have multiplicity m in Zi−1, while each
point Xt ∩ Ls−i+1 has multiplicity m− 1 in Zi−1. Thus, for i = r + 1, . . . , s,
we get

vi = deg(Ls−i+1 ∩Zi−1) =mds−i+1 + (m− 1)e

= ds−i+1 + (m− 1)(ds−i+1 + e)

< ds − i+ 1+ (m− 1)ds =mds − i+ 1,

where the inequality uses Lemma 2.4(i). This proves our claim.
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This concludes our first round of removing the lines Ls, . . . ,L1, correspond-
ing to the entries v1, . . . , vs of the reduction vector v. Now we focus on later
passes. We can index later entries of the reduction vector by vjs+i, where
j = 1, . . . ,m − 1 keeps track of the current pass (the first pass correspond-
ing to j = 0), and i= 1, . . . , s indicates that we are going to remove the line
Ls−i+1. We claim that

vjs+i ≤mds − (js+ i).

We proceed to estimate the multiplicity of points in Ls−i+1∩Zjs+i−1. The line
Ls−i+1 contains the ds−i+1 points of Xs−i+1; these have multiplicity at most
m− j in Zjs+i−1, because the line Ls−i+1 was removed j times in previous
passes. In addition, the line Ls−i+1 contains e points at the intersections Xt ∩
Ls−i+1 for t > s− i+1, where ds−i+1 + e≤ ds as before. Each of these points
has been removed j times in previous passes and once in the current pass,
and therefore, it has multiplicity at most m− j − 1 in Zjs+i−1. Altogether,
for j = 1, . . . ,m− 1 and i= 1, . . . , s, we obtain the following estimate:

vjs+i = deg(Ls−i+1 ∩Zjs+i−1)≤ (m− j)ds−i+1 + (m− j − 1)e

= ds−i+1 + (m− j − 1)(ds−i+1 + e)

≤ ds − i+ 1+ (m− j − 1)ds =mds − jds − i+ 1

<mds − js− i+ 1,

using Lemma 2.4(i) and the hypothesis ds > s. This proves our claim.
Observe that after removing the lines Ls, . . . ,L1 m times, we have

Zms+1 =∅. In other words, v = (v1, . . . , vms) is a complete reduction vec-
tor for mX. We can summarize our findings about v as follows:

vi =mds − i+ 1 for i= 1, . . . , r,

vi ≤mds − i for i= r+ 1, . . . ,ms.

Now we compute the value HmX(mds − 2) using Theorem 2.1. Recall that
a lower bound is given by

fv(mds − 2) =
ms−1∑
i=0

min(mds − 1− i, vi+1).

Based on our previous estimates, we have

min(mds − 1− i, vi+1) =mds − 1− i for i= 0, . . . , r− 1,

min(mds − 1− i, vi+1) = vi+1 for i= r, . . . ,ms− 1.

Hence, we get

fv(mds − 2) =

r−1∑
i=0

(mds − 1− i) +

ms−1∑
i=r

vi+1.
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As for the upper bound, it is given by

Fv(mds − 2) = min
0≤i≤ms

((
mds
2

)
−

(
mds − i

2

)
+

ms∑
j=i+1

vj

)
.

Evaluating the right-hand side for i= r, we get

Fv(mds − 2)≤
(
mds
2

)
−

(
mds − r

2

)
+

ms∑
j=r+1

vj

=

mds−1∑
h=mds−r

h+

ms∑
j=r+1

vj

=

r−1∑
i=0

(mds − 1− i) +

ms−1∑
i=r

vi+1.

Combining these bounds, we obtain

HmX(mds − 2) =

r−1∑
i=0

(mds − 1− i) +

ms−1∑
i=r

vi+1.

Similarly, we can use Theorem 2.1 to compute HmX(mds − 1). In this case,
the lower bound is given by

fv(mds − 1) =

ms−1∑
i=0

min(mds − i, vi+1)

=

r−1∑
i=0

(mds − i) +

ms−1∑
i=r

vi+1 =

ms−1∑
i=0

vi+1.

Note that since fv(mds − 1) is the sum of all the entries of the reduction
vector, fv(mds − 1) = deg(mX) by [5, Remark 1.2.6]. On the other hand, it is
well known that for any zero-dimensional scheme Z, HZ(t)≤ deg(Z) for all t
(see, e.g., [3]). We thus have

HmX(mds − 1) =

r−1∑
i=0

(mds − i) +

ms−1∑
i=r

vi+1 = deg(mX).

Finally, computing the first difference of the Hilbert function gives the
desired result:

ΔHmX(mds − 1) =HmX(mds − 1)−HmX(mds − 2)

=

r−1∑
i=0

(mds − i)−
r−1∑
i=0

(mds − 1− i) =

r−1∑
i=0

1 = r.
�
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Example 3.2. Consider the k-configuration X of type (1,3,4,5) of Exam-
ple 2.2. There are three lines containing d4 = 5 points, namely L2, L3, and
L4.

Our computation in Example 2.2 shows that H2X(2d4 − 2) =H2X(8) = 36.
In fact, this is an instance of the general computation carried out in the proof
of Theorem 3.1. A similar computation yields H2X(9) = 39. Therefore, we have

ΔH2X(9) =H2X(9)−H2X(8) = 39− 36 = 3,

as desired.

4. The case ds = s

In this section, we focus on k-configurations of type d = (d1, . . . , ds) with
ds = s≥ 2 (as mentioned in the Introduction, the case d= (1) is a single point).
As noted in Lemma 2.4, the k-configuration X must have type (1,2, . . . , s).
Unlike the case ds > s, the value of ΔH2X(2ds−1) need not equal the number
of lines that contain ds = s points of X. As a simple example, consider the
k-configuration of type (1,2,3) given in Figure 4. This k-configuration has
exactly one line containing exactly three points (namely, the line L3). However,
when we compute the Hilbert function of 2X, we get

H2X : 1 3 6 10 15 18 18 →,

and consequently, ΔH2X(2 · 3− 1) =H2X(5)−H2X(4) = 18− 15 = 3. So, the
hypothesis that ds > s in Theorem 3.1 is necessary.

In this section, we will derive a result similar to Theorem 3.1. However,
in order to find the number of lines that contain s points of X, we need to
consider the Hilbert function of mX with m≥ s+1 instead of m≥ 2. We need
a more subtle argument, in part, because of Lemma 2.7. That is, unlike the
case of ds > s, there may be up to two extra lines L that contains s points of
X, where L is not among the lines that defines the k-configuration.

Figure 4. A k-configuration of type (1,2,3) with exactly
one line with three points.
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We begin with a lemma that allows us to break our argument into three
separate cases. This lemma is similar to Lemma 2.9 in that it allows us to make
some additional assumptions about the lines L1, . . . ,Ls and points X1, . . . ,Xs

used to define the k-configuration.

Lemma 4.1. Suppose that X⊆ P
2 is a k-configuration of type (1,2, . . . , s)

with s≥ 2. Let X1, . . . ,Xs be the subsets of X, and L1, . . . ,Ls the lines used to
define X.

Then one of the three disjoint cases must hold:

(i) There are exactly s+ 1 lines that contain s points of X, and the points
of X are precisely the pairwise intersections of such lines.

(ii) There are exactly s lines that contain s points of X, and we can assume
that these lines are L1, . . . ,Ls. Moreover, for each i = 1, . . . , s, the set
X ∩ Li contains s − 1 points located at the intersection of Li and Lj

(with j �= i), and a single point Pi that does not belong to any line Lj for
j �= i.

(iii) There are 1≤ r < s lines that contain s points, and furthermore, after a
relabelling of the lines L1, . . . ,Ls and subsets X1, . . . ,Xs, we can assume
that none of these r lines pass through the point of X1 = {P}.

Proof. By Corollary 2.8 there are at most s+1 lines that contain s points
of X. So, there are three cases: (i) exactly s+ 1 lines that contain s point of
X, (ii) exactly s lines that contain s points of X, or (iii) 1≤ r < s lines that
contain s points of X. We now show that in each case, we can label the Xi’s
and Li’s as described in the statement.

(i) Suppose that there are exactly s+ 1 lines that contain s points of X.
If s = 2, then the hypothesis that X is a k-configuration implies that the
three points of X are not colinear. Thus each pair of points of X uniquely
determines a line, and the points of X are the intersections of such lines.
Now suppose that s > 2, and let H1, . . . ,Hs,Hs+1 be the s + 1 lines each
passing through s points of X. Define the set of points Y :=X \Hs+1, so that
X=Y∪ (X∩Hs+1). We have |Y|=

(
s+1
2

)
−s=

(
s
2

)
. Each line H1, . . . ,Hs passes

through s− 1 points of Y, otherwise we would have |Y|>
(
s
2

)
. By induction

on s, the points of Y are the pairwise intersections of the lines H1, . . . ,Hs. By
cardinality considerations, the s points of X∩Hs+1 must be the intersections
of Hs+1 with the lines H1, . . . ,Hs. This shows that the points of X are precisely
the pairwise intersections of the lines H1, . . . ,Hs,Hs+1.

(ii) Suppose that there are exactly s lines that contain s points of X. There
are three subcases: (a) the s lines that contain s points are L1, . . . ,Ls; (b) s−1
of the lines that contain s points are among L1, . . . ,Ls and there is one more
line L; and (c) s− 2 of the lines that contain s points are among L1, . . . ,Ls,
and there are two more lines that contain s points. Note that Lemma 2.7
implies that there is at most two lines not among the Li’s that will contain s
points, so these are the only three cases. We will first show that if (c) is true,
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then we can relabel the lines and points so that we can assume case (b) is
true. We will then show that in case (b), we can again relabel lines and points
so we can assume case (a) is true.

Assume case (c) holds. By Lemma 2.7, the two lines that contain s points
that are not among the Li’s are the lines LPQ1 and LPQ2 where X1 = {P}
and X2 = {Q1,Q2}. As argued in Corollary 2.8, the line L1 cannot contain
s points. Since {P}= X1 ⊆ LPQ1 , we then have that the k-configuration can
also be defined by the same Xi’s and the lines LPQ1 ,L2, . . . ,Ls. Note that we
are in now case (b).

We now assume case (b), that is, s−1 of the lines that contain s points are
among L1, . . . ,Ls and there is one additional line L that contains s points.
Suppose that L1 does not contain s points. By Lemma 2.7, the additional line
L contains X1, so as above, we replace L1 with L, and the k-configuration
is defined by the same Xi’s and the lines L,L2, . . . ,Ls, all of which contain
s points. On the other hand, suppose L1 contains s points. Then there is
exactly one line Lj ∈ {L2, . . . ,Ls−1} that does not contain s points (note that
Ls contains s points). Moreover, L1, . . . ,Lj−1 must all intersect Lj at distinct
points since each such Li needs to contain s distinct points.

Set

T = L∩ (X1 ∪ · · · ∪Xj).

Since L contains s points of X, we must have L ∩Xi �=∅ for all i= 1, . . . , s,
and in particular, |T| = j. Then the k-configuration X can also be defined
using the subsets

X
′
i = (Xi \L)∪ (Li ∩Lj) and L

′
i = Li for i= 1, . . . , j − 1,

Xj = T and L
′
j = L, and

X
′
i = Xi and L

′
i = Li for i= j + 1, . . . , s.

The verification of this fact is similar to the proof of Lemma 2.9. Note that
the line Lj is no longer used to define the k-configuration; moreover, the s
lines that contain the s points are L

′
1, . . . ,L

′
s after this relabelling, that is, we

are now in case (a). We have now verified that we can assume that the lines
that contain s points of X are exactly the lines L1, . . . ,Ls. We now verify the
second part of (ii).

Now, for each i= 1, . . . , s, the line Li contains exactly s points of X, so at
least one of the s points in X ∩ Li does not belong to Lj for j �= i; call this

point Pi. For i = 1, . . . , s− 1, set Yi := Xi+1 \ {Pi+1}. The set Y :=
⋃s−1

i=1 Yi

is a k-configuration of type (1, . . . , s − 1) with supporting lines Li+1 ⊇ Yi

(this follows from the fact that X is a k-configuration with supporting lines
Li ⊇Xi). Furthermore, there are exactly s lines that contain s−1 points of Y,
namely the lines L1, . . . ,Ls. Therefore, by part (i), all points of Y are precisely
the pairwise intersections of the lines L1, . . . ,Ls. The statement in part (ii)
follows.
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(iii) Finally, suppose that there are 1 ≤ r < s lines that contain s points
of X. Like case (ii), there are three subcases: (a) the r lines are among
L1, . . . ,Ls; (b) r− 1 of the lines are among L1, . . . ,Ls, and there is one addi-
tional line L, or (c) r− 2 of the lines are among L1, . . . ,Ls, and there are two
additional lines that contains s points. Like case (ii), we first show that we
can relabel case (c) so case (b) is true. We then show that if case (b) is true,
we can again relabel so case (a) is true.

If we assume case (c), we first apply Corollary 2.11 to relabel the lines so
that L1 does not contain s points (since only the last r− 2 lines will contain
s points). Lemma 2.7 implies that the two additional lines are LPQ1 ,LPQ2 .
Since X1 ⊆ LPQ1 we can still define the k-configuration using the same Xi’s,
but with the lines LPQ1 ,L2, . . . ,Ls, that is, we are in case (b).

In case (b), we again first apply Corollary 2.11 to relabel our k-configuration
so that L1 does not contain s points. By Lemma 2.7, the additional line L

is either LPQ1 or LPQ2 . In either case, X1 ⊆ L, so we again define the k-
configuration using the the same Xi’s and the lines L,L2, . . . ,Ls. We have
now relabelled the k-configuration so case (a) holds.

Since we can assume that (a) holds, the 1≤ r < s lines that contains s points
are among L1, . . . ,Ls. Again, by applying Corollary 2.11, we can assume that
Ls−r+1, . . . ,Ls are the r lines with s points, and in particular, none of these
points contain X1 = {P} by definition of a k-configuration.

�
4.1. Case 1: Exactly s+ 1 lines. We will now consider the three cases of
Lemma 4.1 separately. We first consider the case that there are exactly s+ 1
lines that contain s points of X.

Theorem 4.2. Let X ⊆ P
2 be a k-configuration of type d = (d1, . . . , ds) =

(1,2, . . . , s) with s≥ 2. Assume that there are exactly s+ 1 lines containing s
points of X. Then s+ 1=ΔHmX(mds − 1) for all m≥ 2.

Proof. Let H1, . . . ,Hs,Hs+1 be the lines containing s points of X; by
Lemma 4.1(i), the points of X are precisely the intersections of such lines.

To compute bounds on the Hilbert function of mX, we apply Theorem 2.1
with the reduction vector v obtained from the sequence of lines

Hs+1,Hs, . . . ,H1,Hs+1,Hs, . . . ,H1, . . . ,Hs+1,Hs, . . . ,H1,

where the subsequence Hs+1,Hs, . . . ,H1 is repeated �m
2 � times.

We index the entries of the reduction vector by vj(s+1)+i, where j =
0, . . . , �m

2 �−1 is the number of times the subsequence of lines Hs+1,Hs, . . . ,H1

has been completely removed, and i= 1, . . . , s+1 indicates that we are going to
remove the line Hs−i+2. Note that each time the subsequence Hs+1,Hs, . . . ,H1

is removed, the multiplicity of each point of mX decreases by two. If m is
even, this process eventually reduces the multiplicity of each point to zero.
If m is odd, then the process reduces the multiplicity of each point to one,
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so removing the sequence of lines Hs+1,Hs, . . . ,H1 one more time reduces the
multiplicity to zero. In particular, mX will be reduced to ∅ after removing the
subsequence of lines Hs+1,Hs, . . . ,H1 �m

2 � times. At the step corresponding
to vj(s+1)+i, the line Hs−i+2 contains:

• the points of intersection Hs−i+2 ∩Hk for k > s− i+ 2, with multiplicity
m− 2j − 1;

• the points of intersection Hs−i+2 ∩Hk for k < s− i+ 2, with multiplicity
m− 2j.

This gives

(4.1) vj(s+1)+i = (i− 1)(m− 2j − 1) + (s− i+ 1)(m− 2j)

= (m− 2j)s− i+ 1.

When j = 0, Equation (4.1) implies

vi =ms− i+ 1

for all i= 1, . . . , s+ 1. For j > 0, we get

vj(s+1)+i = (m− 2j)s− i+ 1=ms− 2js− i+ 1

<ms− j(s+ 1)− i+ 1

because s > 1. This shows that

vj(s+1)+i ≤ms−
(
j(s+ 1) + i

)
for all j = 1, . . . , �m

2 � − 1 and i= 1, . . . , s+ 1.
Since ds = s, we can summarize the results above by writing

vi =mds − i+ 1 for i= 1, . . . , s+ 1,

vi ≤mds − i for i= s+ 2, . . . ,

⌈
m

2

⌉
(s+ 1).

Proceeding as in the proof of Theorem 3.1, we obtain

HmX(mds − 2) =

s∑
i=0

(mds − 1− i) +

�m
2 �(s+1)−1∑
i=s+2

vi+1.

Also as in the proof of Theorem 3.1, we have

HmX(mds−1) = deg(mX) =

�m
2 �(s+1)−1∑

i=0

vi+1 =

s∑
i=0

(mds− i)+

�m
2 �(s+1)−1∑
i=s+2

vi+1.

We conclude that

ΔHmX(mds − 1) =HmX(mds − 1)−HmX(mds − 2) = s+ 1. �

Remark 4.3. A k-configuration of type (1,2, . . . , s) which has exactly s+1
lines containing s points is also an example of a star configuration. When
m= 2, Theorem 4.2 can be deduced from [6, Theorem 3.2].
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4.2. Case 2: Exactly s lines. We next consider the case that there are
exactly s lines containing s points. Reasoning as in the previous case, we
may compute a reduction vector from these s lines, in order to calculate
values of the Hilbert function. However, in this case, the bounds thus obtained
may not be tight. The following example illustrates the issue, and a possible
workaround.

Example 4.4. Consider a k-configuration X of type (1,2,3,4) with exactly
four lines that contain four points of X. By Lemma 4.1(ii), X consists of the
intersections of the lines L1,L2,L3,L4 defining the k-configuration, and four
non-colinear points P1, P2, P3, P4, with Pi belonging to Li. We have depicted
such an X in Figure 5.

We proceed to compute bounds for H2X(2ds−2) as we did in Example 2.2.
First, we use the sequence of lines L4,L3,L2,L1,L4,L3,L2,L1. The table be-
low compares the function (2ds − 2)− i+ 1 with the entries of the reduction
vector v; the minimum is in bold.

i 0 1 2 3 4 5 6 7

6− i+ 1 7 6 5 4 3 2 1 0

vi+1 8 7 6 5 1 1 1 1

Summing the minimum values, we obtain the lower bound H2X(6)≥ fv(6) =
25.

Now let H be the line through P1 and P2. In general, the line H could
also contain P3 or P4, but not both. However in the k-configuration depicted
in Figure 5, H does not contain either P3 or P4. Consider the points of the
set {P1, P2, P3, P4} \ H, namely P3 and P4, and relabel them Q1 and Q2.
Let H1 be a line through Q1 not passing through Q2, and let H2 be a line
through Q2. We compute a lower bound for H2X(2ds − 2) using the sequence

Figure 5. A k-configuration of type (1,2,3,4) with exactly
4 lines containing 4 points.
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of lines L4,L3,L2,L1,H,H1,H2. The table below summarizes the necessary
information.

i 0 1 2 3 4 5 6

6− i+ 1 7 6 5 4 3 2 1

vi+1 8 7 6 5 2 1 1

Summing the minimum values, we obtain the lower bound H2X(6)≥ fv(6) =
26.

An easy computation with Equation (2.2) (using either reduction vector)
leads to the upper bound H2X(6)≤ Fv(6)≤ 26. This shows that H2X(6) = 26.
In particular, the lower bound computed from the lines L4,L3,L2,L1 alone is
not tight.

Using the above example as a guide, we prove our main result for the case
under consideration.

Theorem 4.5. Let X ⊆ P
2 be a k-configuration of type d = (d1, . . . , ds) =

(1,2, . . . , s) with s ≥ 2. Assume that there are exactly s lines containing s
points of X. Then s=ΔHmX(mds − 1) for all m≥ 2.

Proof. By Lemma 4.1(ii), we can assume that the lines containing s points
of X are the lines L1, . . . ,Ls that define the k-configuration. Moreover, for
each i= 1, . . . , s, there is a point Pi ∈ X ∩ Li that does not belong to Lj for
any j �= i. Then the points of X are the points of intersection of the lines
L1, . . . ,Ls together with the points P1, . . . , Ps.

To compute bounds on the Hilbert function of mX, we apply Theorem 2.1
with the reduction vector v obtained from a sequence of lines

Ls, . . . ,L1,Ls, . . . ,L1, . . . ,Ls, . . . ,L1,H,H1, . . . ,Hs−u,

where the subsequence Ls, . . . ,L1 is repeated m− 1 times and the additional
lines H,H1, . . . ,Hs−u are constructed as follows.

Let H denote the line through P1 and P2. The line H contains u points of
the set {P1, . . . , Ps}, where, by construction, u≥ 2. Furthermore, H is not one
of the lines L1, . . . ,Ls, and therefore, it cannot contain s points of X, that is,
u≤ s−1. It follows that the set {P1, . . . , Ps}\H is not empty, and must in fact
contain s− u points, which we denote Q1, . . . ,Qs−u. For each i= 1, . . . , s− u,
let Hi be a line passing through Qi that does not contain any point Qj for
j > i.

Now we proceed to compute (or bound) the entries of the reduction vec-
tor v. We claim that, for i= 1, . . . , s, we have

vi =ms− i+ 1.

At the ith step, the line Ls−i+1 contains:
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• the points of intersection Ls−i+1 ∩ Lk for k > s− i+ 1, with multiplicity
m− 1;

• the points of intersection Ls−i+1 ∩Lk for k < s− i+1, with multiplicity m;
and

• the point Ps−i+1 with multiplicity m.

This gives

vi = (m− 1)(i− 1) +m(s− i) +m=ms− i+ 1,

proving the claim.
Next, we claim that, for l= s+ 1, . . . , (m− 1)s+ s− u+ 1, we have

(4.2) vl ≤ms− l.

We first prove this claim for entries vjs+i, where j = 1, . . . , �m
2 � − 1 is the

number of times the subsequence of lines Ls, . . . ,L1 has been completely re-
moved, and i= 1, . . . , s indicates that we are going to remove the line Ls−i+1.
At the step corresponding to vjs+i, the line Ls−i+1 contains:

• the points of intersection Ls−i+1 ∩ Lk for k > s− i+ 1, with multiplicity
m− 2j − 1;

• the points of intersection Ls−i+1 ∩ Lk for k < s− i+ 1, with multiplicity
m− 2j; and

• the point Ps−i+1 with multiplicity m− j.

The 2j in the above multiplicities follows from the fact that points located at
the intersections of the lines Ls, . . . ,L1 are removed twice with each full pass
along the subsequence Ls, . . . ,L1. Thus, we obtain

vjs+i = (m− 2j − 1)(i− 1) + (m− 2j)(s− i) +m− j

=ms− i+ j − 2js+ 1=ms− js− i+ j(1− s) + 1

<ms− js− i+ 1,

from which the claim of Equation (4.2) follows for the chosen values of i and j.
Next, we prove the claim for vjs+i, where j = �m

2 �, . . . ,m − 2, and i =
1, . . . , s. Since the lines Ls, . . . ,L1 have been removed �m

2 � times, the multi-
plicity of the points located at the intersections of the lines Ls, . . . ,L1 is now
zero. Hence, at the step corresponding to vjs+i, the line Ls−i+1 only contains
the point Ps−i+1 with multiplicity m− j. We get

vjs+i =m− j.

Since j ≤m− 2, we have m− j ≥ 2 and therefore

m− j

m− j − 1
=

m− j − 1 + 1

m− j − 1
= 1+

1

m− j − 1
≤ 2≤ s.

This implies

vjs+i ≤ (m− j − 1)s=ms− js− s≤ms− js− i,

thus proving the claim of Equation (4.2) for the given i and j.
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At this stage, the multiplicity of the points P1, . . . , Ps has been reduced to
one, because each line L1, . . . ,Ls has been removed m − 1 times. The next
step is to find the value of v(m−1)s+1, which corresponds to the line H defined
at the beginning. By construction, H contains u points of the set {P1, . . . , Ps},
with u≤ s− 1. Therefore

v(m−1)s+1 = u≤ s− 1 =ms−
(
(m− 1)s+ 1

)
;

this shows that Equation (4.2) holds for this entry of v.
Finally, we evaluate v(m−1)s+h, for h= 2, . . . , s−u+1. For a given value of

h, we assume that we have already removed H1, . . . ,Hh−2 and we are about
to remove Hh−1. The line Hh−1 contains a single point of X, namely Qh−1.
Moreover, Qh−1 is by definition one of the points in the set {P1, . . . , Ps} \H,
so its multiplicity is down to one. Thus, we have

v(m−1)s+h = 1≤ s− h=ms−
(
(m− 1)s+ h

)
.

The inequality 1≤ s− h follows from h≤ s− u+1 and u≥ 2. Thus, we have
proved that Equation (4.2) holds for all the desired values.

To summarize, we showed that

vi =ms− i+ 1 for i= 1, . . . , s,

vi ≤ms− i for i= s+ 1, . . . , (m− 1)s+ s− u+ 1.

From here on, the proof proceeds as for Theorem 3.1, yielding

ΔHmX(ms− 1) =HmX(ms− 1)−HmX(ms− 2)

=

s−1∑
i=0

(ms− i)−
s−1∑
i=0

(ms− 1− i) =

s−1∑
i=0

1 = s.
�

4.3. Case 3: 1 ≤ r < s lines. We consider the final case when there are
1≤ r < s lines that contain s points of X. Before going forward, we recall a
result of Catalisano, Trung, and Valla [3, Lemma 3]; we have specialized this
result to the case of points in P

2.

Lemma 4.6. Let P1, . . . , Pk, P be distinct points in P
2 and let IP be the

defining prime ideal of P . If m1, . . . ,mk, and a are positive integers and I =
Im1

P1
∩ · · · ∩ Imk

Pk
, then

(a) HR/(I+Ia
P )(t) =

∑a−1
i=0 dimk[(I + IiP )/(I + Ii+1

P )]t for every t > 0, with

I0P =R.

(b) If P = [1 : 0 : 0], then [(I + IiP )/(I + Ii+1
P )]t = 0 if and only if i > t or

xt−i
0 M ∈ I + Ii+1

P for every monomial M of degree i in x1, x2.

We now prove the remaining open case. Note that unlike Theorems 4.2
and 4.5, we need to assume that m≥ s+ 1 instead of m≥ 2.
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Theorem 4.7. Let X ⊆ P
2 be a k-configuration of type d = (d1, . . . , ds) =

(1,2, . . . , s) with s ≥ 2. Assume that there are 1 ≤ r < s lines containing s
points of X. Then r =ΔHmX(mds − 1) for all m≥ s+ 1.

Proof. Let L1, . . . ,Ls be the s lines that define the k-configuration. After
using Lemma 4.1(iii) to relabel, we can assume that the r lines that contain s
points are among L2, . . . ,Ls, and thus the unique point P of X1 does not lie on
any line containing s points of X. So, we can write our k-configuration as X=
Y∪{P} where {P}=X1 is the point on the line L1 and Y is a k-configuration
of type (2,3, . . . , s) = (d′1, . . . , d

′
s−1). Since there is no line containing s points

of X that passes through the point P , the r lines that contain s points of X
must also contain s points of Y. So we can apply Theorem 3.1 to Y.

Suppose that X2 = {Q1,Q2}. Since P,Q1,Q2 do not all lie on the same line,
we can make a linear change of coordinates so that

P = [1 : 0 : 0], Q1 = [0 : 1 : 0], and Q2 = [0 : 0 : 1].

We let Li denote the linear form that defines the line Li. Note that after
we have made our change of coordinates, if L, with defining form L= ax0 +
bx1 + cx2, is any line that does not pass through P , then L /∈ IP = 〈x1, x2〉,
i.e., a �= 0.

With this setup, we make the following claim:

Claim. For all m≥ s+ 1, HR/(ImY+Im
P )(ms− 2) = 0.

Proof. By Lemma 4.6, it suffices to show that for each i= 0, . . . ,m− 1, the
monomial xms−2−i

0 M ∈ [ImY+ Ii+1
P ]ms−2 where M is any monomial of degree

i in x1, x2. We will treat the cases i ∈ {0, . . . ,m− 2} and i=m− 1 separately.
Fix an i ∈ {0, . . . ,m− 2} and let M be any monomial of degree i in x1, x2.

Since none of the lines L2, . . . ,Ls pass through the point P , we have Lk =
ak,0x0 + ak,1x1 + ak,2x2 with ak,0 �= 0 for all k = 2, . . . , s. Then

Lm
2 Lm

3 · · ·Lm
s = axms−m

0 +

ms−m∑
k=1

xms−m−k
0 fk(x1, x2)

with a �= 0 and where fk(x1, x2) is a homogeneous polynomial of degree k only
in x1 and x2. Since L2 · · ·Ls ∈ IY, it follows that

Lm
2 · · ·Lm

s ∈
[
(IY)

m
]
ms−m

⊆ [ImY]ms−m ⊆
[
ImY + Ii+1

P

]
ms−m

and thus

axms−m
0 M +

ms−m∑
k=1

xms−m−k
0 fk(x1, x2)M ∈

[
ImY + Ii+1

P

]
ms−m+i

.

But Ii+1
P = 〈x1, x2〉i+1, so fk(x1, x2)M ∈ Ii+1

P for each k = 1, . . . ,ms−m since
fk(x1, x2)M is a homogeneous polynomial only in x1, x2 of degree i+k ≥ i+1.
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But then this means that

a−1axms−m
0 M = xms−m

0 M ∈
[
ImY + Ii+1

P

]
ms−m+i

.

Since i ≤ m − 2, we thus have xm−2−i
0 xms−m

0 M = xms−2−i
0 M ∈

[ImY + Ii+1
P ]ms−2.

Now suppose that i=m−1. Consider any monomialM = xa
1x

b
2 with a+b=

m− 1 and a, b ≥ 1. Since IQ1 = 〈x0, x2〉 and IQ2 = 〈x0, x1〉, this means that
xa
1x

b
2 ∈ IbQ1

∩ IaQ2
. Because L2 is the line that passes through Q1 and Q2, we

have Lm−1
2 M ∈ (ImQ1

∩ ImQ2
), and consequently,

Lm−1
2 Lm

3 · · ·Lm
s M = axms−m−1

0 M +

ms−m−1∑
k=1

xms−m−1−k
0 fk(x1, x2)M

∈ [ImY]ms−2 ⊆
[
ImY + ImP

]
ms−2

.

Arguing as above, this implies that xms−m−1
0 M ∈ [ImY + ImP ]ms−2.

It remains to show that xms−m−1
0 xm−1

1 and xms−m−1
0 xm−1

2 ∈
[ImY + ImP ]ms−2. We only verify the second statement since the first state-
ment is similar. Consider the line L through the point P and Q2. Because L

goes through P , it does not contain s points. In particular, there must be some
j ∈ {3, . . . , s} such that L ∩Xj =∅, that is, L does not intersect with any of
the points of X on the line Lj . Let Xj = {S1, . . . , Sj} be these j points, and let
H� be the line through Q2 and S� for �= 1, . . . , j. Furthermore, let H� denote
the associated linear form. Note that none of the lines H� can pass through
the point P , so in particular, each H� has the form H� = a�x0 + b�x1 + c�x2

with a� �= 0.
We now claim that

F := xm−1
1 H1 · · ·HjL

m−j
2 Lm

3 · · ·Lm
j−1L

m−1
j Lm

j+1 · · ·Lm
s ∈ ImY.

Because j ≤ s and m≥ s+ 1, m− j ≥ 1. So, in particular, xm−1
1 Lm−j

2 ∈ ImQ1
.

Also, H1 · · ·HjL
m−j
2 ∈ ImQ2

, so F vanishes at the points of {Q1,Q2} to the

correct multiplicity. Note that H1 · · ·HjL
m−1
j vanishes at all the points on Lj

to multiplicity at least m. Furthermore, for any other k, Lm
k vanishes at all

the points on Lk to multiplicity at least m. So we have F ∈ ImY. To finish the
proof, we need to note that

H1 · · ·HjL
m−j
2 Lm

3 · · ·Lm
j−1L

m−1
j Lm

j+1 · · ·Lm
s

= axms−m−1
0 +

ms−m−1∑
k=1

xms−m−1−k
0 fk(x1, x2)

with a �= 0 and where each fk(x1, x2) is a homogeneous polynomial of degree
k only in x1, x2. The rest of the proof now follows similar to the cases above.
This ends the proof of the claim. �
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We now complete the proof. Let m≥ s+1 be any integer, and consider the
short exact sequence

0→
(
ImY ∩ ImP

)
→ ImY ⊕ ImP → ImY + ImP → 0.

Note that the ideal of mX is ImX = ImY ∩ ImP , so the short exact sequence
implies

HmX(t) =HmY(t) +HmP (t)−HR/(ImY+Im
P )(t)

for all t≥ 0. Note that HmP (t) =
(
m+1
2

)
for all t≥m− 1. Using this fact, and

the above claim we get

ΔHmX(ms− 1) = HmX(ms− 1)−HmX(ms− 2)

=
(
HmY(ms− 1) +HmP (ms− 1)−HR/(ImY+Im

P )(ms− 1)
)

−
(
HmY(ms− 2) +HmP (ms− 2)−HR/(ImY+Im

P )(ms− 2)
)

= ΔHmY(ms− 1) +

((
m+ 1

2

)
−

(
m+ 1

2

))
− (0− 0)

= r.

The last equality comes from Theorem 3.1 since ΔHmY(ms− 1) = r for all
m≥ 2. �

Remark 4.8. Notice that in the proof of Theorem 4.7, the hypothesis
that m ≥ s+ 1 was only used in the proof of the claim to show that a par-
ticular monomial belonged to the ideal ImY + ImP . However, there may be
some room for improvement on the lower bound s+1. For example, for the k-
configuration of type (1,2,3) given in Figure 4, computer tests have shown that
ΔHmX(m3 − 1) = 1 for all m ≥ s = 3, instead of s + 1 = 4. Similarly, if we
consider standard linear configurations of type (1,2, . . . , s) (as defined in [10,
Definition 2.10]), then it can be shown that Theorem 4.7 holds for all m≥ 2.
We omit this proof since it requires the special geometry of standard linear
k-configurations.

5. Concluding remarks

We conclude this paper with some observations. Following [3], we define
the regularity index of a zero-dimensional scheme Z⊆ P

n to be

ri(Z) =min
(
t |HZ(t) = deg(Z)

)
.

Embedded in our proof of Theorem 1.2, we actually computed the regularity
index of multiples of a k-configuration. In particular, we proved that

Corollary 5.1. Let X⊆ P
2 be a k-configuration of type d= (d1, . . . , ds).

Then for all integers m≥ s+ 1,

ri(mX) =mds − 1.
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Proof. If d= (1), then X= {P} is a single point. It is well-known that

HmX(t) =min

((
t+ 2

2

)
,

(
m+ 1

2

))
,

so the regularity index is m− 1.
If d �= (1) and if m ≥ s + 1, Theorems 3.1, 4.2, 4.5, and 4.7, imply

HmX(mds − 2)<HmX(mds − 1). Moreover, as part of our proofs, we argued
that HmX(mds − 1) = deg(mX). �

The regularity index ri(Z) can also be defined as the maximal integer t
such that ΔHZ(t) �= 0. So, Theorem 1.2 can be restated as:

Theorem 5.2. Let X⊆ P
2 be a k-configuration of type d= (d1, . . . , ds) �= (1)

and m≥ s+ 1. Then the number of lines containing exactly ds points of X is
the last non-zero value of ΔHmX(t).

As a final comment, we turn to a question posed by Geramita, Migliore,
and Sabourin [10]:

Question 5.3. What are all the possible Hilbert functions of fat point
schemes in P

n whose support has a fixed Hilbert function H?

As noted in [10], this question is quite difficult; in fact, [10] focused on the
case of double points in P

2. Using the work of this paper, we can give an
interesting observation related Question 5.3.

Theorem 5.4. Fix integers m ≥ s+ 1 ≥ 3. Then there are at least s+ 1
possible Hilbert functions of homogeneous fat points of multiplicity m in P

2

whose support has the Hilbert function

H(t) =min

((
t+ 2

2

)
,

(
s+ 1

2

))
.

Proof. Any k-configuration X of type (1,2, . . . , s) with s ≥ 2 has Hilbert
function HX(t) = H(t) (see [13, Theorem 1.2]). By Theorem 5.2,
HmX(ms − 2) = deg(mX) − r where r is the number of lines that contain
s points of X. As shown in Lemma 4.1, 1≤ r ≤ s+ 1. It suffices to show that
each r is possible; this would imply that we have at least s+1 different Hilbert
functions.

Fix L1, . . . ,Ls+1 distinct lines. If r = s+1, we take all pairwise intersections
of these s+1 lines to get the desired set of points. So, suppose 1≤ r ≤ s. We
construct a k-configuration of type (1,2, . . . , s) with exactly r lines containing
s points as follows:

• let X1 be any point in L1 \ (L2 ∪ · · · ∪Ls+1);
• let X2 be any two points L2 \ (L1 ∪L3 ∪ · · · ∪Ls+1);
...
• let Xs−r be any s− r points Ls−r \ (L1 ∪ · · · ∪ L̂s−r ∪ · · · ∪Ls);
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• let Xs−r+1 be any s− r+ 1 points Ls−r+1 \ (L1 ∪ · · · ∪ L̂s−r+1 ∪ · · · ∪Ls);

• let Xs−r+2 any s− r + 1 points on Ls−r+2 \ (L1 ∪ · · · ∪ L̂s−r+2 ∪ · · · ∪ Ls)
and the point Ls−r+2 ∩Ls−r+1;

• let Xs−r+3 be any s− r+1 points on Ls−r+3 \ (L1∪ · · ·∪ L̂s−r+3∪ · · ·∪Ls)
and the two points Ls−r+3 ∩ (Ls−r+1 ∪Ls−r+2);

...
• let Xs be any s− r+ 1 points on Ls \ (L1 ∪ · · · ∪ L̂s) and the r− 1 points

Ls ∩ (Ls−r+1 ∪ · · · ∪Ls−1).

This configuration then gives the desired result. �
Remark 5.5. As mentioned in the Introduction, k-configurations of points

can be defined in P
n (see, e.g., [8], [7], [11], [12]). It is natural to ask if a

result similar to Theorem 1.2 also holds more generally. Based upon some
calculations, it appears that this may be the case. For example, let X be the
k-configuration of points in P

3 found in [11, Example 4.1] (see [11] for both
the definition and a picture). For this example, one can see that there are
three lines that contain four points. The Hilbert function of 2X is given by

H2X : 1 4 10 20 35 50 57 60 →.

Note that ri(2X) = 7. Also, we have ΔH2X(7) = 3, that is, the same as the
number of lines containing four points, which is similar to our statement in
Theorem 5.2.

Although we suspect that a more general result holds, our proof relies on
techniques developed in [5] that only give precise information when the points
are in P

2.
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