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ON HIGH-FREQUENCY LIMITS OF U-STATISTICS IN
BESOV SPACES OVER COMPACT MANIFOLDS

SOLESNE BOURGUIN AND CLAUDIO DURASTANTI

Abstract. In this paper, quantitative bounds in high-frequency
central limit theorems are derived for Poisson based U -statistics
of arbitrary degree built by means of wavelet coefficients over

compact Riemannian manifolds. The wavelets considered here

are the so-called needlets, characterized by strong concentration

properties and by an exact reconstruction formula. Furthermore,

we consider Poisson point processes over the manifold such that

the density function associated to its control measure lives in a

Besov space. The main findings of this paper include new rates

of convergence that depend strongly on the degree of regularity

of the control measure of the underlying Poisson point process,

providing a refined understanding of the connection between reg-
ularity and speed of convergence in this framework.

1. Introduction

1.1. Motivations and overview of the literature. Poisson-based U -
statistics are a central tool in mathematical statistics and stochastic geom-
etry and have been the object of many recent investigations and develop-
ments, in particular in combination with stochastic calculus with respect to
Poisson random measures and Malliavin calculus (see, for instance, [BP14],
[LRP13], [RS13]). More recently, Poisson based U -statistics have been stud-
ied by means of wavelet methods, yielding new types of results, especially
in the high-frequency limit (see, e.g., [BDMP16], [BD17]). Wavelet systems
have drawn a lot of interest, both from a theoretical as well as an applied
point of view, more specifically in astrostatistics, where the main motivations
for the results presented here originate. In this paper, we will focus on a
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second-generation class of wavelets, namely, the so-called needlets. Needlet

frames were originally introduced over the d-dimensional sphere in [NPW06a],

[NPW06b], and then have been generalized to different settings such has spin

fiber bundles (see, for example, [GM10], [GM11]) and compact Riemannian

manifolds (see, e.g., [GM09c], [GP11], [KNP12], [Pes13]). The concentration

property in the spatial domain of the needlets (see (10)) allows one to focus on

any subset of a given manifold without having to take into account the entire

structure. Some of the most remarkable statistical applications are discussed

and studied in [BKMP09b], [BKMP09a], [CM15], [DLM14].

The results obtained in [BDMP16], [BD17] deal with Poisson U -statistics

of order one and two, for which quantitative central limit theorem are derived

in the high-frequency limit. In both the linear and quadratic regimes, the

control measure of the Poisson random measure was taken to be absolutely

continuous with respect to the Lebesgue measure with a positive bounded

density bounded away from zero. In this paper, we consider much more

general U -statistics of arbitrary order, based on a Poisson random measure

on a general compact manifold M of arbitrary dimension d with an absolutely

continuous control measure based on a density assumed to live in a given Besov

space Bs
r,q (a detailed introduction to Besov spaces and the interpretation of

their parameters is given in Section 2.4). In particular, this assumption allows

us to provide a fine analysis of the asymptotic behavior of these U -statistics

in terms of the regularity of the density of the control measure. To our

knowledge, these are the first results of this type in this framework and refine

considerably not only the study of the asymptotics of such objects, but also

the quantitative bounds one can obtain, explicitly exhibiting the relationship

between speed of convergence and regularity of the control measure.

More concretely, let {ψj,k : j ≥ 0, k = 1, . . . ,Kj} be a needlet frame with

scale parameter B over a compact manifold M, where Kj is the total number

of needlets corresponding to a given resolution level j (see Section 2.3 for a

self-contained introduction to needlet frames on manifolds). In view of the

concentration property in the spatial domain enjoyed by the needlet frame—

see (10)—needlets are neglectable outside of a subregion of M, called pixel,

of size proportional to B−jd. Assume Nt denotes a Poisson random measure

on the manifold M with control measure μt(dx) :=Rtf(x)dx, where Rt > 0

stands for the expected number of observations at time t and where f ∈ Bs
r,q .

By a slight abuse of notation, we also denote by Nt the support of the Poisson

random measure, and for any p≥ 2, Np
t,�= will stand for the intersection of Np

t

with the complement of the diagonal sets of Rp (that is, Np
t,�= designates the

support of the p-tensorization of the Poisson random measure Nt without its

diagonals sets, i.e., vectors with one or more identical components).
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The main objects under consideration here are defined as follows. Fix a
natural number n≥ 1 and for any j ≥ 0, define

Uj(t) =
∑

(x1,...,xn)∈Nn
t, �=

hj(x1, . . . , xn),

where the kernel hj is the symmetric function given by

hj(x1, . . . , xn) :=

Kj∑
k=1

ψ⊗n
j,k (x1, . . . , xn).

Furthermore, denote by σ2
j the variance of Uj(t) and write Ũj(t) := Uj(t)/σ

2
j

for the normalized version of Uj(t).
The goal of this paper is to establish quantitative bounds for U -statistics

of arbitrary degree p ∈ N built on wavelets coefficients evaluated on Poisson
random fields taking values on a compact Riemannian manifold M of di-
mension d ∈N. Originally presented by W. Hoeffding in [Hoe48], U -statistics
have been since then extensively studied in the literature, see, for instance,
the textbooks [Lee90], [vdV98] for details and discussions. The use of these
statistics is typically motivated by a large set of standard problems in statis-
tical inference, as well as in the field of stochastic geometry. As mentioned in
[vdV98], interesting examples are test statistics such as Wilcoxon or Kendall’s
τ or Cramér statistic. We are interested in the so-called high-frequency limit,
where the scale (i.e., the resolution level of the wavelet system) under inves-
tigation and the number of tests to be considered depend on the size of the
observational sample. A central tool in the proof of our main results is the
so-called Stein–Malliavin method for Poisson point processes, introduced in
the seminal papers [PSTU10], [PZ10].

The so-called Stein–Malliavin method was initially introduced in [NP09] to
establish Berry–Esséen bounds for functionals of Gaussian fields: it combines
the Malliavin calculus of variations with Stein’s method for probabilistic ap-
proximations. Since then, these techniques have become increasingly popular
and have been extended to the framework of Poisson random measures (see,
e.g., [BP14], [PSTU10], [PZ10]), as well as to the framework of spectral the-
ory of general Markov diffusion generators (see, e.g., [Led12]). Quantitative
central limit theorems for U -statistics based on Poisson point processes were
extensively studied in [RS13], where the authors derived a Wiener–Itô chaos
expansion for Poisson based U -statistics. More recent results concerning the
application of the Stein–Malliavin method in order to prove central limit the-
orems for needlet-based linear and nonlinear statistics were recently used by
[Dur16b], [DMP14] and [BDMP16], [BD17], respectively.

1.2. Framework and main results. U -statistics can be introduced as
follows. Given a measurable space {X,X}, let {X1, . . . ,Xν} be a collection
of independent and identically distributed real-valued random variables over
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{X,X}, distributed according to some law P: a parameter θ, characterizing
the law P, is called estimable (or regular, following Hoeffding) of degree m,
if there exists an real-valued measurable function h= h(x1, . . . , xm) such that
h(X1, . . . ,Xm) is an unbiased estimator of θ, that is,

E
(
h(X1, . . . ,Xm)

)
= θ.

Without loss of generality, h can be assumed to be symmetric. Indeed, if g is
an unbiased estimator for θ of degree m that is not symmetric, its symmetric
version can be easily constructed as follows

h(x1, . . . , xm) =
1

m!

∑
(π1...,πm)∈Sm

g(xπ1 , . . . , xπm),

where Sm is the symmetric group over m elements. Given a sample of ob-
servations {X1, . . . ,Xν} of size ν > m, a U -statistic with kernel h is given
by

Um =
1(
ν
m

) ∑
(i1,...,im)∈Σm,ν

h(Xi1 , . . . ,Xim),

where Σm,ν is the set of all the
(
ν
m

)
combinations of m integers i1 < · · ·< im

chosen from {1, . . . , ν}.
In our framework, we consider a generic compact Riemannian manifold

(M, g) and we denote with dx the Lebesgue measure over M. Take a Pois-
son process over M, with intensity measure μt. In what follows, we assume
μt(dx) =Rtf(x)dx, where Rt > 0 and f is a density function over M: a com-
plete description of this setting is given in Section 2.2, cf. also, for instance,
[PSTU10], [PZ10]. Let us moreover denote by {ψj,k : j ≥ 0, k = 1, . . . ,Kj} the
set of needlets built over M, associated to a scale parameter B. j > 0 is the
so-called resolution level, while the index k = 1, . . . ,Kj identifies the location
of the pixel related to ψj,k along M. As explained in Section 2.3, for any
j > 0, the area of each pixel, labeled by λj,k, and Kj are chosen to be pro-
portional to B−dj and Bdj, respectively. Moreover, let βj,k = βj,k(f) be the
corresponding needlet coefficient, containing information on f , determined by
the inner product

βj,k =

∫
M

ψj,k(x)f(x)dx.

Moreover, assume that f belongs to the so-called Besov space Bs
r,q , which

describes the regularity properties of the function f and consequently of the
associated wavelet coefficients appearing in the decomposition of f . Further
details concerning the construction and the properties of needlets and needlet
coefficients over compact Riemannian manifolds will be given in Section 2.3,
see also [GP11], [KNP12], [Pes13], while Besov spaces will be discussed in
Section 2.4, cf. also [GM09a]. Let us introduce the following notation: for
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any α : M �→R, we define the tensor α⊗n :Mn �→R as

α⊗n(x1, . . . , xn) =

n∏
i=1

α(xi),

where xi ∈M for i= 1, . . . , n. Using this notation, let us introduce the kernels

(1) hj(x1, . . . , xn) =

Kj∑
k=1

ψ⊗n
j,k (x1, . . . , xn),

and their reduced versions, for p ∈ N, 1 ≤ p < n (recall for the calculation
below that μt(dx) =Rtf(x)dx),

hj,p(x1, . . . , xp)(2)

=

(
n

p

)∫
Mn−p

hj(x1, . . . , xn)μ
⊗(n−p)
t (dxp+1, . . . , dxn)

=

Kj∑
k=1

(
n

p

)
Rn−p

t

(∫
M

ψj,k(x)f(x)dx

)n−p

ψ⊗p
j,k (x1, . . . , xp)

=

Kj∑
k=1

(
n

p

)
Rn−p

t βn−p
j,k ψ⊗p

j,k (x1, . . . , xp),

taking values respectively, over Mn and Mp. Observe that

(3) σ2
j := Var

(
n∑

p=1

Ip(hj,p)

)
=

n∑
p=1

E
(
Ip(hj,p)

2
)
=

n∑
p=1

p!Rp
t ‖hj,p‖2L2(μp),

where Ip(hj,p) denote the multiple Wiener–Itô integral (see Definition 2.2 for
details about multiple Wiener–Itô integrals with respect to Poisson random
measures) of hj,p with respect to the Poisson random measure Nt (the defini-
tion of Poisson random measures is given in Definition 2.1). For all 1≤ p≤ n,

define h̃j,p(x1, . . . , xn) = σ−1
j hj,p(x1, . . . , xn). Observe that, by construction,

E

(
n∑

p=1

Ip(h̃j,p)

)
= 0, Var

(
n∑

p=1

Ip(h̃j,p)

)
= 1.

We will study the convergence in law of the random variable

(4) Ũj :=

n∑
p=1

Ip(h̃j,p).

Following [RS13], cf. also Definition 2.5, Ũj is a U -statistic in the framework
of Poisson random measures, see Section 2.2 for further details.

Remark 1.1. A key aspect of the upcoming analysis is to obtain an asymp-
totic equivalent of the variance of (4), namely, σ2

j , or at least an asymptotic
lower bound. At first glance, it seems like many possible cases could arise,
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depending on which chaoses dominate. For instance, for a U -statistic of order
10, the chaoses of order 3 and 7 could be the dominating ones, or just the first
chaos, depending on the structure of the kernel of the U -statistic. It turns
out, as proven in Proposition 5.2 (see also Remark 5.3), that only three cases
can arise: either the first chaos dominates, or the last chaos dominates, or
they must all be asymptotically equivalent. This surprising phenomenon was
quite unexpected and contributes to the general understanding of U -statistics
and, although crucial in our proofs, is hence of independent interest of the
rest of the paper. An (rather hidden) illustration of this fact already appears
in [BDMP16] where U -statistics of order two are studied: it was determined
that two cases could arise, namely, either the first chaos dominates or the
second chaos dominates. In this setting, the second chaos being also the last
one, this is in line with the above principle. The third case, although not
mentioned in [BDMP16] (as it had not been identified), where all chaoses are
asymptotically equivalent can be included either in the first chaos domination
case or the second chaos domination case.

Finally, let us introduce the following notation: let {xj : j ≥ 0} and {yj : j ≥
0} be two positive real-valued sequences and let C denote a generic positive
constant.

– xj � yj ⇔ lim
j→∞

xj ≤C lim
j→∞

yj .

– xj � yj ⇔ yj � xj .
– xj ∼ yj ⇔ xj � yj and xj � yj .

1.2.1. Main results: Poissonized case. The main result of this paper, pre-

sented below, is a central limit theorem for Ũj(t) for which bounds on the

Wasserstein distance (see Definition 2.7) between Ũj(t) and a standard nor-
mal distribution are derived in terms of the dimension d of the manifold M,
the expected number of observations Rt, the scale parameter of the needlet
frame B, the resolution level j, as well as the Besov regularity parameter s of
the density function f .

Theorem 1.2. Let Ũj be the random variable appearing in (4) and let Z
denote a random variable with the N (0,1) distribution. Then,

(i) If RtB
−j(2s+d) →∞ as j →∞, then

dW (Ũj ,Z) � R
− 1

2
t Bjs;

Furthermore, if R
− 1

2
t Bjs → 0 as j →∞, then Ũj converges in distribution

to Z with a rate given by the above bound.
(ii) If RtB

−j(2s+d) → 0 or RtB
−j(2s+d) ∼ 1 and RtB

−jd →∞ as j →∞, then

dW (Ũj ,Z) � B−j d
2 .
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Furthermore, Ũj converges in distribution to Z with a rate given by the
above bound.

1.2.2. Main results: De-Poissonized case. In what follows, we show how The-
orem 1.2 can be extended to include the case of classical (de-Poissonized)
U -statistics. This result will be based on a de-Poissonization lemma proved
in [BDMP16, Lemma 1.1], that we will restate here for the sake of convenience.
The framework we place ourselves in is the following: let X = {Xi : i≥ 1} be
a sequence of independent and identically distributed random variables with
values in M. Furthermore, let {Nm : m ≥ 1} be a sequence of Poisson ran-
dom variables independent of X , such that Nm has a Poisson distribution
with mean m for every m. For every m ≥ n (recall that n is the order of
the U -statistics under consideration), the symbol Um denotes the Poissonized
U -statistic with kernel given by (1):

(5) Um =
∑

1≤i1,...,in≤Nm

hj(Xi1 , . . . ,Xin),

where the sum runs over al n-tuples (i1, . . . , in) such that ij �= ik for j �= k.
For every m≥ 1, the symbol U ′

m denotes the classical U -statistic

(6) U ′
m =

∑
1≤i1,...,in≤m

hj(Xi1 , . . . ,Xin),

where, as before, the sum runs over al n-tuples (i1, . . . , in) such that ij �= ik
for j �= k. Note that E(Um) = E(U ′

m) = 0. The following lemma is the de-
Poissonization procedure introduced in [BDMP16, Lemma 1.1].

Lemma 1.3 (Quantitative de-Poissonization lemma). Assume that
E(U2

m)→ 1 as m→∞. Then, as m→∞, E(U ′2
m)→ 1 and

E
[(
Um −U ′

m

)2]∼m−1/2.

The following result extends Theorem 1.2.

Theorem 1.4. Let Ũ ′
m be the renormalized version of the random vari-

able appearing in (6) and let Z denote a random variable with the N (0,1)
distribution. Then,

(i) If mB−j(2s+d) →∞ as m→∞, then

dW
(
Ũ ′

m,Z
)
�m− 1

2Bjs +m− 1
4 ;

Furthermore, if m− 1
2Bjs → 0 as j →∞, then Ũ ′

j converges in distribu-
tion to Z with a rate given by the above bound.

(ii) If mB−j(2s+d) → 0 or mB−j(2s+d) ∼ 1 and mB−jd →∞ as j →∞, then

dW
(
Ũ ′

m,Z
)
� B−j d

2 +m− 1
4 .

Furthermore, Ũj converges in distribution to Z with a rate given by the
above bound.
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1.3. Applications to cosmology. This section presents some statistical
applications meant to provide an applicative background for the results stated
here. Both the examples focus on astrophysical problems, in particular on the
so-called Cosmic Microwave Background (CMB) radiation, a topic of premier
importance for cosmologists in order to understand the origin of the Universe.
Roughly speaking, the CMB radiation can be thought of as an isotropic and
homogenous thermal radiation generated at the beginning of the Universe.
From a mathematical point of view, it can described as a realization of a
Gaussian random field over the sphere. The CMB radiation was extensively
analysed by spatial missions suchWMAP or Planck, which have collected huge
datasets on full-sky fluctuations of the CMB radiation. These measurements
are often corrupted by the presence of galactic foregrounds and point sources,
such as thermal radiation from dust particles generated by our galaxy and
extragalactic point-like microwave signals coming from galaxies and cluster
of galaxies among others. As a consequence, in the recent years, a lot of
statistical methods were developed in order to recover the original CMB signal.
Note that measurements of the CMB radiation are strongly affected by a
strong noise due to the presence of the Milky Way, which totally masks the
actual CMB signal along the celestial equator. For this reason, this subregieon
is called “masked region”. Using needlets allows us to discard the pixels
corresponding to the masked region and only focus on the pixels where the
CMB signal is relevant. There exists a constantly growing literature about this
topic: we suggest [CM09], [GDR+11], [PCB+09] and the textbooks [Dod03],
[MP11] for further details and discussions.

1.3.1. Global thresholding. One of the main issues related to the CMB radi-
ation is the estimation of its power spectrum density function. Undergoing
investigations on this topic use the so-called global thresholding techniques,
which can be summarized as follows. Start by considering the standard re-
gression problem: let {Xi, Yi}, i= 1, . . . , n, be independent observational pairs
so that {Xi} are uniformly distributed locations over M (in this case, the 2-
dimensional sphere), each of them related to the corresponding Yi by the
following regression formula:

Yi = f(Xi) + εi.

The function f : M �→ R is the so-called regression function, while {εi : i =
1, . . . , n} is a set of independent zero-mean random variables which can be
viewed as observational noise. The aim of this problem is to estimate f from
the observational pairs {Xi, Yi}. Among several techniques developed for this
purpose, we focus on the so-called global thresholding needlet method, cf.
[Dur16a]. In this case, an estimator for f is given by

f̂(x) =
∑
j

τj
∑
k

β̂j,kψj,k(x), x ∈M,
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where β̂j,k are the empirical needlet coefficients, which act as unbiased estima-
tors of the theoretical ones. The object τj is called the thresholding function:
its purpose is to establish if the set of empirical coefficients corresponding to
a given resolution level j reproduces f properly or if it is too affected by the
presence of noise. In the first case, the resolution level is kept by the selection
procedure, otherwise it is discarded. From a practical point of view, the func-
tion τj compares a given U -statistic of order p to a threshold proportional
to the size of the pixel surrounding the needlet, that is, Bdj , and the value
n−p/2. More specifically, we define

(7) Θ̂j(p) =

(
n

p

)−1 Kj∑
k=1

∑
i1,...,ip∈Σp,n

p∏
m=1

Yimψj,k(Xim),

whose expectation is given by

E
(
Θ̂j(p)

)
=

Kj∑
k=1

βp
j,k

while the threshold function is given by

τj = 1

{∣∣Θ̂j(p)
∣∣≥ Bdj

n
p
2

}
,

see, for example, [Dur16a]. In the nonparametric estimation framework, the
performance of an estimator is typically evaluated by means of its Lp-risk,

that is, E‖f̂ − f‖pLp(M), which measures the discrepancy between the regres-

sion function and its estimator. Note that the optimal convergence rate for
the Lp-risk in the global thresholding framework by needlet methods is given

by n
−sp
2s+d . Applying the results developed here leads to a more precise under-

standing of the asymptotic behaviour of the estimator. Indeed, they allow

to estimate how and how fast each U -statistic Θ̂j(p) attains its expecta-
tion, providing therefore information about the pth moment of the wavelet
decomposition, for any resolution level j. Note that, even if the structure
of (7) seems to be different from (1), this problem can be reformulated in
terms of density estimation, where we use a sample of size n of observations
{X1, . . . ,Xn}, independent and identically distributed with density f . In this
case, the thresholding function is given by

Θ̂′
j(p) =

(
n

p

)−1 Kj∑
k=1

∑
i1,...,ip∈Σp,n

p∏
m=1

ψj,k(Xim),

1.3.2. Point sources detection. Another relevant topic related to the CMB ra-
diation refers to the so-called sparse component separation. As already men-
tioned, several sources contribute to corrupt the signal measured by CMB
experiments, such as, among others, thermal dust, spinning dust, galaxies
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and clusters. Various techniques were developed in order to recover the orig-
inal CMB signal, giving rise to the research area of component separation,
cf., for instance, [AISH15], [BSB13], [SRH+11]. In particular, we are inter-
ested on the component due to the so-called point sources, the contribution
of which becomes of growing importance at higher frequencies in the infrared.
Furthermore, the locations of point sources are random within the full-sky
and, therefore, they can be described by means of a Poisson process. More
specifically, let A ⊂ Sd and let ξ1, . . . , ξP be locations on the sphere: their
contribution to the measured power spectrum function is given in terms of

N
(p.s.)
t (A) =

P∑
p=1

N
(p)
t δξp(A),

where the label p.s. stands for point sources, δξp is the Dirac mass at ξp and

the mapping t �→N
(p)
t is an independent Poisson process with control measure

λp over [0,∞ ), see also [DMP14]. In practice, point sources add nonlinearity
terms to the original CMB signal, supposed to be Gaussian: as usual, in the
presence of nonlinearity, first and second order statistical methods can prove
inadequate to perform any analysis and, for this reason, higher order statistical
methods have been developed, see again [AISH15], [BSB13]. On the other
hand, U -statistics can be defined to construct estimators of the polyspectra
of order k (namely, the (k+ 1)-point correlation function in harmonic space)
associated to point sources. The techniques presented here can be usefully
applied, for instance, to establish the rate of convergence of these estimators
to the bispectrum related to the infrared components. More specifically the
normalized needlet bispectrum is given by

Ij1,j3,j3 =
∑
k3

β̂j1,k1√
Var(β̂j1,k1)

β̂j2,k2√
Var(β̂j2,k2)

× β̂j3,k3√
Var(β̂j3,k3)

δj1,j2,j3(k1, k2, k3)hj1,j2,j3(k1, k2, k3),

where the functions δj1,j2,j3(k1, k2, k3) and hj1,j2,j3(k1, k2, k3) fix an explicit
relationship among the set of indexes j1, j2, j3, k1, k2, k3. For any j ≥ 0, the
needlet bispectrum corresponding to the level j can be explicitly symmetrized
as follows

Ij,j,j =

(
n

3

)−1 ∑
{i1,i2,i3}∈Σ3,n

∑
k3

ψj,k1(Xi1)√
Var(β̂j,k1)

ψj,k2(Xi2)√
Var(β̂j,k2)

× ψj,k3(Xi3)√
Var(β̂j,k3)

δj,j,j(k1, k2, k3)hj,j,j(k1, k2, k3),

whose asymptotic behaviour can be studied by means of Theorem 1.4.



HIGH-FREQUENCY LIMITS OF U -STATISTICS OVER COMPACT MANIFOLDS 107

1.4. Plan of the paper. The paper is organized as follows: Section 2 pro-
vides some preliminary background on Poisson random measures, the Stein–
Malliavin method, U -statistics, as well as on needlet frames and Besov spaces.
Section 3 contains a more detailed statement of the main results as well as
their proofs. In Section 4, we offer some interpretations of our main results
as well as a parallel with other results on related topics. Finally, Section 5
presents some auxiliary results needed in Section 3, some of which also have
their own independent interest.

2. Preliminaries

2.1. Poisson random measures and U -statistics. Let us now introduce
the concept of Poisson random measure over a general measure space.

Definition 2.1 (Poisson random measure). Let (A,A, ζ) be a measure
space and ζ be a σ-finite, non-atomic measure. A Poisson random measure
on A with control measure (or intensity measure) ζ is a collection of random
variables taking values in Z+ ∪ {+∞}, labeled by {N(C) : C ∈A}, such that
the following properties hold:

(1) N(C) has a Poisson distribution of parameter ζ(C) for every C ∈A;
(2) if C1, . . . ,Cn ∈ A are pairwise disjoint, then N(C1), . . . ,N(Cn) are inde-

pendent.

The centered Poisson random measure N̂ , based on N , is defined as N̂ :=
N − ζ.

From now on, for p≥ 2, Lp
s(ζ

k)⊂ Lp(ζk) will denote the subspace of sym-
metric functions (where here, and throughout the article, we use the shorthand
notation Lp(ζk) to denote the Lebesgue space Lp(Ak,A⊗k, ζ⊗k)).

Definition 2.2 (Wiener–Itô integrals). For every deterministic function
h ∈ L2(ζ), we write

I1(h) =

∫
Z

h(z)N̂(dz)

to indicate the Wiener–Itô integral of h with respect to N̂ . For every q ≥ 2
and every f ∈ L2

s(ζ
q), we denote by Iq(f) the multiple Wiener–Itô integral,

of order q, of f with respect to N̂ . We also set Iq(f) = Iq(f̃), where f̃ denote
the symmetrization of f , for every f ∈ L2(ζq) (not necessarily symmetric),
and I0(b) = b for every real constant b.

The reader is referred for instance to [PT11, Chapter 5] or [Pri09] for
a complete discussion of multiple Wiener–Itô integrals and their properties
(including the forthcoming Propositions 2.3 and 2.4).

Proposition 2.3. The following equalities hold for every q,m≥ 1, every
f ∈ L2

s(ζ
q) and every g ∈ L2

s(ζ
m):
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1. E(Iq(f)) = 0,
2. E(Iq(f)Im(g)) = q!〈f, g〉L2(ζq)1{q=m}.

The Hilbert space composed of the random variables of the form Iq(f),
where q ≥ 1 and f ∈ L2

s(ζ
q), is called the qth Wiener chaos associated with

the Poisson measure N . The following well-known chaotic representation
property is an essential feature of Poisson random measures. Recall that F is
assumed to be generated by η.

Proposition 2.4. Every random variable F ∈ L2(Ω,F ,P), where F is the
σ-algebra generated by N , admits a (unique) chaotic decomposition of the type

F = E[F ] +
∞∑
p=1

Ip(fp),

where the series converges in L2(Ω,F ,P) and, for each p≥ 1, the kernel fp is
an element of L2

s(ζ
p).

We recall here the general definition of a Poisson based U -statistic given
in [RS13].

Definition 2.5 (Poisson U -statistics). Consider a Poisson random mea-
sure N , with σ-finite non-atomic intensity measure ζ on (A,A) and fix k ≥ 1.
The random variable F is a U -statistic of order k based on N if there exists
a kernel h ∈ L1

s(ζ
k) such that

(8) F =
∑

(x1,...,xk)∈Nk
�=

h(x1, . . . , xk).

The following crucial fact is proved by Reitzner and Schulte in [RS13,
Lemma 3.5 and Theorem 3.6].

Proposition 2.6. Consider a kernel h ∈ L1
s(ζ

k) such that the correspond-
ing U -statistic F in (8) is square-integrable. Then, h is necessarily square-
integrable, and F admits a chaotic decomposition of the form

F =

∫
Ak

h(x1, . . . , xk)dζ
k +

∞∑
i=1

Ii(hi),

with

hi(x1, . . . , xi)

=

(
k

i

)∫
Ak−i

h(x1, . . . , xi, xi+1, . . . , xk)dζ
k−i, (x1, . . . , xi) ∈Ai,

for 1≤ i≤ k, and hi = 0 for i > k. In particular, h= hk and the projection hi

is in L2
s(ζ

i) for each 1≤ i≤ k.
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2.2. Stein–Malliavin bounds. In this section, we will provide a quick
overview on Stein–Malliavin bounds for Poisson random measure: the reader
is referred to [PSTU10], [PZ10] for further details and discussions.

Definition 2.7 (Wasserstein distance). Let X and Y be two real-valued
random variables. The Wasserstein distance between the laws of X and Y is
defined to be

dW (X,Y ) = sup
h∈Lip(1)

∣∣E[h(X)
]
−E

[
h(Y )

]∣∣,
where Lip(1) denotes the class of real-valued Lipschitz functions, from R to
R, with Lipschitz constant less or equal to one.

Recall that the topology induced by the Wasserstein metric on the class
of probability measures on R is strictly stronger than the topology of weak
convergence.

We now introduce the so-called star-contraction between g ∈ L2(ζp) and
h ∈ L2(ζm). The so-called star-contraction operator ��r reduces the number
of variables in the tensor product between g and h from p+m variables to
p+m− r − � variables by identifying r variables in g and h and integrating
with respect to � among them. More precisely, is the following definition.

Definition 2.8. For p,m ≥ 1, r = 1, . . . , p ∧ m and � = 1, . . . , r, given
the symmetric functions g ∈ L2(ζp) and h ∈ L2(ζm), the function g ��r h ∈
L2(ζp+m−r−�) is the called star-contraction of index (r, �) between g and h
and is defined as follows

g ��r h(t1, . . . , tp−r, γ1, . . . , γr−�, s1, . . . , sm−�)

:=

∫
A�

g(t1, . . . , tp−r, γ1, . . . , γr−�, z1, . . . , z�)

× h(s1, . . . , sm−r, γ1, . . . , γr−�, z1, . . . , z�)ζ
�(dz1 · · ·dz�).

From now on, we will consider A=R
+×M and A= B(R+×M), the class

of Borel subsets of R+×M. We will denote by N the Poisson random measure
on R

+ ×M with intensity given by the product ζ = ρ× μ. The measure ρ
is proportional to the Lebesgue measure � on R, i.e., ρ(ds) = R · �(ds). R
is a fixed parameter, such that ρ([0, t]) = R · t =: Rt. Note that t can be
viewed as the time, cf. also [DMP14], [BDMP16]. On the other hand, μ
describes a probability measure over M absolutely continuous with respect
to the Lebesgue measure over M, so that we can rewrite μ(dx) = f(x)dx.
Therefore, for any t > 0, the object Nt will denote a Poisson measure over
(M,B(M)) with control μt :=Rtμ such that for any B ∈ B(M), it holds

Nt(B) :=N
(
[0, t]×B

)
.

The following result is taken from [LRP13] and provides a bound on the
Wasserstein distance between a vector of multiple Poisson integrals and the
multidimensional Gaussian distribution with a given covariance matrix.
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Theorem 2.9 (Lachièze–Rey, Peccati—2013). Let Ũj be the random vari-
able appearing in (4) and let Z denote a random variable with the N (0,1)
distribution. Then, there exists a universal constant C0 =C0(n) ∈ (0,∞), de-
pending uniquely on n, such that

dW (Ũj ,Z) ≤ C0(n)
{
max

1

∥∥h̃j,p �
�
r h̃j,p

∥∥
L2(μ2p−r−�

t )

+max
2

∥∥h̃j,p �
�
r h̃j,q

∥∥
L2(μp+q−r−�

t )
+ max

p=1,...,n
‖h̃j,p‖2L4(μp

t )

}
,

where max1 ranges over all 2 ≤ p ≤ n, and all pairs (r, �) such that r ∈
{1, . . . , p} and 1≤ �≤ r ∧ (p− 1), whereas max2 ranges over all 1≤ p < q ≤ n
and all pairs (r, �) such that r ∈ {1, . . . , p} and � ∈ {1, . . . , r}.

2.3. Needlets on compact manifolds. This subsection is concerned with
the construction of needlet systems over compact homogeneous manifolds,
following [KNP12], [GP11] (cf. also [Pes13]). Let (M, g) be a smooth compact
homogeneous Riemannian manifold of dimension d, with no boundaries. Let
LM be the Laplace operator overM: in many cases, such as the d-dimensional
sphere, projective spaces and other examples (cf. [GP11]), it can coincide
with −ΔM, the Laplace–Beltrami operator on M with respect to g. The set
{�q : q ≥ 0} is the set of eigenvalues associated to the eigenfunctions {uq : q ≥
0} solving, for q ≥ 0, the second-order differential equation (LM − �q)uq = 0.
From now on, the eigenvalues will be ordered so that 0< �1 ≤ �2 ≤ · · · . Let dx
be the uniform Lebesgue measure over M. As is well-known in the literature
(cf. [GM09c], [GP11]), the set of eigenfunctions {uq : q ≥ 0} forms a complete
orthonormal basis for the function space L2(M) = L2(M, dx), such that

〈uq, uq′〉L2(M) =

∫
M

uq(x)uq′(x)dx= δq′q ,

where δ is the Kronecker delta function. Every function f ∈ L2(M) can
therefore be decomposed in terms of its harmonic coefficients, given by aq =
〈f,up〉L2(M), so that ∑

q≥0

|aq|2 = ‖f‖2L2(M).

Therefore, the following harmonic expansion holds in the L2-sense:

f(x) =
∑
q≥1

aquq(x) ∀x ∈M.

Our aim is to define a wavelet system over (M, g) describing a tight frame
over M. Recall that a frame over M can be defined as a countable set of
functions, that is, {ei : i≥ 0}, such that, for any f ∈ L2(M),

c‖f‖L2(M) ≤
∑
i≥0

∣∣〈f, ei〉L2(M)

∣∣2 ≤C‖f‖L2(M).
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A frame is said to be tight if c = C, in which case C is referred to as the
tightness constant. Following [Pes13] and the references therein (see also
[GM09b], [GM09c], [NPW06b]), our aim here is to build a frame {ψj,k} on
L2(M): fix Q ∈N and consider the setHQ, given by the span of eigenfunctions
uq such that q ≤Q, also called the space of band-limited functions on M with
bandwidth Q. Define an ε-lattice over M, given by a set of points {ξk} on
M, which can be viewed as the centers of balls such that:

(1) the balls of radius ε/4 are disjoint;
(2) the union of the balls of radius ε/2 forms a cover of M;
(3) the multiplicity (the multiplicity of a finite covering of a set M is the

largest integer k such that there is a point of M contained in k elements
of the given covering) of the cover is not greater than a natural number
NM <∞ (determined by the bounded geometry of the manifold).

As proved in [GP11], see also [KNP12], [Pes13], given 0< δ < 1, there exists
a constant c0 depending on M and δ such that, if ε= c0Q

−1/2, there exists a
set of weights λξk associated to the ε-lattice χQ = {ξk}, k = 1, . . . , card(χQ),
such that for any f ∈HQ it holds that

(9)

∫
M

f(x)dx=
∑

ξk∈χQ

= λξf(ξk).

Let us define the scale parameter B > 1 and the so-called window function
b :R �→R

+ enjoying the following crucial properties:

(1) b has a compact support included in [B−1,B];
(2) b ∈C∞(R);
(3) the following partition of unity property holds:∑

j>1

b2
(
cB−2j

)
= 1 for any c > 1.

Let Λj = {q : �q ∈ [B2(j−1),B2(j+1)]}, f ∈ L2(M) and introduce the notation

Pq(x, y) = uq(x)uq(y). Consider the sequence of projection operators Aj onto
HBj+1 , given by

A0[f ] =

∫
M

f(x)dx;

Aj [f ](x) =

∫
M

Aj(x, y)f(y)dy, j ≥ 1,

where the kernels Aj(x, y) are defined by

Aj(x, y) =
∑
q∈Λj

b2
(

�q
B2j

)
Pq(x, y).
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Consider the so-called needlet operator with kernel Mj(x, y), given by

Mj(x, y) =
∑
q∈Λj

b

(
�q
B2j

)
Pq(x, y).

Using the orthonormality property of {uq : q ≥ 0}, we get

Aj(x, y) =

∫
M

Mj(x, z)Mj(z, y)dz.

Following [KNP12], note that, for each fixed x, the kernel Mj satisfies z �→
Mj(x, z) ∈ HB2(j+1) . Theorem 6.1 in [GP11] states that if f1, f2 ∈ Hn, then
f1f2 ∈ Hcn, where c is a positive constant. Let Zj = HcB2(j+1) and define
Kj = card(Zj). The kernel Aj and the action of the projection operator Aj [·]
on L2(M) can be represented respectively, as

Aj(x, y) =

Kj∑
k=1

λj,kMj(x, ξj,k)Mj(ξj,k, y);

Aj [f ](x) =

Kj∑
k=1

√
λj,kMj(x, ξj,k)

∫
M

√
λj,kMj(ξj,k, y)f(y)dy,

where the λj,k are the weights appearing in (9) associated the points ξj,k of
the ε-lattice χQ. For x ∈M, the needlet (scaling) function is given by

ψj,k(x) =
√

λj,kMj(x, ξj,k) =
√

λj,k

∑
q∈Λj

b

(
�q
B2j

)
Pq(x, ξj,k).

For f ∈ L2(M), j ≥ 0 and k = 1, . . . ,Kj , the needlet coefficient corresponding
to ψj,k is given by

βj,k = 〈f,ψj,k〉L2(M) =
√

λj,k

∑
q∈Λj

b

(
�q
B2j

)
aquq(ξj,k),

so that the needlet projection of f onto Zj can be rewritten as

Aj [f ](x) =

Kj∑
k=1

βj,kψj,k(x) ∀x ∈M.

Needlets are characterized by relevant concentration properties, both in the
frequency and spatial domains. Indeed, each needlet takes values over a com-
pact set of frequencies, namely, q ∈ Λj , this being a consequence of the com-
pact support property of the weight function b. In addition, the upcoming
property follows from the differentiability of the weight function b (see, for
instance, [GM09c], [KNP12]). For any x ∈M and every η ∈N, there exists a
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constant Cη > 0, independent of j or k, such that

(10)
∣∣ψj,k(x)

∣∣≤ CηB
j d

2

(1 +BjddM(x, ξj,k))η
,

where dM denotes a geodesic metric on M. This property emphasizes the
fact that needlets are not negligible just inside the pixel surrounding the
corresponding cubature point ξj,k with area λj,k.

This above inequality allows one to obtain explicit bounds on the Lp-norms
of needlets (cf. [KNP12], [NPW06a]), more specifically

(11) cpB
jd( 1

2− 1
p ) ≤ ‖ψj,k‖Lp(M) ≤CpB

jd( 1
2− 1

p ).

The following lemma claims another result based on the spatial localization
property.

Lemma 2.10. For any x ∈ S
d, q ≥ 2, ki1 �= ki2 , i1 �= i2, i1, i2 = 1, . . . , q and

η ≥ 2, there exists Cη > 0 such that∫
M

q∏
i=1

ψj,ki(x)dx≤ CηB
dj(q−1)

(1 +BdjΔ)η(q−1)
,

where

Δ= min
i1,i2∈{1,...,q},i1 �=i2

dM(ξj,ki1
, ξj,ki2

).

This result first appeared in [Dur16a] for needlets over the d-dimensional
sphere Sd. The original proof can be easily extended to the compact manifold
framework and, therefore, is omitted here for the sake of brevity. Note that,
as a straightforward consequence, the following result holds.

Corollary 2.11. For any x ∈ S
d, any even natural number q ≥ 2 and any

constants cki > 0, i= 1, . . . , q, it holds that, as j →∞,

∫
M

Kj∑
k1,...,kq=1

q∏
i=1

ckiψj,ki(x)dx=O
(
‖ψj,k‖qLq(M)

)
.

Proof. Using Lemma 2.10 yields, as j →∞,∫
M

Kj∑
k1,...,kq=1

q∏
i=1

ckiψj,ki(x)dx=

Kj∑
k=1

cqk

∫
M

ψq
j,k(x)dx+ o

(
Bdj

(1 +BdjΔ)η

)
.

Using (11) concludes the proof. �
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2.4. Besov spaces on compact manifolds. In this subsection, we pro-
vide an operative definition of Besov spaces in terms of their approximation
properties (for further details and discussions, see, for instance, [BKMP09a],
[GM09a], [HKPT97]). Let the approximation error obtained by replacing
f ∈ Lr(M) with Pk ∈Hk be given by

Ek(f, r) = inf
Pk∈Hk

‖f − Pk‖Lr(M).

The Besov space Bs
r,q , of parameters r ∈ [1,∞], q ∈ [1,∞], s≥ d/r, is defined

as the functional space such that, for any f ∈ Bs
r,q ,

(1) f ∈ Lr(M);
(2)

∑∞
k=0

1
k (k

sEk(f, r))
q <∞.

Following [BKMP09a], by using standard concentration arguments, Condition
(2) is equivalent to ∑

j≥0

(
BjsEBj (f, r)

)q
<∞.

The Besov space norm ‖ · ‖Bs
r,q

is defined as follows

‖f‖Bs
r,q

=

{
‖f‖Lr(M) + [

∑
j≥0B

qj(s+d( 1
2− 1

r ))(
∑Kj

k=1 |βj,k|r)
q
r ]

1
q if q <∞,

‖f‖Lr(M) + supj B
j(s+d( 1

2− 1
r ))(

∑Kj

k=1 |βj,k|r)
1
r if q =∞,

so that, if r, q > 1, f ∈ Bs
r,q if and only if ‖f‖Bs

r,q
<∞.

The parameters of the the Besov space Bs
r,q can be interpreted as follows:

• Since f ∈ Lr(M), for any j > 0, the set of needlet coefficients {βj,k : k =
1, . . . ,Kj} belongs to the set of r-summable sequences �r(M);

• q controls the weighted q-norm along the whole scale of coefficients at j;
• s is the smoothness of the decay rate of the q-norm of the needlet coefficients
across the scale j.

Given that, straightforward calculations show that f ∈ Bs
r,q if and only if, for

every j ≥ 1 (
Kj∑
k=1

(
|βj,k|‖ψj,k‖Lr(M)

)r) 1
r

=wjB
−js,

where wj ∈ �q(M). Using (11), we get

(12)

(
Kj∑
k=1

(
|βj,k|

)r) 1
r

=O
(
B−j(s+d( 1

2− 1
r ))

)
.

3. Main results

In the main result of this paper, namely Theorem 1.2, we establish a quanti-
tative central limit theorem with explicit rates of convergence for each possible
subcase. The following theorem is an equivalent restatement of Theorem 1.2,
allowing one to better understand how the rates of convergence are derived.
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In this section, we will first prove the forthcoming result and then show how
it implies Theorem 1.2 and consequently Theorem 1.4 by using Lemma 1.3,
hence completing the proofs of our main results.

Theorem 3.1. Let Ũj be the random variable appearing in (4) and let Z
denote a random variable with the N (0,1) distribution. Then,

(i) If RtB
−j(2s+d) →∞ as j →∞, then

dW (Ũj ,Z)(13)

�
n∑

p=2

p∑
r=1

r∧(p−1)∑
�=1

(
RtB

−j(2s+d)
)1−p(

RtB
−jd

) �−r
2 B−j d

2

+

n∑
q=2

q−1∑
p=1

p∑
r=1

r∑
�=1

(
RtB

−j(2s+d)
)1− p+q

2
(
RtB

−jd
) �−r

2 B−j d
2

+
n∑

p=1

(
RtB

−j(2s+d)
)1−p(

RtB
−jd

)− p
2B−j d

2 .

(ii) If RtB
−j(2s+d) → 0 or R−1

t Bj(2s+d) ∼ 1 as j →∞, then

dW (Ũj ,Z)(14)

�
n∑

p=2

p∑
r=1

r∧(p−1)∑
�=1

(
RtB

−j(2s+d)
)n−p(

R−1
t Bjd

) r−�
2 B−j d

2

+
n∑

q=2

q−1∑
p=1

p∑
r=1

r∑
�=1

(
RtB

−j(2s+d)
)n− p+q

2
(
R−1

t Bjd
) r−�

2 B−j d
2

+

n∑
p=1

(
RtB

−j(2s+d)
)n−p(

R−1
t Bjd

) p
2B−j d

2 .

Remark 3.2. Observe that three terms form each summand in the above
bounds: RtB

−j(2s+d), RtB
−jd and B−j d

2 . Note that RtB
−j(2s+d) is propor-

tional to Rt

Kj

∑Kj

k=1 β
2
j,k. Heuristically, it can be viewed as the sample variance

of the jth level of the needlet decomposition of the Poisson random field. The

term B−j d
2 , as in [BDMP16], can be interpreted as the expected number of

observations in each pixel. Indeed,

E
(
Card

{
Xi : d(Xi, ξj,k)≤B−j

})
�Rt

∫
d(Xi,ξj,k)≤B−j

f(x)dx�RtB
−jd.

The term B−j d
2 comes from the use of relation (12) and can be viewed as

a rescaling weight across the frequencies j. Following from these arguments,
these terms can be called: effective sample variance for RtB

−j(2s+d), effective

sample size for RtB
−jd and scaling factor for B−j d

2 .
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Remark 3.3. As illustrated in the proof of Proposition 5.2, it is when
RtB

−j(2s+d) →∞ as j →∞ that the first chaos dominates, and it is when
RtB

−j(2s+d) → 0 as j →∞ that the last chaos dominates. Furthermore, when
RtB

−j(2s+d) ∼ 1 as j →∞, all the chaos contribute equally. Consequently,
what differentiates between the two cases is the estimate one has to use for
the variance of Ũj .

Proof of Theorem 3.1. Applying Theorem 2.9, we can write, using Propo-
sitions 5.4 and 5.5,

dW (Ũj ,Z) �
n∑

p=2

p∑
r=1

r∧(p−1)∑
�=1

σ−2
j R

2n−p− r
2+

�
2

t B−j(s(2n−2p)+d(n−p− r
2+

�
2− 1

2 ))

+

n∑
q=2

q−1∑
p=1

p∑
r=1

r∑
�=1

σ−2
j R

2n− p
2−

q
2− r

2+
�
2

t

×B−j(s(2n−p−q)+d(n− p
2−

q
2− r

2+
�
2− 1

2 ))

+

n∑
p=1

σ−2
j R

2n− 3p
2

t B−j(s(2n−2p)+d(n− 3p
2 − 1

2 )).

As stated in Remark 3.3, the asymptotic behavior of RtB
−j(2s+d) is what

dictates which is the dominant chaos order in (4). Based on this fact, in
the case (i), where RtB

−j(2s+d) →∞ as j →∞, Proposition 5.2 implies that
σ2
j �R2n−1

t B−j(s(2n−2)+d(n−2)). Careful algebraic computations imply (i). In

the case (ii), when RtB
−j(2s+d) → 0, Proposition 5.2 implies that σ2

j �Rn
t B

jd

and when RtB
−j(2s+d) ∼ 1, Proposition 5.2 implies that σ2

j �Rn
t B

jd (in fact,

we could also take σ2
j �R2n−p

t B−j(s(2n−2p)+d(n−p−1)) for any 1≤ p≤ n as in
this case, all these quantities are asymptotically equivalent). Careful algebraic
computations then imply (ii). �

We now prove Theorem 1.2 by showing how it is implied by Theorem 3.1.

Proof of Theorem 1.2. Let’s start by assuming that RtB
−j(2s+d) →∞ as

j → ∞, which places us in case (i). Then, in the first line of (13), ob-
serve that, as p > 1, the terms (RtB

−j(2s+d))1−p converge to zero at a rate
given by the slowest term, which occurs for p = 2 (the smallest p). Simi-

larly, as � − r ≤ 0, the terms (RtB
−jd)

�−r
2 converge to zero except for the

cases where � = r, in which case these terms are constant. The rate for the

first line is hence given by (RtB
−j(2s+d))−1(RtB

−jd)0B−j d
2 = R−1

t Bj(2s+ d
2 ).

Applying the same logic, the rate for the second line is going to be given

by (RtB
−j(2s+d))1−

1+2
2 (RtB

−jd)
0
2B−j d

2 = R
− 1

2
t Bjs. Finally, the rate for the

third line is going to be given by (RtB
−j(2s+d))1−1(RtB

−jd)−
1
2B−j d

2 =R
− 1

2
t .
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Combining these observations finally yields

dW (Ũj ,Z)�R−1
t Bj(2s+ d

2 ) +R
− 1

2
t Bjs +R

− 1
2

t �R
− 1

2
t Bjs.

Finally, assume RtB
−j(2s+d) → 0 as j →∞. Assume also that RtB

−jd →∞ as
j →∞, which places us in case (ii). Then, in the first line of (14), observe that,
as p≤ n, the term (RtB

−j(2s+d))n−p is going to converge to zero expect for p=
n, for which this term is constant, hence giving the rate of convergence of these

terms. Similarly, the terms (R−1
t Bjd)

r−�
2 are going to converge to zero expect

when r = �, in which case they are constant and giving the rate of convergence
of these terms. So the terms in the first line are going to converge to zero

at a rate given by (RtB
−j(2s+d))n−n(R−1

t Bjd)
0
2B−j d

2 =B−j d
2 . Similarly, the

terms in the second line are going to converge to zero at a rate given by

(RtB
−j(2s+d))n−

n−1+n
2 (R−1

t Bjd)
0
2B−j d

2 = R
1
2
t B

−j(s+d). Finally, in the third
line, observe that the terms (RtB

−j(2s+d))n−p (R−1
t Bjd)

p
2 either converge to

zero or are constant. So, as B−j d
2 converges to zero, an upper bound for the

rate of convergence of the terms of the third line is given by B−j d
2 (as it is

multiplied by constant terms or terms going to zero as well). If we assume
that RtB

−j(2s+d) ∼ 1 as j →∞, the only modification to the previous case
is that the rate of convergence to zero of the second line is directly given by

B−j d
2 as the term RtB

−j(2s+d) converges to a constant. Combining these
observations finally yields

dW (Ũj ,Z)�B−j d
2 +R

1
2
t B

−j(s+d) +B−j d
2 .

Observe that

R
1
2
t B

−j(s+d)

B−j d
2

=
√

RtB−j(2s+d) →
j→∞

0,

so that the rate B−j d
2 converges to zero slower than R

1
2
t B

−j(s+d), which con-
cludes the proof. �

We finally prove Theorem 1.4.

Proof of Theorem 1.4. Observe that, using the triangle inequality,

dW
(
Ũ ′

m,Z
)
≤ dW

(
Ũ ′

m, Ũm

)
+ dW (Ũm,Z),

where Ũm denotes the normalized version of the Poissonized U -statistic (5).
Applying Lemma 1.3 on the first summand and Theorem 1.2 on the second
summand concludes the proof. �

4. Some interpretations and comparisons with other results

Note that, since f ∈ Bs
r,q , the asymptotic behaviour of the U -statistic in-

vestigated in Theorem 1.2 attains Gaussianity in both the cases (i) and (ii).
Both the results can be heuristically motivated as follows. On one hand, in the
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case (i), the number of sampled observations increases faster than the decay of
the sample variance over M, enforcing strong correlation. As a consequence,
the rate depends explicitly on the effective sample variance weighted by the
scaling factor. On the other hand, in the case (ii), the sample variance de-
creases faster than the growth of Rt, so that we need an additional condition
to claim Gaussianity, that is, the effective sample size goes to infinity. It
means that, even if Rt = o(B−j(2s+d)), the number of observations sampled
inside each pixel has to increase faster than the shrinking of the size of the
pixel. In such a case, the rate of convergence to Gaussianity is provided only
by the scaling factor.

Let us now compare our results with the ones established in [BDMP16, The-
orem I.2], which prove a quantitative central limit theorem for U -statistics of
order two built over the needlet frame in the case of a uniform density over
S
d. More specifically, the rate of convergence to Gaussianity of these sta-

tistics is given by the sum of three terms, namely, (RtB
−jd)−

1
2 , B−j d

2 and

R
− 1

2
t . As a consequence, asymptotic normality was attained, provided that

(RtB
−jd)→∞. Note the similarities with the rates of convergence that we ob-

tain in Theorem 1.2. Indeed, the rates of convergence depend on RtB
−j(2s+d),

RtB
−jd, R

− 1
2

t Bjs and B−j d
2 . Observe that this is analogous, in our frame-

work, to the case r =∞ and s= 0, that is, the largest sample case. This choice
of parameters, on one hand, make the effective sample variance collapse into
the effective sample size and, on the other hand, the scaling factor is anni-
hilated by the L∞-norm of the needlets. Hence, the case (i), where it is the
first chaos of the U -statistic decomposition (4) that dominates, corresponds to
[BDMP16, Theorem I.2], while the case (ii) doesn’t exist (the effective sample
size cannot converge at the same time to infinity and zero).

In case (ii) of Theorem 1.2, it is the last chaos of the U -statistic decom-
position (4) that dominates, which is this time analogous to the situation
presented in [BDMP16, Theorem I.2] where the second chaos dominates (as
the order of the U -statistic in [BDMP16] is two, the last and second chaos
are actually the same). The fact that the first chaos sometimes dominates
is due to the presence of strong correlation between the components of the
U -statistic.

5. Auxiliary results

In order to apply Theorem 2.9, we need the following results.

Lemma 5.1. Let σ2
j be the quantity defined in (3). Then it holds that

(15) σ2
j �

n∑
p=1

p!R2n−p
t B−j(s(2n−2p)+d(n−p−1)).
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Proof. Recall that σ2
j is given by (3). For any 1≤ p≤ n− 1, it holds that

‖hj,p‖2L2(μp) ∼ R2n−2p
t

Kj∑
k1,k2=1

βn−p
j,k1

βn−p
j,k2

〈
ψ⊗p
j,k1

, ψ⊗p
j,k2

〉
L2(μp)

∼ R2n−2p
t

Kj∑
k1,k2=1

βn−p
j,k1

βn−p
j,k2

〈ψj,k1 , ψj,k2〉
p
L2(μ).

Using Corollary 2.11, one obtains

‖hj,p‖2L2(μp) � R2n−2p
t

Kj∑
k=1

β2n−2p
j,k ‖ψj,k‖2pL2(μ)

� R2n−2p
t

Kj∑
k=1

β2n−2p
j,k

(∫
Uj

ψj,k(s)
2f(s)ds

)p

,

where Uj ⊂M is defined by

Uj :=

Kj⋃
k=1

B
(
ξj,k,B

jd
)
,

where B(ξj,k,B
jd) denotes the the trace on M of the closed ball with center

ξj,k and radius Bjd. The traces B(ξj,k,B
jd) correspond to the pixels parti-

tioning the manifold M. Following from the localization property (10), recall
that the needlet of indexes j, k is not negligible only over the corresponding
pixel.

Observe that, for any fixed j ≥ 0, Uj is a compact subset of M on which we
assumed that the density function f can be bounded from below by a positive
constant. This yields

‖hj,p‖2L2(μp) �R2n−2p
t

Kj∑
k=1

β2n−2p
j,k

(∫
Uj

ψj,k(s)
2 ds

)p

�R2n−2p
t

Kj∑
k=1

β2n−2p
j,k ,

where the last equivalence is obtained by using (11). Exploiting the estimate
(12) yields

Kj∑
k=1

β2n−2p
j,k ∼B−j(2n−2p)(s+d( 1

2− 1
2n−2p )),

so that

‖hj,p‖2L2(μp) � R2n−2p
t B−j(2n−2p)(s+d( 1

2− 1
2n−2p ))

∼ R2n−2p
t B−j(s(2n−2p)+d(n−p−1)).
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Whenever p= n, we have hj,n = hj and it holds that

‖hj‖2L2(μn) ∼ Rn
t

Kj∑
k1,k2=1

〈
ψ⊗n
j,k1

, ψ⊗n
j,k2

〉
L2(μn)

∼Rn
t

Kj∑
k1,k2=1

〈ψj,k1 , ψj,k2〉nL2(μ)

� Rn
t Kj ∼Rn

t B
jd,

where the last two equivalences were obtained using the same arguments as
above. Gathering these estimates together yields

σ2
j �

n∑
p=1

p!R2n−p
t B−j(s(2n−2p)+d(n−p−1)),

as claimed. �

Proposition 5.2. Let σ2
j be the quantity defined in (3). For 1 ≤ p ≤ n,

define the quantity Λj,p by

Λj,p :=R2n−p
t B−j(s(2n−2p)+d(n−p−1)).

Then, exactly one of the following assertions holds:

(1) Λj,p is dominated by Λj,1 asymptotically for all 2≤ p≤ n, in which case
σ2
j � Λj,1;

(2) Λj,p is dominated by Λj,n asymptotically for all 1 ≤ p ≤ n− 1, in which
case σ2

j � Λj,n;
(3) Λj,p1 is equivalent to Λj,p2 asymptotically for all 1≤ p1, p2 ≤ n, in which

case σ2
j � Λj,n.

Proof. Assume that all the Λj,p, 1 ≤ p ≤ n are asymptotically equiva-
lent. Then assertions (1) and (2) must be false and using (15) yields the
lower bound σ2

j ≥ Λj,n. Assume now that not all the Λj,p, 1 ≤ p ≤ n are
asymptotically equivalent. Then, in the case where n= 2, it is clear that ei-
ther assertion (1) or (2) holds but not both, and the corresponding lower
bounds on σ2

j hold by (15). In the case where n > 2, observe that for

any 1 ≤ p1, p2 ≤ n, it holds that Λj,p1Λ
−1
j,p2

= (RtB
−j(2s+d))p2−p1 . So if

there exist 1 ≤ p1 �= p2 ≤ n such that Λj,p1 = O(Λj,p2), then it follows that

RtB
−j(2s+d) ∼ 1, which in turn implies assertion (3), which is impossible if

not all the Λj,p, 1≤ p≤ n are asymptotically equivalent. So there exists ex-
actly one 1≤ q ≤ n such that Λj,p = o(Λj,q) for all 1≤ p≤ n such that p �= q.
Assume that 1 < q < n. Then for all 1 ≤ p ≤ n such that p �= q, it holds
that Λj,pΛ

−1
j,q = (RtB

−j(2s+d))q−p → 0 as j → ∞. In particular, Λj,1Λ
−1
j,q =

(RtB
−j(2s+d))q−1 → 0 and Λj,nΛ

−1
j,q = (RtB

−j(2s+d))q−n → 0. As q − 1 > 0

and q − n < 0, this implies that RtB
−j(2s+d) → 0 and RtB

−j(2s+d) →∞ si-
multaneously as j →∞, which is impossible. The only possibility that remains
is either assertion (1) or assertion (2). �
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Remark 5.3. Observe that in Proposition 5.2, for any 1 ≤ p ≤ n, Λj,p

corresponds to the normalization (up to constants) of the pth chaos term

in (4). It follows from Proposition 5.2 that either the first chaos term I1(h̃j,1),

the highest chaos term In(h̃j,n) or all chaos terms contribute to the limit of
(4) as j →∞.

Proposition 5.4. Let the above notation prevail. For all 1 ≤ p ≤ q ≤ n,
1≤ r ≤ p and 1≤ �≤ r ∧ (q− 1), it holds that∥∥h̃j,p �

�
r h̃j,q

∥∥2
L2(μp+q−r−�

t )

� σ−4
j R4n−p−q−r+�

t B−j(s(4n−2p−2q)+d(2n−p−q−r+�−1)).

Proof. Using (2) to compute the contractions h̃j,p �
�
r h̃j,q for all 1≤ p < q ≤

n, 1≤ r ≤ p and 1≤ �≤ r yields

h̃j,p �
�
r h̃j,q(x1, . . . , xp−r, γ1, . . . , γr−�, y1, . . . , yq−r)

= σ−2
j

Kj∑
k1,k2=1

(
n

p

)(
n

q

)
R2n−p−q+�

t βn−p
j,k1

βn−q
j,k2

×ψ
⊗(p−r)
j,k1

(x1, . . . , xp−r)ψ
⊗(q−r)
j,k2

(y1, . . . , yq−r)

×
[
ψ⊗r−�
j,k1

ψ⊗r−�
j,k2

]
(γ1, . . . , γr−�)〈ψj,k1 , ψj,k2〉�L2(μ).

Based on that expression, one can deduce the following estimate∥∥h̃j,p �
�
r h̃j,q

∥∥2
L2(μp+q−r−�

t )

=Rp+q−r−�
t

∫
Mp+q−r−�

(
h̃j,p �

�
r h̃j,q

)2
dμ⊗(p+q−r−�)

∼ σ−4
j R4n−p−q−r+�

t

Kj∑
k1,k2,k3,k4=1

βn−p
j,k1

βn−q
j,k2

βn−p
j,k3

βn−q
j,k4

〈ψj,k1 , ψj,k3〉
p−r
L2(μ)

× 〈ψj,k2 , ψj,k4〉
q−r
L2(μ)

× 〈ψj,k1 , ψj,k2〉�L2(μ)〈ψj,k3 , ψj,k4〉�L2(μ)〈ψj,k1ψj,k2 , ψj,k3ψj,k4〉r−�
L2(μ).

Using the asymptotic equivalence relation in Corollary 2.11 repeatedly yields∥∥h̃j,p �
�
r h̃j,q

∥∥2
L2(μp+q−r−�

t )
(16)

∼ σ−4
j R4n−p−q−r+�

t

Kj∑
k=1

β4n−2p−2q
j,k ‖ψj,k‖2p+2q−4r−4�

L2(μ) ‖ψj,k‖4(r−�)
L4(μ) .

Using the fact that the density function f is bounded above along with the

norm estimates (11) allows one to write ‖ψj,k‖2p+2q−4r−4�
L2(μ) ≤
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‖ψj,k‖2p+2q−4r−4�
L2(M) � 1 and ‖ψj,k‖4(r−�)

L4(μ) ≤ ‖ψj,k‖4(r−�)
L4(M) � Bjd(r−�). Combin-

ing these two estimates together in (16) yields

(17)
∥∥hj,p �

�
r hj,q

∥∥2
L2(μp+q−r−�

t )
� σ−4

j R4n−p−q−r+�
t Bjd(r−�)

Kj∑
k=1

β4n−2p−2q
j,k .

Exploiting the estimate (12) yields, for any 1 ≤ p ≤ q ≤ n such that p+ q ≤
2n− 1,

Kj∑
k=1

β4n−2p−2q
j,k ∼B−j(4n−2p−2q)(s+d( 1

2− 1
4n−2p−2q )),

so that, for any 1≤ p≤ q ≤ n such that p+ q ≤ 2n− 1,∥∥h̃j,p �
�
r h̃j,q

∥∥2
L2(μp+q−r−�

t )

� σ−4
j R4n−p−q−r+�

t B−j(s(4n−2p−2q)+d(2n−p−q−r+�−1)).

In the case where p= q = n (in which case h̃j,p = h̃j,q = h̃j,n = h̃j), recalling
that Kj ∼Bjd and using (17) implies that∥∥h̃j,n ��r h̃j,n

∥∥2
L2(μ2n−r−�

t )

� σ−4
j KjR

2n−r+�
t B−jd(−r+�)

∼ σ−4
j R2n−r+�

t B−jd(−r+�−1),

which concludes the proof. �

Proposition 5.5. Let the above notation prevail. For all 1 ≤ p ≤ n, it
holds that

‖h̃j,p‖4L4(μp
t )
� σ−4

j R4n−3p
t B−j(s(4n−4p)+d(2n−3p−1)).

Proof. Using (2) and the fact that f is bounded from above, one can write

‖h̃j,p‖4L4(μp
t )

∼ σ−4
j Rp

t

∫
Mp

h4
j,p dμ

⊗p

∼ σ−4
j Rp

tR
4n−4p
t

Kj∑
k1,k2,k3,k4=1

βn−p
j,k1

βn−p
j,k2

βn−p
j,k3

βn−p
j,k4

×
〈
ψ⊗p
j,k1

ψ⊗p
j,k2

, ψ⊗p
j,k3

ψ⊗p
j,k4

〉
L2(μp)

∼ σ−4
j R4n−3p

t

Kj∑
k1,k2,k3,k4=1

βn−p
j,k1

βn−p
j,k2

βn−p
j,k3

βn−p
j,k4

〈ψj,k1ψj,k2 , ψj,k3ψj,k4〉
p
L2(μ).
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Using Corollary 2.11 and the norm estimates (11), we obtain

‖h̃j,p‖4L4(μp
t )

∼ σ−4
j R4n−3p

t

Kj∑
k=1

β4n−4p
j,k ‖ψj,k‖4pL4(μ)(18)

� σ−4
j R4n−3p

t Bjdp

Kj∑
k=1

β4n−4p
j,k .

Exploiting the estimate (12) yields, for 1≤ p≤ n− 1,

Kj∑
k=1

βn−p
j,k ∼B−j(4n−4p)(s+d( 1

2− 1
4n−4p )),

so that, for 1≤ p≤ n− 1,

‖h̃j,p‖4L4(μp
t )

� σ−4
j R4n−3p

t BjdpB−j(s(4n−4p)+d(2n−2p−1))

∼ σ−4
j R4n−3p

t B−j(s(4n−4p)+d(2n−3p−1)).

In the case where p= n (in which case h̃j,n = h̃j), we have directly from (18)
that

‖h̃j‖4L4(μn
t )

� σ−4
j Rn

t KjB
jdn ∼ σ−4

j Rn
t B

jd(n+1),

which concludes the proof. �
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