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ON THE INJECTIVE DIMENSION OF F -FINITE MODULES
AND HOLONOMIC D-MODULES

MEHDI DORREH

Abstract. Let R be a regular local ring containing a field k
of characteristic p and M be an F -finite module. In this pa-
per, we study the injective dimension of M . We prove that

dimR(M) − 1 ≤ inj.dimR(M). If R = k[[x1, . . . , xn]] where k is

a field of characteristic 0 we prove the analogous result for a

class of holonomic D-modules which contains local cohomology
modules.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with unit. If
M is an R-module and I⊂R is an ideal, we denote the ith local cohomology
of M with support in I by Hi

I (M).
In a remarkable paper, [7], Lyubeznik used D -modules to prove if R is any

regular ring containing a field of characteristic 0 and I is an ideal of R, then

(a) Hi
m(H

i
I (R)) is injective for every maximal ideal m of R.

(b) inj.dimR(H
i
I (R))≤ dimR(H

i
I (R)).

(c) For every maximal ideal m of R the set of associated primes of Hi
I (R)

contained in m is finite.
(d) All the bass numbers of Hi

I (R) are finite.

Here inj.dimR(H
i
I (R)) stands for the injective dimension of Hi

I (R),
dimR(H

i
I (R)) denotes the dimension of the support of Hi

I (R) in Spec(R)
and the jth Bass number of an R-module M with respect to a prime ideal
p is defined as μj(p,M) = dimk(p)Ext

j
Rp

(k(p),Mp) where k(p) is the residue

field of Rp.
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The analogous results had proved earlier for regular local ring of positive
characteristic by Huneke and Sharp [6], using the Frobenius functor.

Later Lyubeznik [8] developed the theory of F -modules over regular ring
of char p > 0 and proved the same results in char p > 0. The theory of F -
modules turned out to be very effective. For example, Lyubeznik and etc.
[1] used D -modules over Z and Q along with the theory of F -modules to
prove if R is a smooth Z-algebra and I an ideal of R then the set of associated
primes of local cohomology module Hi

I (R) is finite.
By Lyubeznik results, the injective dimension of Hi

I (R) is bounded by
its dimension. More generally, if M is an F -module over a regular ring of
positive characteristic or is a D -module over power series ring k[[x1, . . . , xn]]
where k is a field of char 0, then the injective dimension of M is bounded
by its dimension, see [8, Theorem 1.4] and [7, Theorem 2.4(b)]. A ques-
tion of Hellus [5] asks when inj.dimR(H

i
I (R)) = dimR(H

i
I (R)). He proved the

equality inj.dimR(H
i
I (R)) = dimR(H

i
I (R)) for a regular local ring R which

contains a field and cofinite local cohomology Hi
I (R), see [5, Corollary 2.6].

On the other hand, he presented counterexamples for this equality in which
inj.dimR(H

i
I (R)) = 0 but dimR(H

i
I (R)) = 1, see [5, Example 2.9, 2.11]. Also

for polynomial ring R = k[x1, . . . , xn] with field k of characteristic zero,
Puthenpurakal, [10, Corollary 1.2], proved inj.dimR(H

i
I (R)) = dimR(H

i
I (R)).

In this paper, motivated by these results, we attempt to obtain lower bound
for the injective dimension of F -modules and D -modules. We succeed in this
for a subclass of F -modules called F -finite and subclass of D -modules which
contains local cohomology modules. In fact we prove that

Theorem 1.1 (Theorem 4.1). Let (R,m) be a regular local ring which con-
tains a field. Let I be an ideal of R. The following hold.

(i) Assume characteristic of R is p > 0 and M is an F -finite module. Then
dimRM − 1≤ inj.dimRM .

(ii) Assume characteristic of R is 0 and M =Hi
I (R)f for some f ∈R. Then

dimRM − 1≤ inj.dimRM .

This manuscript is organized as follows. In Section 2, we recall some defi-
nitions and properties of D -modules and F -modules. Later, in Section 3, we
discuss some lemmas and propositions which will help us in proving our main
theorem. In Section 4, we prove our main theorem.

2. Preliminaries

Throughout this paper, we always assume that R is a regular local ring
which contains a field. In this section, we review the theory of D -modules
and F -modules and state two useful lemmas.

D-modules. Let k be a field of characteristic 0 and let R denote the formal
power series ring k[[x1, . . . , xn]] in n variables over k. Let D = D(R,k) denote
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the subring of the k-vector space endomorphisms of R generated by R and
the usual differential operators δ1, . . . , δn, defined formally, so that δif = ∂f

∂xi
.

We simply say D -modules for left D(R,k) modules. D(R,k) is left and right
Noetherian [2, Lemma 3.1.6]. This implies that every finitely generated D -
module is Noetherian. The natural action of D(R,k) on R makes R as a
D -module. In addition if M is a D -module and S ⊂ R is a multiplicative
system of elements, using the quotient rule, MS carries a natural structure
of D -module. Let I be an ideal of R. The Čech complex on a generating set
for I is a complex of D -modules; it then follows that each local cohomology
module Hi

I (R) is a D -module.
We will use the following several times in this paper.

Remark 2.1. Adopt the above notations.
(a) Let M be a D -module. Then inj.dimRM ≤ dimRM [7, Theorem 2.4(b)].
(b) Let M be a D -module and I be an ideal of R. Then Hi

I (M) have a natural
structure of D -modules [7, Example 2.1(iv)]. In particular, ΓI(M) is a
D -submodule of M where ΓI is the I-torsion functor.

(c) Let p be a prime ideal of R and let ER(R/p) denote the injective envelope
of R/p. Assume htR(p) = d. Recall that ER(R/p) =Hd

p (R)p. It follows

that ER(R/p) is a D -module and the natural inclusion Hd
p (R)→ER(R/p)

is D(R,k)-linear.
(d) Let (S,m) be a regular local ring which contains a field of characteristic

zero. We denote by Ŝ the completion of S with respect to the maximal
ideal m. By Cohen structure theorem Ŝ = k[[x1, . . . , xn]] where k is a field
of characteristic zero. Let p be the prime ideal of S such that htS(p) = d.

Recall that ES(S/p) =Hd
p (S)p. Then ES(S/p)⊗S Ŝ ∼=Hd

pŜ
(Ŝ)p, see [3,

Theorem 4.3.2]. Hence, ES(S/p)⊗S Ŝ has a natural structure of D(Ŝ, k)-
module.

There exists a remarkable class of finitely generated D -modules, called
holonomic D -modules. See [2, Definition 7.12] for a definition of a holonomic
D -module.

Remark 2.2. Some of the properties of holonomic modules are as follows:

(a) R with its natural structure of D(R,k)-module is holonomic [2, Theo-
rem 3.3.2].

(b) If M is holonomic and f ∈R, then Mf is holonomic [2, Theorem 3.4.1].
(c) Let M be a holonomic D -module. Assume AssRM = {p} and M is p-

torsion. Then there exists h ∈R \ p such that HomR(R/p,M)h is finitely
generated as an Rh-module [10, Proposition 2.3].

(d) The holonomic modules form an abelian subcategory of the category of
D -modules, which is closed under formation of submodules, quotient mod-
ules and extensions. (A proof of this is completely analogous to the proof
of [2, Proposition 1.5.2].) So Hi

I (R) is a holonomic D -module.
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(e) If M is holonomic, then Hi
I(M) is holonomic [7, 2.2 d].

(f) If M is holonomic, all the Bass numbers of M are finite [7, Theo-
rem 2.4(d)].

(g) If M is holonomic, the set of the associated primes of M is finite [7,
Theorem 2.4(c)].

F -modules. The notion of F -modules was introduced by Lyubeznik in [8].
We collect some notations and preliminary results from [8]. Let R be a regular
ring containing a field of characteristic p > 0. Let R′ be the additive group of
R regarded as an R-bimodule with the usual left R-action and with the right
R-action defined by r′r = rpr′ for all r ∈ R, r′ ∈ R′. For an R-module M ,
define F (M) =R′ ⊗R M ; we view this as an R-module via the left R-module
structure on R′.

An FR-module M is an R-module M with an R-module isomorphism
θ : M → F (M) which is called the structure morphism of M . We will ab-
breviate FR to F for the sake of readability (if this causes no confusion).
A homomorphism of F -modules is an R-module homomorphism f :M →M ′

such that the following diagram commutes (where θ and θ′ are the structure
morphisms of M and M ′).

M
f ��

θ

��

M ′

θ′

��
F (M)

F (f) �� F (M ′)

It is not hard to see that the category of F -modules is Abelian.

Remark 2.3. Some of the properties of F -modules are as follows:

(a) The ring R has a natural F -module structure [8, Example 1.2(a)].
(b) Let I be an ideal of R and M be an F -module. Then an F -module

structure on an R-module M induces an F -module structure on the local
cohomology module Hi

I (M). In particular, ΓI(M) is an F -submodule of
M [8, Example 1.2(b)].

(c) If M is an F -module and 0→M →E• is the minimal injective resolution
of M in the category of R-modules, then each Ei acquires a structure of
F -module such that the resolution becomes a complex of F -modules and
F -module homomorphisms [8, Example 1.2(b′′)].

(d) Let M be an F -module. Then inj.dimRM ≤ dimRM [8, Theorem 1.4].
(e) Let M be an F -module and S ⊂R be a multiplicative set. Then MS has

a natural structure of F -module such that the natural localization map
M →MS is the F -module homomorphism [8, Proposition 1.3(b)].

There exists an important class of F -modules, called F -finite modules.
See [8, Definition 2.1] for a definition of an F -finite module.
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Remark 2.4. Some of the properties of F -finite modules are as follows:

(a) The F -finite modules form a full Abelian subcategory of the category
of F -modules which is closed under formation of submodules, quotient
modules and extensions [8, Theorem 2.8].

(b) If M is an F -finite module, then Mf is F -finite, where f ∈R [8, Propo-
sition 2.9(b)].

(c) If M is an F -finite module and I is an ideal of R, then Hi
I(M) with its

induced F -module structure is F -finite [8, Proposition 2.10].
(d) All the Bass numbers of an F -finite module M are finite [8, Theo-

rem 2.11].
(e) The set of the associated primes of an F -finite module M is finite [8,

Theorem 2.12].
(f) If M is an FR-finite module, then Mp is FRp

-finite, where p ∈ Spec(R)
[8, Proposition 2.9(a)].

For the convenience of the reader, we state the following proved facts.

Lemma 2.5. Let R be a Noetherian local ring which has a finitely generated
injective module. Then R is an Artinian ring.

Proof. By [4, Theorem 3.1.17], depthR= 0. Also well known proved con-
jecture of Bass implies that R is Cohen–Macaulay. Then dimR= 0. �

Lemma 2.6. Let R→ S be a faithfully flat map of Noetherian rings. Then
an R module L is finitely generated if and only if L⊗R S is finitely generated
as an S-module.

Proof. See [10, Proposition 3.3]. �

3. Preliminary lemmas

In this section, our objective is to prove Proposition 3.8 which will enable
us to prove the main theorem in the next section. Let (R,m) be a local ring
and M be an R-module. By depthR(M), we mean the length of the maximal
M -regular sequence in m.

Lemma 3.1. Let k be a field of characteristic zero and R= k[[x1, . . . , xn]].
Let p be a prime ideal of R of height less than n− 1. Then ER(R/p) is not a
holonomic D-module.

Proof. Suppose on the contrary ER(R/p) is a holonomic D -module. It is
well known that Γp(ER(R/p)) = ER(R/p) and AssRE(R/p) = p. Then by
Remark 2.2(c), there exists h ∈ R \ p such that HomR(R/p,ER(R/p))h is a
finitely generated Rh-module. Pick q ∈ Spec(R) which contains p such that
htR(q) = n− 1 and h /∈ q. It follows that M := HomR(R/p,ER(R/p))q is a
non-zero finitely generated Rq-module. On the other hand M is an injective
Rq/pRq-module. Then, in view of Lemma 2.5, Rq/pRq is an Artinian ring.
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This contradicts with the fact that Rq/pRq is a domain of dimension greater
than one. �

Let I be an ideal of a ring R. By minR(I), we mean the set of all minimal
prime ideals of I.

Lemma 3.2. Let (R,m) be a regular local ring of dimension n which con-
tains a field of characteristic zero. Assume P ∈ Spec(R) such that htR(P ) =

d ≤ n − 2. Let R̂ denote the completion of R with respect to the maximal
ideal m. In view of Remark 2.1(d) ER(R/P ) ⊗R R̂ has a natural struc-

ture of D(R̂, k)-module where k is a suitable coefficient field of R̂. Then

ER(R/P )⊗R R̂ is a non-holonomic D-module.

Proof. Recall that ER(R/P )∼=Hd
P (R)P and ER(R/P )⊗R R̂∼=Hd

P (R)P ⊗R

R̂ ∼= Hd
PR̂

(R̂)P . In view of Remark 2.1(d), ER(R/P ) ⊗R R̂ has a natural

structure of D(R̂, k)-module where k is a field of characteristic zero which is

contained in R̂. We simply say ER(R/P )⊗R R̂ is a D -module. It is obvious

that htR̂(PR̂) = d. Let minR̂(PR̂) = {q1, . . . ,qs}. There are infinitely many
primes p ∈ Spec(R) such that htR(p) = d+1 and P � p, see [9, Theorem 31.2].

For such p, htR̂(pR̂) = d+1 and pR̂∩R= p. Thus without loss of generality,
we can assume that htR̂(q1) = d and there are infinitely many primes q ∈
Spec(R̂) of height d+ 1 which contains q1 and htR(q∩R) = d+ 1.

Suppose on the contrary that Hd
PR̂

(R̂)P is holonomic.

Claim 1. Hd
q1
(R̂)P is holonomic.

The composition of functors Γq1(−) = Γq1(ΓPR̂(−)) leads to the spectral

sequence Ep,q
2 =Hp

q1(H
q

PR̂
(R̂))⇒Hp+q

q1 (R̂). It follows that Γq1(H
d
PR̂

(R̂)) =

Hd
q1
(R̂). Hence Hd

q1
(R̂) is the D -submodule of Hd

PR̂
(R̂). Therefore Hd

q1
(R̂)P

is a holonomic D -module, see Remark 2.2(d). This yields the claim.

Claim 2. AssR̂(H
d
q1
(R̂)P ) = q1.

Indeed let m/s ∈Hd
q1
(R̂)P such that m ∈Hd

q1
(R̂) and s ∈R \ P . If r ∈ R̂

such that r.m/s= 0, then there exists r′ ∈R \P ⊆ R̂ \ q1 such that r′rm= 0.

Keep in mind that AssR̂(H
d
q1
(R̂)) = q1. So r′r ∈ q1 and thus r ∈ q1. This

yields the claim.
Also Γq1(H

d
q1
(R̂)P ) =Hd

q1
(R̂)P . Then by Remark 2.2(c), there exists h ∈

R̂ \ q1 such that HomR̂(
R̂

q1R̂
,Hd

q1
(R̂)P )h is a finitely generated R̂h-module.

Since qi � q1 for all 2≤ i≤ s, we can pick ti ∈ qi \ q1 for all 2≤ i≤ s. Thus
t = t2 . . . tsh /∈ q1. Note that the set of minimal prime ideals of the ideal
generated by t and q1 is finite. Then by assumption on choosing q1, we
can pick q ∈ Spec(R̂) of height d+ 1 which contains q1 and t /∈ q such that
htR(q∩R) = d+ 1.
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Thus HomR̂q
(

R̂q

q1R̂q

, (Hd
q1
(R̂)P )q) is a finitely generated R̂q-module. Since

minR̂q
(PR̂q) = q1R̂q, then Hd

q1R̂q

(R̂q) =Hd
PR̂q

(R̂q). Also
R̂q

PR̂q

has a filtration

of R̂q-modules such that quotients of it are isomorph to
R̂q

q1R̂q

or
R̂q

qR̂q

, as R̂q-

module. Thus HomR̂q
(

R̂q

PR̂q

, (Hd
PR̂

R̂P )q) is a finitely generated R̂q-module.

Look at the faithfully flat map Rq∩R → R̂q. We have following isomor-
phisms:

HomRq∩R

(
Rq∩R

PRq∩R
,
(
Hd

P (R)P
)
q∩R

)
⊗Rq∩R

R̂q

∼=HomR̂q

(
Rq∩R

PRq∩R
⊗Rq∩R

R̂q,
(
Hd

P (R)P
)
q∩R

⊗Rq∩R
R̂q

)

∼=HomR̂q

(
(R/P ⊗R Rq∩R)⊗Rq∩R

R̂q,((
Hd

P (R)⊗R RP

)
⊗R Rq∩R

)
⊗Rq∩R

R̂q

)
∼=HomR̂q

(
R/P ⊗R R̂q,

(
Hd

P (R)⊗R RP

)
⊗R R̂q

)
∼=HomR̂q

(
R/P ⊗R (R̂⊗R̂ R̂q),

(
Hd

P (R)⊗R RP

)
⊗R (R̂⊗R̂ R̂q)

)

∼=HomR̂q

(
R̂q

PR̂q

,
(
Hd

PR̂
(R̂)P

)
q

)
.

Therefore, by virtue of Lemma 2.6, HomRq∩R
(

Rq∩R

PRq∩R
,ER(R/P )q∩R) ∼=

HomRq∩R
(

Rq∩R

PRq∩R
, (Hd

P (R)P )q∩R) is a non-zero finitely generated Rq∩R-

module. So, by Lemma 2.5,
Rq∩R

PRq∩R
is an Artinian ring. Again, it is a

contradiction because
Rq∩R

PRq∩R
is a domain of dimension greater than one. �

Next, we want to establish analogous result such Lemma 3.1 for character-
istic p > 0. To show this we need some lemmas.

Lemma 3.3. Let R be a regular local ring which contains a field and I be
an ideal of R. Let inj.dimR(H

i
I (R)) = dimR(H

i
I (R)) = c. If μc(p,Hi

I (R)) �= 0
for p ∈ Spec(R), then p is a maximal ideal of R.

Proof. Let dim(R) = n. We suppose on the contrary htR p ≤ n − 1.
Thus, dimRp

(Hi
I (R))p ≤ c − 1. Since μc(p,Hi

I (R)) �= 0, we deduce that

inj.dimRp
(Hi

I (R)p) = c. But this is impossible because in view of [7, The-

orem 3.4(b)] and [8, Theorem 1.4], we must have inj.dimRp
(Hi

I (R)p) ≤
dimRp

(Hi
I (R))p. �

Lemma 3.4. Let (R,m) be a local ring of dimension n. Let R̂ denote the
completion of R with respect to the maximal ideal m. Let M be an R-module.
Then dimR(M) = dimR̂(M ⊗R R̂).
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Proof. Let dimR(M) = d. There exists p ∈ SuppR(M) such that d =

dimR/p = dim R̂/pR̂. Thus there exists q ∈ Spec(R̂) such that q is mini-

mal over pR̂ and dim R̂/qR̂ = d. We show that q ∈ SuppR̂(M ⊗R R̂) and

so dimR̂(M ⊗R R̂) ≥ d. It is clear that q ∩ R = p. Hence, the natural map

Rp → R̂q is faithfully flat. Thus,

(M ⊗R R̂)⊗R̂ R̂q
∼=M ⊗R R̂q

∼=M ⊗R (Rp ⊗Rp
R̂q)∼= (M ⊗R Rp)⊗Rp

R̂q.

So (M ⊗R R̂)q �= 0 as desired.

On the other hand let dimR̂(M ⊗R R̂) = c. Thus, there exists q ∈
SuppR̂(M ⊗R R̂) such that dim R̂/qR̂ = c. Let q ∩R = p. Thus, dimR/p =

dim R̂/pR̂ ≥ dim R̂/q= c. So we only need to show that p ∈ Supp(M). It is

obvious by the isomorphism (M ⊗R R̂)q ∼= (M ⊗R Rp)⊗Rp
R̂q. �

Proposition 3.5. Let (R,m) be a regular local ring of dimension n
containing a field and I be an ideal of R such that htR(I) = d. Then
inj.dimR(H

d
I (R)) = dimR(H

d
I (R)).

Proof. Assume htR(I) = d. Let minR(I) = {p1, . . . ,ps} ∪ {q1, . . . ,qt} such
that htR(pi) = d and htR(qi)> d. Set I′ := p1 ∩ · · · ∩ ps and I′′ = q1 ∩ · · · ∩ qt.
We have the Mayer–Vietoris sequence

Hd
I′ +I′′(R)→Hd

I′(R)⊕Hd
I′′(R)→Hd

I (R)→Hd+1
I′ +I′′(R).

Since Hd
I′ +I′′(R) =Hd+1

I′ +I′′(R) =Hd
I′′(R) = 0 we deduce that Hd

I (R)∼=Hd
I′(R).

Thus without loss of generality, we can assume that all minimal prime ideals
of I have height d.

There exists the spectral sequence Hi
m(H

j
I (R)) ⇒ Hi+j

m (R). By using
Hartshorne–Lichtenbaum theorem, we easily see that inj.dimR(H

i
I (R)) ≤

dimR(H
i
I (R)) ≤ n − (i + 1) for all i > d. So on the line y + x = n of the

spectral sequence Hi
m(H

j
I (R))⇒Hi+j

m (R), we have Hn−i
m (Hi

I (R)) = 0 for all

i > d. By the definition of the spectral sequence Hi
m(H

j
I (R))⇒Hi+j

m (R) there
exists a filtration

0⊆ · · · ⊆ F tHn ⊆ F t−1Hn ⊆ · · · ⊆ F sHn =Hn
m(R)

of Hn
m(R) such that Ei,n−i

∞
∼= F iHn

F i+1Hn
. Since En−d−i,d+i

∞ = 0 for all i≥ 1 then

En−d,d
∞

∼=Hn
m(R). Note that En−d,d

∞ is the quotient of Hn−d
m (Hd

I (R)). Then

Hn−d
m (Hd

I (R)) must be non-zero. It implies that dimR(H
d
I (R)) = n − d ≤

inj.dimR(H
d
I (R)). �

Lemma 3.6. Let (R,m) be a regular local ring of dimension n which con-
tains a field of characteristic p > 0. Let p be a prime ideal of R such that
htR p= d < n−1. Then ER(R/p)∼=Hd

p (R)p with natural F -module structure
is not F -finite.
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Proof. Note that ER(R/p)∼=Hd
p (R)p and by Remark 2.3(e), ER(R/p) has

a natural F -module structure.
First, assume that htR(p) = n − 2. By virtue of Proposition 3.5,

inj.dimRHn−2
p (R) = 2. Consider the following minimal injective resolution

of Hn−2
p (R).

0→Hn−2
p (R)→ER(R/p)→E1 →E2 → 0.

By Remark 2.3(c), this is a complex of F -modules and F -homomorphisms.
In view of Lemma 3.3 and Remark 2.4(d), E2 ∼=ER(R/m)s where s is a pos-
itive integer. Suppose on the contrary ER(R/p) is F -finite. Then following
Remark 2.4(a), E1 must be F -finite. There exist infinitely many primes
q ∈ Spec(R) which p ⊂ q and htR(q) = n − 1. For all such q ∈ Spec(R), in
view of Proposition 3.5, inj.dimRq

Hn−2
pRq

(Rq) = 1 and considering Lemma 3.3

we have μ1(q,Hn−2
p (R)) > 0. So we reach to a contradiction in view of Re-

mark 2.4(d), (e).
For the convenience of the reader, we bring a different proof of the fact

that μ1(q,Hn−2
p (R)) > 0 suggested by the referee. Suppose q ⊇ p such that

htR(q) = n− 1. Claim E1
q �= 0.

Suppose if possible E1
q = 0. We have Hn−2

pRq
(Rq) is an injective Rq-module.

Choose g such that (pRq, g) is qRq-primary. By using the standard long-exact
sequence of local cohomology modules and Hartshorne–Lichtenbaum theorem,
we have an exact sequence

0→Hn−2
pRq

(Rq)→
(
Hn−2

pRq
(Rq)

)
g
→Hn−1

qRq
(Rq)→ 0.

As Hn−2
pRq

(Rq) is an injective Rq-module we get that qRq ∈AssRq
(Hn−2

pRq
(Rq))g

which is a contradiction.
Now suppose htR(p) = n−3. Let q ∈ Spec(R) such that htR(q) = n−1 and

p⊂ q. Suppose on the contrary that ER(R/p) is F -finite. Thus ER(R/p)q is
FRq

-finite by Remark 2.4(f). This contradicts with the first step of the proof.
By applying this argument for a finite step, we prove the lemma. �

Remark 3.7. (i) Adopt the above notations of Lemma 3.6. Let p be a
prime ideal of R such that ht(p)≥ n− 1. Then it is easy to see that ER(R/p)
is F -finite. Indeed if p=m then ER(R/m) =Hn

m(R). Otherwise let

0→Hn−1
p (R)→ER(R/p)→E1 → 0

be the minimal injective resolution of Hn−1
p (R). In view of Lemma 3.3 and

Remark 2.4(d), E1 ∼= ER(R/m)s where s is a positive integer. Thus by Re-
mark 2.4(a), ER(R/p) is F -finite.

(ii) Let R = k[[x1, . . . , xn]] and characteristic of k is 0. Let p be a prime
ideal of R such that ht(p)≥ n− 1. As (i) one can easily see that ER(R/p) is
holonomic.
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Let M be a finitely generated module over a Cohen–Macaulay ring R such
that inj.dimR(M) is finite and therefore it equals to dimR. Then it is ele-
mentary to prove that if μdimR(p,M)> 0 then p is a maximal ideal in R, use
[4, Proposition 3.1.13]. Although this fact is not true for R-module M that
is not finitely generated. For example Let p be a prime ideal of R and M be
the injective envelope of R/p.

For polynomial ring R = k[x1, . . . , xn] with field k of characteristic zero,
Puthenpurakal proved if inj.dimR(H

i
I (R)) = c and μc(p,Hi

I (R))> 0 for prime
ideal p of R, then p is a maximal ideal of R, see [10, Theorem 1.1]. In the
following proposition, we generalize his theorem to the case that R is a regular
local ring which contains a field.

Proposition 3.8. Let R be a regular local ring of dimension n which
contains a field k. Let M be an R-module such that inj.dimR(M) = c and
μc(p,M) �= 0 for a prime ideal p of R. Assume that one of the following
holds:

(i) k is a field of characteristic p > 0 and M be a F -finite.
(ii) R = k[[x1, . . . , xn]] and characteristic of k is 0 and M is a holonomic

module.
(iii) k is a field of characteristic 0 and M =Hj

I (R)f where I is an ideal of R
and f ∈R.

Then htR(p)≥ n− 1.

Proof. We first show that Hi
p(M)p is an injective R-module for all positive

integer i. In case (i), Hi
p(M)p is zero or an FRp

-finite module of dimension

0, see 2.4(c), (f). Then by 2.3(d) and 2.4(d) Hi
p(M)p ∼= ER(R/p)s where s

is a positive integer. In case (ii), we note that Hi
p(M) is a holonomic D -

module, see Remark 2.2(a). Let Rp̂ denote the completion of Rp with respect
to the maximal ideal pRp. It follows that H

i
p(M)p has a natural structure of

D(Rp̂, k
′)-module where k′ is a suitable coefficient field of Rp̂, see the proof

of [7, Theorem 2.4(b)]. So, by Remark 2.1(a), Hi
p(M)p is a direct sum of

copies of ERp̂
(Rp̂/pRp̂). But as an R-module ERp̂

(Rp̂/pRp̂) is isomorphic to

ER(R/p), so Hi
p(M)p is an injective R-module. Also Hi

p(M)p is a direct sum

of finite copies of ER(R/p), see Remark 2.2(f). In case (iii), (Hi
p(H

j
I (R)))p ∼=

ER(R/p)s where s is a positive integer, see [7, Theorem 3.4(b), (d)]. Then

Hi
p(M)p =Hi

p

(
Hj

I (R)f
)
p
∼=
(
Hi

p

(
Hj

I (R)
)
f

)
p

∼=
(
Hi

p

(
Hj

I (R)
))

p
⊗R Rf

∼=ER(R/p)s ⊗R Rf .

Hence, (Hi
p(M))p ∼= ER(R/p)t where t is a positive integer. So (Hi

p(M))p is
an injective R-module.

Therefore, in three cases, we have μ0(p,Hc
p(M)) = μc(p,M) > 0, see [7,

Lemma 1.4]. Note that by the above discussion Hc
p(M)p ∼= ER(R/p)s where

s > 0 is an integer.
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Suppose on the contrary htR(p)≤ n− 2. Note that AssR(H
c
p(M)) is finite,

see Remarks 2.4(e), 2.2(f) and [7, Theorem 3.4(c)]. Let AssR(H
c
p(M)) =

{p,q1, . . . ,qm}. Look at the exact sequence:

0→ Γq1...qm

(
Hc

p(M)
)
→Hc

p(M)→Hc
p(M)/Γq1...qm

(
Hc

p(M)
)
→ 0.

Since p� qi, we have p /∈AssR Γq1...qm(Hc
p(M)). Keep in mind that

AssRHc
p(M) = AssR Γq1...qm

(
Hc

p(M)
)
∪AssRHc

p(M)/Γq1...qm

(
Hc

p(M)
)
.

It follows that AssRHc
p(M)/Γq1...qm(Hc

p(M)) = {p}.
Let g ∈R \ p. Then the following diagram commutes:

0 �� Γq1...qm (Hc
p
(M))

��

�� Hc
p
(M) ��

��

Hc
p
(M)/Γq1...qm (Hc

p
(M))

η

��

�� 0

0 �� (Γq1...qm (Hc
p
(M)))g �� Hc

p
(M)g �� (Hc

p
(M)/Γq1...qm (Hc

p
(M)))g �� 0.

Recall that inj.dimRM = c. Thus, there is an exact sequence

Hc
(p,g)(M)→Hc

p(M)→Hc
p(M)g →Hc+1

(p,g)(M) = 0.

Hence, the natural map η is surjective. As g /∈ p, we get that η is also injective.
Thus, Hc

p(M)/Γq1...qm(Hc
p(M)) = (Hc

p(M)/Γq1...qm(Hc
p(M)))g for all g ∈R \

p. It follows that Hc
p(M)/Γq1...qm(Hc

p(M)) = (Hc
p(M)/Γq1...qm(Hc

p(M)))p.
Note that (Γq1...qm(Hc

p(M)))p = 0. We deduce that

Hc
p(M)p ∼=

(
Hc

p(M)/Γq1...qm

(
Hc

p(M)
))

p
∼=Hc

p(M)/Γq1...qm

(
Hc

p(M)
)
.

Now we prove the proposition

(i) Clearly Hc
p(M)/Γq1...qm(Hc

p(M)) is F -finite. Putting this along with
(Hc

p(M))p ∼= ER(R/p)s, we conclude that ER(R/p) is F -finite. So we
reach to a contradiction because by Lemma 3.6 ER(R/p) cannot be F -
finite.

(ii) Exactly same (i): Hc
p(M)/Γq1...qm(Hc

p(M)) is holonomic and it is con-
tradicts with Lemma 3.1.

(iii) Let R̂ be the completion of R with respect to maximal ideal m. Then(
Hc

pR̂

(
Hj

I R̂
(R̂)f

))
/Γ(q1...qm)R̂

(
Hc

pR̂

(
Hj

I R̂
(R̂)f

))∼=ER(R/p)s ⊗R R̂.

But ER(R/p)s ⊗R R̂ is not holonomic by Lemma 3.2. �

Example 3.9. Let R = k[[x, y, z]] be a power series ring over a field
k and let I be the ideal (xy,xz)R of R. Then dimRHi

I (R) = 1 and
inj.dimR(H

i
I (R)) = 0, see [5, Examples 2.9]. Thus, there exists p ∈

AssR(H
i
I (R)) such that htR(p) = 2. It is well known that for all R-module

M , q ∈AssR(M) if and only if μ0(q,M)> 0. It follows that μ0(p,Hi
I (R))> 0.

Thus, the lower bound for the prime ideal p in the Proposition 3.8 is not
strict.
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4. Main theorem

In this section, we prove our main result about injective dimension of local
cohomology.

Theorem 4.1. Let (R,m) be a regular local ring which contains a field. Let

I be an ideal of R. Suppose that one of the following two conditions (i) or (ii)
holds:

(i) R is of prime characteristic p > 0 and M is an F -finite module.
(ii) R is of characteristic 0 and M =Hi

I (R)f for some f ∈R.

Then dimRM − 1≤ inj.dimRM .

Proof. We prove the theorem by induction on dim(M). If dim(M)≤ 1, we
have nothing to prove. In case (i), assume that for every F -finite module of
the dimension less than n the theorem is true. In case (ii), assume that for

every R module N =Hj
I (R)g of dimension less than n the theorem is true

such that g ∈R.
Now suppose M be an R-module of dimension n > 1 which satisfies either

(i) or (ii).
Let p be a prime ideal of R such that dimRp

(M)p = n−1. ThenMp satisfies
induction hypothesis. Hence n − 2 ≤ inj.dimRp

(M)p. If inj.dimRp
(M)p =

n−1, we are done. So we assume inj.dimRp
(M)p = n−2. We claim that there

is a prime ideal q� p such that μn−2(q,M) �= 0. Suppose on the contrary there
is not such prime ideal. Pick g ∈ p such that dimRp

((M)g) = n−1. Then (M)g
satisfies the induction hypothesis, see Remark 2.4(b). But inj.dimRp

(M)g <
n− 2 and this contradicts with the induction hypothesis.

So there is a prime ideal q� p such that μn−2(q,M) �= 0. In view of Propo-
sition 3.8(i), (iii) we conclude that n− 1≤ inj.dimM , as desired. �

Remark 4.2. Note that in view of Example 3.9, the lower bound in the
main theorem is not strict.
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