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THE MODULE THEORY OF DIVIDED POWER ALGEBRAS

ROHIT NAGPAL AND ANDREW SNOWDEN

Abstract. We study modules for the divided power algebra D
in a single variable over a commutative Noetherian ring K. Our

first result states that D is a coherent ring. In fact, we show that

there is a theory of Gröbner bases for finitely generated ideals,

and so computations with finitely presented D-modules are in

principle algorithmic. We go on to determine much about the

structure of finitely presented D-modules, such as: existence of

certain nice resolutions, computation of the Grothendieck group,

results about injective dimension, and how they interact with tor-
sion modules. Our results apply not just to the classical divided

power algebra, but to its q-variant as well, and even to a much

broader class of algebras we introduce called “generalized divided

power algebras.” On the other hand, we show that the divided
power algebra in two variables over Zp is not coherent.
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1. Introduction

Let D be the divided power algebra in a variable x over the commuta-
tive ring k. Recall that D is free as a k-module with basis x[0], x[1], . . ., and
multiplication is defined by

x[n]x[m] =

(
n+m

n

)
x[n+m].

If Q ⊂ k, then D is isomorphic to the polynomial ring k[x] via x[n] �→ xn

n! .
However, in general D is quite different from the polynomial ring: for example,
if k=Fp, then D is not even Noetherian.

This paper is an investigation of the theory of D-modules. Even though D
is typically non-Noetherian, we show that finitely presented D-modules are
well-behaved, and prove a variety of results concerning them. In the remainder
of the Introduction, we summarize our results and explain our motivation for
studying D-modules. We also note here that the divided power algebras ap-
peared in the work of Berthelot as a tool for studying crystalline cohomology,
see, for example, [BO].

1.1. Summary of results. Recall that a ring R is coherent if every finitely
generated ideal is finitely presented. Equivalently, R is coherent if the kernel of
any map of finitely presented modules is again finitely presented; this ensures
that the category of finitely presented modules is Abelian. Our first result
about D is the following theorem.

Theorem 1.1. If k is Noetherian, then D is coherent.

In fact, our results are more precise, in two ways. First, we give a com-
plete characterization of the rings k for which D is graded-coherent (meaning
any finitely generated homogeneous ideal is finitely presented): namely, D is
graded-coherent if and only if k is coherent and for any finitely generated ideal
a of k, the torsion submodule of k/a has finite exponent. And second, when k
is Noetherian, we actually prove that D is Gröbner-coherent. This is a notion
we introduce in [NS, Section 4], which basically means that there is a good
theory of Gröbner bases for finitely generated ideals in D. In particular, this
means that calculations with finitely presented D-modules are algorithmic, at
least in principle.

We next investigate the structure of finitely presented D-modules, working
under the assumption that k is Noetherian. We first construct certain nice
resolutions. In general, finitely presented D-modules do not have finite pro-
jective dimension. There are two obstructions. First, if M is a k-module with
infinite projective dimension then M ⊗k D has infinite projective dimension
as a D-module. And second, if k/pk is non-zero and q > 1 is a power of p then

(D/pD)(q) :=
⊕
q|n

(k/pk)x[n]
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is naturally a D-module, and does not have finite projective dimension. We
therefore introduce a class of modules that includes the above two counterex-
amples: we say that a D-module N is special if it has a finite length filtration
such that the graded pieces have the form (M ⊗k D)(q), where M is a finitely
generated k-module, q is a power of a prime p, and pM = 0 if q �= 1. We then
prove the following theorem.

Theorem 1.2. Every finitely presented D-module M admits a finite reso-
lution

0→ Pr → · · · → P0 →M → 0

by special modules. In fact, one can take P0, . . . , Pr−1 to be free and Pr to be
special, and one can bound r in terms of the Krull dimension of k (if it is
finite).

As consequence of this theorem, we obtain a useful spanning set for the
Grothendieck group K(D) of finitely presented D-modules. With more work,
we prove the following theorem.

Theorem 1.3. There is a canonical short exact sequence

0→K(k)→K(D)→
⊕
p

Qp/Zp ⊗K(k/pk)→ 0,

where the direct sum is taken over all prime numbers. This sequence splits if
and only if for every prime p the natural map K(k/pk)→K(k) is zero.

We next investigate the injective dimension of D-modules. We begin by
completely characterizing the injective dimension of D over itself when k is
a field. We next show that if E0 is a bounded complex of k-modules with
finitely generated homology and injective amplitude [a, b] then E =D⊗k E0

has injective amplitude [a, b+2], and show that b+2 can be lowered to b+1
or even b in certain cases. Using this, we show that if k is Noetherian and ωk

is a dualizing complex for k then ωD = ωk ⊗k D is one for D. In particular,
if k admits a dualizing complex then the bounded derived category of finitely
presented D-modules is self-dual.

Next, we study the relationship between torsion modules and finitely pre-
sented modules. Here, an element m of a D-module M is said to be torsion
if x[n]m = 0 for all n� 0, and M is said to be torsion if all of its elements
are. If k contains a field of characteristic 0, then D= k[x], and finitely pre-
sented D-modules can have torsion, for example, k[x]/(x). However, this is
essentially the only example.

Theorem 1.4. The following conditions are equivalent:

(a) Every finitely presented D-module is torsion-free.
(b) Every maximal ideal of k has positive residue characteristic.



290 R. NAGPAL AND A. SNOWDEN

When k is p-adically complete, we can say much more, at least for graded
modules:

Theorem 1.5. Suppose k is p-adically complete. Let M and T be graded
D-modules, with M finitely presented and T torsion. Then ExtiD(T,M) = 0
for all i≥ 0.

Here Ext denotes a graded version of Ext, see Section 1.5. The above the-
orem is false without the completeness hypothesis, see Remark 8.4. It is also
false in the non-graded case, as Example 7.5 (with k=Fp) shows.

Finally, motivated by certain applications (see Section 1.3), we study
“nearly finitely presented” (nfp) D-modules. A graded D-module M is nfp if
there exists a finitely presented D-module N (called a weak fp-envelope of M )
such that τ≥n(M)∼= τ≥n(N) as D-modules, where τ≥n denotes truncation to
degrees ≥ n (see Section 9). When k is complete, nfp modules are very well
behaved.

Theorem 1.6. Suppose k is p-adically complete. Then the kernel, cokernel,
and image of a map of nfp modules is again nfp, and so the category of nfp
modules is Abelian. Furthermore, the weak fp-envelope N of an nfp module
M is unique up to canonical isomorphism, and there exists a canonical map
M →N that is universal among maps from M to finitely presented modules.

As with the previous theorem, this one is false without the completeness
assumption, see Proposition 9.19. When k is not complete, we can at least
prove uniqueness of the weak fp-envelope in some cases.

Theorem 1.7. Suppose that every maximal ideal of k has residue charac-
teristic p, for some fixed prime number p. Then the weak fp-envelope of an
nfp module is unique up to isomorphism.

The isomorphism in the above theorem is not canonical, and the weak fp-
envelope of M is not functorial in M . The above theorem can fail without the
hypothesis on k: if k is a number ring with non-trivial class group then weak
nfp-envelopes are necessarily non-unique, see Proposition 9.20.

1.2. q-divided power algebras and beyond. Let q ∈ k. One then defines

[n]q = 1+ q+ · · ·+ qn−1 =
qn − 1

q− 1

and

[n]q! = [n]q[n− 1]q · · · [1]q,
[
n

m

]
q

=
[n]q!

[n−m]q![m]q!
.

The quantity
[
n
m

]
q
is a polynomial in q, and called the q-binomial coefficient

(or Gaussian binomial coefficient). One can modify the definition of the di-
vided power algebra by replacing the usual binomial coefficients with their
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q-counterparts. The result is called the q-divided power algebra. All of the
results in this paper apply to, and are proved for, q-divided power algebras.1

In fact, we work even more generally. Let π2, π3, . . . be a sequence of ele-
ments in k that is “admissible” in the sense that if πn and πm belong to a
common maximal ideal then n |m or m | n. We define

a(n) = a(n;π•) =
∏

d|n,d�=1

πd

and2

C(n,m;π•) =
a(n)a(n− 1) · · ·a(n−m+ 1)

a(m)a(m− 1) · · ·a(1) .

The above coefficients are called π•-binomial coefficients. One can modify the
definition of the divided power algebra by replacing the usual binomial coef-
ficients with their π• counterparts. The resulting algebra is denoted D(π•;k)
and called a generalized divided power algebra (GDPA). See Proposition 3.16
for an intrinsic characterization of these algebras and Proposition 2.10 for an
enlightening description of admissible sequences when k is a PID.

As one would expect, the main examples of interest fit into this general
setup:

(a) If πn = 1 for all n, then D(π•;k)∼= k[x].
(b) Define πn to be p if n is a power of a prime p, and 1 if n is not a prime

power. Then D(π•;k) is the usual divided power algebra over k. (In the
context of GDPA’s, we refer to this as the classical divided power algebra.)

(c) Suppose πn = Φn(q) where Φn is the nth cyclotomic polynomial. Then
D(π•;k) is the q-divided power algebra.

In fact, by taking q = 0 or q = 1, example (c) reverts to (a) or (b). Here is a
slightly different example:

(d) Fix m ≥ 0 and take D to be the Zp-submodule of Qp[x] spanned by
xn

�n/pm�! . One can show that D is a GDPA; in fact, it is isomorphic to

D(π•;Zp) where πn is p if n is a power of p that exceeds pm, and 1
otherwise. (The ideal D+ carries a partial divided power structure, in the
sense of Berthelot. We thank the referee for this comment.)

All of the results of this paper are proved for arbitrary GDPA’s.3 Working
in this generality actually makes the structure of many arguments more clear
and is no more difficult than treating the q-divided power algebra.

1 Except Theorem 1.3, for which we only have partial results.
2 We give a better definition in the body of the paper that does not require division.
3 Same caveat regarding Theorem 1.3.
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1.3. Motivation. A famous theorem of Nakaoka [Nak] asserts that the
cohomology of symmetric groups stabilizes: for any coefficient ring k, the
restriction map

Ht(Sn,k)→Ht(Sn−1,k)

is an isomorphism for n > 2t. Motivated by applications to the cohomology of
configuration spaces, the first author [Na] generalized Nakaoka’s theorem to
allow for non-trivial coefficients, as follows. An FI-module over k is a sequence
(Mn)n≥0, where Mn is a k[Sn]-module, equipped with certain transition maps
Mn →Mn+1. The main theorem of [Na] states that if k is a field of character-
istic p and M is a finitely generated FI-module over k then, for fixed t, the
dimension of Ht(Sn,Mn) is periodic in n with period a power of p.

In the forthcoming paper [NS2], we generalize this periodicity theorem and
greatly simplify its proof. For an FI-module M , define

Γt(M) =
⊕
n≥0

Ht(Sn,Mn).

Then Γt(M) naturally has the structure of a graded D-module, where D is the
univariate classical divided power algebra over k. The main theorem of [NS2]
states that when k is Noetherian and M is finitely generated, the D-module
Γt(M) is nearly finitely presented. When k is a field, this immediately implies
the periodicity result of [Na].

1.4. Multivariate divided power algebras. It would be natural to at-
tempt to generalize the results of this paper to divided power algebras in
several variables. Unfortunately, the basic coherence property fails in multiple
variables (see Section 4.6), so it is not clear to us what one could hope to say.
(We note, however, that coherence still holds when k is a field. Indeed, if k
has characteristic 0 then the r-variable divided power algebra is isomorphic to
the r-variable polynomial ring. If k has characteristic p, then the r-variable
divided power algebra is isomorphic to

k[xi,j ]i∈N,1≤j≤r/
(
xp
i,j

)
,

is thus coherent; in fact, it is isomorphic, as an ungraded k-algebra, to the
single variable divided power algebra.)

1.5. Notation and terminology. By a graded ring or module, we will
always mean one graded by the integers. Our rings are almost always concen-
trated in non-negative degrees. Suppose V is a graded module. For integers
q and k, we let V (q;k) be the direct sum of the graded pieces Vn with n≡ k
(mod q), and we omit the k when k = 0. If R is a graded ring, then R(q) is
again a graded ring, and each R(q;k) is an R(q)-module. By the regrade of V (q)

we mean the module that is Vqn in degree n. We write V<n for the sum of the
Vk with 0≤ k < n.
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Let A be a graded ring. We write ModA for the category of graded A-
modules and ModA for the category of non-graded modules. Let M and N be
graded A-modules. We write HomA(M,N)n for the set of all modules maps
M [n]→N where the grading is respected, and we put

HomA(M,N) =
⊕

HomA(M,N)n.

This is a graded A-module. We write HomA(M,N) for the set of all module
maps M →N , ignoring the grading. There is a natural map HomA(M,N)→
HomA(M,N) which is an isomorphism if M is finitely generated. We write
Ext for the derived functor of Hom.

1.6. Outline. In Section 2, we introduce and study π-sequences, and in
Section 3 we use them to define GDPA’s. In Section 4, we prove coherence
results for GDPA’s, including a much more general version of Theorem 1.1.
In Sections 5, 6, 7, 8 and 9, we study finitely presented and nearly finitely
presented D-modules. Finally, Section 10 lists some open problems.

2. π-sequences

2.1. Divisible sequences. A divisible sequence is a sequence of positive
integers b0 = 1, b1, . . ., either infinite or finite in length, such that bi properly
divides bi+1, whenever bi+1 is defined. Every integer n ≥ 0 can be written
uniquely in the form

n=
∑
i≥0

dibi,

where 0 ≤ di < bi+1/bi (we assume that bi =∞ if i is the least integer such
that bi is not defined). We call this the base b• representation of n. Carries
in base b• addition will play a prominent role in this paper. For an integer
k ≥ 1, put

εk(n,m) =

⌊
n+m

k

⌋
−

⌊
n

k

⌋
−

⌊
m

k

⌋
.

One easily sees that εk(n,m) is either 0 or 1: in fact, εk(n,m) can be in-
terpreted as the carry produced in the one’s place when adding n and m in
base k. Thus, εbi(n,m) is the carry in the ith place when adding n and m in
base b•.

2.2. π-sequences. A π-sequence in a ring k is simply a sequence π• =
{πn}n≥2 of elements of k. By convention, we always put π1 = 0. Let Π be
the ring Z[πuniv

n ]n≥2, where the elements πuniv
n are indeterminates. Then the

π-sequence πuniv
• in Π is universal: if π• is any π-sequence in a ring k then

there is a unique ring homomorphism ϕ : Π→ k such that π• = ϕ(πuniv).
A π-invariant is a rule c assigning to every π-sequence π• in any ring k

an element c(π•) of k such that if ϕ : k→ k′ is a ring homomorphism then
c(ϕ(π•)) = ϕ(c(π•)). We have c(πuniv

• ) = Fc(π
univ
• ) for some polynomial Fc ∈
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Π, and thus c(π•) = Fc(π•) for every π-sequence π• in any ring k. Conversely,
if F ∈Π then c(π•) = F (π•) defines a π-invariant.

Suppose c and d are π-invariants such that Fd divides Fc in Π. We then
define {c/d} to be the π-invariant associated to Fc/Fd. By abuse of notation,
we typically write {c(π•)/d(π•)} for the value of {c/d} on π•. If d(π•) ∈ k
is a non-zero divisor then {c(π•)/d(π•)} is equal to c(π•)/d(π•), where the
division is performed in k. However, if d(π•) is a zero-divisor then one cannot
determine {c(π•)/d(π•)} from c(π•) and d(π•).

2.3. Generalized binomial coefficients. For n ≥ 1 define π-invariants
a(n) and A(n) by

a(n) = a(n;π•) =
∏

d|n,d�=1

πd

and
A(n) =A(n;π•) = a(n)a(n− 1) · · ·a(2)a(1).

We remark that Möbius inversion gives the identity

πn =

{∏
d|n

a(n/d)μ(d)
}
,

and so πn can be recovered from the a(n;π•)’s provided they are not zero-
divisors. For 0≤m≤ n, we define a π-invariant C(n,m) by

C(n,m) =C(n,m;π•) =
∏
k≥2

π
εk(n−m,m)
k .

We think of a(n) as the π•-analog of n, A(n) as the analog of n!, and C(n,m)
as the analog of the binomial coefficient

(
n
m

)
. This last point is justified by

the following observation.

Proposition 2.1. We have

C(n,m) =

{
A(n)

A(n−m)A(m)

}
.

Proof. The power of πk in a(n) is 1 if n is a multiple of k, and 0 otherwise.
Thus, the power of πk in A(n) is the number of multiples of k between 1 and n,
namely �n

k �. Therefore, the power of πk in the above fraction is εk(n−m,m),
and this proves the identity. �

The following property of C will be important later.

Proposition 2.2. For �≤m≤ n, we have

C(n,m)C(m,�) =C(n− �,m− �)C(n, �).

Proof. Since εk is a coboundary, it satisfies the cocycle identity

εk(n,m) + εk(n+m,�) = εk(n,m+ �) + εk(m,�).

The proposition follows directly from this. �
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2.4. The h-transform. Let h≥ 1 be an integer. We define the h-transform

of the π-sequence π• to be the π-sequence π
[h]
• given by

π[h]
n =

∏
d|h,(h/d,n)=1

πdn.

We write a[h](n) in places of a(n;π
[h]
• ), and similarly for A[h], C [h], etc. The

motivation for this construction is not immediately clear, but Example 2.16
should provide some intuition.

Proposition 2.3. We have a[h](n) = {a(hn)/a(h)}.

Proof. It suffices to prove a[h](n) = a(hn)/a(h) for the universal π-
sequence. We have

a
(
n;π

[h]
•

)
=

∏
d|n,d�=1

π
[h]
d =

∏
d|n,d′|h

d�=1,(h/d′,d)=1

πdd′ .

Multiplying both sides by a(h), we obtain

a(h)a
(
n;π

[h]
•

)
=

∏
d|n,d′|h

dd′ �=1,(h/d′,d)=1

πdd′ =
∏

d|nh,d �=1

πd = a(hn),

where in the second step we use the following lemma. This proves the result.
�

Lemma 2.4. Let n and h be positive integers. Then every divisor of nh can
be written uniquely as dd′, where d divides n, d′ divides h, and (h/d′, d) = 1.

Proof. Let m be a divisor of nh. Then d′ = (m,h) is a divisor of h
and d = m/(m,h) is a divisor of n such that dd′ = m and (h/d′, d) =
(h/(m,h),m/(m,h)) = 1. To show uniqueness, suppose that m = dd′ with
(h/d′, d) = 1. Then d = m/d′, so (h/d′,m/d′) = 1, which shows that d′ =
(h,m), and so d=m/(h,m). �

Proposition 2.5. We have (π
[h]
• )

[h′]
= π

[hh′]
• .

Proof. Again, it suffices to work in the universal case. We have

a
(
n;

(
π
[h]
•

)[h′])
=

a(h′n;π
[h]
• )

a(h′;π
[h]
• )

=
a(hh′n;π•)/a(h;π•)

a(hh′;π•)/a(h;π•)
=

a(hh′n;π•)

a(hh′;π•)
.

Thus, the two sequences (π
[h]
• )

[h′]
and π

[hh′]
• define the same a’s, and are there-

fore equal by Möbius inversion (which is allowed here since in the universal
case the πn’s are not zero-divisors). �
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2.5. Admissibility. We say that the π-sequence π• is admissible if the
following condition holds: if (πn, πm) is not the unit ideal of k then either
n |m or m | n. Equivalently, π• is admissible if whenever πn and πm belong
to some maximal ideal m either n |m or m | n. Suppose π• is admissible, and
let a be a proper ideal of k. Define a sequence ba,• inductively as follows.
First, ba,0 = 1. Having defined ba,i, let ba,i+1 be the smallest integer n greater
than ba,i such that πn ∈ a; if no such integer exists, ba,i+1 is undefined and
the sequence has finite length. The sequence ba,• is divisible (as defined in
Section 2.1).

Proposition 2.6. Let k→ k′ be a ring homomorphism, let π• be an admis-
sible π-sequence in k, and let π′

• be its image in k′. Then π′
• is also admissible.

Proof. If (π′
n, π

′
m) is not the unit ideal of k′ , then certainly (πn, πm) is not

the unit ideal of k, and so n |m or m | n. �

Proposition 2.7. If π• is admissible so is π
[h]
• , for any h≥ 1.

Proof. Let m be a maximal ideal of k, and suppose π
[h]
n and π

[h]
m belong

to m. Then πdn ∈m for some d | h with (h/d,n) = 1, and similarly πd′m ∈m

for some d′ | h with (h/d′,m) = 1. Since π• is admissible, either dn | d′m or
d′m | dn; without loss of generality, assume the former. We claim n |m, which
will complete the proof. It suffices to show vp(n) ≤ vp(m) for all primes p,
where vp is the p-adic valuation. Thus, let p be given. If vp(n) = 0 there is
nothing to prove, so suppose vp(n)> 0. The divisibility dn | d′m translates to
the inequality

vp(d) + vp(n)≤ vp
(
d′

)
+ vp(m).

If vp(h) = 0, then vp(d
′) = 0, and so vp(n)≤ vp(m). Now suppose vp(h)> 0.

Then the condition (h/d,n) = 1 implies vp(d) = vp(h). Thus,

vp(h) + vp(n)≤ vp
(
d′

)
+ vp(m)≤ vp(h) + vp(m),

and so vp(n)≤ vp(m). This completes the proof. �

Proposition 2.8. Suppose π• is admissible and πh belongs to the Jacobson
radical of k. Then:

(a) If πn is a non-unit of k, then either h divides n or n divides h.

(b) For n > 1, we have π
[h]
n = πhn up to units.

Proof. (a) Since πn is a non-unit, it belongs to some maximal ideal m. Since
πh belongs to the Jacobson radical, it also belongs to m. Thus, n | h or h | n
by admissibility.

(b) We have

π[h]
n =

∏
d|h,(h/d,n)=1

πdn.
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This has πhn as a factor, and we claim that all other factors are units. Suppose
πdn is a non-unit appearing in the product. Then, by (a), dn | h or h | dn. The
condition (h/d,n) = 1 is equivalent to (h,nd) = d. Thus, if dn | h then d= nd
and n= 1, which is not the case, while if h | dn then d= h, as claimed. �

2.6. π•-torsion. Let M be a k-module, and let m ∈M . We say that m is
π•-torsion if it is annihilated by a(n) for some n≥ 1. Equivalently, m is π•-
torsion if it is annihilated by a product of the form

∏
n∈S πn, where S is a finite

subset of Z>1. We write T (M) = T (M ;π•) for the set of π•-torsion elements.
It is a submodule of M . We say that T (M) is bounded if it is annihilated by
a(n) for some n≥ 1.

Proposition 2.9. If M is Noetherian, then T (M) is bounded.

Proof. Let Mn ⊂M be the submodule killed by a(n!). Then T (M) is the
ascending union of the Mn, and so, by noetherianity, M =Mn for some n. �

2.7. Admissible sequences in a PID. Suppose now that k is a PID
(or just a Bézout domain). A sequence {a(n)}n≥1 in k is GCD-morphic if it
satisfies the identity

a
(
gcd(n,m)

)
= gcd

(
a(n), a(m)

)
for all n,m≥ 1. The following proposition seems to be well known (e.g., see
[No] or [DB]), but we include a proof to be self-contained.

Proposition 2.10. Giving a never-zero admissible π-sequence π• is the
same as giving a never-zero GCD-morphic sequence {a(n)}n≥1; precisely,
π• �→ {a(n;π•)}n≥1 provides a bijection between these two classes of sequences.

Lemma 2.11. Let {a(n)}n≥1 be a never-zero GCD-morphic sequence. Let
r ≥ 1 be minimal such that a(r) is not a unit. Define

b(n) =

{
a(n)/a(r) if r | n,
a(n) if r � n.

Then {b(n)}n≥1 is GCD-morphic.

Proof. Wemust show gcd(b(n), b(m)) = b(gcd(n,m)). This is immediate if r
divides both of n and m, and also if r divides neither n nor m. Thus, assume
r | n but r � m. Then gcd(a(r), a(m)) = a(gcd(r,m)) = 1 since gcd(r,m) < r
and r is minimal such that a(r) is not a unit. Thus, a(m) is coprime to a(r),
and so

gcd
(
b(n), b(m)

)
= gcd

(
a(n)/a(r), a(m)

)
= gcd

(
a(n), a(m)

)
= a

(
gcd(n,m)

)
= b

(
gcd(n,m)

)
.

This completes the proof. �
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Lemma 2.12. Let {a(n)}n≥1 be a never-zero GCD-morphic sequence. Then
a(n) = a(n;π•) for a unique never-zero π-sequence π•.

Proof. By Möbius inversion, πn =
∏

d|n a(n/d)
μ(d) is the unique sequence

π•, if it exists: we must show that this product belongs to k. Let π• be a
maximal never-zero sequence such that {a(n)/a(n;π•)}n≥1 is a GCD-morphic
sequence in k. Here by “maximal” we mean that if π′

• is another other sequence
with this property and πn | π′

n for all n ≥ 2 then πn = π′
n up to units. It is

easy to see that a maximal sequence exists: start by maximizing π2, then go
to π3, and so on. Put a′(n) = a(n)/a(n;π•). We claim that a′(n) is a unit for
all n. Indeed, suppose not and let r be minimal such that a′(r) is not a unit.
Define π′

• by π′
n = πn for n �= r and π′

r = a(r). Then, by the previous lemma,
{a(n)/a(n;π′

•)}n≥1 is GCD-morphic. This contradicts the maximality of π•,
and thus proves the claim. We thus see that a(n) = a(n;π•) up to units for
all n, and so

∏
d|n a(n/d)

μ(d) is equal to πn up to units, and thus belongs

to k. �

Lemma 2.13. Let π• be a never-zero π-sequence in k and put a(n) =
a(n;π•). Then π• is admissible if and only if {a(n)}n≥1 is GCD-morphic.

Proof. Let �= gcd(n,m). Working from the definition of a(n;π•), we find

gcd
(
a(n), a(m)

)
= a(�) gcd

( ∏
d|n,d��

πd,
∏

e|m,e��

πe

)
.

Suppose π• is admissible. If d and e are indices in the products, then d � e and
e � d, and so (πd, πe) = 1 by admissibility. It follows that the gcd on the right
is 1, and so {a(n)} is GCD-morphic. Conversely, suppose {a(n)} is GCD-
morphic. Then the gcd on the right side above is 1, and so (πd, πe) = 1 for all
indices d and e in products. Suppose now d and e are given such that d � e and
e � d. Taking n= d and m= e, we find (πe, πd) = 1, and so π• is admissible. �

2.8. Examples. We now give some examples to illustrate the definitions in
this section.

Example 2.14. Take k=Z and define πk = p if k is a power of a prime p
and πk = 1 otherwise. Then a(n) = n and A(n) = n! and C(n,m) =

(
n
m

)
, the

usual binomial coefficient. We have a[h](n) = a(hn)/a(h) = n. Thus A[h] = A
and C [h] =C as well. It is clear that the sequence π• is admissible.

Example 2.15. Take k = Z and define a(n) = Fn where Fn is the nth
Fibonacci number. It is well known that this sequence is GCD-morphic, and
so, by Proposition 2.10, there exists a unique admissible sequence π• such that
a(n) = a(n;π•). More information on the sequence π• can be found at [OEIS,
A061446]. The coefficients C(n,m) are the so-called “Fibonomial coefficients.”

https://oeis.org/A061446
https://oeis.org/A061446
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Example 2.16. Take k= Z[q] and define πk =Φk(q) to be the kth cyclo-
tomic polynomial. This is admissible by the following lemma. We have

a(n) = [n]q =
qn − 1

q− 1

and A(n) = [n]q! and C(n,m) =
[
n
m

]
q
, the q-binomial coefficient. We have

a[h](n) = [hn]q/[h]q = [n]qh and A[h](n) = [n]qh !. Thus, C
[h](n,m) =

[
n
m

]
qh

is

the qh-binomial coefficient.

Lemma 2.17. The π-sequence in Z[q] given by πn =Φn(q) is admissible.

Proof. Let m be a maximal ideal of Z[q] containing Φn and Φm. Let κ=
Z[q]/m be the quotient field, which is necessarily finite, say of characteristic
p, and let ζ be the image of q in κ. Write n = psn0 and m = prm0 with n0

and m0 prime to p. Then Φn(q) = Φn0(q)
ps−ps−1

modulo p, and similarly for
Φm. We thus see that Φn0(ζ) = Φm0(ζ) = 0, and so it follows that ζ is both a
primitive n0 and m0 root of unity. We conclude that n0 =m0, and so n |m
or m | n according to whether s≤ r or r ≤ s. �

3. Generalized divided power algebras

3.1. The algebra associated to divisible sequence. Given a divisible
sequence b• and a ring k, we define a ring S= S(k, b•) as follows. First suppose

that b• has infinite length. Then S= k[y0, y1, . . .]/(y
bi+1/bi
i ). Now suppose b=

(b0, . . . , br). Then S= k[y0, . . . , yr]/(y
bi+1/bi
i ), where the relations are imposed

for 0 ≤ i < r. In particular, yr is not nilpotent. We give yi degree bi which
makes S a graded k-algebra.

Let n ≥ 0 be an integer and let n =
∑

nibi be its base b• expansion. We
define x[n] ∈ S to be the element

∏
yni

i . It is clearly nonzero of degree n,
and the only element of degree n up to scalar multiples. Let m=

∑
mibi be

a second integer. Then x[n]x[m] is non-zero if and only if ni +mi < bi+1/bi
for all i, that is, there is no base carry when computing n +m in base b•.
Assuming there is no carry, n+m=

∑
(ni +mi)bi is the base b• expansion of

n+m, and so x[n]x[m] = x[n+m].
The following proposition summarizes the above discussion.

Proposition 3.1. As a k-module, we have S=
⊕

n≥0 kx
[n]. In this basis,

multiplication is given by

x[n]x[m] =

{
x[n+m] if there is no base b• carry in n+m,

0 if there is a base b• carry in n+m.
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3.2. Generalized divided power algebras. Let k be a ring and let π•
be a π-sequence in k. We define a graded k-algebra D=D(k, π•) as follows.
As a graded k-module, D is free with basis x[i] for i ∈N, where x[i] has de-
gree i. Multiplication is defined by x[n−m]x[m] =C(n,m)x[n]. Proposition 2.2
ensures that multiplication is associative, while commutativity follows from
the obvious relation C(n,m) =C(n,n−m). The element x[0] is the unit, and

so we write x[0] = 1. As usual, D[h] denotes D(k, π
[h]
• ).

Definition 3.2. A generalized divided power algebra (GDPA) over k is a
graded k-algebra isomorphic to D(k, π•) for some admissible sequence π•.

Example 3.3. Some examples of GDPA’s:

(a) If πn = 1 for each n > 1, then D= k[x].
(b) If π• is as in Example 2.14, then D is the classical divided power algebra.
(c) If π• is as in Example 2.16, then D is the q-divided power algebra.

Proposition 3.4. Let k′ be a k-algebra, and let π′
k be the image of πk

in k′. Then D′ =D⊗k k′ is isomorphic to D(k′, π′
•). In particular, the base

change of a GDPA is still a GDPA.

Proof. It is clear that D′ is isomorphic to D(k′, π′
•). If π• is admissible,

then so is π′
•, by Proposition 2.6, and so D′ is a GDPA. �

We say that two sequences π• and π′
• in k are associate if πn is associate

to π′
n for all n (that is, πn is a unit times π′

n). In this case, one is admissible
if and only if the other is.

Proposition 3.5. Suppose π• is an arbitrary π-sequence and π′
• is an

admissible π-sequence. Then D=D(k, π•) is isomorphic to D′ =D(k, π′
•) as

graded k-algebras if and only if π• and π′
• are associate.

Proof. First, suppose that π• and π′
• are associate, and write πn = αnπ

′
n

with αn a unit. For n≥ 0, define

βn =
∏
k≥2

α
�n/k�
k ,

which is also a unit. Then C ′(n,m) = βn+mβ−1
n β−1

m C(n,m), where C is com-
puted with π• and C ′ with π′

•. Thus, the map D→D′ taking x[n] to βny
[n]

is an isomorphism of graded k-algebras.
Now suppose that D and D′ are isomorphic. It suffices to check that π• and

π′
• are associate locally, so we assume that k is local. Let b• be the divisible

sequence associated to π′
•. We note that the isomorphism D∼=D′ implies that

C(n,m) and C ′(n,m) are associate for all n and m. Assume that πk and π′
k

are associate for k < n, and let us prove that πn and π′
n are associate. We

consider two cases:
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• Case 1: n �= bi for any i. Write n = a+ b with a, b > 1 such that there is
no base b• carry. Then C ′(n,a) is a unit, and so C(n,a) is a unit. Since πn

divides C(n,a), it follows that πn is a unit, and thus associate to π′
n.

• Case 2: n= bi. In the addition bi = (bi − bi−1) + bi−1 there is only a carry
into bi’s place. We thus see that{

C ′(bi, bi−1)

π′
bi

}
is a unit, and so, by the inductive hypothesis, so is{

C(bi, bi−1)

πbi

}
.

Thus, π′
n is associate to C ′(bi, bi−1), which is associate to C(bi, bi−1), which

is associate to πn. �

Corollary 3.6. If D(k, π•) is a GDPA then π• is admissible.

Corollary 3.7. Suppose that πn is a unit of k for all n≥ 2. Then the nat-
ural map k[x]→D sending x to x[1] is an isomorphism of graded k-algebras.

Proof. This follows from proposition above and Example 3.3(a). �

Proposition 3.8. The GDPA’s over a field k are exactly the algebras
S(k, b•) from Section 3.1.

Proof. Let π• be an admissible π-sequence. By Proposition 3.5, we may as
well assume πn ∈ {0,1} for all n. By admissibility, there is a divisible sequence
b• such that πn = 0 if and only if n= bi for some i. It now follows directly from
the definition that C(n,m) is 0 if there is a base b• carry in computing (n−
m)+m, and 1 otherwise. Thus, D is isomorphic to S(b•,k) by Proposition 3.1.

Now suppose b• is a given divisible sequence. Define πn = 0 if n = bi for
some i and πn = 1 otherwise. Then S(b•,k) is isomorphic to D(π•,k), and so
the former is a GDPA. �

Remark 3.9. In fact, over any ring k the S(k, b•) are exactly the GDPA’s
D(π•,k) for which πn is either 0 or a unit for all n.

3.3. Further properties of GDPA’s. For this section, we fix a GDPA D=
D(k, π•) and establish some basic results, mostly concerning what happens
when πh = 0 for some h. We denote the k-subalgebra of D generated by x[n]

with h | n by D(h).

Proposition 3.10. Suppose πh belongs to the Jacobson radical of k. Then:

(a) For 0≤ k < h, the module D(h;k) is free over D(h) and generated by x[k].
(b) The natural map D<h ⊗k D(h) →D is an isomorphism of graded D(h)-

modules.
(c) The regrade of D(h) is isomorphic to D[h].
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Proof. (a) Suppose n is a multiple of h, 0≤ k < h, and m either divides h
or is a multiple of h. Then one finds εm(n,k) = 0. Combined with Proposi-
tion 2.8(a), this shows that C(n+ k, k) is a unit. We thus see that D(h;k) is
free of rank one over D(h), generated by x[k].

(b) Follows from (a).
(c) Let π′

n = πnh, let C
′(n,m) =C(n,m;π′

•), and let S be the set of positive
integers that do not divide h or are not divisible by h. Define

un =
∏
k∈S

π
�hn/k�
k .

This is a unit by part (a). We have

C
(
h(n+m), hm

)
=

(∏
k∈S

π
εk(hn,hm)
k

)(∏
k|h

π
εk(hn,hm)
k

)( ∏
h|k,k>h

π
εk(hn,hm)
k

)
.

The first product is equal to un+mu−1
n u−1

m . The second product is 1 since
εk(hn,hm) = 0 when k divides h. The final product is C ′(n+m,m). Thus, we
have C(hn+ hm,hm) = un+mu−1

n u−1
m C ′(n+m,m). Let D′ =D(k, π′

•) with
basis y[k]. Then the map D′ →D(h) given by y[k] �→ ukx

[hk] is an isomorphism
of k-algebras, and respects the grading after regrading D(h). By Proposi-

tion 2.8(b), π′
• and π

[h]
• are associate, and so D′ is isomorphic to D[h] (by

Proposition 3.5), which completes the proof. �
Proposition 3.11. Suppose πh belongs to the Jacobson radical of k. Then

D is (graded-, Gröbner-, or [no adjective]) coherent if and only if D[h] is.

Proof. By Proposition 3.10(c), D[h] is isomorphic to a regrade of D(h),
and so it is enough to shows that D is (graded-, Gröbner-, or [no adjective])
coherent if and only if D(h) is. By Proposition 3.10(a), D is homogeneous and
free of rank h as a module over D(h), and so the result follows from standard
(and easily proved) basic facts about coherence. �

Proposition 3.12. Suppose πh belongs to the Jacobson radical of k, let
I ⊂D be a homogeneous ideal, and let 0≤ k < h. Then there exists an ideal
Jk of D(h) such that I(h;k) ∼= Jk[k] as D(h)-modules. Furthermore, if I is
generated in degrees ≤ d then Jk is generated in degrees ≤ h�(d− k)/h�.

Proof. The assertion that Jk exists and is an ideal follows directly from
Proposition 3.10(a). For the degree bound, we may assume without loss of
generality that I is generated in degree d. Let 0≤ d′ < h be such that d+d′ ≡ k
(mod h). It is enough to show that Jk[k] is generated in degree d+ d′. To see
this, let N = d+ d′+xh for some x ∈Z+. The product x

[d]x[N−d] differs from

x[d]x[d′]x[N−d−d′] by a factor of C(d′ + xh,d′). It suffices to show that this
factor is a unit. Since πh is in the Jacobson radical of k, h belongs to bm,• for
every maximal ideal m of k and there are no carries in the addition d′ + xh
in any base containing h, and so C(d′ + xh,d′) is a unit. �
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Proposition 3.13. Suppose that πn = 0. Then D<n is a subalgebra of
D, and the natural map D<n ⊗k D(n) →D is an isomorphism of graded k-
algebras.

Proof. To show that D<n is a subalgebra, it suffices to show that if i, j < n

then x[i]x[j] ∈D<n. This is clear if i + j < n. If i + j > n then εn(i, j) = 1,
and so C(i + j, i) = 0 since πn appears as a factor of it; thus, in this case,
x[i]x[j] = 0, which does indeed belong to D<n. The map D<n ⊗k D

(n) →D is
an isomorphism of graded k-modules by Proposition 3.10(b). In the present
situation, it is clearly compatible with multiplication. �

Proposition 3.14. Suppose πn = 0 for infinitely many n. If k is coherent
(resp. Noetherian) then D is coherent (resp. Gröbner-coherent).

Proof. Let n1 < n2 < · · · be the indices with πni = 0; note that ni |
ni+1 by Proposition 2.8(a). It follows from Proposition 3.13 that the map

D<ni ⊗k D
(ni)
<ni+1

→D<ni+1 is an isomorphism of rings, and so D<ni+1 is flat

(even free) as a D<ni -module. Thus, if k is coherent then so is D<ni , being
finite free over k. Since D is the union of the D<ni , it too is coherent ([So,
Proposition 20]).

Now suppose k is Noetherian. Then each Dni is a Noetherian module, and
thus Gröbner-coherent. As with coherence, Gröbner-coherence passes to the
limit [NS, Proposition 5.3]. �

Proposition 3.15. Suppose π• be an admissible sequence with πn = 0 for
infinitely many n, and let D=D(k, π•) be a GDPA. If M is finitely presented
(graded) D-module, then there exists an h such that πh = 0 and M ∼=D(h) ⊗k

N as D(h)-modules for some (graded) D<h-module N . In particular, if k is a
field then M is free as a D(h)-module.

Proof. Let F1 → F0 →M → 0 be a presentation of M with F0, F1 free of
finite rank over D. Suppose that, in a suitable basis, the matrix entries of
the map f : F1 → F0 (as in the presentation above) only involve variables
x[0], x[1], . . . , x[t]. Pick an h > t such that πh = 0. By Proposition 3.13, D<h is
a subalgebra of D and D=D<h ⊗k D(h) as graded k-algebras. Let F i be a
free D<h-module with the same basis as Fi, and define f : F 1 → F 0 using the
same matrix that defines f . Then f is obtained from f by applying the exact
functor −⊗k D(h). Thus M = coker(f) = coker(f)⊗k D(h) as required. �

3.4. Characterization of GDPAs. We defined GDPA’s by explicit con-
struction. However, they can also be characterized intrinsically:

Proposition 3.16. Let D be a graded k-algebra. Then D is a GDPA if
and only if (1) each graded piece of D is free of rank 1 over k; and (2) for
every maximal ideal m of k, the quotient D/mD is isomorphic to S(k/m, b•)
for some divisible sequence b•.
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If D is a GDPA, then (1) holds by definition, while (2) follows from Propo-
sitions 3.4 and 3.8. It thus suffices to prove the converse. Let x[n] be a basis
of D[n], and define c(n,m) ∈ k by x[n−m]x[m] = c(n,m)x[n+m]. We choose
x[0] = 1, so that c(n,0) = 1 for all n. It suffices to prove the following state-
ment:

(∗) Given elements πn ∈ k for 2 ≤ n < N such that C(n,m) = c(n,m) for
all 0≤m≤ n < N , there exists an element πN ∈ k such that C(N,m) =
c(N,m) for all 0≤m≤N .

Indeed, if this were true then we could construct a π-sequence π• for which
C(n,m) = c(n,m) for all n ≥ m ≥ 0, and so D(k, π•) would be isomorphic
to D. Furthermore, condition (2) would imply (by Corollary 3.6) that π• is
admissible in each quotient k/m, and therefore admissible.

Lemma 3.17. The condition (∗) holds when k is local.

Proof. Let m be the unique maximal ideal of k and let b• be a divisible
sequence such that D/mD∼= S(k/m, b•). Note that if there is no base b carry
in the addition (n−m) +m then c(n,m) is nonzero modulo m, and thus a
unit of k. Let N and πn be given as in (∗). Note that if n <N is not of the
form bi then πn is a unit. Indeed, we can write n = (n −m) +m for some
0<m< n with no carry, and so C(n,m) = c(n,m) is a unit. As C(n,m) is a
multiple of πn, it follows that πn is a unit.

First, suppose that N is not of the form bi, and let i be maximal such
that bi divides N . Note that the ith base b digit of N is nonzero, and all
digits in lower places are 0. Clearly then, there are no carries in the addition
bi + (N − bi). It follows that C(N,bi) has no factor of the form πbj , and so
{C(N,bi)/πN} is a unit of k. We define πN by

πN =
{
C(N,bi)/πN

}−1 · c(N,bi).

Thus, by construction, C(N,bi) = c(N,bi). We now show that C(N,m) =
c(N,m) for all 0≤m≤N . If m= 0 or m=N the equality is clear, so assume
0 < m < N . Put n = N − m. By assumption, the ith base b digit of N is
nonzero. Suppose that the ith base b digit of n or m is nonzero, say n. Then
we can write n= bi + n′ without carry. We then have

x[n]x[m] = c(n, bi)
−1x[bi]x[n′]x[m] = c(n, bi)

−1c(N − bi,m)c(N,bi)x
[N ],

and so

c(N,m) = c(n, bi)
−1c(N − bi,m)c(N,bi).

We get a similar identity for C. Since we know the c’s and C’s on the right
agree, this gives c(N,m) =C(N,m). Now suppose that the ith base b digits of
n and m are each zero. There must then be a carry that produces a nonzero
ith digit in n +m. Write n = n1 + n2 and m = m1 + m2 where bi | n1,m1
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and n2,m2 < b1, and write n2 +m2 = bi + �; all of these decompositions are
without carry. We then have

x[n]x[m] = c(n,n1)
−1c(m,m1)

−1c(n1 +m1, n1)c(n2 +m2, n2)x
[n1+m1]x[n2+m2]

and

x[n2+m2] = c(n2 +m2, bi)
−1x[�]x[bi], x[n1+n2]x[�] =C(N − bi, �)x

[N−bi],

and so

c(N,m) = c(n,n1)
−1c(m,m1)

−1c(n1 +m1, n1)c(n2 +m2, n2)

× c(n2 +m2, bi)
−1c(N − bi, �)C(N,bi).

Again, there is a similar identity for C, which yields C(N,m) = c(N,m).
Now suppose N = bi with i ≥ 1. In the sum bi−1 + (bi − bi−1) there is

exactly one carry, in the ith place. Thus, {C(N,bi)/πN} has no factor of πbj

with j < i, and is therefore a unit. We define

πN =
{
C(N,bi)/πN

}−1 · c(N,bi).

Once again, C(N,bi) = c(N,bi) by construction. We now show that C(N,m) =
c(N,m) for 0≤m≤N . Again, we assume m �= 0,N , and put n=N−m. Since
n and m are less than bi and they sum to bi, the (i− 1)st digit of n or m (say
n) must be nonzero. We can therefore write n= bi−1 + n′, with no carry. We
have

x[n]x[m] = c(n, bi−1)
−1x[bi−1]x[n′]x[m] = c(n, bi−1)

−1c(N−bi−1,m)c(N,bi)x
[N ].

We have a similar identity for C, which shows C(N,m) = c(N,m), and com-
pletes the proof. �

Lemma 3.18. Let k be a commutative ring and let x1, . . . , xn and y1, . . . , yn
be elements of k. Suppose that for each maximal ideal m of k there exists an
element am ∈ km such that amxi = yi holds in km for all i. Then there exists
an element a ∈ k such that axi = yi holds in k for all i.

Proof. Write am = s−1
m bm with bm ∈ k and sm ∈ k \m. Choosing bm and sm

appropriately, we can assume that bmxi = smyi holds in k for all i. (Here it is
important that there are only finitely many xi and yi.) The sm generate the
unit ideal of k, and therefore finitely many of them do. Let Σ be a finite set of
maximal ideals such that the sm with m ∈Σ generate the unit ideal, and choose
an expression

∑
m∈Σ cmsm = 1 with cm ∈ k. Then putting a=

∑
m∈Σ cmbm, we

find axi = yi for all i. �
Lemma 3.19. The condition (∗) holds in general.

Proof. Suppose N as in (∗) is given. We must find πN such that C(N,m) =
c(N,m) for all 0<m<N (the m= 0,N cases being automatic). That is, we
must find πN that simultaneously solves the equations

πN ·
{
C(N,m)/πN

}
= c(N,m)
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for 0<m<N . We can find a solution after localizing at each maximal ideal
by Lemma 3.17. We can therefore find a solution by Lemma 3.18. �

3.5. A Tor computation. In this section, we prove the following result.

Proposition 3.20. Let D be a GDPA over k. Then

TorD1 (k,k) =
⊕
n≥1

k/(πn)[n].

We note that this proposition gives another way to see that the πn are
intrinsic to D, up to units. We recall that π1 = 0 by convention.

Lemma 3.21. Let π• be an admissible sequence in k, and let n≥ 1. Then
the ideal a generated by the element C(n, i) for 1≤ i≤ n− 1 is the principal
ideal (πn).

Proof. It suffices to prove this when k is local. Assume this, and let b• =
bm,• be the associated divisible sequence. If n �= bi for some i, then there is
an decomposition n = i+ j that involves no base b• carries. Thus C(n, i) is
a unit, and so a is the unit ideal, and so a = (πn) since πn is a unit. Now
suppose n= br. Then in every decomposition n= i+ j with 1≤ i, j ≤ n− 1,
there is a carry in the rth digit, and so πn divides C(n, i) for all such i. Let
m= br−1. Then in the decomposition n= (n−m) +m, there is only a carry
in the rth place, and so C(n,m) = πn up to units. It follows that a = (πn),
completing the proof. �

Proof of Proposition 3.20. Let I be the ideal generated by the x[n] with
n≥ 1, so that k=D/I . Then TorD1 (k,k) = I/I2. The degree n piece of I2 is
spanned, as a k-module, by all products of the form x[i]x[j] with i+ j = n and
i, j ≥ 1; it is thus equal to ax[n] where a is the ideal generated by the C(n, i)
with 1≤ i≤ n− 1. By the lemma, a= (πn), and so the degree n piece of I/I2

is k/(πn). �

4. Coherence results

4.1. Overview. In Section 4, we prove two main results. The first, in Sec-
tion 4.2, states that GDPA’s over Noetherian rings are coherent. The second,
in Section 4.5 gives more precise results about graded-coherence of GDPA’s
over non-Noetherian rings. The second result depends on work in Section 4.3
and Section 4.4 where we establish bounds on the degrees of relations for
ideals in a GDPA. These bounds could be useful even when k is Noetherian,
although they are not needed to prove any coherence results in that case.
Finally, in Section 4.6 we show that coherence fails for multivariate divided
power algebras.
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4.2. Gröbner-coherence. We recall some definitions from [NS, Section 4].
A graded module isGröbner-coherent if it is graded-coherent and every finitely
generated inhomogeneous submodule admits a finite Gröbner-basis; this im-
plies coherent, but is stronger (see [NS, Proposition 4.4]). A graded ring is
Gröbner-coherent if it is so as a module over itself; this implies that all finitely
presented modules are Gröbner-coherent. The following is our main theorem
on coherence of GDPA’s.

Theorem 4.1. A GDPA over a Noetherian ring k is Gröbner-coherent.

Corollary 4.2. If k is Noetherian, then the classical divided power algebra
over k, as well as its q-analogs, are Gröbner-coherent (and thus coherent as
well).

Remark 4.3. In fact, we can conclude Gröbner-coherence for a larger class
of coefficient rings using some of the basic properties of Gröbner-coherence.
Two examples:

(a) Suppose that k is a direct limit of Noetherian rings ki with flat transi-
tion maps, and let D be a GDPA such that the πn belong to the initial
ring k0. Then D is Gröbner-coherent. Indeed, if Di =D(π•;ki) then Di

is Gröbner-coherent by the theorem, and D is the direct limit of the Di

(and the transition maps are still flat), and thus Gröbner-coherent by [NS,
Proposition 5.3]. For example, if k is a polynomial ring in infinitely many
variables over a Noetherian ring then the classical divided power algebra
over k is Gröbner-coherent.

(b) Suppose that k is locally Noetherian (meaning km is Noetherian for all
maximal ideals m) and D is a GDPA over k that is graded-coherent. Then
D is Gröbner-coherent. Indeed, Dm is Gröbner-coherent by the theorem,
and so D is Gröbner-coherent by [NS, Proposition 5.1]. For example, if k is
a Boolean ring then the classical divided power algebra over k is Gröbner-
coherent. (The graded coherence of D follows easily from Corollary 4.14
in this case.)

The heart of the proof is contained in the following lemma.

Lemma 4.4. Let k be a domain and let D=D(k, π•) be a GDPA. Suppose
that πn �= 0 for all n≥ 2 and that D/aD is Gröbner-coherent for all non-zero
principal ideals a of k. Then D is Gröbner-coherent.

Proof. Let I = (x1, . . . , xn) be a finitely generated ideal of D, and let K=
Frac(k). Since D⊗k K∼=K[x] (Corollary 3.7), the ideal I ⊗k K is principal;
let z ∈ I be a generator. Write xi =

zyi

a with yi ∈ D and a ∈ k. Since the
xi generate the ideal (z) over K, we have an expression z =

∑n
i=1

wixi

b with
wi ∈ D and b ∈ k. Expressing the xi in terms of the yi, we see that the
ideal J = (y1, . . . , yn) contains the nonzero element c = ab of k. Note that
multiplication by z

a defines an isomorphism J → I of D-modules.
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Let J be the image of J in D=D/cD. Since D is coherent by assumption
and J is finitely generated, we see that J is finitely presented as a D-module,
and thus as a D-module as well. The exact sequence

0→ cD→ J → J → 0

shows that J is finitely presented. Since I is isomorphic to J as a D-module,
it too is finitely presented. We have thus shown that every finitely generated
ideal of D is finitely presented, and so D is coherent.

We now do a bit more work to show that D is Gröbner-coherent. We
have shown that D is graded-coherent, so it remains to show that the initial
ideal in(I) is finitely generated whenever I is a finitely generated ideal of D.
Maintain the previous notation. One easily sees that we have a short exact
sequence

0→ cD→ in(J)→ in(J)→ 0.

Since D is Gröbner-coherent, it follows that in(J) is finitely generated, and so
in(J) is as well. From the equality of ideals (a)I = (z)J , we obtain a in(I) =
in(z) in(J). Since in(z) in(J) is clearly finitely generated, it follows that a in(I)
is finitely generated. But a in(I) is isomorphic to in(I) via multiplication by
a, and so in(I) is finitely generated. �

Proof of Theorem 4.1. Let k be a Noetherian ring and let D=D(k, π•) be
a GDPA. We will show D is Gröbner-coherent. By Noetherian induction, we
can assume that D/aD is Gröbner-coherent for all nonzero ideals a of k.

First, suppose that k is not a domain, and let xy = 0 with x �= 0 and y �= 0.
We have a short exact sequence

0→ xD→D→D/xD→ 0.

The rightmost ring is Gröbner-coherent by hypothesis, and thus Gröbner-
coherent as a module over D. The leftmost term is a finitely presented as
a D-module, being isomorphic to D⊗k (x), and thus finitely presented as a
D/yD-module. It follows that xD is Gröbner-coherent as a D/yD-module,
and thus as a D-module as well. Thus, D is an extension of Gröbner-coherent
modules, and thus Gröbner-coherent.

Now suppose that k is a domain. If πn = 0 for infinitely many n, then D
is Gröbner-coherent by Proposition 3.14. Thus, we assume that only finitely
many πn are 0. Let h be maximal so that πh = 0. By Proposition 3.11, it

suffices to prove that D[h] is Gröbner-coherent. Note that π
[h]
n �= 0 for all n≥ 2

(this follows directly from the definition of the h-transform). If a is a nonzero
ideal of k then D/aD is Gröbner-coherent by assumption, and so (D/aD)[h]

is Gröbner-coherent by Proposition 3.11. Thus, D[h] is Gröbner-coherent by
the lemma, which completes the proof. �
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4.3. General bounds on Tor. Let R be a graded algebra supported in non-
negative degrees and put k=R0. We regard k as an R-module by letting posi-
tive degree elements act by 0. For a non-zero graded object M , let maxdeg(M)
denote the maximum integer n such that Mn is nonzero, or ∞ if no maximum
exists. For a graded R-module M , put ti(M ;R) =maxdeg(TorRi (M,k)).

Proposition 4.5. Suppose M = V ⊗k R for some graded k-module V .
Then TorRi (M,k) = 0 for i > 0.

Proof. Let F• → V be a free resolution of V as a k-module. Then R⊗k F•
is a free resolution of M as an R-module. We can thus compute TorRi (M,k) by
tensoring this complex with k. But this just recovers the complex F•, which
is exact in positive degrees. �

Proposition 4.6. Let M be an R-module and let

0→K → F →M → 0

be an exact sequence with TorR1 (F,k) = 0. Then

t1(M ;R)≤ t0(K;R)≤max
(
t1(M ;R), t0(F ;R)

)
.

Proof. The long exact exact sequence in Tor gives an exact sequence

0→TorR1 (M,k)→TorR0 (K,k)→TorR0 (F,k)

(since TorR1 (F,k) = 0), from which the stated inequalities are clear. �

Proposition 4.7. Suppose that S ⊂ R is a graded subring with S0 = k
such that R is finite projective over S. Let M be an R-module. Then

t1(M ;S)≤max
(
t0(M ;R), t1(M ;R)

)
+ t0(R;S)

and

t1(M ;R)≤max
(
t0(M ;R) + t0(R;S), t1(M ;S)

)
.

Proof. Let

0→K → F →M → 0

be an exact sequence of R-modules such that F is projective and t0(F ;R) =
t0(M ;R). Then F is also projective as an S-module. Thus,

t1(M ;S)≤ t0(K;S)≤ t0(K;R) + t0(R;S)

≤max
(
t0(M ;R), t1(M ;R)

)
+ t0(R;S).

The outer two inequalities come from Proposition 4.6, while the middle one
is clear. Similarly,

t1(M ;R)≤ t0(K;R)≤ t0(K;S)≤max
(
t1(M ;S), t0(F ;S)

)
.

The stated inequality follows from this and the identity t0(F ;S) = t0(F ;R)+
t0(R;S). �
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Proposition 4.8. Let M be a finitely presented graded R-module. Then
TorRi (M,k)d = 0 for i� d.

Proof. SupposeM is generated in degrees ≤m, and n is the minimal integer
such that Mn �= 0. Let V0 =

⊕m
i=nMi. We then have a natural surjection

R ⊗k V0 → M . Moreover, this map is an isomorphism in degree n, and so
the kernel is supported in degrees > n. Applying the same reasoning to the
kernel and proceeding inductively, we obtain a resolution R⊗k V• →M where
the degree d piece of Vi vanishes for i� d. By Proposition 4.5 the modules
R⊗k V• are acyclic for the functor −⊗R k, and so TorR• (M,k) is computed
by the complex V•, which proves the result. �
4.4. Bounding relations. The following theorem is our main result on
bounding the presentation of ideals in a GDPA. The proof occupies the entire
section.

Theorem 4.9. Let D be a GDPA over a ring k, and let I ⊂D be a homo-
geneous ideal of D generated in degrees ≤ d. Write In = anx

[n] where an is an

ideal of k. Suppose that N is such that T [h](k/(ai+T (k))) is killed by a[h](N)
for all 1≤ h≤ 2d and all 0≤ i≤ 3d. Then t1(I/T (I);D)≤ (2N + 3)d.

Lemma 4.10. It suffices to prove the theorem when k is local.

Proof. Suppose the result holds when k is local, and let us prove it in
general. Let m be a maximal ideal of k, and indicate by a prime localization
at m. Since T commutes with localization, T [h](k′/(a′i + T (k′))) is killed by
a[h](N) for all 1 ≤ h ≤ 2d and 0 ≤ i ≤ 3d. Thus t1(I

′/T (I ′);D′) ≤ N + 3d

by the local case of the theorem. That is, TorD
′

1 (I ′/T (I ′),k′)n = 0 for n >
N + 3d. But Tor commutes with localization, so we find that the k-module
TorD1 (I/T (I),k)n localizes to 0 at all maximal ideals m. It is therefore 0, and
so t1(I/T (I);D)≤N + 3d, as was to be shown. �

For the rest of the section, we assume that k is local. We let m be the
unique maximal ideal of k, and we let b• = bm,• when we have an admissible
sequence π•. For an element ρ of k and a k-module M , we let Tρ(M) be the
submodule consisting of elements annihilated by a(n)ρ for some n≥ 1.

Lemma 4.11. Let I be a homogeneous ideal of D generated in degrees ≤
d, where d < b1. Fix an element ρ of k. Suppose that T (k/(ai + Tρ(k))) is
killed by a(N), for all 0 ≤ i ≤ d. Let t be maximal subject to bt | N . Then

TorD1 (I/Tρ(I),k)n = 0 unless n= br + � for some 1≤ r ≤ t, and 0≤ � < d.

Proof. Let F0 =
⊕d

i=0D[i], let e0, . . . , ed be its standard basis, and let

Φ0 : F0 →D be the map defined by Φ0(ei) = x[i]. Let F =
⊕d

i=0D[i]⊗k ai,
thought of as a D-submodule of F0, let Φ: F → I be the restriction of Φ0 to
F , and let K =Φ−1(T ρ

1 (I)). We have a short exact sequence

0→K → F → I/T ρ
1 (I)→ 0,
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and so TorD1 (I/T ρ
1 (I),k) is identified with (K ∩ D+F )/D+K. Let R =∑d

i=0 γix
[n−i]ei be an element of K ∩ D+F of degree n, and let R be the

corresponding element of Tor1. Write n=m+ �, where m is a multiple of b1
and 0≤ � < b1. We must show that R= 0 unless m= br + � for some 1≤ r ≤ t
and 0≤ � < d. We proceed in six steps.

Step 1: excluding m= 0. Suppose m= 0, i.e., n < b1. Since R ∈D+F , we
can write R= x[k]R′ for some R′ ∈ F and some 0< k ≤ n. Write Φ(R) = εx[n]

with ε ∈ T ρ
1 (k) and Φ(R′) = δx[n−k]. Then ε = C(n,k)δ. Since C(n,k) is a

unit (as n < b1), it follows that δ ∈ T ρ
1 (k). Thus R′ ∈K, and so R ∈D+K,

and so R= 0. In what follows, we assume m> 0.
Step 2: bounding �. Now suppose � ≥ d. Then C(n− i, �− i) is a unit for

all 0≤ i≤ d, and so

R′ =
d∑

i=0

γix
[�−i]

C(n− i, �− i)
ei

is a well-defined element of F . Note that R = x[m]R′. If Φ(R) = εx[n] and
Φ(R′) = δx[�] then ε=C(n, �)δ. Since C(n, �) is a unit and ε ∈ T ρ

1 (k), it follows

that δ ∈ T ρ
1 (k), and so R′ ∈K. Thus R ∈D+K, and so R= 0. In what follows,

we assume � < d.
Step 3: reduction to two-term relations. We now show that it suffices to

consider elements R of a simple form. This step is not strictly necessary, but
will simplify notation in what follows. Put

α=

�∑
i=0

C(n,n− i)

C(n,n− �)
γi, β =

d∑
i=�+1

C(n,n− i)

C(n,n− d)
γi.

Note that C(n,n− �) is a unit, and, in the second sum, both C(n,n− i) and
C(n,n− d) are the same product of π’s, up to units, and so the expressions
make sense. Note also that a0 ⊂ a1 ⊂ · · · ⊂ ad, and so α ∈ a� and β ∈ ad. We
can thus consider the element

R′ = αx[m]e� + βx[n−d]ed

of F . It is clear that Φ(R′) = Φ(R), and so R′ ∈K. We claim R=R′ modulo
D+K. To see this, put

R1 =

�∑
i=0

γix
[�−i]

C(n− i, �− i)
ei − αe�

and

R2 =

d∑
i=�+1

γix
[n−i−1]

C(n− i,1)
ei −

βx[n−d−1]

C(n− d,1)
ed.
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All the C’s in these expressions are units, and so R1 and R2 are well-defined
elements of F . We have

x[m]R1 =

�∑
i=0

γix
[n−i]ei − αx[m]e�, x[1]R2 =

d∑
i=�+1

γix
[n−i]ei − βx[n−d]ed,

and so

R−R′ = x[m]R1 + x[1]R2.

From the definitions of α and β, it is clear that Φ(x[m]R1) and Φ(x[1]R2)
vanish. Writing Φ(R1) = εx[�] and Φ(R2) = δx[n−1], we find C(n, �)ε= 0 and
C(n,1)δ = 0. Thus, ε= 0 and δ is at least torsion, and so R1 and R2 belong
to K. Thus R − R′ ∈ D+K, as claimed. In what follows, we assume R =
αx[m]e� + βx[n−d]ed.

Step 4: reduction to m= br. Suppose m is not of the form br. Then we can
write m =m1 +m2 where m1 and m2 are positive multiples of q = b1 such
that there is no carry when computing either m1 +m2 or m1 +(m2 − q). Put

R′ =
αx[m2]

C(m,m1)
e� +

βx[m2+�−d]

C(n− d,m1)
ed.

Both the C’s here are units: for the second one, observe that

n− d=m1 + (m2 + �− d) =m1 +
(
(m2 − q) + (q+ �− d)

)
.

Since q+ �− d < q and m1 and m2− q are multiples of q, there are no carries.
Thus, R′ is an element of F , and R = x[m1]R′. Writing Φ(R) = εx[n] and
Φ(R′) = δx[m2+�], we see that C(n,m1)δ = ε. Since C(n,m1) is a unit, this
shows that δ is torsion. Thus, R′ ∈ K and R ∈ D+K and R = 0. In what
follows, we assume m= br for some r ≥ 1.

Step 5: bounding r. Suppose now that r > t and r > 1. Put Φ(R) = εx[n],
where ε ∈ T ρ

1 (k). We have

ε=C(n, �)α+C(n,d)β.

Note that C(n, �) is a unit and C(n,d) is equal to πb1 · · ·πbr up to units.
We thus see that the image of β in k/(a� + T ρ

1 (k)) is killed by πb1 · · ·πbr .
It is therefore killed by πb1 · · ·πbr−1 , by our assumption: note that a(N) =
πb1 · · ·πbt , up to units. Let m′ = br−1 and n′ = m′ + �, so that C(n′, d) is
πn1 · · ·πbr−1 , up to units. The above discussion shows that we can write

ε′ =C
(
n′, �

)
α′ +C

(
n′, d

)
β

for some α′ ∈ a� and ε′ ∈ T ρ
1 (k). Now consider

R′ = α′x[m′]e� + βx[n′−d]ed.

Clearly Φ(R′) = ε′, and so R′ ∈K. We have

x[m−m′]R′ = α′C
(
m,m′)x[m]e� + βC

(
n− d,n′ − d

)
x[n−d]ed.
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We thus find

C
(
n− d,n′ − d

)
R− x[m−m′]R′ = δx[m]e�

for some δ ∈ k. Since both R and R′ belong to K, so does δx[m]e�. As
Φ(δx[m]e�) =C(n, �)δx[n], we see that C(n, �)δ belongs to T ρ

1 (k). But C(n, �)

is a unit, and so δ itself belongs to T ρ
1 (k). Thus, δx

[m]e� ∈D+K. This shows
that

C
(
n− d,n′ − d

)
R− x[m−m′]R′ ∈D+K.

Of course, x[m−m′]R′ ∈D+K as well, and C(n−d,n′−d) is a unit, so we find
R ∈D+K and R= 0.

Step 6: the r = 1 case. Finally, suppose that r > t and r = 1. Note then
that t≤ 0, and so k/(a� + ktors) has no torsion. From Φ(R) = 0 we see that
ε=C(n, �)α+C(n,d)β belongs to ktors. Thus, the image of β in k/(a�+ktors)
is killed by C(n,d), and is therefore torsion, and therefore vanishes. We can
therefore write α′ + β = ε′ for some α′ ∈ a� and ε′ ∈ ktors. Consider

R′ =
C(n,d)α′x[m−1]

C(m,1)
e� +

βx[n−d−1]

C(n− d,1)
ed.

Note that C(n,d) and C(m,1) are same product of π’s, up to units, and
C(n− d,1) is a unit. We have

x[1]R′ = α′C(n,d)x[m]e� + βx[n−d]ed =R+ ε′′x[m]e�,

where ε′′ = C(n,d)ε′ − ε. Write Φ(R) = δx[n] with δ ∈ ktors and Φ(R′) =
δ′x[n−1]. We claim that δ′ ∈K. First, suppose � > 0. Then the above equation
shows C(n,1)δ′ = δ + ε′′C(n, �). Since � > 0 we have that C(n,1) is a unit,

and so δ′ is torsion. Now suppose �= 0. Then computing Φ̃(R′) directly from
the definition of R′, we find

δ′ =
C(n,d)

C(n,1)
α′ +

C(n− 1, d)

C(n− d,1)
β

(note n=m since �= 0). All the C’s above are units, and the two fractions
are equal since C(n,d)C(n− d,1) =C(n,1)C(n− 1, d); thus δ′ is a unit times
α′ + β = ε′, and is thus torsion. We have thus shown that δ′ is torsion in all
cases, and so R′ ∈K. Since ε′′x[m]e� ∈D+K, this shows R ∈D+K. �

Lemma 4.12. Let h = bs for s ≥ 0 and let I be a homogeneous ideal of
D(h) generated in degrees ≤ d, where d < bs+1. Suppose T [h](k/(ai + T (k)))
is killed by a[h](N), for all 0≤ i≤ d. Let t be maximal subject to bt |N . Then

TorD
(h)

1 (I/T (I),k)n = 0 unless n= br + � for some s < r ≤ t and 0≤ �≤ d. In
particular, t1(I/T (I);D

(h))≤Nh+ d.

Proof. The regrade of D(h) is isomorphic to D[h]. The regrade of I is

an ideal of D[h] generated in degrees ≤ d/h < b
[h]
1 . Let ρ = πb1 · · ·πbs . Then
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Tρ(−;π
[h]
• ) = T (−;π•). With these identifications, the result follows from the

Lemma 4.11. �

Proof of Theorem 4.9. Let s be maximal subject to bs ≤ d. First, suppose
that d + bs ≤ bs+1. Put h = bs. We have an isomorphism of D(h)-modules

I =
⊕h−1

k=0 Jk[k], where Jk is an ideal of D(h). Put dk = h�(d− k)/h�. Then
by Proposition 3.12, the ideal Jk is generated in degrees ≤ dk and satisfies
Jk,i = ak+ix

[i] (for i a multiple of h). Note that dk ≤ d + h − 1, so dk ≤
2d and dk < bs+1. The module T [h](k/(ai + T (k))) is killed by a[h](N) for
i = k, . . . , k + dk, as k + dk ≤ 3d, and so t1(Jk/T (Jk);D

(h)) ≤ Nh + dk by
Lemma 4.12. Thus t1(Jk[k]/T (Jk[k]);D

(h))≤Nh+ dk + k ≤Nh+3d, and so
t1(I/T (I);D

(h)) ≤ Nh + 3d ≤ (N + 3)d. Thus t1(I/T (I);D) ≤ (N + 3)d by
Proposition 4.7.

Now suppose that d + bs > bs+1; note that this implies bs+1 < 2d. Put

h= bs+1. As D(h)-modules, we have I =
⊕h−1

k=0 Jk[k], where once again Jk is

an ideal of D(h). If 0≤ k ≤ d then Jk is generated in degrees 0 and h, while
if d < k ≤ h − 1 then Jk is generated in degree 0. We have t1(Jk;D

(h)) = 0
for k > d. Now suppose 0 ≤ k ≤ d. The module T [h](k/(ai + T (k))) is killed
by a[h](N) for i= k and i= k + h, as k + h≤ 3d. Thus t1(Jk/T (Jk);D

(h))≤
Nh + h by Lemma 4.12. The same reasoning as in the previous paragraph
gives t1(I/T (I);D)≤Nh+ h+ d≤ h(N + 1) + d≤ (2N + 3)d. �

4.5. Graded-coherence. Let π• be a π-sequence in k. We define a π-
ideal to be an ideal of k generated by some of the πn’s. We will consider the
following three conditions:

(A1) The ring k is coherent.
(A2) For any finitely generated ideal a of k and any h ≥ 1, the torsion

T [h](k/a) is bounded, that is, annihilated by a[h](n) for some n (de-
pending on h and a).

(A3) Given any strictly ascending chain of finitely generated π[h]-ideals a1 ⊂
a2 ⊂ · · · there is some i for which the quotient D[h]/aiD

[h] is graded-
coherent.

Note that (A3) is vacuously true if there are no strictly ascending chains of
π[h]-ideals. This is the case, for instance, if the πn’s belong to the image of a
ring homomorphism k0 → k with k0 Noetherian. Our main result on graded-
coherence of GDPAs is the following theorem.

Theorem 4.13. Let D=D(k, π•) be a generalized divided power algebra.
Then D[h] is graded-coherent for all h≥ 1 if and only if conditions (A1), (A2),
and (A3) hold.

Corollary 4.14. Let D be the classical divided power algebra over k. Then
D is graded-coherent if and only if k is coherent and for all finitely generated
ideals a of k the module (k/a)tors is annihilated by some nonzero integer.
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Remark 4.15. To conclude that D is graded-coherent, it is enough to know
that (A3) holds for h= 1. One still needs (A2) for all h≥ 1, however.

The rest of this section is devoted to the proof of the theorem. We fix
D=D(k, π•).

Lemma 4.16. Suppose (A1) and (A2) hold. Then for any finitely generated
ideal a of k and any h≥ 1 the k-module T [h](k/a) is finitely presented.

Proof. By (A2), T [h](k/a) is equal to the kernel of the multiplication-by-
a(n) map k/a → k/a for some n. Since k/a is finitely presented and k is
coherent, this kernel is again finitely presented. �

Lemma 4.17. Suppose (A1) and (A2) hold. Let I be a finitely generated
ideal of D. Then I/T (I) is finitely presented.

Proof. By (A2) and Theorem 4.9, t1(I/T (I);D) < ∞. By (A1),

TorD1 (I/T (I),k)n is finitely presented as a k-module for each n. Combin-
ing these two statements, we see that Tor1D(I/T (I),k) is finitely presented
as a k-module, and this implies that I/T1(I) is finitely presented as a D-
module. �

Lemma 4.18. Suppose that conditions (A1) and (A2) hold. Suppose also
that for any n≥ 2 the quotient D/(πn) is graded-coherent. Then D is graded-
coherent.

Proof. Let I be a finitely generated ideal of D. Then I/T (I) is finitely
presented by Lemma 4.17. It follows that T (I) is finitely generated, and to
prove the proposition it is enough to show that it is finitely presented.

Suppose T (k) is killed by a(N), and let D′ = D/(a(N)). The following
lemma shows that D′ is graded-coherent. The natural mapD⊗kT (k)→ T (D)
is an isomorphism. By Lemma 4.16, T (k) is finitely presented as a k-module,
and so T (D) is finitely presented as a D-module. Since a(N) kills T (D), it
follows that T (D) is finitely presented as a D′-module. As T (I) is a finitely
generated D′-submodule of T (D), it is therefore finitely presented as a D′-
module, and therefore as a D-module. �

Lemma 4.19. Let k be a coherent ring, let R be a graded k-algebra that is
flat over k, and let x and y be elements of k such that R/(x) and R/(y) are
graded-coherent. Then R/(xy) is graded-coherent.

Proof. Consider the 4-term exact sequence

0→ I → k/(x)
y→ k/(xy)→ k/(y)→ 0.

Since k is coherent the ideal I is finitely generated. Tensoring up with R, we
find

0→ I ⊗k R→R/(x)
y→R/(xy)→R/(y)→ 0.
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This shows that R/(xy) maps onto the graded-coherent ring R/(y) with
finitely presented kernel (the left two terms gives a presentation for the ker-
nel), and is thus graded-coherent. �

Lemma 4.20. Suppose that conditions (A1) and (A2) hold. Suppose also
that there is a positive integer h such that πh belongs to the Jacobson radical
of k and the quotient D/(πn) is graded-coherent for all proper multiples n
of h. Then D is graded-coherent.

Proof. It suffices to show that D(h) is graded-coherent. Of course, it is the
same to show that its regrade is coherent, and this is isomorphic to D[h]. Con-

ditions (A2) still holds for π
[h]
• , since T [h′](−, π

[h]
• ) = T [hh′](−, π•) by Proposi-

tion 2.5. SinceD/(πhn) is graded-coherent for n > 1, it follows thatD(h)/(πhn)

is graded-coherent (by Proposition 3.11) for n > 1. Since π
[h]
n is associate to

πhn by Proposition 2.8(b), it follows that D[h]/(π
[h]
n ) is graded-coherent for

n > 1 as well. Thus D[h] is graded-coherent by Lemma 4.18. �

Lemma 4.21. Suppose (A1), (A2), and (A3) hold. Then D[h] is graded-
coherent for all h≥ 1.

Proof. It suffices to treat the h= 1 case. Let Σ be the set of π-ideals a for
which D/a is not graded-coherent. It suffices to show that Σ is empty, for then
D/a is graded-coherent for every π-ideal a, including a= (0). Thus suppose
for the sake of contradiction that Σ is non-empty. Let a be a maximal element
of Σ, which exists by (A3), and put D′ =D/aD. Now, a contains only finitely
many of the πn’s, for otherwise D′ would be coherent by Proposition 3.14.
Let h be the largest integer such that πh ∈ a. (Note that π1 = 0 is in a, so
this makes sense.) If n is a proper multiple of h, then πn does not belong
to a, and so a+ (πn) is not in Σ, and so D′/πnD

′ is graded-coherent. Thus,
D′ is graded-coherent by Lemma 4.20, a contradiction. We thus see that Σ is
empty, which completes the proof. �

Lemma 4.22. Suppose D is graded-coherent. Then for any finitely generated
ideal a of k the torsion T (k/a) is bounded.

Proof. Let a be given, and let I be the ideal of D generated by ax[0] and
x[1]. Use notation as in the first paragraph of the proof of Lemma 4.11. SinceD
is graded-coherent, K is finitely generated. Suppose it is generated in degrees
≤ d. Let β ∈ k/a be killed by a(n). Let β ∈ k be a lift of β, and let α=−a(n)β,
so that α ∈ a. Let R= αx[n]e0 + βx[n−1]e1. Then Φ(R) = 0, so R ∈K. Since

K is generated in degrees ≤ d, we can write R=
∑d

i=1 x
[n−i]Ri, where Ri is

a degree i element of K. (Note that K0 = 0.) Write Ri = αix
[i]e0 + βix

[i−1]e1
with αi ∈ a. Since Φ(Ri) = 0, we find αi + a(i)βi = 0, so, writing βi for the
image of βi in k/a, we find a(i)βi = 0. From the expression relating R and

the Ri, we find β =
∑d

i=1C(n− 1, i− 1)βi. Thus if D is a common multiple
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of 1, . . . , d (e.g., D = d!) then a(D)β = 0. Therefore, T (k/a) is killed by a(D),
which completes the proof. �

Proof of Theorem 4.13. If (A1), (A2), and (A3) hold then D[h] is graded-
coherent for all h≥ 1 by Lemma 4.21. Conversely, if D[h] is graded-coherent
then (A1) necessarily holds, as does (A3), since any quotient of D[h] by a
finitely generated homogeneous ideal is graded-coherent, and (A2) holds at h
by Lemma 4.22. Thus, if D[h] is graded-coherent for all h≥ 1 then (A2) holds
as well. �
4.6. Divided power algebras in multiple variables. Let k be the clas-
sical divided power algebra over Z(p) in a single variable y, regarded as a
non-graded ring, and let D be the classical divided power algebra over k in
a single variable x. Note that as an non-graded ring, D is just the classical
divided power algebra over k in x and y. Let a be the principal ideal of k
generated by y[1]. Then the image of y[p

r] in k/a is annihilated by pr but no
smaller power of p. Thus condition (A2) fails, and so D is not graded-coherent,
and therefore not coherent either.

Here is an explicit example demonstrating the failure of coherence. Consider
the ideal I of D generated by y[1] and x[1]. Then(

y[p
r−1]x[pr ]

)
y[1] −

(
y[p

r ]x[pr−1]
)
x[1] = 0

is a linear relation of between the generators, and does not come from lower
degree relations. Thus I is not finitely presented. Note that if we remember
the grading on k and regard D as bigraded then I is bihomogeneous. This
shows that D is not even graded-coherent with respect to its bigrading.

5. Special resolutions

5.1. Statement of results. Let D be a GDPA over k. Let M be a D-
module. We say that M is principal special if it is isomorphic to a module of
the form (D/aD)(h) for some integer h ≥ 1 and ideal a of k containing πh.
We say that M is special if it admits a finite length filtration where the
graded pieces are principal special. A special resolution of a D-module M is
a resolution S• →M where each Si is special. The special dimension of M ,
denoted sd(M ;D) or just sd(M), is the minimum integer n for which there
exists a special resolution S• →M with Si = 0 for all i > n, or ∞ if no such
resolution exists. Note that sd(M) = 0 if and only if M is special.

Theorem 5.1. Suppose k is Noetherian and M is a finitely presented D-
module. Then sd(M)<∞, that is, M admits a finite length special resolution.
Moreover, if k has finite Krull dimension d then sd(M)≤ d+ 1.

The proof will take the entire section. The basic idea is as follows. First,
suppose k is a field. If infinitely many πn’s vanish then every finitely presented
module is special. If not (e.g., if D= k[x]) this need not be the case, but at
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least every submodule of a finitely generated free module is special. Now
suppose k is a domain with fraction field K, let M be a finitely presented
D-module, and choose short exact sequence

0→N → F →M → 0

with F finite free. Then, as stated above, N ⊗k K is special as a DK-module.
We show that there is a special D-module N ′ such that N ⊗k K∼=N ′ ⊗k K.
Scaling this isomorphism appropriately, we can assume N ′ ⊂N and that the
quotient is a torsion k-module. The result now follows from Noetherian in-
duction and the fact that in a short exact sequence the special dimension of
one term can be controlled by the that of the other two.

The notions of special module and special resolution can easily be adapted
to the case of graded modules. The above theorem remains true in the graded
case, and the proof we give applies without change. In fact, everything still
goes through if the coefficient ring k is equipped with a grading, though in
this case some minor adjustments in our proof must be made (specifically
when using the fraction field of k).

5.2. Preliminary results. We begin by proving some basic facts about
special resolutions and special dimension.

Lemma 5.2. Suppose that f : M → N is a surjection of principal special
D-modules. Then ker(f) is special.

Proof. Suppose M = (D/aD)(r) and N = (D/bD)(s). We proceed by a
number of reductions. First, since f is surjective, every element of N is annihi-
lated by a. But the annihilator of 1 ∈N is exactly b, and so a⊂ b. Replacing
k by k/a, we may as well assume a = 0. The map f obviously factors as

M →M/bM
f→N for some f . We have a short exact sequence

0→ bM → ker(f)→ ker(f)→ 0.

The module bM is special (filter b so that the graded pieces are cyclic k-
modules), and so it suffices to show that ker(f) is special. Thus, we may
as well replace M with M/bM . Furthermore, replacing k with k/b, we may
assume b= 0.

We have thus reduced to the case M =D(r) and N =D(s). We claim s≥ r.
Indeed, suppose s < r. Then x[s] annihilates M , and therefore annihilates N .
But this is not the case, since x[s] · 1 �= 0 in N . Now, since πr = πs = 0, we
must have r | s or s | r, and so, by the inequality s ≥ r, we have r | s. We
may as well regrade and replace D(r) with D. In other words, we may assume
M =D and N =D(s).

Now, N =D/I , where I is the ideal (x[1], . . . , x[s−1]). Thus, f factors as

M →M/I
f→N for some f . Since M/I is equal to N , we may as well regard

f as an endomorphism of N . Since it is surjective and N is finitely generated,
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it is necessarily an isomorphism [Stacks, Tag 05G8]. Thus, ker(f) = I . One
easily sees that I has a finite length filtration with successive quotients D(s),
and is therefore special. �

Lemma 5.3. Let M be a special D-module. Then there exists a finite free
D-module F and a surjection f : F →M such that ker(f) is special.

Proof. Let
0→M ′′ →M →M ′ → 0

be a short exact sequence where M ′ is principal special and M ′′ is special and
built out of fewer principal specials than M (e.g., M ′′ is the last piece in the
filtration that M is required to have). By induction, we can find a short exact
sequence

0→K ′′ → F ′′ →M ′′ → 0

with F ′′ finite free and K ′′ special. Let

0→K ′ → F ′ →M ′ → 0

be a short exact sequence with F ′ finite free. ThenK ′ is special by the previous
lemma. Lift F ′ → M ′ to a map F ′ → M . The map F ′ ⊕ F ′′ → M is then
surjective. If K denotes its kernel, then we have a short exact sequence

0→K ′′ →K →K ′ → 0,

and so K is special. �

Lemma 5.4. Let M be a D-module with 0< sd(M)<∞. Then we can find
a surjection f : F →M with F finite free such that sd(ker(f)) = sd(M)− 1.

Proof. Let
0→ Pr → · · · → P0 →M → 0

be a resolution with Pi special for all i. Let

0→Q→ F → P0 → 0

be a short exact sequence with F finite free and Q special; this exists by the
previous lemma. Consider the short exact sequence

0→K → F →M → 0.

Let Q′ be the kernel of the surjection F ⊕ P1 → P0. We have a short exact
sequence

0→Q→Q′ → P1 → 0,

which shows that Q′ is special. The projection map F ⊕ P1 → F induces a
surjection Q′ →K, and one easily verifies that

0→ Pr → · · · → P2 →Q′ →K → 0

is a resolution of K. Thus sd(K) ≤ sd(M)− 1. From the obvious inequality
sd(M)≤ 1 + sd(K), we conclude sd(K) = sd(M)− 1. �

http://stacks.math.columbia.edu/tag/05G8
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Proposition 5.5. Let M be a D-module with sd(M)≤ r <∞. Then there
is a resolution

0→ P → Fr−1 → · · · → F0 →M → 0

where Fi is finite free and P is special.

Lemma 5.6. Let D be a ring, let Q• →M and P• →N be resolutions of the
same length r such that Q0, . . . ,Qr−1 are free. Then any map f : M →N can
be lifted to a map of resolutions Q• → P•, that is, we can fill in the following
diagram:

0 Qr Qr−1 · · · Q0 M

f

0

0 Pr Pr−1 · · · P0 N 0

Proof. When Qr is also free, this is a standard result about free resolutions.
The proof of that result applies here as well: the point is that one never needs
to lift maps from Qr. �

Proposition 5.7. Suppose that

0→M1 →M2 →M3 → 0

is a short exact sequence of D-modules. Then

(a) sd(M1)≤max(sd(M2), sd(M3),1),
(b) sd(M2)≤max(sd(M1), sd(M3)),
(c) sd(M3)≤max(sd(M1), sd(M2)) + 1.

In particular, if two of the modules admit finite length special resolutions then
so does the third.

Proof. (a) Let r =max(sd(M2), sd(M3),1). First suppose r ≥ 2. Let P• →
M2 and Q• →M3 be special resolutions of length r such that P0, . . . , Pr−1 and
Q0, . . . ,Qr−1 are free. Lift the M2 → M3 to a map of resolutions P• → Q•.
Then we have a resolution

0→ Pr → Pr−1 ⊕Qr → · · · → P1 ⊕Q2 → ker(P0 ⊕Q1 →Q0)→M1 → 0.

Since P0 ⊕Q1 →Q0 is a surjection of free modules, its kernel is free, and so
the above is a special resolution of M1 of length at most r.

Now suppose r = 1. Let

0→Q1 →Q0 →M3 → 0

be a special resolution with Q0 free. Let

0→ F1 → F0 →M2 → 0
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be a special resolution with F0 free. Lift Q0 →M3 to a map Q0 →M2 and
lift F0 →M2 →M3 to a map F0 →Q0. Let P0 = F0 ⊕Q0, and let P1 be the
kernel of the natural surjection P0 →M2. We have a short exact sequence

0→ F1 → P1 →Q0 → 0,

and so P1 is special. The square

P0 Q0

M2 M3

commutes, and all maps are surjective. Thus, P0 →Q0 maps P1 into Q1. We
thus have a resolution

0→ P1 → ker(P0 ⊕Q1 →Q0)→M1 → 0.

Since P0 → Q0 is surjective, its kernel is free, and we have a short exact
sequence

0→ ker(P0 →Q0)→ ker(P0 ⊕Q1 →Q0)→Q1 → 0,

and so ker(P0 ⊕Q1 →Q0) is special. Thus, sd(M1)≤ 1.
(b) Let r = max(sd(M1), sd(M3)). If r = 0, then M2 is clearly special, so

assume r ≥ 1. Let P• →M1 and Q• →M3 be special resolutions of length r
such that Q0, . . . ,Qr−1 are free. Following the proof of the “horseshoe lemma,”
we can build a partial resolution

0→K → Pr−1 ⊕Qr−1 → · · · → P0 ⊕Q0 →M2 → 0,

where K is by definition the kernel of the map Pr−1 ⊕Qr−1 → Pr−2 ⊕Qr−2

(or the map Pr−1 ⊕ Qr−1 → M2 if r = 1). By the snake lemma, we have a
short exact sequence

0→ Pr →K →Qr → 0,

and so K is special. Thus the above is a special resolution of M2, and so
sd(M2)≤ r.

(c) Let r =max(sd(M1), sd(M2)), and let P• →M1 and Q• →M2 be special
resolutions of length r such that P0, . . . , Pr−1 are free. Lift the map M1 →M2

to a map of resolutions P• →Q•. Then we have a resolution

0→ Pr → Pr−1 ⊕Qr → · · · → P0 ⊕Q1 →Q0 →M3 → 0,

and so sd(M3)≤ r+ 1. �
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5.3. Special resolutions. We now start on the proof of Theorem 5.1.

Lemma 5.8. Suppose k is a field and infinitely many of the πn vanish.
Then any finitely presented (graded) D-module is special.

Proof. Let M be a finitely presented D-module. By Proposition 3.15, there
exists h and a finitely generated D<h-module N such that M =N ⊗k D(h)

as a module over D = D<h ⊗k D(h). Since D<h is a local artinian ring, N
admits a finite filtration such that each graded piece gets annihilated by the
maximal ideal. Tensoring with the exact funtor −⊗kD

(h), we see that M has
a filtration such that each graded piece is a free D(h)-module and so M is
special. �

Lemma 5.9. Suppose k is a field and F is a finite free D-module. Then
any finitely generated (graded) submodule of F is special.

Proof. The case when infinitely many of the πn vanish follows from the
previous lemma and so we may assume that only finitely many of the πn

are zero. Let h be the largest such that πh = 0 and let R=D<h. Then D is
isomorphic to R⊗k D(h) =R[y] where y is an indeterminate of degree h. Let
I be a submodule of F . Since R is a local artinian ring (say with maximal
ideal m) there exists a finite filtration of I such that the graded pieces are of

the form m
iI

mi+1I . Clearly, each such graded piece is a torsion-free k[y]-module.
Since k[y] is a principal ideal domain the result follows from the structure
theorem of finitely generated modules over a principal ideal domain. �

Lemma 5.10. Let k be a domain and let K= Frac(k). Then every special
D⊗k K-module P has the form Q⊗k K for some special D-module Q.

Proof. By a “lattice” in a D⊗kK module P , we mean a D-submodule Q of
P such that Q⊗k K= P . Thus the lemma states that every special D⊗k K-
module admits a special lattice, that is, one that is special as a D-module.

First, suppose P is principal special. Then P ∼= (D ⊗k K)(h) for some h
with πh = 0. One can then take Q=D(h). Thus, the lemma holds in this case.

Now suppose P is an arbitrary special module. Choose an exact sequence

0→ P ′ → P → P ′′ → 0,

where P ′′ is principal special and P ′ is special and built out of fewer principal
specials than P . Let Q′′ ⊂ P ′′ be a special lattice, which exists by the previous
paragraph, and let Q′ ⊂ P ′ be a special lattice, which exists by induction. Let

Q̃′′ ⊂ P be a finitely generated D-submodule of P that subjects onto Q′′. (One

can construct Q̃′′ by lifting generators of Q′′ and taking the D-module they

span.) Then Q̃′′∩P ′ is a finitely generated D-submodule of P ′, as it coincides

with ker(Q̃′′ →Q′′) and Q′′ is finitely presented. Since Q′ is a lattice in P ′,
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it follows that Q̃′′ ∩ P ′ is contained in αQ′ for some nonzero α ∈ K. Let

Q= αQ′ + Q̃′′. Then we have a short exact sequence

0→Q′ α→Q→Q′′ → 0,

and so Q is special. It is clear that Q is a lattice in P , and so the result
follows. �

Proof of Theorem 5.1. We first show that sd(M) is finite. We proceed by
Noetherian induction, so we assume the result holds ifM has nonzero annihila-
tor in k. Note that if P is special as a D/aD-module then it is also special as a
D-module, and so ifM is annihilated by a⊂ k then sd(M ;D)≤ sd(M ;D/aD).
We now consider two cases.

Case 1: k is not a domain. Let xy = 0 with x, y �= 0. We have an exact
sequence

0→ xM →M →M/xM → 0,

and so by Proposition 5.7(b), we have

(5.1) sd(M)≤max
(
sd(xM), sd(M/xM)

)
.

Since xM and M/xM have nonzero annihilators, the right-hand side is finite
by the inductive hypothesis, and so sd(M)<∞.

Case 2: k is a domain. Let K=Frac(k). Let

0→M ′ → F →M → 0

be a short exact sequence with F finite free. Then M ′ ⊗k K⊂ F ⊗k K, and
so M ′ ⊗k K is special by the Lemma 5.9. We can therefore find a special D-
module P and an isomorphism M ′⊗kK→ P ⊗kK. Scaling this isomorphism,
we can assume that M ′ maps into P . Let N and N ′ be the kernel and cokernel
of the map M ′ → P , so that we have a 4-term exact sequence

0→N →M ′ → P →N ′ → 0.

Breaking this up into two short exact sequences and applying Proposition 5.7,
we find

sd
(
M ′) ≤max

(
sd(N), sd

(
N ′),1),

and so

(5.2) sd(M)≤max
(
sd(N), sd

(
N ′),1)+ 1.

But N and N ′ have nonzero annihilator in k, and so have finite special di-
mension by the inductive hypothesis. Thus sd(M)<∞.

Now suppose k has finite Krull dimension d, and let us show sd(M)≤ d+1.
We proceed again by Noetherian induction. If k is not a domain, then with
notation as in Case 1, we have sd(xM)≤ d+1 and sd(M/xM)≤ d+1 by the
inductive hypothesis, and so (5.1) gives sd(M) ≤ d+ 1. Now suppose k is a
domain, and use notation as in Case 2. If d= 0, i.e., k is a field, then M ′ is
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special and sd(M) ≤ 1. Now suppose d ≥ 1. Then the support of N and N ′

has dimension strictly less than d, and so sd(N) ≤ d and sd(N ′) ≤ d by the
inductive hypothesis, and so (5.2) gives sd(M)≤ d+ 1. �

6. Grothendieck groups

6.1. Notation. For a coherent ring D, we let ModfpD denote the category
of finitely presented D-modules, and we let K(D) be the Grothendieck group

of ModfpD . If D is graded then we let ModfpD denote the category of finitely
presented graded D-modules, and we let K(D) be its Grothendieck group. We
also apply these definitions to non-graded rings by regarding them as graded
and concentrated in degree 0. The group K(D) is naturally a module over the
ring R = Z[t, t−1] via t[M ] = [M [1]]. We define Rn to be 1

tn−1R, thought of

as an R-submodule of Frac(R), and put R∞ =
⋃

n≥1Rn.

6.2. Overview. Fix a GDPA D. The purpose of Section 6 is to study
K(D) and K(D). The existence of special resolutions gives us a spanning set
for both of these groups, and the main difficulty lies in understanding the
relations these classes satisfy. For this, we need to construct interesting maps
out of the Grothendieck group. We first concentrate on the graded case. In
Section 6.4, we construct the most obvious map out of K(D), the Hilbert
series H. It turns out that this is enough to obtain a description of K(D)
up to R-torsion. Based on the nature of the Hilbert series, in Section 6.5, we
formulate a plausible description of K(D) (Conjecture 6.4). The Hilbert series
is not powerful enough to prove this conjecture, so in Section 6.6 we define a
subtler invariant, denoted L. In Section 6.7, we manage to prove Conjecture 6.4
under a certain hypothesis using H and L (Theorem 6.9). In Section 6.8, we
show that K(D) can be obtained from K(D) in a straightforward manner,
and thus Conjecture 6.4 also predicts the structure of K(D). In Section 6.9,
we apply the results to the classical divided power algebra. We show that the
hypothesis of Theorem 6.9 is met, and thus deduce a complete description of
the Grothendieck group. Finally, in Section 6.10, we show that the hypothesis
of Theorem 6.9 is not met for the q-divided power algebra over Z[q], and so
our results do not give a full description of the Grothendieck group in this
case.

6.3. The classes [M(a, h)]. We begin by recording a useful spanning set for
the Grothendieck group and some obvious relations they satisfy. For an ideal
a of k containing πh, let M(a, h) be the D-module (D/aD)(h). Note that any
ideal contains π1 = 0, and M(a,1) =D/aD.

Proposition 6.1. Let a be an ideal of k containing πh. Then:

(a) The classes [M(a, h)] span both K(D) and K(D).

Now suppose k | h and a also contains πk (e.g., k = 1). Then:
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(b) We have h
k [M(a, h)] = [M(a, k)] in K(D).

(c) We have 1−th

1−tk
[M(a, h)] = [M(a, k)] in K(D).

Proof. (a) Follows immediately from the theorem on special resolutions
(Theorem 5.1). For (b) and (c), note that

M(a, k) = (D/aD)(k) = (D/aD)
(k)
<h ⊗k (D/aD)(h)

and (D/aD)
(k)
<h admits a filtration where the successive quotients are

k[k], . . . ,k[(h− 1)k]. �

6.4. Hilbert series. Let M be a finitely presented graded D-module. Define
the Hilbert series of M , denoted HM (t), by

HM (t) =
∑
n∈Z

[Mn]t
n,

where [Mn] denotes the class of the k-module Mn in K(k). It is clear that
the Hilbert series construction factors through the Grothendieck group and
defines an R-linear map

H: K(D)→K(k)((t)).

Our main result about the Hilbert series is the following proposition.

Proposition 6.2. Let M be a finitely presented graded D-module. Then
there there exists r ∈N and elements a1(t), . . . , ar(t) ∈R⊗K(k) such that

HM (t) =

r∑
i=1

ai(t)

1− ti
.

Proof. By Proposition 6.1(a), it suffices to check this for the module M =
M(a, h). We have

Mn =

{
k/a if h | n,
0 if h � n.

Thus, HM (t) = [k/a]
1−th

, and the result follows. �

We now describe K(D) up to R-torsion. Consider the map

ϕ0 : K(k)→K(D), [M ] �→ (t− 1)[D⊗k M ].

Let S be the R-subalgebra of Frac(R) generated by 1
tn−1 for n≥ 1. We then

have:

Proposition 6.3. The map ϕ : K(k)⊗Z S →K(D)⊗R S induced by ϕ0 is
an isomorphism.
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Proof. Define ψ : K(D)⊗R S →K(k)⊗Z S by ψ([M ]) = HM (t). This map
is well-defined by the previous proposition. We claim that ψ is inverse to
the map ϕ in the statement of the theorem. We first check that ψ ◦ ϕ is
the identity. Thus, let M be a finitely generated k-module. Then ϕ([M ]) =

(1 − t)[M ⊗k D]. We have HM⊗kD(t) = [M ]
1−t , and so ψ(ϕ([M ])) = [M ]. We

now check that ϕ ◦ ψ is the identity. It suffices to check ϕ(ψ([M ])) = [M ]
when M =M(a, h), since these span K(D). We have ψ([M ]) = 1

1−th
[k/a], and

so ϕ(ψ([M ])) = 1−t
1−th

[D/aD], which equals [M ] by Proposition 6.1(c). This
completes the proof. �

6.5. Conjectural description of K(D). Suppose M is a finitely presented
graded D-module then, by Proposition 6.2, we can write

HM (t) =
∑
n≥1

an(t)

1− tn
,

where an(t) ∈ R ⊗Z K(k). If we express [M ] as an R-linear combination of
classes of the form [M(a, h)], then only those classes with n | h can contribute
to an (assuming we do not artificially insert canceling factors into the nu-
merator and denominator). That is, an is an R-linear combination of classes
of the form [N ], where N belongs to the category Cn of finitely generated
k-modules supported on

⋃
n|h V (πh). This suggests that an might be well-

defined in R⊗K0(Cn). We conjecture that this is the case, and that, more-
over, it completely explains the structure of K(D). We now give a precise
statement.

For notational ease, let Kn = K0(Cn). For M ∈ Cn we write [M ]n for its
class in Kn. Note that C1 is the category of all finitely generated k-modules,
and for n |m we have an inclusion Cm ⊂ Cn. We define K to be the quotient
of the R-module ⊕

n≥1

Kn ⊗Z Rn

by the relations
[M ]m
1− tn

=
[M ]n
1− tn

for M ∈ Cm and n |m, where here the left side belongs to the mth summand
and the right-hand side to the nth summand. (Note that 1

1−tn ∈Rm, so that

the left-hand side above does indeed belong to the mth summand.)
We now define an R-linear map

(6.1) ϕ : K →K(D).

Suppose n | h and a is an ideal containing πh. We then put

ϕ

(
[k/a]n
1− tn

)
=

1− th

1− tn
[
M(a, h)

]
.
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Since Kn is spanned by the classes [k/a] as above, this specifies ϕ uniquely.
We leave it to the reader to verify that ϕ is well-defined. It follows from
Proposition 6.1(a) that ϕ is surjective. Our conjectural description of K(D)
is the following.

Conjecture 6.4. The map ϕ is an isomorphism.

6.6. The L invariant. Let C+ be the category of finitely generated k-
modules supported on

⋃
n≥2 V (πn), and let K+ = K0(C+). For M ∈ C+, let

[M ]+ be the class of M in K+. We extend this notation to all k-modules M
by putting [M ]+ = 0 if M /∈ C+. For a graded k-module M , we define �M� as∑

n∈Z[Mn]+t
n. For a finitely presented graded D-module M , we define

L0
M (t) =

∞∑
i=0

(−1)i
[
TorDi (M,k)

]
+
∈K+((t)).

For any fixed d we have TorDi (M,k)d = 0 for i� 0 (Proposition 4.8). It follows
that in the above sum, any fixed power of t occurs only finitely many times,
and so the sum is well-defined. We also put

LM (t) =
L0
M (t)

1− t
.

Our main result on L is the following proposition.

Proposition 6.5. We have a well-defined R-module homomorphism

K(D)→R∞/R1 ⊗Z K+, [M ] �→ LM (t).

We need some lemmas before proving this. In what follows, all D-modules
are finitely presented and graded.

Lemma 6.6. Let M be a D-module. Then TorDi (M,k) belongs to C+ for
i� 0.

Proof. If M =D/aD, then the Tor in question vanishes for i > 0 (Propo-
sition 4.5). If M =M(a, h) for some h≥ 2, then all the Tor’s are annihilated
by πh. The result now follows from the theorem on special resolutions (The-
orem 5.1). �

Lemma 6.7. Suppose that

0→M1 →M2 →M3 → 0

is a short exact sequence of D-modules. Then LM1(t) + LM3(t) = LM2(t) + δ
for some δ ∈ R1 ⊗K+. If each Mi supported on

⋃
n≥2 V (πn) as a k-module

then δ = 0.

Proof. Let N be such that TorDi (Mj ,k) belongs to C+ for all i ≥ N and
all j ∈ {1,2,3}. This exists by Lemma 6.6. Let d0 be the maximal degree
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occurring in the groups TorDi (Mj ,k) for 0≤ i < N and j ∈ {1,2,3}. Consider
the degree d > d0 piece of the long exact sequence in Tor:

· · · →TorDi+1(M3,k)d →TorDi (M1,k)d

→TorDi (M2,k)d →TorDi (M3,k)d → · · · .
This is an exact sequence in the category C+, and so the alternating sum of the
classes in K+ is zero. It follows that the coefficient of td in δ0 =L0

M1
−L0

M2
+

L0
M3

vanishes for all d > d0, and so δ = δ0

t−1 ∈ R1. If each Mi is supported

on
⋃

n≥2 V (πn), then all the Tor’s in question belong to C+, so the above
reasoning applies to all d ∈Z, and so δ = 0. �

Lemma 6.8. Let M =M(a, h) with h≥ 1. Then

LM (t) =
[k/a]+
1− th

.

Proof. We have 1−th

1−t [M ] = [D/aD] in K(D/aD) by Proposition 6.1(c), and

so 1−th

1−t LM (t) = LD/aD(t) (by the previous lemma if h≥ 2, and is trivially true

for h = 1). By Proposition 4.5, the group TorDi (D/aD,k) vanishes for i > 0
and equals k/a for i= 0, and so L0

D/aD(t) = [k/a]+. The result follows. �

Proof of Proposition 6.5. By Lemma 6.7, L gives a well-defined homomor-
phism K(D)→Z((t))/R1 ⊗K+. Proposition 6.1(a) and Lemma 6.8 show that
the image is contained in R∞/R1 ⊗K+. �

6.7. Conditional proof of Conjecture 6.4. For n≥ 2, we have an inclu-
sion Cn ⊂ C+, and thus an induced homomorphism Kn →K+.

Theorem 6.9. Assume the following condition holds:

(∗) For all n≥ 2 the map Kn →K+ is injective.

Then Conjecture 6.4 is true.

Proof. Let K 1 ⊂ K be the R-span of classes of the form [M ]
t−1 with M a

finitely generated k-module. Then K 1 is identified with K(k)⊗R1. Let K 2

be the quotient of K by K 1. Then K 2 is identified with the submodule

of R∞/R1 ⊗K+ consisting of elements of the form
∑

n≥2
an(t)
tn−1 where a(n) ∈

Kn ⊗R (this identification uses (∗)).
We first claim that the map

K 2 →R∞/R1 ⊗K+, f �→ Lϕ(f)(t)

is well-defined and simply the identity. If f ∈ K 1 , then Lϕ(f)(t) = 0 by the

definition of L. Thus, the above map is well-defined. The module K 2 is gen-

erated by elements of the form f = [k/a]+
tn−1 where a is an ideal containing πh
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and n | h. By definition, we have ϕ(f) = 1−th

1−tn [M(a, h)]. Thus, by Lemma 6.8,
we have

Lϕ(f)(t) =
1− th

1− tn
· LM(a,h)(t) =

1− th

1− tn
· [k/a]+
1− th

= f,

and the claim is proved.
We next claim that the map

K 1 →R1 ⊗K(k), f �→Hϕ(f)(t)

is the identity. The module K 1 is spanned by elements of the form f = [k/a]
t−1 .

We have ϕ(f) = [D/aD] by definition. Thus

Hϕ(f)(t) = HD/aD(t) =
[k/a]

t− 1
= f,

and the claim is proved.
We now prove the theorem. It suffices to show that ϕ is injective. Thus,

suppose ϕ(x) = 0. Let x be the image of x in K 2. Then x= Lϕ(x)(t) = 0 by

the first paragraph. Thus, x ∈ K 1. But then x=Hϕ(x)(t) = 0 by the second
paragraph. This completes the proof. �

6.8. Comparison of K(D) and K(D). The forgetful functor ModfpD →
ModfpD induces a map K(D)→K(D) that obvious kills (t− 1)K(D). In fact,
is the following proposition.

Proposition 6.10. The natural map K(D)/(t − 1)K(D) → K(D) is an
isomorphism.

The proof closely follows the proof of the so-called fundamental theorem of
K-theory, as presented in [Sr, Section 5]. We will make extensive use of the ring
D[u], which we grade using the usual grading on D and setting deg(u) = 1.
Note that if D=D(k, π•) then (ignoring the grading) D[u] =D(k[u], π•), and
so D[u] is coherent since k[u] is Noetherian.

Lemma 6.11. We have an equivalence of categories ModfpD[u,u−1] =ModfpD.

Proof. Let ϕ : D→D[u,u−1]0 be the map given by ϕ(x) = u−deg(x)x on
homogeneous elements x ∈D. Then ϕ is an isomorphism. If M is a graded
D[u,u−1]-module then its degree 0 piece is a module over D[u,u−1]]0 and
thus, via ϕ, over D. Conversely, if N is a D[u,u−1]0-module, then

⊕
k∈ZNuk

is a graded D[u,u−1]-module, with u acting in the obvious manner, and x ∈
D acting by (u−deg(x)x)udeg(x). One easily sees that these constructions are
inverse to each other. �

Let α : K(D)→K(D[u]) be the map induced by the functor M �→M ⊗D

D[u], and let β : K(D[u])→K(D) be the map induced by the functor M �→
M

L
⊗D[u] D, where here D is thought of as a D[u]-module by D=D[u]/(u).
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We note that D has projective dimension 1 as a D[u]-module, and so the
left-derived functor of −⊗D[u] D does indeed induce a map on K-theory.

Lemma 6.12. The maps α and β are mutually inverse.

Proof. It is clear that βα= id, so we must show αβ = id. For h≥ 1, consider
the following diagram

K(D)
α

K
(
D[u]

)

K
(
k/(πh)

)fh

ih
K

(
k/(πh)[u]

)f ′
h

The map fh is induced by the functor M �→ (M ⊗k D)(h), and f ′
h is defined

similarly. The map ih is extension of scalars. The theorem on special resolu-
tions (Theorem 5.1) states that the maps f ′

h are jointly surjective, that is, the
sum of their images is the entire K(D[u]). The map ih is an isomorphism by
the following lemma. It follows from this that α is surjective. Since βα= id,
we have αβα= α, and thus αβ = id since α is surjective. �

Lemma 6.13. Let k be a non-graded ring, and regard k[u] as graded
by deg(u) = 1. Then extension of scalars induces an isomorphism K(k) →
K(k[u]).

Proof. The map K(k)⊗Z R→ K(k[u]) induced by extension of scalars is
an isomorphism by [Sr, Proposition 5.4]. However, we have an obvious iden-
tification K(k)⊗Z R=K(k) since k is non-graded. �

Proof of Proposition 6.10. Let Mod0D[u] denote the category of finitely pre-

sented graded D[u]-modules annihilated by a power of u, and let K0(D[u]) be
its Grothendieck group. We then have the localization sequence

K0
(
D[u]

)
→K

(
D[u]

)
→K

(
D

[
u,u−1

])
→ 0.

By dévissage, K0(D[u]) = K(D). Combining this and Lemmas 6.11 and 6.12
with the above sequence gives the diagram

K0
(
D[u]

)
K

(
D[u]

)
K

(
D

[
u,u−1

])
0

K(D) K(D) K(D) 0

We claim that the bottom left map is multiplication by 1 − t, which will
complete the proof. Thus let M ∈ ModD. Starting with [M ] in the bottom
left group and going up and right, we obtain the class in K(D[u]) obtained by
treating M as a D[u]-module with u acting by 0. We now want to move this

class down under β. By definition, β([M ]) is the class of M
L
⊗D[u] D. Using
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the resolution D[u][1]
u→D[u] of D (where [1] indicates shift in grading), we

see that β([M ]) is the class of the complex M [1]→M , that is, (1− t)[M ]. �

Combining the above result with Proposition 6.3 yields a rational descrip-
tion of K(D).

Proposition 6.14. The map K(k)⊗Q→K(D)⊗Q taking [M ] to [M ⊗k

D] is an isomorphism.

We also give a conjectural description of K(D). Define K to be the quotient
of

⊕
n≥1Kn by the relations m

n [M ]m = [M ]n for M ∈ Cm and n |m, where the
left-hand side belongs to the mth summand and the right-hand side to the
nth summand. Then K /(t − 1)K is identified with K , and so the map
(6.1) induces a natural map K →K(D). Thus, Proposition 6.10 gives us the
following proposition.

Proposition 6.15. Suppose Conjecture 6.4 holds for D. Then the natural
map K →K(D) is an isomorphism.

6.9. The classical divided power algebra. We now assume that D is the
classical divided power algebra over k.

Proposition 6.16. The condition (∗) of Theorem 6.9 holds.

Proof. By definition, C+ is the category of finitely generated k-modules
that are torsion as Abelian groups. If n≥ 2, is a power of the prime p then
Cn is the category of finitely generated k-modules that are annihilated by a
power of p. By the Chinese remainder theorem, Cn is a summand of C+, and
so Kn →K+ is injective. If n≥ 2 is not a prime power, then Cn = 0. �

For a prime number p, let Rp∞ =
⋃

n≥1Rpn .

Corollary 6.17. We have short exact sequences

0→R1 ⊗K(k)→K(D)→
⊕
p

Rp∞/R1 ⊗K(k/pk)→ 0

and
0→K(k)→K(D)→

⊕
p

Qp/Zp ⊗K(k/pk)→ 0,

where in both lines the sum is over all prime numbers p.

Proof. These sequences simply come from computing K and K . In the
notation of the proof of Theorem 6.9, the first short exact sequence is simply

0→K 1 →K(D)→ K 2 → 0. �

Example 6.18. Let k = Zp, let p be the maximal ideal of k, and let
h > 1 be a power of p. Note that πh ∈ p. We have [D/pD] = [D]− [D] = 0,

and so [M(p, h)] is killed by 1−th

1−t by Proposition 6.1(c). However, we have
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LM(p,h)(t) =
[Fp]+
1−th

and [Fp]+ is not zero in K+; thus LM(p,h)(t) is nonzero

in R∞/R1 ⊗K+, and so [M(p, h)] is nonzero in K(D). We therefore have an
example of a nonzero class in K(D) that is killed by a nonzero element of R.

Remark 6.19. Let D be the bounded derived category of finitely presented
non-graded D-modules. Let F be the full subcategory on objects that can be
represented by bounded complexes whose terms have the form M ⊗k D with
M a finitely presented k-module. Let Dt be the full subcategory of D on
objects represented by bounded complexes of finitely presented D-modules
that are torsion as Z-modules. Then K(F) = K(k) and

K
(
Dt/

(
F ∩Dt

))
=

⊕
p

Qp/Zp ⊗K(k/pk).

Thus, Corollary 6.17 suggests an equivalence

D
F

∼= Dt

Dt ∩F .

Such an equivalence also seems plausible due to the form of special resolutions.
(This remark is not specific to the classical divided power algebra, and should
apply to any GDPA.)

6.10. The q-divided power algebra. LetD be the q-divided power algebra
over Z[q]. We now study the groups Kn and K+, and ultimately show that
condition (∗) of Theorem 6.9 does not hold. For an integer n ≥ 1, we write
Z[ζn] for the quotient Z[q]/(Φn), where ζn is the image of q, a primitive nth
root of unity. The group K(Z[ζn]) canonically decomposes as Z⊕Cl(Q(ζn)),
where Z is generated by the class of Z[ζn] itself, and Cl(Q(ζn)) is the class
group of the number field Q(ζn), which is finite. Now, it is a general fact that
if a and b are ideals in a Noetherian ring k then we have an exact sequence

K
(
k/(a+ b)

)
→K(k/a)⊕K(k/b)→K(k/ab)→ 0.

Taking a= (Φn) and b= (Φm) yields

K
(
Z[q]/(Φn,Φm)

)
→K

(
Z[ζn]

)
⊕K

(
Z[ζm]

)
→K

(
Z[q]/(ΦnΦm)

)
→ 0.

Applying the above sequence repeatedly and taking a direct limit yields a
presentation ⊕

t<s,n|t,s
K

(
Z[q]/(Φt,Φs)

) α→
⊕
n|t

K
(
Z[ζt]

)
→Kn → 0.

Now, observe that (Φt,Φs) is a height 2 prime of Z[q], and so the image of
α lands in the sum of the class groups. In particular, after tensoring with Q
we see that α is 0. Thus Kn ⊗Q has a natural basis indexed by the multiples
of n. A similar analysis holds for K+ ⊗Q: it has a natural basis indexed by
integers ≥ 2. We thus find the following proposition.
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Proposition 6.20. The condition (∗) of Theorem 6.9 holds rationally.
Thus the map K ⊗Q→K(D)⊗Q induced from the map ϕ in Conjecture 6.4
is an isomorphism.

For n | t, let Nt : K(Z[ζt])→ K(Z[ζn]) be the norm map. On the Z sum-
mand, this is multiplication by the degree [Q(ζt) : Q(ζn)], while on the class
group summand it is the usual norm map on ideals. Summing these maps
yields a map

Ñ:
⊕
n|t

K
(
Z[ζt]

)
→K

(
Z[ζn]

)
.

We claim that Ñ kills the image of α. Thus, let t < s be multiples of n. The
ideal (Φt,Φs) is the unit ideal unless s= tpr for some prime p, so assume this
is the case. Let m be a maximal ideal of Z[q] containing (Φt,Φs), and let mt

and ms be the images of m in Z[ζt] and Z[ζs]. Then mt is totally ramified in
Z[ζs], and ms is the unique prime above it. Thus, the norm of ms down to
Z[ζt] is mt. By the compatibility of norms in towers, we see that mt and ms

have the same norm down to Z[ζn]. This establishes the claim. We thus see

that Ñ induces a map

N: Kn →K
(
Z[ζn]

)
.

It follows immediately from the definition that N is left-inverse to the canonical
map K(Z[ζn])→Kn, and so we find:

Proposition 6.21. The canonical map K(Z[ζn])→Kn is a split injection.

We now come to the main point.

Proposition 6.22. The condition (∗) of Theorem 6.9 does not hold. In
fact, the map K39 →K+ is not injective.

Proof. Fix a primitive cube root of unity η ∈ F13, and give M = F13 the
structure of a Z[q]-module by letting q act by η. The module M is killed by
Φ3 and Φ39, and can thus be regarded as a module over Z[ζ3] and Z[ζ39]. Let
p be the prime of Z[ζ3] over 13 corresponding to η, i.e., p= (13, ζ3−η), and let
q be the unique prime of Z[ζ39] over p. Then M ∼= Z[ζ3]/p as a Z[ζ3]-module
and M ∼=Z[ζ39]/q as a Z[ζ39]-module. Now, the ideal p is principal since Q(ζ3)
has class number 1, and so the class of M in K(Z[ζ3]) is zero. It follows that
the class of M vanishes in K3, and thus in K+ as well. On the other hand, q
is non-principal (see [Le]). Thus the class of M in K(Z[ζ39]) is nonzero, and
therefore the class of M in K39 is non-zero by Proposition 6.21. This class is
therefore a nonzero element of the kernel of K39 →K+. �

7. Injective dimension and duality

7.1. Self-injectivity. Throughout this section, k denotes a field and D a
GDPA over k. Our goal is to prove the following theorem.
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Theorem 7.1. The injective dimension of D as a D-module is at most 1,
in both the graded and ungraded cases. More precisely:

(a) If infinitely many of the πn vanish, then D is injective as a graded D-
module.

(b) If infinitely many of the πn vanish, then D has injective dimension 1 in the
category of all D-modules, and ExtiD(M,D) = 0 for all finitely presented
M and all i > 0.

(c) If only finitely many of the πn vanish, then D has injective dimension 1
in both the graded and ungraded categories.

Lemma 7.2. (In this lemma, k can be any ring.) Suppose πh = 0. Then
Homk(D<h,k) is free of rank one as a D<h-module.

Proof. As a k-module, D<h is free with basis x[0], . . . , x[h−1]. Thus,
Homk(D<h,k) is also free. Let λ0, . . . , λh−1 be the dual basis, so that
λi(x

[j]) = δi,j . We have x[i]λh−1 = uλh−1−i, where u ∈ k is given by

x[i]x[h−1−i] = ux[h−1]. We claim that u is a unit. Indeed, if m is any max-
imal ideal of k then h= bm,i for some i, and so there are no carries in the sum
i+ (h− 1− i) when working in base bm,•. It follows that u is a unit in km for
all m, and thus a unit. This proves the claim. It now follows that λh−1 is a
basis for Homk(D<h,k) as a D<h-module. �

Lemma 7.3. Suppose πn = 0. Then D<n is injective as a module over itself,
both in the graded and non-graded settings.

Proof. Let D =D<n, and let M be an arbitrary D-module. We have

HomD(M,D)∼=HomD

(
M,Homk(D,k)

)
=Homk(M,k).

The first isomorphism comes from Lemma 7.2, while the second is a standard
adjunction. Since the functor Homk(−,k) is exact, it follows thatD is injective
as an D-module. The same proof works in the graded case. �

Proof of Theorem 7.1(b). We first prove the Ext vanishing statement. By
dimension shifting, it suffices to treat the i= 1 case. By dévissage, it suffices to
treat the case where M =D/I with I a finitely generated ideal. For this, it is
enough to show that a given map ϕ : I →D extends to a map ψ : D→D. Let
f1, . . . , fr be generators for I . Pick n� 0 such that πn = 0 and the elements
fi and ϕ(fi) all belong to D<n. Let I0 ⊂D<n be the ideal generated by the
f ’s, and let ϕ0 : I0 →D<n be the restriction of ϕ. We have an isomorphism
D=D<n⊗kD

(n), under which I corresponds to I0⊗D(n) and ϕ corresponds
to ϕ0 ⊗ id. Since D<n is injective as a module over itself by Lemma 7.3, the
map ϕ0 extends to a map ψ0 : D<n →D<n. Then ψ = ψ0⊗ id is an extension
of ϕ.

We now show that the injective dimension of D is at most one. This follows
from the previous paragraph by general considerations, as follows. First, sup-
pose that M =D/I is a cyclic D-module. Since D has countable dimension
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over k, the ideal I is countably generated. Write I =
⋃

n≥1 In with In finitely

generated, and put Mn =D/In so that M is the direct limit of the Mn and
each Mn is finitely presented. We have

RHomD(M,D) = Rlim←−RHomD(Mi,D).

Since RiHomD(Mi,D) = 0 for i > 0 and Ri lim←− = 0 for i > 1, we find that

RiHomD(M,D) = 0 for i > 1. It follows from this that ExtiD(M,D) = 0 for
i > 1 for any D-module M (see [Stacks, Tag 0A5T]), and so D has injective
dimension at most one. Example 7.5 below shows that the injective dimension
is exactly 1. �

Remark 7.4. The first two paragraphs of the above argument can be
easily adapted to prove the following statement. Let {Ai}i∈I be a family of
finite dimensional (not necessarily commutative) k-algebras such that for any
finite subset J ⊂ I the algebra

⊗
i∈J Ai is self-injective, and suppose #I = ℵr.

Then the algebra
⊗

i∈I Ai has injective dimension at most r + 1 over itself.
For instance, if {Gi}i∈I is a family of finite groups and G ⊂

∏
i∈I Gi is the

subgroup where all but finitely many coordinates are the identity then k[G]
has injective dimension at most r+ 1.

Example 7.5. Suppose infinitely many πn vanish and let I be the ideal
(x[1], x[2], . . .) of D. We show that Ext1D(k,D) �= 0 in the ungraded category,
where k=D/I . To do this, it suffices to construct a homomorphism ϕ : I →D
that does not extend to D. Let b1, b2, . . . be a strictly increasing sequence with
πbi = 0 for all i, and define

g =
∑
i≥1

x[bi−1],

regarded as a formal sum. For any n≥ 1, we have x[n]x[bi−1] = 0 for all i� 0; in
fact, as soon as bi > n there is necessarily a carry when computing n+(bi−1)
in base b•, and then the product will vanish. It follows that the product gx
is a well-defined element of D for all x ∈ I , and one easily sees that putting
ϕ(x) = gx gives a well-defined module homomorphism I →D. Suppose that
ϕ extended to D. Then we would have gx = ϕ(x) = hx for all x ∈ I , where
h= ϕ(1) is an actual element of D. But this is clearly impossible, since gx[bi+1]

is a sum of i monomials, while the number of monomials in hx[bi+1] is bounded
as i varies.

Proof of Theorem 7.1(a). Let I be a nonzero finitely generated homoge-
neous ideal and let ϕ : I[d]→D be a map of graded modules. The argument
in the first paragraph of the proof of Theorem 7.1(b) applies and shows that
ϕ extends to a map ψ : D[d] → D. Since the space Hom(D,D)d is at most
one-dimensional, it follows that ψ is unique. It follows from this that if J is a
finitely generated homogeneous ideal containing I then ϕ extends uniquely to

http://stacks.math.columbia.edu/tag/0A5T


336 R. NAGPAL AND A. SNOWDEN

J ; indeed, any two extensions to J would further extend to D, and therefore
coincide.

Now suppose I is an arbitrary non-zero homogeneous ideal and let
ϕ : I[d]→D be a map of graded modules. Write I =

⋃
n≥1 In with In finitely

generated and I1 �= 0. Let ψ : D[d]→D be an extension of ϕ|I1 . Then ϕ|In
and ψ|In are two extensions of ϕ|I1 to In, and therefore must coincide. It
follows that ψ|I = ϕ, and so ϕ extends to D. By a graded version of Baer’s
criterion, it follows that D is injective as a graded D-module. �

Proof of Theorem 7.1(c). We give the proof in the non-graded case, the
argument in the graded case being identical. Let n be maximal such that
πn = 0. Then D = A ⊗k B, where A = D<n is finite dimensional and B =
D(n) ∼= k[x]. For a B-module M , let F (M) = HomB(D,M). This functor is
right adjoint to the forgetful functor from D-modules to B-modules, and
therefore takes injectives to injectives. Since D is projective as a B-module,
the functor F is exact. We have

F (M) = HomB(A⊗B,M) = Homk(A,M) = Homk(A,k)⊗k M ∼=A⊗k M,

where in the first step we used an adjunction, in the second we used that A is
finite dimensional, and in the third we used Lemma 7.2. In particular, we see
that F (B)∼=D. Now, it is well-known that B has injective dimension 1 as a
module over itself. Let

0→B → I0 → I1 → 0

be an injective resolution. Applying F , we obtain a length one injective res-
olution of D as a D-module, and so D has injective dimension at most one.
On the other hand,

0→B
x→B →B/(x)→ 0

is a non-split extension, and is easily seen to remain non-split after applying
−⊗k A, and so the injective dimension is exactly one. �

Remark 7.6. Suppose infinitely many of the πn vanish. Then D is not
Noetherian, and so the Bass–Papp theorem asserts that some infinite direct
sum of injectiveD-modules is non-injective. We give an explicit example in the
graded case. Let n1 < n2 < · · · be an infinite divisible sequence with πni = 0 for
all i. Let I be the ideal generated by the x[i] with i≥ 1. Let M =

∏
i≥1D[1−

ni] and M0 ⊂M be the direct sum. Define ϕ : D→M by using multiplication
by x[ni−1] on the ith factor. One then verifies the following that ϕ|I maps
into M0 but that ϕ|I cannot be extended to a map D→M0. Thus, M0 is not
injective. Therefore, not all free D-modules are injective.
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7.2. Injective dimension. Let R be a ring. Let D(R) be the derived cat-
egory of R-modules, and let Db

fp(R) be the full subcategory of complexes M

such that Hi(M) is finitely presented for all i and nonzero for only finitely
many i. We say that an object of D(R) has injective amplitude [a, b] if it is
isomorphic in D(R) to a complex of injectives I• with Ii = 0 for i /∈ [a, b]. This
is equivalent to ExtiR(N,M) = 0 for all (or even just cyclic) modules N and
i /∈ [a, b] [Stacks, Tag 0A5T]. We say that M has finite injective dimension if
it has injective amplitude [a, b] for some a, b. Similar definitions apply in the
graded case.

Suppose k is a Noetherian ring and E0 is a complex of k-modules with
injective amplitude [a, b]. Then E =E0⊗kk[x] has injective amplitude [a, b+1]
as a complex of k[x]-modules, see [Stacks, Tag 0A6J]. The following theorem
generalizes this statement to GDPA’s:

Theorem 7.7. Let k be a Noetherian ring and let D be a GDPA over k. Let
E0 be a complex of k-modules with finitely generated cohomology and injective
amplitude [a, b], and put E =D⊗k E0. Then:

(a) If M is a finitely presented D-module then ExtiD(M,E) = 0 for i /∈
[a, b+ 1].

(b) E has injective amplitude [a, b+ 2] as a complex of D-modules.

The same statements hold in the graded case.

Corollary 7.8. Suppose that k is a Gorenstein Noetherian ring of finite
Krull dimension and let D be a GDPA over k. Then D has finite injective
dimension as a (graded or ungraded) D-module.

Proof of Theorem 7.7. Statement (a) implies statement (b) using an argu-
ment similar to that in the proof of Theorem 7.1(b). Thus, it is enough to
prove (a). We assume, by Noetherian induction, that the statement is true for
every proper quotient of k. We now prove it for k, in several steps.

Step 1. We first prove the result assuming M has nonzero annihilator a.
We have

RHomD(M,E) = RHomD/aD

(
M,RHomD(D/aD,E)

)
.

By [Stacks, Tag 0A6A], we have

RHomD(D/aD,E) =D⊗k RHomk(k/ak,E0).

Let E′
0 = RHomk(k/ak,E0). Then E′

0 has injective amplitude [a, b] and
finitely generated cohomology. Let E′ = D/aD ⊗k/a E′

0. By the above, we
have

RHomD(M,E) = RHomD/aD

(
M,E′).

By the inductive hypothesis, the right side only has cohomology in degrees
[a, b+ 1], and so the same is true of the left-hand side.

http://stacks.math.columbia.edu/tag/0A5T
http://stacks.math.columbia.edu/tag/0A6J
http://stacks.math.columbia.edu/tag/0A6A
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Step 2. We now prove the result assuming k is not a domain. Let x, y ∈ k
be nonzero such that xy = 0. We have a short exact sequence

0→ xM →M →M/xM → 0,

and thus a triangle

RHomD(M/xM,E)→RHomD(M,E)→RHomD(xM,E)→ .

Both xM and M/xM are finitely presented and have non-zero annihilator,
and so the outside terms only have cohomology in degrees [a, b+1] by Step 1.
Thus, the same is true of the middle term.

Step 3. We now prove the result assuming k is a domain. Fix i > b+1. Let
x ∈ k be non-zero. Consider the exact sequence

0→M [x]→M
x→M →M/xM → 0.

Both M [x] and M/xM are finitely presented with nonzero annihilator, and

so ExtjD(M [x],E) and ExtjD(M/xM,E) vanish for j /∈ [a, b+ 1] by Step 1. It
follows that the map

x : ExtiD(M,E)→ ExtiD(M,E)

is surjective, and an isomorphism if i > b+2. However, ExtiD(M,E) is a finitely
generated D-module, and so a surjective endomorphism of it is necessarily an
isomorphism [Stacks, Tag 05G8]; thus multiplication by x is an isomorphism
for i = b+ 2 as well. We have thus shown that every non-zero element of k
acts invertibly on ExtiD(M,E), that is to say, ExtiD(M,E) is in fact a vector
space over K=Frac(k). We thus have

ExtiD(M,E) =K⊗k ExtiD(M,E) = ExtiD′
(
M ′,E′),

where the primes denote extension to K. We have E′ =D′ ⊗K E′
0, and E′

0 is
(represented by) a complex of finite dimensional K vector spaces in degrees
[a, b]. Thus, E′ is a complex of finitely generated free D′-modules in degrees
[a, b]. Since D′ has injective dimension at most 1 (Theorem 7.1), it follows
that E′ has injective amplitude [a, b+ 1]. Thus, ExtiD′(M ′,E′) = 0, and the
result is proved. �

As stated, the above theorem holds in the graded case as well. However, in
that case we can prove a stronger result with additional assumptions.

Theorem 7.9. Let k, D, E0, and E be as in Theorem 7.7, though now E0

is graded. Assume that every maximal ideal of k contains infinitely many of
the πn’s. Then:

(a) If M is a finitely presented graded D-module, then ExtiD(M,E) = 0 for
i /∈ [a, b].

(b) E has injective amplitude [a, b+ 1] as a complex of graded D-modules.

http://stacks.math.columbia.edu/tag/05G8
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Proof. As in the proof of Theorem 7.7, it suffices to prove (a), which we
again do by Noetherian induction. Steps 1 and 2 from that proof apply here,
so it suffices to treat the case where k is a domain. We consider two cases.

Case 1: k is a field. We then have that D is injective as a graded D-module
(Theorem 7.1(a)). We can represent E0 by a complex of finite dimensional k-
vector spaces concentrated in degrees [a, b], and so we find that E is a complex
of injectiveD-modules concentrated in the same degrees. Thus, E has injective
amplitude [a, b], which certainly implies the required Ext vanishing.

Case 2: k is not a field. Fix i > b. As in Step 3 of the proof of Theorem 7.7,
we find that every nonzero element of k acts bijectively on Exti(M,E). It
follows that each graded piece Exti(M,E)n is both a Frac(k) vector space and
a finitely generated k-module, and thus vanishes. This proves the theorem. �

Remark 7.10. Theorems 7.7 and 7.9 both require E0 to have finitely gen-
erated cohomology. We are not sure if this is necessary. Also, in part (b) of
both theorems, the upper bound on the amplitude increases by 1; we do not
know if this is necessary either.

The following is a slight variant of Theorem 7.7 where we relax the finiteness
condition on E0 at the expense of adding a different hypothesis. We state only
the ungraded version, though it is also true in the graded case.

Theorem 7.11. Let D be a GDPA over a Noetherian ring k. Let p be a
prime ideal of k containing infinitely many of the πn’s. Let E0 be the injective
envelope of k/p and let E = D ⊗k E0. Then ExtnD(M,E) = 0 for all n ≥ 1
and all finitely presented D-modules M . Thus, E has injective dimension at
most 1.

Proof. We just sketch a proof. First, one reduces to the case where k is local
and p=m is the unique maximal ideal. Next, as in the proof of Theorem 7.7,
one can reduce to the case where k is a domain and one already knows the
result for modules with nonzero annihilators. If k is a field, the result follows
from Theorem 7.1. Otherwise, let x be a nonzero element of m. As in Step 3
of the proof of Theorem 7.7, we see that multiplication by x is bijective on
ExtiD(M,E) for i≥ 1. Let F• →M be a resolution of M by finitely generated
free D-modules. (Here is the one place we use that M is finitely presented.)
Then ExtiD(M,E) is a subquotient of HomD(Fi,E), which is isomorphic to a
finite direct sum of E0’s. Since every element of E0 is killed by some power of
m, multiplication by x cannot act bijectively on any nonzero subquotient of
HomD(Fi,E). We thus find that ExtiD(M,E) vanishes for i≥ 1, which proves
the theorem. �

Remark 7.12. In fact, the module E in Theorem 7.11 is not injective
in general. To see this, let D be the classical divided power algebra over
Zp and let I be the ideal generated by elements of positive degree. Then
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we have a D-module homomorphism I[−1] →D ⊗Zp Qp/Zp (note that the

injective envelope of Zp/pZp is Qp/Zp) given by x[i] �→ x[i−1] ⊗ 1
i . Clearly

this map does not extend to D[−1] because there are no nonzero maps from
D[−1]→D⊗Zp Qp/Zp.

7.3. Duality. Let R be a coherent ring. We say that a complex ωR ∈D(R)
is a dualizing complex if:

(a) ωR has finite injective dimension;
(b) Hi(ωR) is finitely presented for all i; and
(c) the natural map R→RHomR(ωR, ωR) is a quasi-isomorphism.

Dualizing complexes are discussed in [Stacks, Tag 0A7A] under the assumption
that R is noetherian. Some of the basic results remain true in our more general
setting: for example, if ωR is a dualizing complex then RHomR(−, ωR) gives a
duality of the category Db

fp(R) (the proof given in [Stacks, Tag 0A7C] applies).
We note that if R is noetherian and admits a dualizing complex then it has
finite Krull dimension [Stacks, Tag 0A80].

Our main result on duality for GDPA’s is the following theorem. We treat
only the ungraded case, but the graded case goes through in exactly the same
manner.

Theorem 7.13. Let k be a Noetherian ring with dualizing complex ωk and
let D be a GDPA over k. Then ωD = ωk ⊗k D is a dualizing complex for D.

Proof. By Theorem 7.7, ωD has finite injective dimension, and so condition
(a) holds. Since Hi(ωD) =D⊗k Hi(ωk) and Hi(ωk) is a finitely generated k-
module, condition (b) holds. Finally, by [Stacks, Tag 0A6A], the natural map

D⊗k RHomk(ωk, ωk)→RHomD(ωD, ωD)

is an isomorphism. Since the left-hand side is isomorphic to D via the natural
map, we conclude that (c) holds. This completes the proof. �

Corollary 7.14. In the context of the theorem, the category Db
fp(D) is

self-dual (i.e., equivalent to its opposite).

Corollary 7.15. Suppose k is a regular Noetherian ring of finite Krull
dimension. Then D is a dualizing complex for D.

Proof. Under the hypotheses on k, we can take ωk = k. �

8. Torsion and finitely presented modules

8.1. Torsion in finitely presented modules. An element m of a D-
module M is torsion if x[n]m= 0 for n� 0. A D-module is torsion if all of
its elements are, and torsion-free if it has no nonzero torsion element.

Theorem 8.1. Let D=D(k, π•) be a GDPA over the Noetherian ring k.
The following are equivalent:

http://stacks.math.columbia.edu/tag/0A7A
http://stacks.math.columbia.edu/tag/0A7C
http://stacks.math.columbia.edu/tag/0A80
http://stacks.math.columbia.edu/tag/0A6A
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(a) Every finitely presented D-module (graded or not) is torsion-free.
(b) Every maximal ideal of k contains infinitely many πn’s.

Proof. Suppose (b) does not hold, and let m be a maximal ideal containing
only finitely many of the πn. Then D/mD has the form A⊗k B where A is a
finite dimensional algebra over k/m and B is a polynomial ring in one variable
over k/m. This algebra certainly has finitely presented modules with nonzero
torsion; for example, A itself (with the variable in B acting by 0). Thus, (a)
does not hold.

Now suppose (b) holds, and let M be a finitely presented D-module. We
must show that M is torsion-free. Suppose that m ∈ M is torsion, and let
T be the D-submodule of M generated by m. Then T is finitely presented,
since it is a finitely generated submodule of a finitely presented module, and
torsion. Thus, T = 0 by the following lemma, which completes the proof. �

Lemma 8.2. Suppose condition (b) of the Theorem holds, and let T be a
finitely presented torsion D-module. Then T = 0.

Proof. First, suppose k is a field. By Proposition 3.15, there is an h� 0
with πh = 0 such that T is free over D(h). Since T is finite dimensional over
k, it follows that T must have rank 0 over D(h), and so T = 0.

We now treat the general case. If m is a maximal ideal of k, then T/mT = 0
by the previous paragraph, and so Tm = 0 by Nakayama’s lemma (again, T is
finitely generated as a k-module). Since Tm = 0 for all maximal ideals m, it
follows that T = 0. �

8.2. Extensions between finitely presented and torsion modules.
The purpose of this section is to prove the following theorem.

Theorem 8.3. Let D be a GDPA over the Noetherian ring k. Assume that
k is complete with respect to an ideal I containing infinitely many of the πn.
Let M and T be graded D-modules, with M finitely presented and T torsion.
Then ExtnD(T,M) = 0 for all n≥ 0.

Remark 8.4. Here is an example showing that Theorem 8.3 can fail with-
out the completeness hypothesis. Let k = Z(p), let M = D/(x[1]), and let
N ⊂M be the submodule of strictly positive degree elements. Note that ev-
ery homogeneous element of N is killed by a power of p, and so N is naturally
a Zp-module. We have an exact sequence

(8.1) 0→N →M →Z(p) → 0.

Applying HomD(Z(p),−)0, we obtain an exact sequence

0→Z(p) → Ext1D(Z(p),N)0 → Ext1D(Z(p),M)0.

Thus, Ext1D(Z(p),N)0 is a Zp-module containing a copy of Z(p). It cannot be

equal to Z(p), and so Ext1D(Z(p),M)0 must be nonzero. To obtain an explicit
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extension, take the push-out of (8.1) along a map N
a→N →M , where a ∈

Zp \Z(p), and the second map is the inclusion.

Remark 8.5. We also remark that Theorem 8.3 can fail in the non-graded
case, as Example 7.5 shows.

Lemma 8.6. Suppose πn = 0 and put D =D<n. Let d < n− 1 be an inte-
ger and let M be a graded k-module supported in nonnegative degrees. Then
RHomD(k,M ⊗k D)d = 0.

Proof. Since D is Noetherian and k is finitely generated, the RHom in
question commutes with direct limits in M , and so we can assume M is finitely
generated. First, suppose k is a field. We can then assume M = k[e] for some
e ≥ 0. Since D is self-injective (by Lemma 7.3), we have ExtiD(k,D[e])d =
0 for i > 0. We also have HomD(k,D[e])d = HomD(k[d − e],D)0 = 0, since
x[n−1−(d−e)] acts non-trivially on x[d−e] (see the proof of Lemma 7.2). Thus,
the result holds when k is a field.

We now proceed by Noetherian induction. We thus assume the result holds
for every proper quotient of k. Suppose M has nonzero annihilator a. Then

RHomD(k,M ⊗k D)d =RHomD/aD(k
L
⊗D D/aD,M ⊗k D)d

=RHomD/aD(k/a,M ⊗k D)d = 0,

where the final equality comes from the inductive hypothesis. From this, we
can reduce to the case where k is a domain (as in Step 2 of the proof of
Theorem 7.7) and M = k (by dévissage it suffices to treat cyclic modules M ,
and the only cyclic module with zero annihilator is k).

Let a be a nonzero element of k. Using the exact sequence

0→ k
a→ k→ k/(a)→ 0

in the M variable, we find that multiplication by a is bijective on ExtnD(k,D)d.
But this Ext group is a finitely generated k-module. Thus, if k is not a field
then it must vanish. And we have already treated the field case. �

Lemma 8.7. Suppose I= 0. Then RHomD(k,D) = 0.

Proof. Let n1 < n2 < · · · be a sequence with πni = 0, and put Di =D<ni .

Let Ai = D
(ni−1)
i , a subalgebra of Di. We have an isomorphism of algebras

Di
∼=Ai⊗Di−1 (see Proposition 3.13). Let Q

(i)
• → k be a projective resolution

over Ai, with Q
(i)
0 =Ai. Then P

(i)
• =Q

(0)
• ⊗· · ·⊗Q

(i)
• is a projective resolution

of k over Di, and we have a natural map P
(i)
• → P

(i+1)
• coming from the

natural k-linear map k→Q
(i+1)
• . One easily sees that the direct limit of the

P
(i)
• is a projective resolution of k over D. We thus see that RHomD(k,D)

is computed by HomD(lim−→P
(i)
• ,D). One easily sees that this is isomorphic to

lim←−C•
i , where C•

i =HomDi
(P

(i)
• ,D). It follows from the construction of P

(i)
•
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that the natural map C•
i → C•

i−1 is surjective. By general, results on inverse
limits of complexes (see, for instance, [Lu, Ch. III, Cor. 1.2]), we thus have a
short exact sequence

0→R1 lim←−Hn−1
(
C•

i

)
→Hn

(
lim←−C•

i

)
→ lim←−Hn

(
C•

i

)
→ 0.

Since C•
i computes RHomDi

(k,D), this yields

0→R1 lim←−Extn−1
Di

(k,D)→ ExtnD(k,D)→ lim←−ExtnDi
(k,D)→ 0.

In any particular degree, the outer terms vanish for i� 0 by Lemma 8.6, and
so the outer terms are 0. (Note: this reasoning does not apply in the ungraded
case, and the vanishing does not hold.) This completes the proof. �

Lemma 8.8. Let M be a graded D-module such that RHomD(k,M) = 0.
Then we have RHomD(T,M) = 0 for all graded torsion modules T .

Proof. We proceed in three steps.
Step 1: T is finitely generated and concentrated in degree 0. Thus, T is just

a finitely generated k-module with D+ acting by 0. Let F• → T be a resolution
of T by finitely generated free k-modules. Regard Fi as a D-module by letting
D+ act by zero. We have a convergent spectral sequence

ExtiD(Fj ,M) =⇒ Exti+j
D (T,M).

Since each Fj is a finite direct sum of k’s, each ExtiD(Fj ,M) vanishes by our
hypothesis, and so the result follows.

Step 2: T is finitely generated. We then have Dn
+T = 0 for sufficiently large

n. Filtering by powers ofD+ and passing to the associated graded, we can thus
assume D+T = 0. But then T is a finite sum of shifts of modules concentrated
in a single degree, and so the result follows from Step 1.

Step 3: arbitrary T . Write T = lim−→Ti with Ti finitely generated. Then

RHomD(T,M) = Rlim←−RHomD(Ti,M).

Since RHomD(Ti,M) = 0 for all i, the result follows. �

Lemma 8.9. Theorem 8.3 holds if I= 0.

Proof. By Theorem 5.1, it suffices to treat the case where M is principal
special, say M =D′ = (D/aD)(h) with πh ∈ a. Note that D′ is a quotient ring
of D, and (after regrading) is itself a GDPA. For a torsion D-module T , we
have

RHomD

(
T,D′) =RHomD′

(
T

L
⊗D D′,D′).

Note that TorDp (T,D′) is a torsion D′-module for all p. Thus, renaming D′ to
D, we have reduced to the case M =D. As RHomD(k,D) = 0 by Lemma 8.7,
the result follows from Lemma 8.8. �

Lemma 8.10. Theorem 8.3 holds if T is annihilated by a power of I.
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Proof. Filtering by powers of I, it suffices to treat the case where T is
annihilated by I. We then have

RHomD(T,M) = RHomD/ID

(
T,RHomD(D/ID,M)

)
.

Since ExtiD(D/ID,M) is finitely presented as a D/ID-module for all i, the
result follows from the I= 0 case (Lemma 8.9). �

Lemma 8.11. Let M and T be modules over a ring A such that M is
complete with respect to an ideal I ⊂A and TorAi (T,A/IA) = 0 for all i > 0.
Then

RHomA(T,M) = Rlim←−RHomA/Ii

(
T/IiT,M/IiM

)
.

Similar statements hold in the graded case with Hom.

Proof. We have

RHomA(T,M)∼=RHomA

(
T,Rlim←−M/IiM

)
∼=Rlim←−RHomA

(
T,M/IiM

)
∼=Rlim←−RHomA/Ii

(
T/IiT,M/IiM

)
.

The first isomorphism follows from the completeness of M ; note that the
transition maps in the inverse system M/IiM are surjective, and so there are
no higher inverse limits. The second isomorphism follows from the (derived
version of the) universal property of inverse limits. And the third is derived
adjunction of tensor and Hom, combined with the vanishing of the higher
Tor’s of T with A/Ii. �

Proof of Theorem 8.3. By Lemma 8.8, it suffices to treat the case T = k.
By Lemma 8.11, we have

RHomD(T,M) = Rlim←−RHomD/IiD

(
T/IiT,M/IiM

)
.

Since ExtiD/IiD(T/IiT,M/IiM) = 0 for all i by Lemma 8.10, the result fol-

lows. (Note that the hypotheses of Lemma 8.11 are satisfied: T is free over
k, so all higher Tor’s with it vanish, and each graded piece of M is finitely
generated over k, and thus I-adically complete, and so M = lim←−M/IiM in

the category of graded D-modules.) �

9. Nearly finitely presented modules

9.1. Definitions. Let D be a GDPA. For a graded D-module M , we put

τ≤n(M) =

n⊕
k=0

Mn, τ≥n(M) =

∞⊕
k=n

Mn.

Then τ≥n(M) is a D-submodule of M , while τ≤n is a quotient D-module
of M .
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Definition 9.1. A D-module M is nearly finitely presented (nfp) if each
Mn is finitely generated as a k-module, Mn = 0 for n� 0, and there exists
a finitely presented D-module N , called a weak fp-envelope of M , such that

τ≥n(M)∼= τ≥n(N) for some n. We let ModnfpD be the full subcategory of ModD
on the nearly finitely presented modules.

Definition 9.2. Let M be a D-module. An fp-envelope of M is a map
of D-modules f : M →N with N finitely presented such that any other map
from M to a finitely presented D-module factors through f .

Definition 9.3. A map of D-modules f : M →N is a near isomorphism
if fn : Mn →Nn is an isomorphism for all n� 0.

9.2. The complete case. Throughout this section, we fix a GDPA over a
noetherian ring k. We assume that k is complete with respect to an ideal I
containing infinitely many of the πn’s. We show, in this setting, that there is
a very good theory of nfp modules.

Lemma 9.4. Let ϕ : M →M ′ be a near isomorphism of D-modules and let
N be a finitely presented D-module. Then the restriction map

ϕ∗ : ExtiD
(
M ′,N

)
→ ExtiD(M,N)

is an isomorphism for all i.

Proof. Consider the 4-term exact sequence

0→K →M
ϕ→M ′ →C → 0,

where K and C are the kernel and cokernel of ϕ. Since ϕ is a near isomor-
phism, both K and C are torsion. By Theorem 8.3, we have ExtiD(K,N) =
ExtiD(C,N) = 0 for all i. The result follows. �

Proposition 9.5. The notions of “weak fp-envelope” and “fp-envelope”
coincide for nfp modules. Precisely:

(a) Suppose M is an nfp module and M ′ is a weak fp-envelope, so that we
have an isomorphism τ≥n(M)→ τ≥n(M

′) for some n. Then there exists
a unique map M → M ′ restricting to the given isomorphism in degrees
≥ n, and this makes M ′ into an fp-envelope of M .

(b) Suppose M is an nfp module and M →M ′ is an fp-envelope. Then this
map is a near isomorphism, and so M ′ is a weak fp-envelope of M .

In particular, every nfp module admits an fp-envelope, and any two weak fp-
envelopes are canonically isomorphic.

Proof. (a) Let M be an nfp module and let M ′ be a weak fp-envelope,
so that we are given an isomorphism τ≥n(M) ∼= τ≥n(M

′) for some n. By

Lemma 9.4, the map τ≥n(M) → τ≥n(M)′ ⊂ M ′ extends uniquely to a map
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ϕ : M →M ′. Note that ϕ is a near isomorphism. Thus if N is finitely pre-
sented, then the map

ϕ∗ : HomD

(
M ′,N

)
→HomD(M,N)

is an isomorphism by Lemma 9.4, which exactly says that ϕ is an fp-envelope.
(b) Let M →M ′ be an fp-envelope of the nfp module M , and let M ′′ be a

weak fp-envelope of M . By (a), M ′′ is canonically an fp-envelope of M . Since
any two fp-envelopes are canonically isomorphic, we see M ′ is also a weak
fp-envelope. �

For an nfp module M , let Φ(M) denote its fp-envelope. Then Φ defines a

functor ModnfpD →ModfpD, and there is a natural transformation M →Φ(M).

Proposition 9.6. The category ModnfpD is an Abelian subcategory of
ModD.

Proof. Let f : M →N be a map of nfp modules. Then we have a commu-
tative square

M
f

N

Φ(M)
Φ(f)

Φ(N)

The vertical maps are near isomorphisms. It follows that the map ker(f)→
ker(Φ(f)) is also a near isomorphism, and so ker(f) is nfp. Similarly for the

cokernel and image of f . This shows that ModnfpD is an Abelian subcategory
of ModD. �

Proposition 9.7. The functor Φ is exact.

Proof. Suppose that

0→M1 →M2 →M3 → 0

is an exact sequence of nfp modules. Then the sequence

0→Φ(M1)→Φ(M2)→Φ(M3)→ 0

is isomorphic to the original one in all sufficiently high degrees. Thus the
homology of this sequence is both torsion and finitely presented, and therefore
vanishes. �

Let ModtorsD denote the category of finitely generated torsion modules. This

is a Serre subcategory of ModnfpD .

Proposition 9.8. The inclusion functor ModfpD → ModnfpD induces an

equivalence of categories ModfpD → ModnfpD /ModtorsD . The functor

Φ: ModnfpD →ModfpD induces a quasi-inverse.
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Proof. Since Φ is exact and kills ModtorsD , it does factor through the Serre
quotient. If M is an nfp module, then the kernel and cokernel of M →Φ(M)
are torsion, and so this map is an isomorphism in the Serre quotient. Of course,
if M is finitely presented, then Φ(M) =M . This proves the claim. �

Proposition 9.9. An extension of nfp modules is again nfp.

Proof. Consider an exact sequence

0→M1 →M2 →M3 → 0

with M1 and M3 nfp. We must show that M2 is nfp. Let M ′
1 and M ′

3 be the
fp-envelopes of M1 and M3. Pusing out the above extension along the map
M1 →M ′

1, we obtain a new extension

0→M ′
1 →M ′

2 →M3 → 0.

The map M2 →M ′
2 is a near isomorphism, so it suffices to show M ′

2 is nfp.
By Lemma 9.4, the pullback map Ext1(M ′

3,M
′
1)→ Ext1(M3,M

′
1) is an iso-

morphism. Thus, there is an extension

0→M ′
1 →M ′′

2 →M ′
3 → 0

such that M ′
2 is the pullback of M ′′

2 along M3 →M ′
3. Since M

′′
2 is an extension

of finitely presented modules, it is finitely presented. The map M ′
2 →M ′′

2 is a
near isomorphism, and so M ′

2 is nfp. The result follows. �

9.3. Decompletion over Noetherian rings. In this section, we prove
some results about completions that are needed in the following section. We
fix a Noetherian ring R and an ideal a of R. We assume that R is a-adically
separated, or equivalently, that a is contained in the Jacobson radical of R.

For a R-module M , we write M̂ for its a-adic completion.

Proposition 9.10. Let M and N be finitely generated R-modules. Then
there exists an integer k ≥ 0 such that for any n ≥ k the natural map
an−kHomR(M,akN)→Hom(M,anN) is an isomorphism.

Proof. The map in the proposition is clearly injective, so it suffices to prove
it is surjective. Let B =

⊕
n≥0 a

n be the blow-up algebra, a graded Noetherian

R-algebra, and let H =
⊕

n≥0HomR(M,anN), a graded B-module. Let F →
M be a surjection with F a finite free R-module, and define H ′ similarly but
with F in place of M . Then H is naturally a B-submodule of H ′. However, H ′

is just a finite direct sum of copies of
⊕

n≥0 a
nN , and thus a finitely generated

B-module. By noetherianity, H is finitely generated as a B-module. Suppose
H is generated in degrees ≤ k. Then, since B is generated in degree 1 (as a
R-algebra), we find that the natural map Bn−k ⊗R Hk →Hn is surjective for
any n≥ k. This proves the proposition. �
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Proposition 9.11. Let M and N be finitely generated R-modules. Then
the natural map

Φ: HomR(M,N)∧ →HomR̂(M̂, N̂)

is an isomorphism.

Proof. We first prove that Φ is injective. Suppose Φ(f) = 0, and let
(fi) ∈ HomR(M,N) be a sequence converging to f in the a-adic topol-
ogy. Since Φ(f) = 0, we have Φ(fi) → 0. Thus, for any n ≥ 0, we have

Φ(fi) ∈ anHomR̂(M̂, N̂) for all i� n. Fix such an i. Thus fi maps M into

N ∩ anN̂ = anN , and so fi ∈ HomR(M,anN). By the previous proposition,
we find fi ∈ an−kHomR(M,N) for some k depending only on M and N . This
shows that fi → 0 in HomR(M,N) for the a-adic topology, and so f = 0.

We now prove that Φ is surjective. Let f : M̂ → N̂ be given. It suffices to
find a sequence (gn) in HomR(M,N) converging to f . Let

0→K → F →M → 0

be a presentation for M with F finite free, and let e1, . . . , er be a basis for F .

Let xi = f(ei) ∈ N̂ and choose y
(n)
i ∈ N such that xi − y

(n)
i ∈ anN̂ . Define

hn : F →N by hn(ei) = y
(n)
i . We have hn(K)⊂ anN .

Let H be the image of the restriction map HomR(F,N)→ HomR(K,N).
Let k ≥ 0 be such that

HomR

(
K,an

)
= an−kHomR

(
K,akN

)
for n≥ k, and let � be such that

H ∩ anHomR(K,N) = an−�
(
H ∩ a�HomR(K,N)

)
for n≥ k. The number k exists by the previous proposition, while the number
� exists by the Artin–Rees lemma. We have

hn|K ∈H ∩HomR

(
K,anN

)
=H ∩ an−kHomR

(
K,akN

)
= an−k−�

(
H ∩ a�HomR

(
K,akN

))
,

and so hn|K ∈ an−k−�H . In other words, we can find maps h′
i : F → N and

elements ai ∈ an−k−�, for i in some index set In, such that hn and
∑

i∈In
aih

′
i

have the same restriction to K.
Let gn = hn −

∑
i∈In

aih
′
i. Then gn restricts to 0 on K, and thus defines

an element of HomR(M,N). We have gn(ei) = hn(ei) modulo an−k−�, and

hn(ei) = xi modulo an. Thus f − gn maps into an−k−�N̂ , that is, f − gn ∈
HomR̂(M̂,an−k−�N̂). Another application of the previous proposition now
gives gn → f , which completes the proof. �

Proposition 9.12. Let M and N be finitely generated R-modules. Then
Isom(M,N) is open in Hom(M,N) for the a-adic topology.
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Proof. If M and N are not isomorphic then Isom(M,N) is empty, and thus
open. Thus, assume M and N are isomorphic. It suffices to treat the case
where M =N . Furthermore, since Aut(M) is a group, it suffices to show that
some open neighborhood of idM in End(M) is contained in Aut(M). In fact,
id + aEnd(M) ⊂ Aut(M). To see this, let f : M →M be an endomorphism
such that f − id ∈ aEnd(M). Then f : M/aM →M/aM is surjective, and so
f is surjective by Nakayama’s lemma (here it is important that a is contained
in the Jacobson radical of R). Surjectivity of f implies injectivity [Stacks,
Tag 05G8], and so f ∈Aut(M). �

Proposition 9.13. Let f : M → N be a map of finitely generated R-

modules. If f̂ : M̂ → N̂ is an isomorphism, then f is an isomorphism.

Proof. Consider the sequence

0→K →M
f→N →C → 0.

Since completion is exact, we find K̂ = Ĉ = 0, and so K = C = 0. Thus, f is
an isomorphism. �

Proposition 9.14. Let M and N be finitely generated R-modules. If M̂ ∼=
N̂ then M ∼=N .

Proof. Identify Y =HomD(M,N) with a subset of X =HomD̂(M̂, N̂). We
have shown that X is the a-adic completion of Y , and so Y is dense in X . The
set of isomorphisms in X is open, and non-empty by hypothesis. Since Y is
dense in X , it follows that Y meets the locus of isomorphisms. Thus, there is
a map M →N that induces an isomorphism on completions, and is therefore
itself an isomorphism. �
9.4. Uniqueness of weak fp-envelopes. Fix a GDPA D over a Noetherian
ring k. We assume that the Jacobson radical I of k contains infinitely many
of the πn’s. Our main result is the following theorem.

Theorem 9.15. Let M and N be finitely presented D-modules such that
τ≥n(M) is isomorphic to τ≥n(N) for some n. Then M is isomorphic to N .

Corollary 9.16. Any two weak fp-envelopes of an nfp module are iso-
morphic.

Beware that the isomorphism provided by the theorem is not canonical!

We require a few lemmas before proving the theorem. We write M̂ for the

I-adic completion of M . Note that if M is a graded k-module then M̂ is the
direct sum of the completions of the graded pieces of M .

Lemma 9.17. Let M and N be D-modules with M finitely presented. Let n
be larger than the degrees of generators and relations of M . Then the natural
map HomD(M,N)0 →HomD(τ≤n(M), τ≤n(N))0 is an isomorphism.

http://stacks.math.columbia.edu/tag/05G8
http://stacks.math.columbia.edu/tag/05G8
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Proof. Informally, to give a map M →N one says where the generators go
and checks that relations to go to 0, and all of this can be done by looking up
to degree n. We now give a formal argument. We have an exact sequence

0→ τ>n(N)→N → τ≤n(N)→ 0.

Applying HomD(M,−)0, we find

0→HomD(M,N)0 →HomD

(
M,τ≤n(N)

)
0
→ Ext1D

(
M,τ>n(M)

)
0
.

Note that HomD(M,τ>n(N))0 = 0, since the generators of M must map to 0
for degree reasons. Now, consider an exact sequence

0→K → F →M → 0

with F free. The map HomD(K,τ>n(N))0 → Ext1(M,τ>n(N))0 is surjective.
But once again, this Hom is 0 for degree reasons. We have thus shown that
the natural map HomD(M,N)0 →HomD(M,τ≤n(N))0 is an isomorphism. It
is clear that the natural map

HomD

(
τ≤n(M), τ≤n(N)

)
0
→HomD

(
M,τ≤n(N)

)
0

is also an isomorphism, and so the result follows. �

Lemma 9.18. Let M and N be finitely presented D-modules. Let n be larger
than the degrees of generators and relations of both M and N . Then the natural
map IsomD(M,N)0 → IsomD(τ≤n(M), τ≤n(N))0 is an isomorphism.

Proof. Injectivity follows immediately from the previous proposition. Let
f : τ≤n(M) → τ≤n(N) be an isomorphism, and let g be its inverse. By the
previous proposition, f = τ≤n(f) and g = τ≤n(g). Since τ≤n(gf) = τ≤n(idM ),
the previous proposition gives gf = idM . Similarly fg = idN , and the result
follows. �

Proof of Theorem 9.15. Let M and N be finitely presented D-modules
with τ≥n(M)∼= τ≥n(N). Suppose that the generators and relations of M and
N are in degrees ≤ d. Let M0 = τ≤d(M) and N0 = τ≤d(N), both of which
are finitely generated modules over the noetherian ring R = τ≤d(D). Since

τ≥n(M)∼= τ≥n(N), we find τ≥n(M̂)∼= τ≥n(N̂). Proposition 9.5 yields an iso-

morphism M̂ ∼= N̂ of D̂-modules. Applying τ≤d, we obtain an isomorphism

M̂0
∼= N̂0 of R̂-modules. Proposition 9.14 now gives an isomorphism M0

∼=N0

of R-modules. (Here we use a = I · R.) Finally, Lemma 9.18 gives M ∼= N ,
completing the proof. �

9.5. Some counterexamples. We now give some examples showing that
the hypotheses in some of our results are necessary.
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9.5.1. An nfp module without an fp-envelope. Let k = Z(p), let D be the

classical divided power algebra over k, and let M =D/(x[1]).

Proposition 9.19. The nfp module τ≥1(M) does not have an fp-envelope.

Proof. Since Mn is torsion for n≥ 1, we see that τ≥1(M) is naturally a Zp-
module. Furthermore, since there is no bound on the exponent of the group
Mn, it follows that Zp acts faithfully on τ≥1(M).

Now, suppose that N is an fp-envelope of τ≥1(M). Then

HomD

(
τ≥1(M), τ≥1(M)

)
0
=HomD

(
τ≥1(M),M

)
0
=HomD(N,M)0.

The first equality is elementary, while the second comes from the definition of
fp-envelope. We have shown that the left group above contains Zp, while the
right group is a finitely generated Z(p)-module. This is a contradiction, and
so the result follows. �

This shows that the completeness assumption in place in Proposition 9.5
cannot be removed.

9.5.2. An nfp modules with multiple weak fp-envelopes. Let k be the ring of
integers in a number field K, let D be the classical divided power algebra over
k, and let M =D/(x[1]).

Proposition 9.20. If the class group of K is non-trivial, then the nfp
module τ≥1(M) admits non-isomorphic weak fp-envelopes.

Proof. Each graded piece of τ≥1(M) is torsion as a k-module, and is thus

a module over k̂= k⊗Z Ẑ. Let a be an ideal of k. Then a⊗k k̂ is isomorphic

to k̂. Thus τ≥1(M ⊗k a) is isomorphic to τ≥1(M). It follows that both M and
M ⊗k a are weak fp-envelopes of M . If a is not principal, then these modules
are not isomorphic, since their degree 0 pieces are not isomorphic. �

We thus see that in Corollary 9.16, the hypothesis that infinitely many of
the πn’s belong to the Jacobson radical is necessary. (Note that in the above
example, the Jacobson radical of k is 0, and πn is nonzero for all n≥ 1.)

Remark 9.21. In fact, there is a simpler, though less interesting, coun-
terexample: taking D= k[x], the nfp module D itself admits non-isomorphism
fp-envelopes, such as D and D⊕D/(x).

10. Open problems

1. Does there exist a graded-coherent GDPA D such that D[h] is not graded-
coherent for some h?

2. Let D be the classical divided power algebra over k. Suppose that D
is graded-coherent and D ⊗ Q ∼= (k ⊗ Q)[x] is Gröbner-coherent. Is D
Gröbner-coherent?
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3. In Proposition 3.20 we computed TorD1 (k,k). Can one compute TorD• (k,k)

as a co-algebra? If M is a finitely presented D-module, does TorD• (M,k)
admit a nice structure as a co-module?

4. If f : M →N is a surjection of special modules, is ker(f) special?
5. Can special dimension be detected by the vanishing of some kind of derived

functor?
6. Conjecture 6.4 on the structure of K(D) when (∗) does not hold, e.g., for

the q-divided power algebra. To prove this, it would be useful to have a
refined version of the L invariant that picks off the Kn piece of a class in
K(D), much as L picks off the K+ piece. At the very least, there should be
a “residue map” K(D)→Kn ⊗Q[ζn] for each n≥ 1, where ζn is primitive
nth root of unity, corresponding to taking the residue of an element of K
at t= ζn. One can construct this map for the q-divided power algebra over
Z[q] using Proposition 6.20, but for a general GDPA we do not know how
to construct it.

7. Does the equivalence in Remark 6.19 hold? Can one reconstruct D from
F , Dt, and Dt ∩F in some direct manner?

8. Are weak fp-envelopes unique when k=Z?
9. Suppose k is Noetherian and its Jacobson radical contains infinitely many

of the πn’s. Is ModnfpD Abelian?

Acknowledgment. The second author thanks Bhargav Bhatt for helpful
conversations.
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[DB] M. Dziemiańczuk and W. Bajguz, On GCD-morphic sequences, IeJNART 3

(2009), 33–37; available at arXiv:0802.1303v1.

[Le] F. Lemmermeyer, Non–principal ideals in cyclotomic fields, 2015; available at
http://mathoverflow.net/questions/195955.

[Lu] S. Lubkin, Cohomology of completions, North-Holland Mathematics Studies,
vol. 42, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 0589714

[Na] R. Nagpal, FI-modules and the cohomology of modular representations of sym-
metric groups; available at arXiv:1505.04294.
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