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WEIGHTED LOCAL HARDY SPACES ASSOCIATED
TO SCHRÖDINGER OPERATORS

HUA ZHU AND LIN TANG

Abstract. In this paper, we characterize the weighted local
Hardy spaces hp

ρ(ω) related to the critical radius function ρ and

weights ω ∈ Aρ,∞
∞ (Rn) which locally behave as Muckenhoupt’s

weights and actually include them, by the local vertical maxi-
mal function, the local nontangential maximal function and the

atomic decomposition. Then, we establish the equivalence of the

weighted local Hardy space h1
ρ(ω) and the weighted Hardy space

H1
L(ω) associated to Schrödinger operators L with ω ∈Aρ,∞

1 (Rn).

By the atomic characterization, we also prove the existence of fi-
nite atomic decompositions associated with hp

ρ(ω). Furthermore,

we establish boundedness in hp
ρ(ω) of quasi-Banach-valued sub-

linear operators.

1. Introduction

The theory of classical local Hardy spaces, originally introduced by Gold-
berg [14], plays an important role in various fields of analysis and partial
differential equations; see [6], [20], [23], [28], [29], [30] and their references. In
particular, pseudo-differential operators are bounded on local Hardy spaces
hp(Rn) for p ∈ (0,1], but they are not bounded on Hardy spaces Hp(Rn)
for p ∈ (0,1]; see [14] (also [29], [30]). In [6], Bui studied the weighted local
Hardy space hp

ω(R
n) with ω ∈ A∞(Rn), where and in what follows, Ap(R

n)
for p ∈ [1,∞] denotes the class of Muckenhoupt’s weights; see [7], [12], [15],
[23] for their definition and properties.
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In [19], Rychkov introduced and studied some properties of the weighted
Besov–Lipschitz spaces and Triebel–Lizorkin spaces with weights that are lo-
cally in Ap(R

n) but may grow or decrease exponentially, which contain Hardy
spaces. In particular, Rychkov [19] generalized some of theories of weighted
local Hardy spaces developed by Bui [6] to Aloc

∞ (Rn) weights, where Aloc
∞ (Rn)

weights denote local A∞(Rn) weights which are non-doubling weights, and
Aloc

∞ (Rn) weights include A∞(Rn) weights. Recently, Tang [24] established
the weighted atomic decomposition characterization of the weighted local
Hardy space hp

ω(R
n) with ω ∈ Aloc

∞ (Rn) via the local grand maximal func-
tion, and gave some criteria about boundedness of Bβ-sublinear operators on
hp
ω(R

n) which was first introduced in [33]; meanwhile, Tang [24] also proved
that pseudo-differential operators are bounded on local Hardy spaces hp

ω(R
n)

for p ∈ (0,1] by using the above criteria and main results in [25]. Further-
more, Yang–Yang [32] extended the main results in [24] to the weighted local
Orlicz–Hardy space hΦ

ω (R
n) case.

On the other hand, the study of Schrödinger operator L=−Δ+V recently
attracted much attention; see [1], [2], [3], [9], [10], [21], [27], [26], [31], [33],
[34], [35], [36]. In particular, J. Dziubański and J. Zienkiewicz [9], [10] studied
Hardy space H1

L associated to Schrödinger operators L with potential satis-
fying reverse Hölder inequality. Recently, Bongioanni et al. [2] introduced
new classes of weights, related to Schrödinger operators L, that is, Aρ,∞

p (Rn)
weight which are in general larger than Muckenhoupt’s (see Section 2 for no-
tions of Aρ,∞

p (Rn) weight). Naturally, it is a very interesting problem whether

we can give an atomic characterization for weighted Hardy space H1
L(ω) with

ω ∈Aρ,∞
1 (Rn).

The purpose of this paper is to give a positive answer. More precisely, we
first introduce the weighted local Hardy spaces hp

ρ(ω) with Aρ,∞
q (Rn) weights,

and establish the atomic characterization of the weighted local Hardy spaces
hp
ρ(ω) with ω ∈Aρ,∞

q (Rn) weights. Then, we establish the equivalence between

the weighted local Hardy spaces h1
ρ(ω) and the weighted Hardy space H1

L(ω)
associated to Schrödinger operator L with ω ∈ Aρ,∞

1 (Rn). In particular, it
should be pointed out that we cannot directly obtain the atomic characteriza-
tion of H1

L(ω) with Aρ,∞
1 (Rn) weights by using the methods in [9], [10], [11],

which forces us to use the above weighted local Hardy spaces h1
ρ(ω) theory to

overcome the difficulty.
The paper is organized as follows. In Section 2, we review some notions and

notations concerning the weight classes Aρ,θ
p (Rn) introduced in [2], [27], [26].

In Section 3, we first introduce the weighted local Hardy space hp
ρ,N (ω) via

the local grand maximal function, and then the weighted atomic local Hardy
space hp,q,s

ρ (ω) for any admissible triplet (p, q, s)ω (see Definition 3.3 below),
furthermore, we establish the local vertical and the local nontangential max-
imal function characterizations of hp

ρ,N (ω) via a local Calderón reproducing
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formula and some useful estimates established by Rychkov [19]. In Section 4,
we establish the Calderón–Zygmund decomposition associated with the grand
maximal function. In Section 5, we prove that for any given admissible triplet
(p, q, s)ω , h

p
ρ,N (ω) = hp,q,s

ρ (ω) with equivalent norms. It is worth pointing out

that we obtain Theorem 5.5 by a way different from the methods in [14],
[6], but close to those in [4], [24], [32]. For simplicity, in the rest of this in-
troduction, we denote by hp

ρ(ω) the weighted local Hardy space hp
ρ,N (ω). In

Section 6, we apply the atomic characterization of the weighted local Hardy
spaces h1

ρ(ω) to establish atomic characterization of weighted Hardy space

H1
L(ω) associated to Schrödinger operator L with Aρ,∞

1 (Rn) weights. In Sec-
tion 7, we prove that ‖ · ‖hp,q,s

ρ,fin (ω) and ‖ · ‖hp
ρ(ω) are equivalent quasi-norms on

hp,q,s
ρ,fin (ω) with q <∞, and we obtain criteria for boundedness of Bβ-sublinear

operators in hp
ρ(ω). We remark that this extends both the results of Meda–

Sjögren–Vallarino [17] and Yang–Zhou [33] to the setting of weighted local
Hardy spaces.

Throughout this paper, we let C denote constants that are independent of
the main parameters involved but whose value may differ from line to line.
By A ∼ B, we mean that there exists a constant C > 1 such that 1/C ≤
A/B ≤C. The symbol A�B means that A≤CB. The symbol [s] for s ∈R

denotes the maximal integer not more than s. We also set N ≡ {1,2, . . .}
and Z+ ≡ N ∪ {0}. The multi-index notation is usual: for α = (α1, . . . , αn)
and ∂α = (∂/∂x1)

α1 · · · (∂/∂xn)
αn . Given a function g on R

n, we let Lg ∈ Z+

denote the maximal number such that g has vanishing moments up to the
order Lg , i.e.,

∫
xαg(x)dx = 0 for all multi-indices α with |α| ≤ Lg . If no

vanishing moments of g, then we put Lg =−1.

2. Preliminaries

In this section, we review some notions and notations concerning the weight
classes Aρ,θ

p (Rn) introduced in [2], [27], [26]. Given B = B(x, r) and λ > 0,
we will write λB for the λ-dilate ball, which is the ball with the same center
x and with radius λr. Similarly, Q(x, r) denotes the cube centered at x with
side length r (here and below only cubes with sides parallel to the axes are
considered), and λQ(x, r) = Q(x,λr). Especially, we will denote 2B by B∗,
and 2Q by Q∗.

Let L=−Δ+V be a Schrödinger operator on R
n, n≥ 3, where V 
≡ 0 is a

fixed non-negative potential. We assume that V belongs to the reverse Hölder
class RHs(R

n) for some s ≥ n/2; that is, there exists C = C(s,V ) > 0 such
that (

1

|B|

∫
B

V (x)s dx

) 1
s

≤C

(
1

|B|

∫
B

V (x)dx

)
,
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for every ball B ⊂ R
n. Trivially, RHq(R

n)⊂ RHp(R
n) provided 1< p≤ q <

∞. It is well known that, if V ∈ RHq(R
n) for some q > 1, then there exists

ε > 0, which depends only on d and the constant C in the above inequality,
such that V ∈RHq+ε(R

n) (see [13]). Moreover, the measure V (x)dx satisfies
the doubling condition:∫

B(y,2r)

V (x)dx≤C

∫
B(y,r)

V (x)dx.

With regard to the Schrödinger operator L, we know that the operators
derived from L behave “locally” quite similar to those corresponding to the
Laplacian (see [8], [21]). The notion of locality is given by the critical radius
function

(2.1) ρ(x) =
1

mV (x)
= sup

r>0

{
r :

1

rn−2

∫
B(x,r)

V (y)dy ≤ 1

}
.

Throughout the paper, we assume that V 
≡ 0, so that 0< ρ(x)<∞ (see [21]).
In particular, mV (x) = 1 with V = 1 and mV (x)∼ (1 + |x|) with V = |x|2.

Lemma 2.1 (See [21]). There exist C0 ≥ 1 and k0 ≥ 1 so that for all
x, y ∈R

n,

(2.2) C−1
0 ρ(x)

(
1 +

|x− y|
ρ(x)

)−k0

≤ ρ(y)≤C0ρ(x)

(
1 +

|x− y|
ρ(x)

) k0
k0+1

.

In particular, ρ(x) ∼ ρ(y) when y ∈ B(x, r) and r ≤ Cρ(x), where C is a
positive constant.

A ball of the form B(x,ρ(x)) is called critical, and in what follows we
will call critical radius function to any positive continuous function ρ that
satisfies (2.2), not necessarily coming from a potential V . Clearly, if ρ is such
a function, so is βρ for any β > 0. As the consequence of the above lemma,
we acquire the following result.

Lemma 2.2 (See [9]). There exists a sequence of points xj ∈R
n, j ≥ 1, such

that the family Bj =B(xj , ρ(xj)), j ≥ 1 satisfies:

(a)
⋃

j Bj =Rn.

(b) For every σ ≥ 1 there exist constants C and N1 such that
∑

j χσBj ≤
CσN1 .

In this paper, we write Ψθ(B) = (1 + r/ρ(x0))
θ, where θ ≥ 0, x0 and r

denote the center and radius of B, respectively.
A weight always refers to a positive function which is locally integrable. As

in [2], we say that a weight ω belongs to the class Aρ,θ
p (Rn) for 1< p <∞, if

there is a constant C such that, for all balls B(
1

Ψθ(B)|B|

∫
B

ω(y)dy

)(
1

Ψθ(B)|B|

∫
B

ω− 1
p−1 (y)dy

)p−1

≤C.
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We also say that a nonnegative function ω satisfies the Aρ,θ
1 (Rn) condition if

there exists a constant C such that

MV,θ(ω)(x)≤Cω(x), a.e. x ∈R
n,

where

MV,θf(x)≡ sup
x∈B

1

Ψθ(B)|B|

∫
B

∣∣f(y)∣∣dy.
When V = 0, we denote M0f(x) by Mf(x) (the standard Hardy–Littlewood
maximal function). It is easy to see that |f(x)| ≤ MV,θf(x) ≤ Mf(x) for
a.e. x ∈R

n and any θ ≥ 0.
Clearly, the classes Aρ,θ

p are increasing with θ, and we denote Aρ,∞
p =⋃

θ≥0A
ρ,θ
p . By Hölder’s inequality, we see that Aρ,θ

p1
⊂Aρ,θ

p2
, if 1≤ p1 < p2 <∞,

and we also denote Aρ,∞
∞ =

⋃
p≥1A

ρ,∞
p . In addition, for 1≤ p≤∞, we denote

by p′ the adjoint number of p, i.e., 1/p+ 1/p′ = 1.
Since Ψθ(B) ≥ 1 with θ ≥ 0, then Ap ⊂ Aρ,θ

p for 1 ≤ p < ∞, where Ap

denotes the classical Muckenhoupt weights; see [12] and [18]. Moreover, the
inclusions are proper. In fact, as the example given in [27], let θ > 0 and
0≤ γ ≤ θ, it is easy to check that ω(x) = (1+ |x|)−(n+γ) /∈A∞ =

⋃
p≥1Ap and

ω(x)dx is not a doubling measure, but ω(x) = (1+ |x|)−(n+γ) ∈Aρ,θ
1 provided

that V = 1 and Ψθ(B(x0, r)) = (1 + r)θ .
In what follows, given a Lebesgue measurable set E and a weight ω, |E| will

denote the Lebesgue measure of E and ω(E) :=
∫
E
ω(x)dx. For any ω ∈Aρ,∞

∞ ,
the space Lp

ω(R
n) with p ∈ (0,∞) denotes the set of all measurable functions

f such that

‖f‖Lp
ω(Rn) ≡

(∫
Rn

∣∣f(x)∣∣pω(x)dx)1/p

<∞,

and L∞
ω (Rn)≡ L∞(Rn). The symbol L1,∞

ω (Rn) denotes the set of all measur-
able functions f such that

‖f‖L1,∞
ω (Rn) ≡ sup

λ>0

{
λω

({
x ∈R

n :
∣∣f(x)∣∣> λ

})}
<∞.

We define the local Hardy–Littlewood maximal operator by

(2.3) M locf(x)≡ sup
x∈B(x0,r)
r≤ρ(x0)

1

|B|

∫
B

∣∣f(y)∣∣dy.
We remark that balls can be replaced by cubes in definition of Aρ,θ

p and

MV,θ, since Ψ(B)≤Ψ(2B)≤ 2θΨ(B). In fact, for the cube Q=Q(x0, r), we
can also define Ψθ(Q) = (1+ r/ρ(x0))

θ . Then we give the weighted bounded-
ness of MV,θ .
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Lemma 2.3 (See [27]). Let 1 < p < ∞, p′ = p/(p − 1) and assume that
ω ∈Aρ,θ

p . There exists a constant C > 0 such that

‖MV,p′θf‖Lp
ω(Rn) ≤C‖f‖Lp

ω(Rn).

Next, we give some properties of weights class Aρ,θ
p for p≥ 1.

Lemma 2.4. Let ω ∈Aρ,∞
p =

⋃
θ≥0A

ρ,θ
p for p≥ 1. Then

(i) If 1≤ p1 < p2 <∞, then Aρ,θ
p1

⊂Aρ,θ
p2

.

(ii) ω ∈Aρ,θ
p if and only if ω− 1

p−1 ∈Aρ,θ
p′ , where 1/p+ 1/p′ = 1.

(iii) If ω ∈Aρ,∞
p , 1< p<∞, then there exists ε > 0 such that ω ∈Aρ,∞

p−ε .

(iv) Let f ∈ Lloc(R
n), 0< δ < 1, then (MV,θf)

δ ∈Aρ,θ
1 .

(v) Let 1 < p < ∞, then ω ∈ Aρ,∞
p if and only if ω = ω1ω

1−p
2 , where

ω1, ω2 ∈Aρ,∞
1 .

(vi) For ω ∈Aρ,θ
p , Q=Q(x, r) and λ > 1, there exists a positive constant C

such that

ω(λQ)≤C
(
Ψθ(λQ)

)p
λnpω(Q).

(vii) If p ∈ (1,∞) and ω ∈Aρ,θ
p (Rn), then the local Hardy–Littlewood maximal

operator M loc is bounded on Lp
ω(R

n).

(viii) If ω ∈Aρ,θ
1 (Rn), then M loc is bounded from L1

ω(R
n) to L1,∞

ω (Rn).

Proof. (i)–(viii) have been proved in [2], [26]. �

For any ω ∈Aρ,∞
∞ (Rn), define the critical index of ω by

(2.4) qω ≡ inf
{
p ∈ [1,∞) : ω ∈Aρ,∞

p

(
R

n
)}

.

Obviously, qω ∈ [1,∞). If qω ∈ (1,∞), then ω /∈Aρ,∞
qω .

The symbols D(Rn) =C∞
0 (Rn),D′(Rn) is the dual space of D(Rn), and for

D(Rn),D′(Rn) and Lp
ω(R

n), we have the following conclusions.

Lemma 2.5. Let ω ∈Aρ,∞
∞ (Rn), qω be as in (2.4) and p ∈ (qω,∞].

(i) If 1
p + 1

p′ = 1, then D(Rn)⊂ Lp′

ω−1/(p−1)(R
n).

(ii) Lp
ω(R

n)⊂D′(Rn) and the inclusion is continuous.

By the same method as the proof of Lemma 2.2 in [24], we can get
Lemma 2.5, and we omit the details here.

For any ϕ,ψ ∈ D(Rn), let ϕt(x) = t−nϕ(x/t) for t > 0 and ψj(x) =
2jnψ(2jx) for j ∈ Z. It is easy to see that we have the following results.

Lemma 2.6 (See [24]). Let ϕ ∈D(Rn) and
∫
Rn ϕ(x)dx= 1.

(i) For any Φ ∈D(Rn) and f ∈D′(Rn), Φ ∗ ϕt →Φ in D(Rn) as t→ 0, and
f ∗ϕt → f in D′(Rn) as t→ 0.

(ii) Let ω ∈ Aρ,∞
∞ and qω be as in (2.3). If q ∈ (qω,∞), then for any f ∈

Lq
ω(R

n), f ∗ϕt → f in Lq
ω(R

n) as t→ 0.
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Now, let us introduce some local maximal functions. For N ∈ Z+ and
R ∈ (0,∞), let

DN,R

(
R

n
)
≡
{
ϕ ∈D

(
R

n
)
: supp(ϕ)⊂B(0,R),

‖ϕ‖DN (Rn) ≡ sup
x∈R

n

α∈Z
n
+
,|α|≤N

∣∣∂αϕ(x)
∣∣≤ 1

}
.

Definition 2.7. Let N ∈ Z+, R ∈ (0,∞) and f ∈ D′(Rn), the local non-
tangential grand maximal function of f is defined as:

(2.5) M̃N,R(f)(x)≡ sup
{∣∣ϕl ∗ f(z)

∣∣ : |x− z|< 2−l < ρ(x), ϕ ∈DN,R

(
R

n
)}

,

and the local vertical grand maximal function of f is defined as:

(2.6) MN,R(f)(x)≡ sup
{∣∣ϕl ∗ f(x)

∣∣ : 0< 2−l < ρ(x), ϕ ∈DN,R

(
R

n
)}

.

For simplicity, we denote DN,R(R
n), M̃N,R(f) and MN,R(f) as D0

N (Rn),

M̃0
N (f) and M0

N (f) when R= 1, and as DN (Rn), M̃N (f) and MN (f) when
R=max{R1,R2,R3}> 1 (in which R1, R2 and R3 are defined as in the proof
of Lemma 4.2, 4.5 and 4.8). Obviously, for any N ∈ Z+ and x ∈R

n,

M0
N (f)(x)≤MN (f)(x)≤ M̃N (f)(x).

Here and in what follows, the space L1
loc(R

n) denotes the set of all locally
integrable functions on R

n. We have the following Proposition 2.8, which can
be proved by the same method as in [24, Proposition 2.2].

Proposition 2.8. Let N ≥ 2. Then

(i) For all f ∈ L1
loc(R

n)∩D′(Rn) and almost every x ∈R
n,∣∣f(x)∣∣≤M0

N (f)(x)�M loc(f)(x).

(ii) If ω ∈ Aρ,θ
p (Rn) with p ∈ (1,∞), then f ∈ Lp

ω(R
n) if and only if f ∈

D′(Rn) and M0
N (f) ∈ Lp

ω(R
n); moreover,

‖f‖Lp
ω(Rn) ∼

∥∥M0
N (f)

∥∥
Lp

ω(Rn)
.

(iii) If ω ∈Aρ,θ
1 (Rn), then M0

N is bounded from L1
ω(R

n) to L1,∞
ω (Rn).

3. Weighted local Hardy spaces

In this section, we introduce the weighted local Hardy spaces hp
ρ,N (ω) and

weighted atomic local Hardy space hp,q,s
ρ (ω). Furthermore, we give several

equivalent characterizations of the weighted local Hardy spaces by a local
Calderón reproducing formula and some properties of the weighted atomic
local Hardy space.

The weighted local Hardy space is defined as follows.
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Definition 3.1. Let ω ∈Aρ,∞
∞ (Rn), qω be as in (2.4), p ∈ (0,1] and Ñp,ω ≡

[n( qωp −1)]+2. For each N ∈N with N ≥ Ñp,ω , the weighted local Hardy space

is defined by

hp
ρ,N (ω)≡

{
f ∈D′(

R
n
)
:MN (f) ∈ Lp

ω

(
R

n
)}

.

Moreover, we define ‖f‖hp
ρ,N (ω) ≡ ‖MN (f)‖Lp

ω(Rn).

For any integers N1 and N2 with N1 ≥N2 ≥ Ñp,ω , we have

hp

ρ,Ñp,ω
(ω)⊂ hp

ρ,N2
(ω)⊂ hp

ρ,N1
(ω),

and the inclusions are continuous.
Now, we introduce the weighted local atoms and weighted atomic local

Hardy space.

Definition 3.2. Let ω ∈ Aρ,∞
∞ (Rn), qω be as in (2.4). A triplet (p, q, s)ω

is called to be admissible, if p ∈ (0,1], q ∈ (qω,∞] and s ∈ N with s ≥
[n(qω/p− 1)]. A function a on R

n is said to be a (p, q, s)ω-atom if

(i) suppa⊂Q(x, r) and r ≤ L1ρ(x),
(ii) ‖a‖Lq

ω(Rn) ≤ [ω(Q)]1/q−1/p,

(iii)
∫
Rn a(x)x

α dx = 0 for all α ∈ Zn
+ with |α| ≤ s, when Q = Q(x, r), r <

L2ρ(x),

where L1 ≡ 4C0(3
√
n)k0 , L2 ≡ 1/C2

0 (3
√
n)k0+1, and C0, k0 are constant given

in Lemma 2.1. Moreover, for q ∈ (qω,∞], a function a(x) is called a (p, q)ω-
single-atom if

‖a‖Lq
ω(Rn) ≤

[
ω
(
R

n
)]1/q−1/p

.

Definition 3.3. Let ω ∈ Aρ,∞
∞ (Rn), qω be as in (2.4), and (p, q, s)ω be

admissible, we define the weighted atomic local Hardy space hp,q,s
ρ (ω) by the

set of all f ∈D′(Rn) satisfying that

f =

∞∑
i=0

λiai

in D′(Rn), where {λi}i∈Z+ ⊂ C,
∑∞

i=0 |λi|p < ∞ and {ai}i∈N are (p, q, s)ω-
atoms and a0 is a (p, q)ω-single-atom. Moreover, the quasi-norm of f ∈
hp,q,s
ρ (ω) is defined by

‖f‖hp,q,s
ρ (ω) ≡ inf

{[ ∞∑
i=0

|λi|p
]1/p}

.

It is easy to see that if triplets (p, q, s)ω and (p, q̄, s̄)ω are admissible and
satisfy q̄ ≤ q and s̄≤ s, then (p, q, s)ω-atoms are (p, q̄, s̄)ω-atoms, which implies
that hp,q,s

ρ (ω)⊂ hp,q̄,s̄
ρ (ω) and the inclusion is continuous.

Next, we will give several equivalent characterizations of the weighted local
Hardy spaces hp

ρ,N (ω) by the following local maximal functions.



WEIGHTED LOCAL HARDY SPACES 695

Definition 3.4. Let

(3.1) ψ0 ∈D
(
R

n
)

with

∫
Rn

ψ0(x)dx 
= 0.

For every x ∈ R
n, there exists an integer jx ∈ Z satisfying 2−jx < ρ(x) ≤

2−jx+1, and then for j ≥ jx, A,B ∈ [0,∞) and y ∈R
n, we define

mj,A,B,x(y)≡
(
1 + 2j |y|

)A
2B|y|/ρ(x).

We define the local vertical maximal function of f associated to ψ0 as

(3.2) ψ+
0 (f)(x)≡ sup

j≥jx

∣∣(ψ0)j ∗ f(x)
∣∣,

the local tangential Peetre-type maximal function of f associated to ψ0 as

(3.3) ψ∗∗
0,A,B(f)(x)≡ sup

j≥jx,y∈Rn

|(ψ0)j ∗ f(x− y)|
mj,A,B,x(y)

,

and the local nontangential maximal function of f associated to ψ0 as

(3.4) (ψ0)
∗
�(f)(x)≡ sup

|x−y|<2−l<ρ(x)

∣∣(ψ0)l ∗ f(y)
∣∣,

where l ∈ Z.

Obviously, for any x ∈R
n, we have

ψ+
0 (f)(x)≤ (ψ0)

∗
�(f)(x)� ψ∗∗

0,A,B(f)(x).

It should be pointed out that these local maximal functions were introduced
by Rychkov in [19] and Yang in [32].

We introduce a lemma on the local reproducing formula, which can be
deduced from Lemma 1.6 in [19], and we omit the details of its proof here.

Lemma 3.5. Let ψ0 be as in (3.1), f ∈ D′(Rn) and ψ(x) ≡ ψ0(x) −
(1/2n)ψ0(x/2) for all x ∈ R

n. Then there exist ϕ0, ϕ ∈ D(Rn) such that for
any given integers j ∈ Z and L ∈ Z+, we have Lϕ ≥ L and

(3.5) f = (ϕ0)j ∗ (ψ0)j ∗ f +

∞∑
k=j+1

ϕk ∗ψk ∗ f

in D′(Rn).

Lemma 3.6. Let 0 < r < ∞, ψ0 be as in (3.3) and ψ(x) ≡ ψ0(x) −
(1/2n)ψ0(x/2). Then there exists a positive constant A0 depending only on
the support of ψ0 such that for any A ∈ (A0,∞) and B ∈ [0,∞), there exists
a positive constant C depending only on n, r,ψ0,A and B, such that for all
f ∈D′(Rn), x,x0 ∈R

n and j ≥ jx0 (where 2−jx0 < ρ(x0)≤ 2−jx0+1), we have

(3.6)
∣∣ψj ∗ f(x)

∣∣r ≤C
∞∑
k=j

2(j−k)Ar2kn
∫ |ψk ∗ f(x− y)|r

mj,Ar,Br,x0(y)
dy.



696 H. ZHU AND L. TANG

Proof. By Lemma 3.5, we can find ϕ0, ϕ ∈D(Rn) so that Lϕ ≥A and (3.5)
is true. Hence, we have

(3.7) ψj ∗ f = (ϕ0)j ∗ (ψ0)j ∗ψj ∗ f +
∞∑

k=j+1

ψj ∗ϕk ∗ψk ∗ f.

The function ψj ∗ ϕk (k ≥ j + 1) have support size ≤ C2−j and enjoy the
uniform estimate

(3.8) ‖ψj ∗ϕk‖L∞(Rn) ≤C2(j−k)A2jn,

which can be easily deduced by the moment condition on ϕ (see [19, (2.13)]).
Therefore, we may write

(3.9)
∣∣ψj ∗ϕk(y)

∣∣≤C
2(j−k)A2kn

mj,A,B,x0(y)

(
y ∈R

n
)
.

Putting (3.9) together with the similar estimate for (ϕ0)j ∗ (ψ0)j into (3.7)
gives (3.6) for r = 1, and the case r > 1 follows by Hölder’s inequality. To
obtain the case r < 1, we introduce the maximal functions

MA,B,x0(x, j) = sup
k≥j,y∈Rn

2(j−k)A |ψk ∗ f(x− y)|
mj,A,B,x0(y)

.

The (3.6) with r = 1 gives

(3.10) 2(j−k)A
∣∣ψk ∗ f(x− y)

∣∣≤C
∞∑
l=k

2(j−l)A2ln
∫ |ψl ∗ f(x− z)|

mk,A,B,x0(z − y)
dz,

and the right-hand side of (3.10) decreases as k increases. Hence, to get the
estimate forMA,B,x0(x, j), we may only consider (3.10) with k = j. Combining
with the elementary inequality

(3.11) mj,A,B,x0(z)≤mj,A,B,x0(y)mk,A,B,x0(z − y),

we can get

MA,B,x0(x, j)(3.12)

≤C

∞∑
k=j

2(j−k)A2kn
∫ |ψl ∗ f(x− z)|

mj,A,B,x0(z)
dz

≤CMA,B,x0(x, j)
1−r

∞∑
k=j

2(j−k)Ar2kn
∫ |ψl ∗ f(x− z)|r

mj,Ar,Br,x0(z)
dz.

Considering |ψj ∗ f(x)| ≤ MA,B,x0(x, j), (3.12) implies (3.6), if MA,B,x0

(x, j) < ∞. By [15, Proposition 2.3.4(a)], for any f ∈ D′(Rn), we have
MA,B,x0(x, j) < ∞ for all x ∈ R

n and j ≥ jx0 , provided A > A0, where A0

is a positive constant depending only on the support of ψ0. This finishes the
proof. �
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For f ∈ L1
loc(R

n), B ∈ [0,∞) and x ∈R
n, define

(3.13) KBf(x)≡
1

(ρ(x))n

∫
Rn

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy,

and for the operator KB , we have the following lemma:

Lemma 3.7. Let p ∈ (1,∞) and ω ∈ Aρ,θ
p (Rn), then there exist constants

C > 0 and B0 ≡B0(ω,n)> 0 such that for all B >B0/p,

‖KBf‖Lp
ω(Rn) ≤C‖f‖Lp

ω(Rn),

for all f ∈ Lp
ω(R

n).

Proof. It is suffice to show that there exists a constant C > 0 such that for
all B >B0,

KBf(x)≤CMV,p′θf(x),

then combining with Lemma 2.3, we get the boundedness of the operator KB .
To control KBf(x), we argue as follows:

KBf(x) =
1

(ρ(x))n

∫
Rn

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy

=
1

(ρ(x))n

∫
|y−x|<ρ(x)

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy

+
1

(ρ(x))n

∫
|y−x|≥ρ(x)

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy

=
1

(ρ(x))n

∫
|y−x|<ρ(x)

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy

+

∞∑
k=0

1

(ρ(x))n

∫
|y−x|∼2kρ(x)

∣∣f(y)∣∣2−B |x−y|
ρ(x) dy

≡ I1 + I2.

For I1, it is easy to get

I1 ≤
C

Ψp′θ(B1)|B1|

∫
B1

∣∣f(y)∣∣dy ≤CMV,p′θf(x),

in which B1 =B(x,ρ(x)) is a critical ball.
For I2, we have

I2 ≤C

∞∑
k=0

(1 + 2k+1)p
′θ2kn

2B2k

1

Ψp′θ(2k+1B1)|2k+1B1|

∫
2k+1B1

∣∣f(y)∣∣dy
≤C

( ∞∑
k=0

(1 + 2k+1)p
′θ2kn

2B2k

)
MV,p′θf(x)

≤CMV,p′θf(x),

where the sum converges when B >B0/p. �
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Lemma 3.8. Let ψ0 be as in (3.3) and r ∈ (0,∞). Then for any A ∈
(max{A0, n/r},∞) (where A0 is as in Lemma 3.6) and B ∈ [0,∞), there exists
a positive constant C, depending only on n, r,ψ0,A and B, such that for all
f ∈D′(Rn), x ∈R

n and j ≥ jx (where 2−jx < ρ(x)≤ 2−jx+1),

[
(ψ0)

∗
j,A,B(f)(x)

]r ≤C

∞∑
k=j

2(j−k)(Ar−n)
{
M loc

(∣∣(ψ0)k ∗ f
∣∣r)(x)

+KBr

(∣∣(ψ0)k ∗ f
∣∣r)(x)},

where

(ψ0)
∗
j,A,B(f)(x)≡ sup

y∈Rn

|(ψ0)j ∗ f(x− y)|
mj,A,B,x(y)

for all x ∈R
n.

Proof. First, we can get the stronger version of (3.8) by virtue of (3.11),
that is: [

(ψ0)
∗
j,A,B(f)(x)

]r
≤C

∞∑
k=j

2(j−k)Ar2kn
∫
Rn

|(ψ0)k ∗ f(y)|r
mj,Ar,Br,x(x− y)

dy

≤C

∞∑
k=j

2(j−k)(Ar−n)

{
2jn

∫
|y−x|<2−jx

|(ψ0)k ∗ f(y)|r
(1 + 2j |x− y|)Ar

dy

+ 2jn
∫
|y−x|≥2−jx

|(ψ0)k ∗ f(y)|r
(2j |x− y|)Ar2Br|x−y|/ρ(x) dy

}
≡C

∞∑
k=j

2(j−k)(Ar−n){I + II }.

Since 2−jx < ρ(x)≤ 2−jx+1 and j ≥ jx, for I we have

I = 2jn
∫
2−j≤|y−x|<2−jx

|(ψ0)k ∗ f(y)|r
(1 + 2j |x− y|)Ar

dy

+ 2jn
∫
|y−x|≤2−j

|(ψ0)k ∗ f(y)|r
(1 + 2j |x− y|)Ar

dy

≡ I1 + I2.

According to the definition of M locf(x) (see (2.3)), for I2 we have

I2 ≤ 2jn
∫
|y−x|≤2−j

∣∣(ψ0)k ∗ f(y)
∣∣r dy ≤CM loc

(∣∣(ψ0)k ∗ f
∣∣r)(x),
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and for I1 we have

I1 ≤ 2jn
j∑

l=jx+1

∫
2−l≤|y−x|<2−l+1

|(ψ0)k ∗ f(y)|r
(2j |x− y|)Ar

dy

≤
j∑

l=jx+1

2jn(2−l+1)n

(2j−l)Ar

1

(2−l+1)n

∫
|y−x|≤2−l+1

∣∣(ψ0)k ∗ f(y)
∣∣r dy

≤
j∑

l=jx+1

2n

2(Ar−n)(j−l)
M loc

(∣∣(ψ0)k ∗ f
∣∣r)(x)

≤CM loc
(∣∣(ψ0)k ∗ f

∣∣r)(x),
where Ar > n. In addition, with regard to II , we have the following estimate,

II ≤ 2jn(ρ(x))n

(2j−jx)Ar

1

(ρ(x))n

∫
Rn

∣∣(ψ0)k ∗ f(y)
∣∣r2−Br |x−y|

ρ(x) dy

≤C
2jn(2−jx)n

(2j−jx)Ar
KBr

(∣∣(ψ0)k ∗ f
∣∣)(x)

≤CKBr

(∣∣(ψ0)k ∗ f
∣∣)(x),

where the last inequality is a consequence of the fact that j ≥ jx and Ar > n.
This finishes the proof. �

Now we can establish weighted norm inequalities of ψ+
0 (f), ψ

∗∗
0,A,B(f) and

M̃N,R(f).

Theorem 3.9. Assume ω ∈ Aρ,∞
∞ (Rn), R ∈ (0,∞), p ∈ (0,1], ψ0 and qω

be as in (3.1) and (2.4). Let A1 ≡ max{A0, nqω/p}, B1 ≡ B0/p and N0 ≡
[2A1] + 1, where A0 and B0 are defined as in Lemmas 3.6 and 3.7. Then for
any f ∈ D′(Rn), A ∈ (A1,∞), B ∈ (B1,∞) and integer N ≥N0, there exists
a positive constant C, depending only on A,B,N,R,ψ0, ω and n, such that

(3.14)
∥∥ψ∗∗

0,A,B(f)
∥∥
Lp

ω(Rn)
∼
∥∥ψ+

0 (f)
∥∥
Lp

ω(Rn)
,

and

(3.15)
∥∥M̃N,R(f)

∥∥
Lp

ω(Rn)
≤C

∥∥ψ+
0 (f)

∥∥
Lp

ω(Rn)
.

Proof. We first prove (3.14). For A ∈ (A1,∞) and B ∈ (B1,∞), since A1 ≡
max{A0, nqω/p} and B1 ≡B0/p, there exists r0 ∈ (0, p/qω) such that A> n/r0
and Br0 >B0/qω . Then, for all x ∈R

n and j ≥ jx, by Lemma 3.8, we get[
(ψ0)

∗
j,A,B(f)(x)

]r0 � ∞∑
k=j

2(j−k)(Ar0−n)
{
M loc

(∣∣(ψ0)k ∗ f
∣∣r0)(x)(3.16)

+KBr0

(∣∣(ψ0)k ∗ f
∣∣r0)(x)}.
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Thus, by (3.16) and ∣∣(ψ0)k ∗ f(x)
∣∣≤ ψ+

0 (f)(x)

for any x ∈R
n and k ≥ jx, we have

(3.17)
[
ψ∗∗
0,A,B(f)(x)

]r0 �M loc
([
ψ+
0 (f)

]r0)
(x) +KBr0

([
ψ+
0 (f)

]r0)
(x).

Then by (3.17) we have∫
Rn

∣∣ψ∗∗
0,A,B(f)(x)

∣∣pω(x)dx(3.18)

�
∫
Rn

∣∣{M loc
([
ψ+
0 (f)

]r0)
(x)

}∣∣p/r0ω(x)dx
+

∫
Rn

∣∣{KBr0

([
ψ+
0 (f)

]r0)
(x)

}∣∣p/r0ω(x)dx
≡ I1 + I2.

For I1, as r0 < p/qω , we have q ≡ p/r0 > qω and ω ∈Aρ,∞
q (Rn), therefore by

Lemma 2.4(vii) we get

(3.19)

∫
Rn

∣∣M loc
([
ψ+
0 (f)

]r0)
(x)

∣∣p/r0ω(x)dx�
∫
Rn

∣∣ψ+
0 (f)

∣∣pω(x)dx
and for I2 by Lemma 3.7 we get

(3.20)

∫
Rn

∣∣KBr0

([
ψ+
0 (f)

]r0)
(x)

∣∣p/r0ω(x)dx�
∫
Rn

∣∣ψ+
0 (f)

∣∣pω(x)dx,
which together with (3.19) and

ψ+
0 (f)(x)≤ (ψ0)

∗
�(f)(x)� ψ∗∗

0,A,B(f)(x)

implies (3.14).
Next, we prove (3.15). For any γ ∈DN,R(R

n), x ∈R
n, l ∈ Z (where l satis-

fies 2−l ∈ (0, ρ(x))) and j ≥ jx (where 2−jx < ρ(x)≤ 2−jx+1), by Lemma 3.5,
we have

(3.21) γl ∗ f = γl ∗ (ϕ0)j ∗ (ψ0)j ∗ f +

∞∑
k=j+1

γl ∗ϕk ∗ψk ∗ f.

For any given l0 ∈ Z which satisfies 2−l0 ∈ (0, ρ(x)), and z ∈ R
n which

satisfies |z − x|< 2−l0 , by (3.21) we have∣∣γl0 ∗ f(z)∣∣≤ ∣∣γl0 ∗ (ϕ0)l0 ∗ (ψ0)l0 ∗ f(z)
∣∣+ ∞∑

k=l0+1

∣∣γl0 ∗ϕk ∗ψk ∗ f(z)
∣∣(3.22)

≤
∫
Rn

∣∣γl0 ∗ (ϕ0)l0(y)
∣∣∣∣(ψ0)l0 ∗ f(z − y)

∣∣dy
+

∞∑
k=l0+1

∫
Rn

∣∣γl0 ∗ϕk(y)
∣∣∣∣ψk ∗ f(z − y)

∣∣dy
≡ I3 + I4.
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For I3, by

ψ∗∗
0,A,B(f)(x) = sup

j≥jx,y∈Rn

|(ψ0)j ∗ f(x− y)|
mj,A,B,x(y)

= sup
j≥jx,y∈Rn

|(ψ0)j ∗ f(x− (y+ x− z))|
mj,A,B,x(y+ x− z)

= sup
j≥jx,y∈Rn

|(ψ0)j ∗ f(z − y)|
mj,A,B,x(y+ x− z)

,

we have ∣∣(ψ0)l0 ∗ f(z − y)
∣∣≤ ψ∗∗

0,A,B(f)(x)ml0,A,B,x(y+ x− z),

which together with

ml0,A,B,x(y+ x− z)≤ml0,A,B,x(x− z)ml0,A,B,x(y),

and

ml0,A,B,x(x− z) =
(
1 + 2l0 |x− z|

)A
2B

|x−z|
ρ(x) � 2A,

deduces that ∣∣(ψ0)l0 ∗ f(z − y)
∣∣� 2Aψ∗∗

0,A,B(f)(x)ml0,A,B,x(y).

Then, we get

I3 � 2A
{∫

Rn

∣∣γl0 ∗ (ϕ0)l0(y)
∣∣ml0,A,B,x(y)dy

}
ψ∗∗
0,A,B(f)(x).

For I4, when k ∈ Z, we have∣∣ψk ∗ f(z − y)
∣∣≤ ∣∣(ψ0)k ∗ f(z − y)

∣∣+ ∣∣(ψ0)k−1 ∗ f(z − y)
∣∣

and

mk,A,B,x(y+ x− z)≤mk,A,B,x(x− z)mk,A,B,x(y),

since mk,A,B,x(x− z)� 2(k−l0)A, we can get∣∣(ψ0)k ∗ f(z − y)
∣∣≤ ψ∗∗

0,A,B(f)(x)mk,A,B,x(y+ x− z)

≤ ψ∗∗
0,A,B(f)(x)mk,A,B,x(x− z)mk,A,B,x(y)

� 2(k−l0)Amk,A,B,x(y)ψ
∗∗
0,A,B(f)(x).

We also have∣∣(ψ0)k−1 ∗ f(z − y)
∣∣� 2(k−l0)Amk,A,B,x(y)ψ

∗∗
0,A,B(f)(x).

Thus,

I4 �
∞∑

k=l0+1

2(k−l0)A

{∫
Rn

∣∣γt ∗ϕk(y)
∣∣mk,A,B,x(y)dy

}
ψ∗∗
0,A,B(f)(x).
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Therefore, we have∣∣γl0 ∗ f(z)∣∣(3.23)

�
{∫

Rn

∣∣γl0 ∗ (ϕ0)l0(y)
∣∣ml0,A,B,x(y)dy

+

∞∑
k=l0+1

2(k−l0)A

∫
Rn

∣∣γl0 ∗ϕk(y)
∣∣mk,A,B,x(y)dy

}
ψ∗∗
0,A,B(f)(x).

Let supp(ϕ0) ⊂ B(0,R0), then supp((ϕ0)j) ⊂ B(0,2−jR0) for all j ≥ jx.
Moreover, since supp(γ) ⊂ B(0,R), we have supp(γl0) ⊂ B(0,2−l0R). Then,
we get supp(γl0 ∗ (ϕ0)l0)⊂B(0,2−l0(R0 +R)) and∣∣γl0 ∗ (ϕ0)l0(y)

∣∣� ∫
Rn

∣∣γl0(s)∣∣∣∣(ϕ0)l0(y− s)
∣∣ds� 2l0n

∫
Rn

∣∣γl0(s)∣∣ds∼ 2l0n,

which implies that∫
Rn

∣∣γl0 ∗ (ϕ0)l0(y)
∣∣ml0,A,B,x(y)dy(3.24)

� 2l0n
∫
B(0,2−l0 (R0+R))

(
1 + 2l0 |y|

)A
2

B|y|
ρ(x) dy � 1.

Furthermore, for ϕ with vanishing moments up to order N , by [19, (2.13)]
we have

‖γl0 ∗ϕk‖L∞(Rn) � 2(l0−k)N2l0n

for all k ∈ Z with k ≥ l0 + 1. Then, for l0 ≥ jx, N > 2A and supp(γl0 ∗ ϕk)⊂
B(0,2−l0R0 + 2−kR), we get

∞∑
k=l0+1

2(k−l0)A

∫
Rn

∣∣γl0 ∗ϕk(y)
∣∣mk,A,B,x(y)dy(3.25)

�
∞∑

k=l0+1

2(k−l0)A2(l0−k)N2l0n
(
2−l0R0 + 2−kR

)n
×
[
1 + 2k

(
2−l0R0 + 2−kR

)]A
2B(2−l0R0+2−kR)/ρ(x)

�
∞∑

k=l0+1

2(l0−k)(N−2A) � 1.

Thus, by (3.23), (3.24) and (3.25), we have |γl0 ∗ f(z)|� ψ∗∗
0,A,B(f)(x), and by

the arbitrariness of l0 ≥ jx and z ∈B(x,2−l0), we can further obtain

(3.26) M̃N,R(f)(x)� ψ∗∗
0,A,B(f)(x),

which deduces (3.15) and finishes the proof of this theorem. �
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Here and in what follows, we define

(3.27) Np,ω ≡max{Ñp,ω,N0},
where Ñp,ω and N0 are respectively as in Definition 3.1 and Theorem 3.9.
Then we have the following equivalent characterizations of the weighted local
Hardy spaces.

Theorem 3.10. Let ω ∈Aρ,∞
∞ (Rn), ψ0 and Np,ω be respectively as in (3.3)

and (3.27). Then for any f ∈D′(Rn) and integer N ≥Np,ω , the following are
equivalent:

(3.28) ‖f‖hp
ρ,N (ω) ∼

∥∥M̃N (f)
∥∥
Lp

ω(Rn)
∼
∥∥M̃0

N (f)
∥∥
Lp

ω(Rn)
∼
∥∥M0

N (f)
∥∥
Lp

ω(Rn)
.

Proof. For any N ≥Np,ω , f ∈ hp
ρ,N (ω), ψ̃0 satisfy (3.3) and ψ̃0 ∈DN (Rn).

by the definition of MN (f), we get ψ̃+
0 (f) ≤ MN (f) and hence ψ̃+

0 (f) ∈
Lp
ω(R

n). Suppose supp(ψ0)⊂B(0,R), then by (3.15), we have

(3.29)
∥∥M̃N,R(f)

∥∥
Lp

ω(Rn)
�
∥∥ψ̃+

0 (f)
∥∥
Lp

ω(Rn)
� ‖f‖hp

ρ,N (ω),

which combined with ψ+
0 (f)� M̃N,R(f) infers that ψ

+
0 (f) ∈ Lp

ω(R
n) and∥∥ψ+

0 (f)
∥∥
Lp

ω(Rn)
� ‖f‖hp

ρ,N (ω).

Then by the estimate

ψ+
0 (f)≤ (ψ0)

∗
�(f)� ψ∗∗

0,A,B(f),

(3.14) and (3.15), we have (ψ0)
∗
�(f) ∈ Lp

ω(R
n), M̃N (f) ∈ Lp

ω(R
n) and∥∥M̃N (f)

∥∥
Lp

ω(Rn)
�
∥∥(ψ0)

∗
�(f)

∥∥
Lp

ω(Rn)
�
∥∥ψ+

0 (f)
∥∥
Lp

ω(Rn)
.

Let ψ1 satisfy (3.3) and ψ1 ∈D0
N (Rn). Then by (3.15), we have∥∥M̃N (f)

∥∥
Lp

ω(Rn)
�
∥∥ψ+

1 (f)
∥∥
Lp

ω(Rn)
,

which combined with ψ+
1 (f)≤M0

N (f) and MN (f)≤ M̃N (f) infers∥∥MN (f)
∥∥
Lp

ω(Rn)
�
∥∥M0

N (f)
∥∥
Lp

ω(Rn)
.

Then, by the definition of hp
ρ,N (ω), we have f ∈ hp

ρ,N (ω) and

‖f‖hp
ρ,N (ω) �

∥∥M0
N (f)

∥∥
Lp

ω(Rn)
.

On the other hand, by the facts that M0
N (f) ≤ M̃0

N (f) ≤ M̃N (f) for any
f ∈D′(Rn), we have

‖f‖hp
ρ,N (ω) �

∥∥M0
N (f)

∥∥
Lp

ω(Rn)
≤
∥∥M̃0

N (f)
∥∥
Lp

ω(Rn)
≤
∥∥M̃N (f)

∥∥
Lp

ω(Rn)
,

which combined with (3.29) finishes the proof. �
By Theorems 3.9 and 3.10, we have the following corollary, and we omit

the details here.
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Corollary 3.11. Let ω ∈ Aρ,∞
∞ (Rn), ψ0 be as in (3.3), Np,ω be as in

(3.27), A and B be as in Theorem 3.9. Then for any integer N ≥ Np,ω ,
f ∈ hp

ρ,N (ω) if and only if f ∈D′(Rn) and ψ∗∗
0,A,B(f) ∈ Lp

ω(R
n); moreover,

‖f‖hp
ρ,N (ω) ∼

∥∥ψ∗∗
0,A,B(f)

∥∥
Lp

ω(Rn)
.

Next, we give some basic properties of hp
ρ,N (ω) and hp,q,s

ρ (ω).

Proposition 3.12. Let ω ∈Aρ,∞
∞ (Rn), p ∈ (0,1] and Np,ω be as in (3.29).

For any integer N ≥Np,ω , the inclusion hp
ρ,N (ω) ↪→D′(Rn) is continuous.

Proof. First, for any x ∈B(0, ρ(0)), by Lemma 2.1, there exist C0 ≥ 1 and
k0 ≥ 1, such that

ρ(0)≤C0

(
1 +

|x|
ρ(0)

)k0

ρ(x)≤C02
k0ρ(x).

We take r1 ≡ ρ(0)/C02
k0+1 < min{ρ(x), ρ(0)}, then we have B(0, r1) ⊂

B(0, ρ(0)). In addition, for any x ∈B(0, r1), we also have |x|< r1 < ρ(x).
Next, let f ∈ hp

ρ,N (ω). For any given ϕ ∈ D(Rn), suppose that supp(ϕ)⊂
B(0,R) with R ∈ (0,∞). Then by Theorem 3.9 and 3.10, we have∣∣〈f,ϕ〉∣∣= ∣∣f ∗ ϕ̃(0)

∣∣≤ ‖ϕ̃‖DN,R(Rn) inf
x∈B(0,r1)

M̃N,R(f)(x)

≤ ‖ϕ̃‖DN,R(Rn)

[
ω
(
B(0, r1)

)]−1/p∥∥M̃N,R(f)
∥∥
Lp

ω(Rn)

� ‖ϕ̃‖DN,R(Rn)

[
ω
(
B(0, r1)

)]−1/p‖f‖hp
ρ,N (ω),

where M̃N,R(f) is as in (2.5) and ϕ̃(x)≡ ϕ(−x) for all x ∈R
n. This implies

f ∈D′(Rn) and the inclusion is continuous. The proof is finished. �

Proposition 3.13. Let ω ∈Aρ,∞
∞ (Rn), p ∈ (0,1] and Np,ω be as in (3.29).

For any integer N ≥Np,ω , the space hp
ρ,N (ω) is complete.

Proof. For any ψ ∈DN (Rn) and {fi}i∈N ⊂D′(Rn) such that {
∑j

i=1 fi}j∈N

converges in D′(Rn) to a distribution f , the series
∑

i fi ∗ ψ(x) converges
pointwise to f ∗ ψ(x) for each x ∈Rn. Therefore,

(
MN (f)(x)

)p ≤( ∞∑
i=1

MN (fi)(x)

)p

≤
∞∑
i=1

(
MN (fi)(x)

)p
for all x ∈R

n,

and hence ‖f‖hp
ρ,N (ω) ≤

∑∞
i ‖fi‖hp

ρ,N (ω).

In order to prove hp
ρ,N (ω) is complete, it suffices to prove that for every se-

quence {fj}j∈N with ‖fj‖hp
ρ,N (ω) < 2−j and j ∈N, the series

∑
j∈N

fj converges

in hp
ρ,N (ω). In fact, since {

∑j
i=1 fi}j∈N is a Cauchy sequence in hp

ρ,N (ω), by
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Proposition 3.12 and the completeness of D′(Rn), {
∑j

i=1 fi}j∈N is a Cauchy
sequence in D′(Rn) as well and thus converges to some f ∈D′(Rn). Thus,∥∥∥∥∥f −

j∑
i=1

fi

∥∥∥∥∥
p

hp
ρ,N (ω)

=

∥∥∥∥∥
∞∑

i=j+1

fi

∥∥∥∥∥
p

hp
ρ,N (ω)

≤
∞∑

i=j+1

2−ip → 0

as j →∞. This finishes the proof. �

Theorem 3.14. Let ω ∈ Aρ,∞
∞ (Rn) and Np,ω be as in (3.29). If (p, q, s)ω

is an admissible triplet and integer N ≥Np,ω , then

hp,q,s
ρ (ω)⊂ hp

ρ,Np,ω
(ω)⊂ hp

ρ,N (ω),

and moreover, there exists a positive constant C such that for all f ∈ hp,q,s
ρ (ω),

‖f‖hp
ρ,N (ω) ≤ ‖f‖hp

ρ,Np,ω
(ω) ≤C‖f‖hp,q,s

ρ (ω).

Proof. It is suffices to prove hp,q,s
ρ (ω) ⊂ hp

ρ,Np,ω
(ω), and for any f ∈

hp,q,s
ρ (ω),

‖f‖hp
ρ,Np,ω

(ω) � ‖f‖hp,q,s
ρ (ω).

By Definition 3.3 and Theorem 3.10, we just need to prove that there exists
a positive constant C such that

(3.30)
∥∥M0

Np,ω
(a)

∥∥
Lp

ω(Rn)
≤C, for all (p, q)ω-single-atoms a,

and

(3.31)
∥∥M0

Np,ω
(a)

∥∥
Lp

ω(Rn)
≤C, for all (p, q, s)ω-atoms a.

For (3.30), since q ∈ (qω,∞], we get ω ∈Aρ,∞
q (Rn). Let a be a (p, q)ω-single-

atom. When ω(Rn) =∞, by the definition of the single atom, we know that
a= 0 for almost every x ∈Rn. In this case, it is easy to obtain (3.30). When
ω(Rn)<∞, by Hölder’s inequality, ω ∈Aρ,∞

q (Rn) and Proposition 2.8(i), we
get∥∥M0

Np,ω
(a)

∥∥p
Lp

ω(Rn)
=

∫
Rn

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx

≤
(∫

Rn

∣∣M0
Np,ω

(a)(x)
∣∣qω(x)dx)p/q(∫

Rn

ω(x)dx

)1−p/q

≤C‖a‖p
Lq

ω(Rn)

[
ω
(
R

n
)]1−p/q

≤C.

For (3.31), let a be a (p, q, s)ω-atom supported in the cube Q ≡Q(x0, r).
We consider two cases of Q.
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The first case is when r < L2ρ(x0). Let Q̃≡ 2
√
nQ, then we have

(3.32)

∫
Rn

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx

=

∫
Q̃

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx+

∫
Q̃�

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx

≡ I1 + I2.

For I1, by Hölder’s inequality and the properties of Aρ,θ
q (Rn) (see

Lemma 2.4(vii)), we have

I1 ≤C‖a‖p
Lq

ω(Rn)

[
ω(Q̃)

]1−p/q ≤C.(3.33)

For I2, we claim that for x ∈ Q̃�

(3.34) M0
Np,ω

(a)(x)≤C|Q|(s0+n+1)/n
[
ω(Q)

]−1/p

× |x− x0|−(s0+n+1)χB(x0,c1ρ(x0))(x),

where s0 ≡ [n(qω/p − 1)] and c1 > 2
√
n is an constant independent of the

atom a. Indeed, for any ψ ∈D0
N (Rn) and 2−l ∈ (0, ρ(x)), let P be the Taylor

expansion of ψ about (x − x0)/2
−l with degree s0. By Taylor’s remainder

theorem, for any y ∈R
n, we have∣∣∣∣ψ(x− y

2−l

)
− P

(
x− x0

2−l

)∣∣∣∣
≤C

∑
α∈Z

n
+

|α|=s0+1

∣∣∣∣(∂αψ
)(θ(x− y) + (1− θ)(x− x0)

2−l

)∣∣∣∣∣∣∣∣x0 − y

2−l

∣∣∣∣s0+1

,

where θ ∈ (0,1). Since 2−l ∈ (0, ρ(x)) and x ∈ Q̃�, we have supp(a ∗ ψl) ⊂
B(x0, c1ρ(x0)), and by a ∗ ψl(x) 
= 0 we have 2−l > |x− x0|/2. Then, for any

x ∈ Q̃�, by the above estimates and Definition 3.2, we get∣∣a ∗ ψl(x)
∣∣

≤ 1

2−ln

{∫
Q

∣∣a(y)∣∣∣∣∣∣ψ(x− y

2−l

)
− P

(
x− x0

2−l

)∣∣∣∣dy}χB(x0,c1ρ(x0))(x)

≤C|x− x0|−(s0+n+1)

{∫
Q

∣∣a(y)∣∣|x0 − y|s0+1 dy

}
χB(x0,c1ρ(x0))(x)

≤C|Q|(s0+1)/n‖a‖Lq
ω(Rn)

(∫
Q

[
ω(y)

]−q′/q
dy

)1/q′

× |x− x0|−(s0+n+1)χB(x0,c1ρ(x0))(x)

≤C|Q|(s0+n+1)/n
[
ω(Q)

]−1/p|x− x0|−(s0+n+1)χB(x0,c1ρ(x0))(x),

which combined with the arbitrariness of ψ ∈D0
N (Rn) infers (3.34).
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Let Qi ≡ 2i
√
nQ with i ∈ N and i0 ∈ N satisfying 2i0r ≤ c1ρ(x0)< 2i0+1r.

Since s0 = [n(qω/p−1)], there exists q0 ∈ (qω,∞) such that p(s0+n+1)> nq0.
Then by Lemma 2.4, we have

I2 ≤
∫
√
nr≤|x−x0|<c1ρ(x0)

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx

≤C|Q|p(s0+n+1)/n
[
ω(Q)

]−1
∫
√
nr≤|x−x0|<c1ρ(x0)

|x− x0|−p(s0+n+1)ω(x)dx

≤Crp(s0+n+1)
[
ω(Q)

]−1
i0∑
i=0

∫
Qi+1\Qi

|x− x0|−p(s0+n+1)ω(x)dx

≤C
[
ω(Q)

]−1
i0∑
i=0

2−ip(s0+n+1)ω(Qi+1)≤C,

which combine with (3.32) and (3.33) implies (3.31) in the first case.
For the case L2ρ(x0)≤ r ≤ L1ρ(x0), let Q

∗ ≡Q(x0, c2r), in which c2 > 1 is
a constant independent of atom a. Thus, by supp(M0

Np,ω
(a))⊂Q∗, Hölder’s

inequality and Lemma 2.4, we get∫
Rn

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx=

∫
Q∗

∣∣M0
Np,ω

(a)(x)
∣∣pω(x)dx

≤C‖a‖p
Lq

ω(Rn)

[
ω
(
Q∗)]1−p/q

≤C.

The proof of Theorem 3.14 is complete. �

4. Calderón–Zygmund decompositions

In this section, we establish the Calderón–Zygmund decompositions asso-
ciated with local grand maximal functions on weighted Euclidean space R

n.
We follow the constructions in [23], [4] and [5].

In this section, we consider a distribution f satisfying that for all λ > 0,

ω
({

x ∈R
n :MN (f)(x)> λ

})
<∞.

For any given λ > infx∈Rn MN (f)(x), set

Ωλ ≡
{
x ∈R

n :MN (f)(x)> λ
}
,

which is a proper open subset of Rn. As in [23], we give the usual Whitney
decomposition of Ωλ. Thus there will be closed cubes Qi, and their interiors
distance from Ω�

λ, with Ωλ =
⋃

iQi and

diam(Qi)≤ 2−(6+n) dist
(
Qi,Ω

�
λ

)
≤ 4diam(Qi).

In what follows, fix a ≡ 1 + 2−(11+n) and b ≡ 1 + 2−(10+n), and if we de-
note Q̄i = aQi,Q

∗
i = bQi, we have Qi ⊂ Q̄i ⊂ Q∗

i . Moveover, Ωλ =
⋃

iQ
∗
i ,
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and {Q∗
i }i have the bounded interior property, that is, each point in Ωλ is

contained in at most a fixed number of {Q∗
i }i.

Take a function ξ ∈ D(Rn) such that 0 ≤ ξ ≤ 1, supp(ξ) ⊂ aQ(0,1) and
ξ ≡ 1 on Q(0,1). For x ∈ R

n, set ξi(x) ≡ ξ((x − xi)/li), where xi is the
center of the cube Qi and li is its sidelength. Then for any x ∈ R

n, we
have 1≤

∑
i ξi(x)≤M , where M is a fixed positive integer independent of x.

Let ηi ≡ ξi/(
∑

j ξj), then {ηi}i can form a smooth partition of unity for Ωλ

subordinate to the locally finite covering {Q∗
i }i of Ωλ, that is, χΩλ

=
∑

i ηi
with each ηi ∈D(Rn) supported in Q̄i.

Let s ∈ Z+ be some fixed integer and Ps(R
n) denote the linear space of

polynomials in n variables of degrees no more than s. For each i ∈ N and
P ∈ Ps(R

n), set

(4.1) ‖P‖i ≡
[

1∫
Rn ηi(y)dy

∫
Rn

∣∣P (x)
∣∣2ηi(x)dx]1/2.

Then (Ps(R
n),‖ · ‖i) is a finite dimensional Hilbert space. Let f ∈ D′(Rn),

then f can induce a linear functional on Ps(R
n) by

P �→ 1∫
Rn ηi(y)dy

〈f,Pηi〉.

By the Riesz represent theorem, there exists a unique polynomial Pi ∈ Ps(R
n)

for each i such that for any Q ∈ Ps(R
n),

〈f,Qηi〉= 〈Pi,Qηi〉=
∫
Rn

Pi(x)Q(x)ηi(x)dx.

For each i, define the distribution bi ≡ (f − Pi)ηi when li ∈ (0,L3ρ(xi))
(where L3 = 2k0C0, xi is the center of the cube Qi) and bi ≡ fηi when
li ∈ [L3ρ(xi),∞).

We will show that for suitable choices of s and N , the series
∑

i bi converge
in D′(Rn), and in this case, we define g ≡ f −

∑
i bi in D′(Rn).

The representation f = g +
∑

i bi, where g and bi are as above, is called a
Calderón–Zygmund decomposition of f of degree s and height λ associated
with MN (f).

In the following section, we give some lemmas. In Lemmas 4.1 and 4.2, we
give some properties of the smooth partition of unity {ηi}i. From Lemmas 4.3
to 4.6, we get some estimates for the bad parts {bi}i. Lemmas 4.7 and 4.8
give some estimates of the good part g, and Corollary 4.10 shows the density
of Lq

ω(R
n)∩ hp

ρ,N (ω) in hp
ρ,N (ω), where q ∈ (qω,∞).

Lemma 4.1. There exists a positive constant C1 depending only on N , such
that for all i and l≤ li,

sup
|α|≤N

sup
x∈Rn

∣∣∂αηi(lx)
∣∣≤C1.
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Lemma 4.1 is essentially Lemma 5.2 in [4].

Lemma 4.2. If li < L3ρ(xi), then there exists a constant C2 > 0 indepen-
dent of f ∈D′(Rn), li and λ > 0 so that

sup
y∈Rn

∣∣Pi(y)ηi(y)
∣∣≤C2λ.

Proof. As in the proof of Lemma 5.3 in [4]. Let π1, . . . , πm (m= dimPs)
be an orthonormal basis of Ps with respect to the norm (4.1). we have

(4.2) Pi =

m∑
k=1

(
1∫
ηi

∫
f(x)πk(x)ηi(x)dx

)
π̄k,

where the integral is understood as 〈f,πkηi〉. Therefore,

1 =
1∫
ηi

∫
Q̄i

∣∣πk(x)
∣∣2ηi(x)dx≥ 2−n

|Qi|

∫
Q̄i

∣∣πk(x)
∣∣2ηi(x)dx(4.3)

≥ 2−n

|Qi|

∫
Qi

∣∣πk(x)
∣∣2 dx= 2−n

∫
Q0

∣∣π̃k(x)
∣∣2 dx,

where π̃k(x) = πk(xi + lix) and Q0 denotes the cube of side length 1 centered
at the origin.

Since Ps is finite dimensional, all norms on Ps are equivalent, then there
exists A1 > 0 such that for all P ∈ Ps

sup
|α|≤s

sup
z∈bQ0

∣∣∂αP (z)
∣∣≤A1

(∫
Q0

∣∣P (z)
∣∣2 dz)1/2

.

From this and (4.3), for k = 1, . . . ,m, we have

(4.4) sup
|α|≤s

sup
z∈bQ0

∣∣∂απ̃k(z)
∣∣≤A12

n/2.

If z ∈ 28+nnQi∩Ω�, by Lemma 2.1, we have ρ(xi)≤C0(1+28+nn2L3)
k0ρ(z),

then we let L̃≡ 1/C0(1 + 28+nn2L3)
k0L3. For k = 1, . . . ,m, we define

Φk(y) =
2−kin∫

ηi
πk

(
z − 2−kiy

)
ηi
(
z − 2−kiy

)
,

where z ∈ 28+nnQi ∩ Ω� and 2−ki ≤ L̃li < 2−ki+1. It is easy to see that

suppΦk ⊂B(0,R1) where R1 ≡ 29+nn2/L̃, and ‖Φk‖DN
≤A2 by Lemma 4.1.

Note that

1∫
ηi

∫
f(x)πk(x)ηi(x)dx=

(
f ∗ (Φk)ki

)
(z),

since 2−ki ≤ L̃li < L̃L3ρ(xi)≤ ρ(z), then we have∣∣∣∣ 1∫
ηi

∫
f(x)πk(x)ηi(x)dx

∣∣∣∣≤MNf(z)‖Φk‖DN
≤A2λ.
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By (4.2), (4.4) and the above estimate, we have

sup
z∈Q∗

i

∣∣Pi(z)
∣∣≤m2n/2A1A2λ.

Thus,

sup
z∈Rn

∣∣Pi(z)ηi(z)
∣∣≤C2λ.

The proof is complete. �

By the same method, we can get the following lemma as Lemma 4.3 in [24],
and we omit the details here.

Lemma 4.3. There exists a constant C3 > 0 such that

(4.5) M0
Nbi(x)≤C3MNf(x) for x ∈Q∗

i .

Lemma 4.4. Suppose that Q⊂ R
n is bounded, convex, and 0 ∈Q, and N

is a positive integer. Then there is a constant C depending only on Q and N
such that for every φ ∈D(Rn) and every integer s, 0≤ s <N we have

sup
z∈Q

sup
|α|≤N

∣∣∂αRy(z)
∣∣≤C sup

z∈y+Q
sup

s+1≤|α|≤N

∣∣∂αφ(z)
∣∣,

where Ry is the remainder of the Taylor expansion of φ of order s at the point
y ∈R

n.

Lemma 4.4 is Lemma 5.5 in [4].

Lemma 4.5. Suppose that 0≤ s < N . Then there exist positive constants
C4,C5 so that for i ∈N,

(4.6) M0
N (bi)(x)≤C

λln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C4ρ(x)}(x) if x /∈Q∗

i .

Moreover,

M0
N (bi)(x) = 0, if x /∈Q∗

i and li ≥C5ρ(x).

Proof. Since ηi is supported in the cube Q̄i, and Q̄i is strictly contained
in Q∗

i , then if x /∈Q∗
i and ηi(y) 
= 0, there exists a positive constant C4 such

that |x − y| ≤ |x − xi| ≤ C4|x − y|. On the other hand, take ϕ ∈ D0
N (Rn),

the support property of ϕ requires that ρ(x) > 2−l ≥ |x − y| ≥ 2−11−nli.
Hence, |x − xi| ≤ C42

−l, li < 211+nρ(x) ≡ C5ρ(x) and li < C52
−l. Take

w ∈ (28+nnQi)∩Ω�, and we discuss the following two cases.
Case I. If L3ρ(xi)≤ li <C52

−l <C5ρ(x), then according to Lemma 2.1 we
have li <C5C0(1 +C4)

k0ρ(xi) and

ρ(ω)≥C−1
0

(
1 +

|ω− xi|
ρ(xi)

)−k0

ρ(xi)≥C−1
0

(
1 + 28+nn

√
nL2

)−k0
ρ(xi),

therefore, li < a1ρ(w), where a1 > 1 is a constant.
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Now we define l̄i = li/a1 < ρ(w) and take ki ∈ Z such that 2−ki ≤ l̄i <
2−ki+1, then for ϕ ∈D0

N (Rn), φ(z)≡ ϕ(2−kiz/2−l) and 2−l < ρ(x) we have

(bi ∗ϕl)(x) = 2ln
∫

bi(z)ϕ
(
2l(x− z)

)
dz

= 2ln
∫

bi(z)φ
(
2ki(x− z)

)
dz

= 2ln
∫

bi(z)φ2ki (x−w)

(
2ki(w− z)

)
dz

=
2ln

2kin
(f ∗Φki)(w),

where

Φ(z)≡ φ2ki (x−w)(z)ηi
(
w− 2−kiz

)
, φ2ki (x−w)(z)≡ φ

(
z + 2ki(x−w)

)
.

Obviously, suppΦ ⊂ B(0,R2), where R2 ≡ 29+nn2a1. Since li < C52
−l and

|x− xi| ≤C42
−l, we have

(4.7)
∣∣(bi ∗ϕl)(x)

∣∣≤C
2ln

2kin
MNf(w)≤Cλ

2ln

2kin
≤Cλ

ln+s+1
i

(li + |x− xi|)n+s+1
.

Case II. If li <L3ρ(xi) and ϕ ∈D0
N (Rn), taking ji ∈ Z such that 2−ji ≤ li <

2−ji+1, then we define φ(z) = ϕ(2−jiz/2−l) and consider the Taylor expansion
of φ of order s at the point y = 2ji(x−w):

φ(y+ z) =
∑
|α|≤s

∂αφ(y)

α!
zα +Ry(z),

where Ry denotes the remainder. Thus we get

(bi ∗ϕl)(x) = 2ln
∫

bi(z)ϕ
(
2ln(x− z)

)
dz(4.8)

= 2ln
∫

bi(z)φ
(
2jin(x− z)

)
dz

= 2ln
∫

bi(z)R2ji (x−w)

(
2ji(w− z)

)
dz

=
2ln

2jin
(f ∗Φji)(w)

− 2ln
∫

Pi(z)ηi(z)R2ji (x−w)

(
2ji(w− z)

)
dz,

where

Φ(z)≡R2ji (x−w)(z)ηi
(
ω− 2−jiz

)
.
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Obviously, suppΦ ⊂ Bn ≡ B(0,R2). Applying Lemma 4.4 to φ(z) =
ϕ(2−jiz/2−l), y = 2ji(x−w) and Bn, we have

sup
z∈Bn

sup
|α|≤N

∣∣∂αRy(z)
∣∣≤C sup

z∈y+Bn

sup
s+1≤|α|≤N

∣∣∂αφ(z)
∣∣

≤C sup
z∈y+Bn

(
2−ji

2−l

)s+1

sup
s+1≤|α|≤N

∣∣∂αϕ
(
2−jiz/2−l

)∣∣
≤C

(
2−ji

2−l

)s+1

.

Notice that li <C52
−l and |x− xi| ≤C42

−l, then by (4.8), we obtain

(bi ∗ϕl)(x)(4.9)

≤ 2ln

2jin
∣∣(f ∗Φji)(w)

∣∣+ 2ln
∫ ∣∣Pi(z)ηi(z)R2ji (x−w)

(
2ji(w− z)

)∣∣dz
≤C

2ln

2jin

(
MNf(w)‖Φ‖DN

+ λ sup
z∈Bn

sup
|α|≤N

∣∣∂αRy(z)
∣∣)

≤Cλ
ln+s+1
i

(li + |x− xi|)n+s+1
.

By combining both cases, we obtain (4.6). �

Lemma 4.6. Let ω ∈ Aρ,∞
∞ (Rn) and qω be as in (2.4). If p ∈ (0,1], s ≥

[n(qω/p− 1)], N > s and N ≥Np,ω , then there exists a positive constant C6

such that for all f ∈ hp
ρ,N (ω), λ > infx∈Rn MNf(x) and i ∈N,

(4.10)

∫
Rn

(
M0

N (bi)(x)
)p
ω(x)dx≤C6

∫
Q∗

i

(
MN (f)(x)

)p
ω(x)dx.

Moreover the series
∑

i bi converges in hp
ρ,N (ω) and

(4.11)

∫
Rn

(
M0

N

(∑
i

bi

)
(x)

)p

ω(x)dx≤C6

∫
Ω

(
MN (f)(x)

)p
ω(x)dx.

Proof. By the proof of Lemma 4.5, we know |x − xi| < C4ρ(x), li <
C5ρ(x) and ρ(x) ≤ C0(1 + C4)

k0ρ(xi), thus Q∗
i ⊂ a2ρ(xi)Q

0
i , where a2 ≡

2C0(1 +C4)
k0 max{C4,C5} and Q0

i ≡Q(xi,1). Furthermore, we have∫
Rn

(
M0

N (bi)(x)
)p
ω(x)dx≤

∫
Q∗

i

(
M0

N (bi)(x)
)p
ω(x)dx(4.12)

+

∫
a2ρ(xi)Q0

i \Q∗
i

(
M0

N (bi)(x)
)p
ω(x)dx.

Notice that s ≥ [n(qω/p − 1)] implies 2−n(qω+η)2(s+n+1)p > 1 for sufficient
small η > 0. By Lemma 2.1(iii) with ω ∈ Aρ,∞

qω+η(R
n), Lemma 4.5 and
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MN (f)(x)> λ for all x ∈Q∗
i , we have

(4.13)

∫
a2ρ(xi)Q0

i \Q∗
i

(
M0

N (bi)(x)
)p
ω(x)dx

≤
k0∑
k=0

∫
2kQ∗

i \2k−1Q∗
i

(
M0

N (bi)(x)
)p
ω(x)dx

≤ λpω
(
Q∗

i

) k0∑
k=0

[
2−n(qω+η)+(s+n+1)p

]−k

≤C

∫
Q∗

i

(
MNf(x)

)p
ω(x)dx,

where b= 1+ 2−(10+n), k0 ∈ Z such that 2k0−1bli ≤ a2ρ(xi)< 2k0bli.
Combining the last two estimates we obtain (4.10); furthermore, we have∑

i

∫
Rn

(
M0

N (bi)(x)
)p
ω(x)dx

≤C
∑
i

∫
Q∗

i

(
MNf(x)

)p
ω(x)dx≤C

∫
Ω

(
MN (f)(x)

)p
ω(x)dx,

which together with the completeness of hp
ρ,N (ω) (see Proposition 3.13) implies

that
∑

i bi converges in hp
ρ,N (ω). Therefore, the series

∑
i bi converges in

D′(Rn) and M0
N (
∑

i bi)(x)≤
∑

iM0
N (bi)(x), which gives (4.11). This finishes

the proof. �

Lemma 4.7. Let ω ∈Aρ,∞
∞ (Rn) and qω be as in (2.4), s ∈ Z+, and integer

N ≥ 2. If q ∈ (qω,∞] and f ∈ Lq
ω(R

n), then the series
∑

i bi converges in
Lq
ω(R

n) and there exists a positive constant C7, independent of f and λ, such
that ∥∥∥∥∑

i

|bi|
∥∥∥∥
Lq

ω(Rn)

≤C7‖f‖Lq
ω(Rn).

Proof. The proof for q =∞ is similar to that for q ∈ (qω,∞). So we only
give the proof for q ∈ (qω,∞). Set F1 = {i ∈ N : li ≥ L3ρ(xi)} and F2 =
{i ∈N : li <L3ρ(xi)}. By Lemma 4.2, for i ∈ F2, we have∫

Rn

∣∣bi(x)∣∣qω(x)dx≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+

∫
Q∗

i

∣∣Pi(x)ηi(x)
∣∣qω(x)dx

≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+ λqω
(
Q∗

i

)
.

For i ∈ F1, we have∫
Rn

∣∣bi(x)∣∣qω(x)dx≤
∫
Q∗

i

∣∣f(x)∣∣qω(x)dx.
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By these, we obtain∑
i

∫
Rn

∣∣bi(x)∣∣qω(x)dx
=
∑
i∈F1

∫
Rn

∣∣bi(x)∣∣qω(x)dx+
∑
i∈F2

∫
Rn

∣∣bi(x)∣∣qω(x)dx
≤
∑
i

∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+C
∑
i∈F2

λqω
(
Q∗

i

)
≤
∑
i

∫
Q∗

i

∣∣f(x)∣∣qω(x)dx+Cλqω(Ω)

≤C

∫
Rn

∣∣f(x)∣∣qω(x)dx.
Combining the above estimates with the fact that {bi}i have finite covering,
we obtain ∥∥∥∥∑

i

|bi|
∥∥∥∥
Lq

ω(Rn)

≤C7‖f‖Lq
ω(Rn).

This finishes the proof. �

Lemma 4.8. If N > s≥ 0 and
∑

i bi converges in D′(Rn), then there exists
a positive constant C8, independent of f and λ, such that for all x ∈R

n,

M0
N (g)(x)≤M0

N (f)(x)χΩ�(x)

+C8λ
∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C4ρ(x)}(x) +C8λχΩ(x),

where xi is the center of Qi and C4 is as in Lemma 4.5.

Proof. For x /∈Ω, since

M0
N (g)(x)≤M0

N (f)(x) +
∑
i

M0
N (bi)(x),

by Lemma 4.5, we have

M0
N (g)(x)≤M0

N (f)(x)χΩ�(x)

+Cλ
∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C4ρ(x)}(x).

For x ∈Ω, take k ∈N such that x ∈Q∗
k. Let J ≡ {i ∈N :Q∗

i ∩Q∗
k 
= ∅}. Then

the cardinality of J is bounded by L. By Lemma 4.5, we have∑
i/∈J

M0
N (bi)(x)≤Cλ

∑
i/∈J

ln+s+1
i

(li + |x− xi|)n+s+1
χ{|x−xi|<C4ρ(x)}(x).
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We need to estimate the grand maximal function of g+
∑

i/∈J bi = f−
∑

i∈J bi.

Take ϕ ∈D0
N (Rn) and l ∈ Z such that 0< 2−l < ρ(x), then we have

(4.14)

(
f −

∑
i∈J

bi

)
∗ϕi(x) = (fξ) ∗ϕl(x) +

(∑
i∈J

Piηi

)
∗ϕl(x)

= f ∗ Φ̃l(w) +

(∑
i∈J

Piηi

)
∗ϕl(x),

where w ∈ (28+nnQk)∩Ω�, ξ = 1−
∑

i∈J ηi and

Φ̃(z)≡ ϕ
(
z + 2l(x−w)

)
ξ
(
w− 2−lz

)
.

Since for N ≥ 2 there is a constant C > 0 such that ‖ϕ‖L1(Rn) ≤ C for all

ϕ ∈D0
N (Rn) and by Lemma 4.1, we have∣∣∣∣(∑

i∈J

Piηi

)
∗ϕl(x)

∣∣∣∣≤Cλ.

Finally, we estimate f ∗Φl(w). There are two cases: If 2−l ≤ 2−(11+n)lk, then
f ∗ Φl(w) = 0, because ξ vanishes in Q∗

k and ϕl is supported in B(0,2−l).

On the other hand, if 2−l ≥ 2−(11+n)lk, then there exists a positive constant

a3 > 1 such that 2−l < ρ(x) < a3ρ(w). Take Φ(x) ≡ Φ̃(x/2m1) and m1 ∈ N

satisfying 2m1−1 ≤ a3 < 2m1 , then suppΦ⊂B(0,R3) where R3 ≡ 23(11+n)a3,
and ‖Φ‖DN

≤C. Therefore, 2−l−m1 < ρ(x)/a3 < ρ(w) and∣∣(f ∗ Φ̃l)(w)
∣∣= 2−m1n

∣∣(f ∗Φl+m1)(w)
∣∣≤CMNf(w)‖Φ‖DN

≤Cλ.

According to the above estimates, we have∣∣∣∣(f −
∑
i∈J

bi

)
∗ϕl

∣∣∣∣≤Cλ,

then we can get

M0
N

((
f −

∑
i∈J

bi

))
(x)≤Cλ.

This finishes the proof of the lemma. �

Lemma 4.9. Let ω ∈Aρ∞
∞ (Rn), qω be as in (2.4), q ∈ (qω,∞), p ∈ (0,1] and

N ≥Np,ω .

(i) If N > s ≥ [n(qω/p − 1)] and f ∈ hp
ρ,N (ω), then M0

N (g) ∈ Lq
ω(R

n) and
there exists a positive constant C9, independent of f and λ, such that∫

Rn

[
M0

N (g)(x)
]q
ω(x)dx≤C9λ

q−p

∫
Rn

[
MN (f)(x)

]p
ω(x)dx.

(ii) If N ≥ 2 and f ∈ Lq
ω(R

n), then g ∈ L∞
ω (Rn) and there exists a positive

constant C10, independent of f and λ, such that ‖g‖L∞
ω
≤C10λ.
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Proof. Since f ∈ hp
ρ,N (ω), by Lemma 4.6 and Proposition 3.12,

∑
i bi con-

verges in both hp
ρ,N (ω) and D′(Rn). Notice that s ≥ [n(qω/p − 1)], by

Lemma 4.8 and the proof of Lemma 4.6, we get∫
Rn

(
M0

N (g)(x)
)q
ω(x)dx

≤Cλq
∑
i

∫
Rn

[
l
(n+s+1)
i

(li + |x− xi|)(n+s+1)
χB(xi,a2ρ(xi))(x)

]q
ω(x)dx

+Cλq

∫
Rn

χΩ(x)ω(x)dx+

∫
Ω�

(
MN (f)(x)

)q
ω(x)dx

≤Cλq
∑
i

ω
(
Q∗

i

)
+Cλqω(Ω) +

∫
Ω�

(
MN (f)(x)

)q
ω(x)dx

≤Cλqω(Ω) +Cλq−p

∫
Ω�

(
MN (f)(x)

)p
ω(x)dx

≤C9λ
q−p

∫
Rn

(
MN (f)(x)

)p
ω(x)dx.

Thus, (i) holds.
Next, we prove (ii). If f ∈ Lq

ω(R
n), then g and {bi}i are functions. By

Lemma 4.7, we know that
∑

i bi converges in Lq
ω(R

n), and by Lemma 2.5(ii)
we know

∑
i bi converges in D′(Rn). If we denote

g = f −
∑
i

bi = f

(
1−

∑
i

ηi

)
+
∑
i∈F2

Piηi = fχΩ� +
∑
i∈F2

Piηi,

by Lemma 4.3, we have |g(x)| ≤ Cλ for all x ∈ Ω, and by Proposition 2.8(i),

we also have |g(x)| = |f(x)| ≤ MNf(x) ≤ λ for almost everywhere x ∈ Ω�.
Therefore, ‖g‖L∞

ω (Rn) ≤C10λ which yields (ii). �

Corollary 4.10. Let ω ∈Aρ,∞
∞ (Rn) and qω be as in (2.4). If q ∈ (qω,∞),

p ∈ (0,1] and N ≥Np,ω , then hp
ρ,N (ω)∩Lq

ω(R
n) is dense in hp

ρ,N (ω).

Proof. Let f ∈ hp
ρ,N (ω). For any λ > infx∈Rn MNf(x), let f = gλ +

∑
i b

λ
i

be the Calderón–Zygmund decomposition of f of degree s with [n(qω/p−1)]≤
s <N and height λ associated to MNf . By Lemma 4.6, we have∥∥∥∥∑

i

bλi

∥∥∥∥
hp
ρ,N (ω)

≤C

∫
{x∈Rn:MNf(x)>λ}

(
MNf(x)

)p
ω(x)dx.

Therefore, gλ → f in hp
ρ,N (ω) as λ → ∞. Moreover, by Lemma 4.9, we

have M0
N (gλ) ∈ Lq

ω(R
n), which combined with Proposition 2.8(ii) infers

gλ ∈ Lq
ω(R

n). Thus, Corollary 4.10 is proved. �
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5. Weighted atomic decompositions of hp
ρ,N (ω)

In this section, we will establish the equivalence between hp
ρ,N (ω) and hp,q,s

ρ

(ω) by using the Calderón–Zygmund decomposition, and we will follow the
proof of atomic decomposition as presented by Stein in [22].

Let ω ∈Aρ,∞
∞ (Rn), qω be as in (2.4), p ∈ (0,1], N ≥Np,ω , s≡ [n(qω/p− 1)]

and f ∈ hp
ρ,N (ω). Take m0 ∈ Z such that 2m0−1 ≤ infx∈Rn MNf(x) < 2m0 ,

if infx∈Rn MNf(x) = 0, write m0 = −∞. For each integer m ≥m0 consider
the Calderón–Zygmund decomposition of f of degree s and height λ = 2m

associated to MNf , namely

(5.1) f = gm +
∑
i∈N

bmi ,

and

Ωm ≡
{
x ∈R

n :MNf(x)> 2m
}
, Qm

i ≡Qlmi
.

In this section, we denote {Qi}i, {ηi}i, {Pi}i and {bi}i as {Qm
i }i, {ηmi }i,

{Pm
i }i and {bmi }i. The center and the sidelength of Qm

i are respectively
denoted by xm

i and lmi .
As in Section 4, for all i and m,

(5.2)
∑
i

ηmi = χΩm , supp
(
bmi
)
⊂ supp

(
ηmi

)
⊂Qm∗

i ,

{Qm∗
i }i has the bounded interior property, and Pm

i satisfying that for any
P ∈ Ps(R

n),

(5.3)
〈
f,Pηmi

〉
=
〈
Pm
i , Pηmi

〉
.

For each integer m ≥ m0 and i, j ∈ N, we define Pm+1
i,j as the orthogonal

projection of (f − Pm+1
j )ηmi on Ps(R

n) with respect to the norm

‖P‖2j ≡
1∫

Rn η
m+1
j (y)dy

∫
Rn

∣∣P (x)
∣∣2ηm+1

j (x)dx,

that is, Pm+1
i,j is the unique element of Ps(R

n) such that

(5.4)
〈(
f − Pm+1

j

)
ηki , Pηm+1

j

〉
=

∫
Rn

Pm+1
i,j (x)P (x)ηm+1

j (x)dx.

In what follows, we denote Qm∗
i = (1+ 2−(10+n))Qm

i ,

Em
1 ≡

{
i ∈N : lmi ≥ ρ

(
xm
i

)
/
(
25n

)}
, Ek

2 ≡
{
i ∈N : lmi < ρ

(
xm
i

)
/
(
25n

)}
,

F k
1 ≡

{
i ∈N : lmi ≥ L3ρ

(
xm
i

)}
, F k

2 ≡
{
i ∈N : lmi <L3ρ

(
xm
i

)}
,

where L3 = 2k0C0 is as in Section 4.
By the definition of Pm+1

i,j , we have

Pm+1
i,j 
= 0 if and only if Qm∗

i ∩Q
(m+1)∗
j 
= ∅.(5.5)
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The following Lemmas 5.1–5.3 can be proved by similar methods of Lemmas
5.1–5.3 in [24].

Lemma 5.1. Notice that Ωm+1 ⊂Ωm, then

(i) If Qm∗
i ∩Q

(m+1)∗
j 
= ∅, then lm+1

j ≤ 24
√
nlmi and Q

(m+1)∗
j ⊂ 26nQk∗

i ⊂Ωm.

(ii) There exists a positive integer L such that for each i ∈N, the cardinality

of {j ∈N :Qm∗
i ∩Q

(m+1)∗
j 
= ∅} is bounded by L.

Lemma 5.2. There exists a positive constant C such that for all i, j ∈ N

and integer m≥m0 with lm+1
j <L3ρ(x

m+1
j ),

(5.6) sup
y∈Rn

∣∣Pm+1
i,j (y)ηm+1

j (y)
∣∣≤C2m+1.

Lemma 5.3. For any k ∈ Z with m≥m0,∑
i∈N

( ∑
j∈Fm+1

2

Pm+1
i,j ηm+1

j

)
= 0,

where the series converges both in D′(Rn) and pointwise.

Then we can give the weighted atomic decomposition for a dense subspace
of hp

ρ,N (ω) as follows.

Lemma 5.4. Let ω ∈ Aρ,∞
∞ (Rn), qω and Np,ω be respectively as in (2.4)

and (3.29). If p ∈ (0,1], s ≥ [n(qω/p − 1)], N > s and N ≥ Np,ω , then for
any f ∈ (Lq

ω(R
n)∩hp

ρ,N (ω)), there exist numbers λ0 ∈C and {λm
i }m≥k0,i ⊂C,

(p,∞, s)ω-atoms {ami }m≥m0,i and a single atom a0 such that

(5.7) f =
∑

m≥m0

∑
i

λm
i ami + λ0a0,

where the series converges almost everywhere and in D′(Rn). Moreover, there
exists a positive constant C, independent of f , such that

(5.8)
∑

m≥m0,i

∣∣λm
i

∣∣p + |λ0|p ≤C‖f‖hp
ρ,N (ω).

Proof. For f ∈ (Lq
ω(R

n)∩ hp
ρ,N (ω)), in the case m0 =−∞ and each m ∈ Z,

f has a Calderón–Zygmund decomposition of degree s and height λ = 2m

associated to MN (f) as above, that is, f = gm +
∑

i b
m
i . By Corollary 4.10

and Proposition 3.12, gm → f in both hp
ρ,N (ω) and D′(Rn) as m→∞. By

Lemma 4.9(i), ‖gm‖Lq
ω(Rn) → 0 as m→−∞, and moreover, by Lemma 2.5(ii),

gm → 0 in D′(Rn) as m→−∞. Hence,

(5.9) f =

∞∑
m=−∞

(
gm+1 − gm

)
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in D′(Rn). Since supp(
∑

i b
m
i )⊂Ωm and ω(Ωm)→ 0 as m→∞, then gm → f

almost everywhere as m → ∞, and (5.9) holds for almost everywhere. By
Lemma 5.3 and

∑
i η

m
i bm+1

j = χΩmbm+1
j = bm+1

j for all j, then we have

gm+1 − gm =

(
f −

∑
j

bm+1
j

)
−
(
f −

∑
i

bmi

)
(5.10)

=
∑
i

bmi −
∑
j

bm+1
j +

∑
i

( ∑
j∈Fm+1

2

Pm+1
i,j ηm+1

j

)

=
∑
i

[
bmi −

∑
j

bm+1
j ηmi +

∑
j∈Fm+1

2

Pm+1
i,j ηm+1

j

]
≡
∑
i

hm
i .

It is easy to see that the series converges in both D′(Rn) and almost every-
where. Then, by the definitions of bmj and bm+1

j , when lmi < L3ρ(x
m
i ), we

have

(5.11) hm
i = fχΩ�

m+1
ηmi − Pm

i ηmi

+
∑

j∈Fm+1
2

Pm+1
j ηmi ηm+1

j +
∑

j∈Fm+1
2

Pm+1
i,j ηm+1

j ,

and when lmi ≥ L3ρ(x
m
i ), we have

(5.12) hm
i = fχΩ�

m+1
ηmi +

∑
j∈Fm+1

2

Pm+1
j ηmi ηm+1

j +
∑

j∈Fm+1
2

Pm+1
i,j ηm+1

j .

We can get that for almost every x ∈Ω�
m+1,∣∣f(x)∣∣≤MN (f)(x)≤ 2m+1,

by Proposition 2.8(i). Then, by Lemma 4.2, Lemma 5.1(ii), Lemma 5.2, (5.11)
and (5.12) we obtain that there exists a positive constant C11 such that for
any i ∈N,

(5.13)
∥∥hm

i

∥∥
L∞

ω (Rn)
≤C112

m.

Next, we need to prove hm
i is either a multiple of a (p,∞, s)ω-atom or a finite

linear combination of (p,∞, s)ω-atom in the following two cases of i.
Case I. For i ∈ Em

1 , lmi ≥ ρ(xm
i )/25n. Clearly, hm

i is supported in a cube

Q̃m
i that contains Qm∗

i as well as all the Q
(m+1)∗
j that intersect Qm∗

i . In

fact, observe that if Qm∗
i ∩Q

(m+1)∗
j 
= ∅, by Lemma 5.1, we have Q

(m+1)∗
j ⊂

26nQm∗
i ⊂ Ωm, thus, we set Q̃m

i ≡ 26nQm∗
i . Since l(Q̃m

i ) ≥ 2ρ(xm
i ), by the

same method of Lemma 3.1 in [27], Q̃m
i can be decomposed into finite disjoint

cubes {Qm
i,k}k such that Q̃m

i =
⋃ni

k=1Q
m
i,k and lmi,k/4< ρ(x)≤C0(3

√
n)k0 lmi,k for

some x ∈Qm
i,k =Q(xm

i,k, l
m
i,k), where C0, k0 are constants given in Lemma 2.1.
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Moreover, by Lemma 2.1, we also have lmi,k ≤ L1ρ(x
m
i,k) and lmi,k > L2ρ(x

m
i,k).

Therefore, let

λm
i,k ≡C112

m
[
ω
(
Qm

i,k

)]1/p
and ami,k ≡

(
λm
i,k

)−1 hm
i χQm

i,k∑ni

k=1 χQm
i,k

,

then suppami,k ⊂ Qm
i,k and ‖ami,k‖L∞

ω (Rn) ≤ [ω(Qm
i,k)]

−1/p, hence each ami,k is a

(p,∞, s)ω-atom and hm
i =

∑ni

k=1 λ
m
i,ka

m
i,k.

Case II. For i ∈ Em
2 , if j ∈ Fm+1

1 , we claim that Qm∗
i ∩Q

(m+1)∗
j = ∅. In

fact, if Qm∗
i ∩Q

(m+1)∗
j 
= ∅, by Lemma 5.1(i), we know lm+1

j ≤ 24
√
nlmi then

we can deduce that lmi < lmi /2
√
n which is a contradiction, hence the claim is

true. Thus, we have

hm
i =

(
f − Pm

i

)
ηmi −

∑
j∈Fm+1

1

fηm+1
j ηmi −

∑
j∈Fm+1

2

(
f − Pm+1

j

)
ηm+1
j ηmi(5.14)

+
∑

j∈Fm+1
2

Pm+1
i,j ηm+1

j

=
(
f − Pm

i

)
ηmi −

∑
j∈Fm+1

2

{(
f − Pm+1

j

)
ηm+1
j ηmi − Pm+1

i,j ηm+1
j

}
.

Let Q̃m
i ≡ 26nQm∗

i , then l(Q̃m
i )<L1ρ(x

m
i ) and supphm

i ⊂ Q̃m
i . Furthermore,

hm
i satisfies the desired moment conditions, which can be deduced from the

moment conditions of (f −Pm
i )ηmi and (f −Pm+1

j )ηm+1
j ηmi −Pm+1

i,j ηm+1
j . Let

λm
i ≡C112

m[ω(Q̃m
i )]1/p and ami ≡ (λm

i )−1hm
i , then ami is a (p,∞, s)ω-atom.

Thus, by (5.9), (5.10), Case I and Case II, we have

f =
∑
m∈Z

( ∑
i∈Em

1

(
ni∑
k=1

λm
i,ka

m
i,k

)
+

∑
i∈Em

2

λm
i ami

)

in both D′(Rn) and almost everywhere. Moreover, by Lemma 2.4, we get

∑
k∈Z

[ ∑
i∈Em

1

[
ni∑
k=1

∣∣λm
i,k

∣∣p]+
∑
i∈Em

2

∣∣λm
i

∣∣p]

≤C
∑
k∈Z

2mp

[ ∑
i∈Em

1

[
ni∑
k=1

ω
(
Qm

i,k

)]
+

∑
i∈Em

2

ω
(
Q̃m

i

)]

≤C
∑
k∈Z

2mp

[ ∑
i∈Em

1

ω
(
Q̃m

i

)
+

∑
i∈Em

2

ω
(
Q̃m

i

)]
≤C

∑
m∈Z

∑
i∈N

2mpω
(
Q̃m

i

)



WEIGHTED LOCAL HARDY SPACES 721

≤C
∑
m∈Z

∑
i∈N

2mpω
(
Qm∗

i

)
≤C

∑
m∈Z

2mpω(Ωm)

≤C
∥∥MN (f)

∥∥p
Lp

ω(Rn)
=C‖f‖p

hp
ρ,N (ω)

,

by which we can obtain (5.8) in the case m0 =−∞.
Finally, when m0 >−∞, since f ∈ hp

ρ,N (ω), we know ω(Rn)<∞. By the
similar arguments, we have

(5.15) f =
∞∑

m=m0

(
gm+1 − gm

)
+ gm0 ≡ f̃ + gm0 .

For the function f̃ , we have the same (p,∞, s)ω atomic decomposition:

(5.16) f̃ =
∑

m≥m0,i

λm
i ami ,

and

(5.17)
∑

m≥m0

∑
i∈N

∣∣λm
i

∣∣p ≤C‖f‖p
hp
ρ,N (ω)

.

For the function gm0 , by Lemma 4.9(ii), we have

(5.18)
∥∥gm0

∥∥
L∞

ω (Rn)
≤C102

m0 ≤ 2C10 inf
x∈Rn

MNf(x),

where C10 is the same constant as in Lemma 4.9(ii).
Let λ0 ≡C102

m0 [ω(Rn)]1/p and a0 ≡ λ−1
0 gm0 , then

(5.19) ‖a0‖L∞
ω (Rn) ≤

[
ω
(
R

n
)]−1/p

and |λ0|p ≤ (2C10)
p‖f‖p

hp
ρ,N (ω)

.

Hence, gm0 = λ0a0 and a0 is a (p,∞)ω-single-atom, then by combining with
(5.15) and (5.16) we can obtain (5.7) in the case m0 >−∞. Furthermore, by
(5.17) and (5.19), we get∑

m≥m0

∑
i∈N

∣∣λm
i

∣∣p + |λ0|p ≤C‖f‖p
hp
ρ,N (ω)

.

The proof of the lemma is complete. �

Next, we can establish the weighted atomic decompositions of hp
ρ,N (ω).

Theorem 5.5. Let ω ∈Aρ,∞
∞ (Rn), qω and Np,ω be respectively as in (2.4)

and (3.29). If q ∈ (qω,∞], p ∈ (0,1], and integers s and N satisfy N ≥Np,ω

and N > s≥ [n(qω/p− 1)], then hp,q,s
ρ (ω) = hp

ρ,N (ω) = hp
ρ,Np,ω

(ω) with equiv-

alent norms.
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Proof. First of all, it is easy to get that

hp,∞,s̄
ρ (ω)⊂ hp,q,s

ρ (ω)⊂ hp
ρ,Np,ω

(ω)⊂ hp
ρ,N (ω)⊂ hp

ρ,N̄
(ω),

where s̄ is an integer no less than s and N̄ is an integer larger than N , and
the inclusions are continuous. Hence, we need to prove that for any N > s≥
[n(qω/p − 1)], hp

ρ,N (ω) ⊂ hp,∞,s
ρ (ω), and for all f ∈ hp

ρ,N (ω), ‖f‖hp,∞,s
ρ (ω) ≤

C‖f‖hp
ρ,N (ω).

For f ∈ hp
ρ,N (ω), by Corollary 4.10, there exists a sequence of functions

{fm}m∈N ⊂ (hp
ρ,N (ω)∩Lq

ω(R
n)) such that for all m ∈N,

(5.20) ‖fm‖hp
ρ,N (ω) ≤ 2−m‖f‖hp

ρ,N (ω)

and f =
∑

m∈N
fm in hp

ρ,N (ω). By Lemma 5.4, for each m ∈ N, fm has an
atomic decomposition

fm =
∑
i∈Z+

λm
i ami

in D′(Rn) with ∑
i∈Z+

∣∣λm
i

∣∣p ≤C‖fm‖p
hp
ρ,N (ω)

,

where {λm
i }i∈Z+ ⊂ C, {ami }i∈N are (p,∞, s)ω-atoms and am0 is a (p,∞)ω-

single-atom. Let

λ̃0 ≡
[
ω
(
R

n
)]1/p ∞∑

m=1

∣∣λm
0

∣∣∥∥am0 ∥∥L∞
ω (Rn)

and ã0 ≡ (λ̃0)
−1

∞∑
m=1

λm
0 am0 ,

then we have

λ̃0ã0 =

∞∑
m=1

λm
0 am0

and

‖ã0‖L∞
ω (Rn) ≤

[
ω
(
R

n
)]−1/p

,

which implies that ã0 is a (ρ,∞)ω-single-atom.
Since ‖am0 ‖L∞

ω (Rn) ≤ (ω(Rn))−1/p and∣∣λm
0

∣∣≤C‖fm‖hp
ρ,N (ω) ≤C2−m‖f‖hp

ρ,N (ω),

we obtain

|λ̃0| ≤C

( ∞∑
m=1

2−m

)
‖f‖hp

ρ,N (ω) ≤C‖f‖hp
ρ,N (ω),

moreover, we get∑
m∈N

∑
i∈N

∣∣λm
i

∣∣p + |λ̃0|p ≤C

(∑
m∈N

‖fm‖p
hp
ρ,N (ω)

+ ‖f‖p
hp
ρ,N (ω)

)
≤C‖f‖p

hp
ρ,N (ω)

.
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Finally, we can obtain

f =
∑
m∈N

∑
i∈N

λm
i ami + λ̃0ã0 ∈ hp,∞,s

ρ (ω)

and

‖f‖hp,∞,s
ρ (ω) ≤C‖f‖hp

ρ,N (ω).

The theorem is proved. �

For simplicity, from now on, we denote by hp
ρ(ω) the weighted local Hardy

space hp
ρ,N (ω) when N ≥Np,ω .

6. Atomic characterization of H1
L(ω)

In this section, we apply the atomic characterization of the weighted local

Hardy spaces h1
ρ(ω) with Aρ,θ

1 (Rn) weights to establish atomic characteriza-

tion of weighted Hardy space H1
L(ω) associated to Schrödinger operator with

Aρ,θ
1 (Rn) weights.
Let L=−Δ+V be a Schrödinger operator on R

n, n≥ 3, where V ∈RHn/2

is a fixed non-negative potential.
Let {Tt}t>0 be the semigroup of linear operators generated by L and

Tt(x, y) be their kernels, that is,

(6.1) Ttf(x) = e−tLf(x) =

∫
Rn

Tt(x, y)f(y)dy, for t > 0 and f ∈ L2
(
R

n
)
.

Since V is non-negative the Feynman–Kac formula implies that

(6.2) 0≤ Tt(x, y)≤ T̃t(x, y)≡ (4πt)−
n
2 exp

(
−|x− y|2

4t

)
.

Obviously, by (6.2) the maximal operator

T ∗f(x) = sup
t>0

∣∣Ttf(x)
∣∣

is of weak-type (1,1). A weighted Hardy-type space related to L with Aρ,θ
1 (Rn)

weights is naturally defined by:

(6.3) H1
L(ω)≡

{
f ∈ L1

ω

(
R

n
)
: T ∗f(x) ∈ L1

ω

(
R

n
)}

, with

‖f‖H1
L(ω) ≡

∥∥T ∗f
∥∥
L1

ω(Rn)
.

The H1
L(ω) with ω ∈A1(R

n) has been studied in [16], [36]
Now let us recall some basic properties of kernels Tt(x, y) and the opera-

tor T ∗.

Lemma 6.1 (See [9]). For every l > 0 there is a constant Cl such that

(6.4) Tt(x, y)≤Cl

(
1 + |x− y|/ρ(x)

)−l|x− y|−n,
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for x, y ∈ R
n. Moreover, there is an ε > 0 such that for every C ′ > 0, there

exists C so that

(6.5)
∣∣Tt(x, y)− T̃t(x, y)

∣∣≤C
(|x− y|/ρ(x))ε

|x− y|n ,

for |x− y| ≤C ′ρ(x).

Since Tt(x, y) is a symmetric function, we also have

(6.6) Tt(x, y)≤Cl

(
1 + |x− y|/ρ(y)

)−l|x− y|−n, for x, y ∈R
n.

Lemma 6.2 (See [10]). There exist a rapidly decaying function w ≥ 0 and
a δ > 0 such that

(6.7)
∣∣Tt(x, y)− T̃t(x, y)

∣∣≤( √
t

ρ(x)

)δ

w√
t(x− y),

where w√
t(x) = t−n/2w(x/

√
t).

Lemma 6.3 (See [11]). If V ∈RHs(R
n), s > n/2, then there exist δ = δ(s)>

0 and c > 0 such that for every N > 0, there is a constant CN so that, for all
|h|<

√
t ∣∣Tt(x+ h, y)− Tt(x, y)

∣∣(6.8)

≤CN

(
|h|√
t

)δ

t−
n
2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

exp

(
−c|x− y|2

t

)
.

Lemma 6.4 (See [2]). For 1< p<∞ the operator T ∗ is bounded on Lp(ω)
when ω ∈Aρ,∞

p (Rn), and of weak type (1,1) when ω ∈Aρ,∞
1 (Rn).

Let {T̃t}t>0 be the semigroup of linear operators, and T̃t(x, y) be their
kernels, that is,

T̃tf(x) =

∫
Rn

T̃t(x, y)f(y)dy, for t > 0.

In order to achieve the desired conclusions, we need the following estimates.

Lemma 6.5. Let ω ∈Aρ,∞
1 (Rn), then there exists a positive constant C such

that for all f ∈ h1
ρ(ω),

(6.9) ‖f‖h1
ρ(ω) ≤C

∥∥T̃+
ρ (f)

∥∥
L1

ω(Rn)
,

where

T̃+
ρ (f)(x)≡ sup

0<t<ρ(x)

∣∣T̃t2(f)(x)
∣∣.
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Proof. Let h(x) = (4π)−n/2e−|x|2/4, then it is easy to find that ht(x− y) =

T̃t2(x, y). Now we take a nonnegative function ϕ ∈ D(Rn) such that ϕ(x) =
h(x) on B(0,2), and we define ϕ+

ρ (f)(x) as follows:

ϕ+
ρ (f)(x)≡ sup

0<t<ρ(x)

∣∣ϕt ∗ f(x)
∣∣.

Clearly, for any x ∈R
n, we have

(6.10) ϕ+(f)(x)≤ ϕ+
ρ (f)(x),

see (3.4) for the definition of ϕ+(f)(x).
Let f ∈ h1

ρ(ω). For every N > 0, we have∥∥ϕ+
ρ (f)− T̃+

ρ (f)
∥∥
L1

ω(Rn)

≤
∫
Rn

sup
0<t<ρ(x)

∣∣ϕt ∗ f(x)− ht ∗ f(x)
∣∣ω(x)dx

≤
∫
Rn

(
sup

0<t<ρ(x)

t−n

∫
Rn

∣∣f(y)∣∣∣∣∣∣ϕ(x− y

t

)
− h

(
x− y

t

)∣∣∣∣dy)ω(x)dx
�
∫
Rn

(∫
Rn

∣∣f(y)∣∣ sup
0<t<ρ(x)

t−n

(
1 +

|x− y|
t

)−N

χ{|y−x|>t}(y)dy

)
ω(x)dx

�
∫
Rn

∣∣f(y)∣∣(∫
Rn

(
ρ(x)

)−n
(
1 +

|x− y|
ρ(x)

)−N

ω(x)dx

)
dy.

In the last inequality, we used the following facts that

sup
0<t<ρ(x)

t−n

(
1 +

|x− y|
t

)−N

≤
(
ρ(x)

)−n
(
1 +

|x− y|
ρ(x)

)−N

,

provided that |x− y|> t and N > 2n.
We now estimate the inner integral in the last inequality. In fact,∫

Rn

(
ρ(x)

)−n
(
1 +

|x− y|
ρ(x)

)−N

ω(x)dx

=

∫
|x−y|<ρ(y)

(
ρ(x)

)−n
(
1 +

|x− y|
ρ(x)

)−N

ω(x)dx

+

∫
|x−y|≥ρ(y)

(
ρ(x)

)−n
(
1 +

|x− y|
ρ(x)

)−N

ω(x)dx

≡ I + II .

For I , since N is large enough and (2.2), we have

I ≤ C

(ρ(y))n

∫
|x−y|<ρ(y)

ω(x)dx≤CΨθ(B̃0)MV,θ(ω)(y)≤Cω(y),

where B̃0 =B(y, ρ(y)).
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For II , by the same reason as above, we have

II ≤C

∞∑
i=1

∫
|x−y|∼2iρ(y)

(
ρ(x)

)N−n|x− y|−Nω(x)dx

≤C
∞∑
i=1

∫
|x−y|∼2iρ(y)

(
ρ(y)

)N−n
(
1 +

|x− y|
ρ(y)

) k0(N−n)
k0+1

|x− y|−Nω(x)dx

≤C

∞∑
i=1

∫
|x−y|∼2iρ(y)

(
ρ(y)

)N−n(
1 + 2i

) k0(N−n)
k0+1

(
2iρ(y)

)−N
ω(x)dx

≤C

∞∑
i=1

(
2−i

)N+nk0
k0+1

1

(ρ(y))n

∫
|x−y|<2iρ(y)

ω(x)dx

≤C

∞∑
i=1

(
2−i

)N+nk0
k0+1

(
1 + 2i

)θ
MV,θ(ω)(y)

≤C

∞∑
i=1

(
2−i

)N+nk0
k0+1 −θ

ω(y)≤Cω(y),

and the last inequality holds because the real number N is large enough.
Combining the above two estimates, we get

(6.11)
∥∥ϕ+

ρ (f)− T̃+
ρ (f)

∥∥
L1

ω(Rn)
≤C

∫
Rn

∣∣f(y)∣∣ω(y)dy =C‖f‖L1
ω(Rn).

In addition, it is easy to get ‖f‖L1
ω(Rn) ≤ ‖T̃+

ρ f‖L1
ω(Rn). Therefore, we obtain

(6.12)
∥∥ϕ+

ρ (f)
∥∥
L1

ω(Rn)
≤
∥∥T̃+

ρ (f)
∥∥
L1

ω(Rn)
+C‖f‖L1

ω(Rn) ≤C
∥∥T̃+

ρ (f)
∥∥
L1

ω(Rn)
.

Finally, from Theorem 3.10, (6.10) and (6.12), it follows that

‖f‖h1
ρ(ω) ≤C

∥∥ϕ+(f)
∥∥
L1

ω(Rn)
≤C

∥∥ϕ+
ρ (f)

∥∥
L1

ω(Rn)
≤C

∥∥T̃+
ρ (f)

∥∥
L1

ω(Rn)
,

which finishes the proof. �

For x, y ∈R
n, set Et(x, y) = Tt2(x, y)− T̃t2(x, y),

T+
ρ (f)(x)≡ sup

0<t<ρ(x)

∣∣Tt2(f)(x)
∣∣ and E+

ρ (f)(x)≡ sup
0<t<ρ(x)

∣∣Et(f)(x)
∣∣.

Lemma 6.6. Let ω ∈ Aρ,∞
1 (Rn). Then there exists a positive constant C

such that for all f ∈ L1
ω(R

n),∥∥E+
ρ (f)

∥∥
L1

ω(Rn)
≤C‖f‖L1

ω(Rn).

Proof. By Lemma 2.2, it suffices to prove that for all j,

(6.13)
∥∥E+

ρ (χB∗
j
f)
∥∥
L1

ω(Rn)
≤C‖χB∗

j
f‖L1

ω(Rn),
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in which Bj =B(xj , ρ(xj)). For any x ∈B∗∗
j and y ∈B∗

j , since ρ(y)∼ ρ(xj)∼
ρ(x) via Lemma 2.1, by (6.5) we have

∣∣Et(x, y)
∣∣≤C

(|x− y|/ρ(x))ε
|x− y|n ≤ C

|x− y|n−ε(ρ(xj))ε
,

which implies that∫
B∗∗

j

sup
0<t<ρ(x)

∣∣Et(χB∗
j
f)
∣∣ω(x)dx

≤C

∫
B∗∗

j

(∫
B∗

j

|f(y)|
|x− y|n−ε(ρ(xj))ε

dy

)
ω(x)dx

≤C

∫
B∗

j

(∫
B∗∗

j

ω(x)

|x− y|n−ε(ρ(xj))ε
dx

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

( ∞∑
k=−2

∫
|x−y|∼2−kρ(xj)

ω(x)

|x− y|n−ε(ρ(xj))ε
dx

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

( ∞∑
k=−2

ω(B(y,2−kρ(xj)))

(2−kρ(xj))n−ε(ρ(xj))ε
dx

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

( ∞∑
k=−2

1

2kε
(
1 +C02

k0−k
)θ
ω(y)

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

∣∣f(y)∣∣ω(y)dy =C‖χB∗
j
f‖L1

ω(Rn).

For any x ∈ (B∗∗
j )� and y ∈ B∗

j , it is easy to see that ρ(xj) � |x − xj | ∼
|x − y|; in addition, by (2.2) and (6.7), we have 0 < t < ρ(x) �
|x − xj |k0/(k0+1)(ρ(xj))

1/(k0+1) and Et(x, y) � tN/|x − y|N+n ∼
tN/|x− xj |N+n for any N > 0. Therefore, taking N > (k0 + 1)θ, we have∫

(B∗∗
j )�

sup
0<t<ρ(x)

∣∣Et(χB∗
j
f)
∣∣ω(x)dx

≤C

∫
(B∗∗

j )�

(∫
B∗

j

(ρ(xj))
N

k0+1 |f(y)|
|x− xj |n+

N
k0+1

dy

)
ω(x)dx

≤C

∫
B∗

j

(∫
(B∗∗

j )�

(ρ(xj))
N

k0+1ω(x)

|x− xj |n+
N

k0+1

dx

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

( ∞∑
i=2

∫
|x−xj |∼2iρ(xj)

(ρ(xj))
N

k0+1ω(x)

|x− xj |n+
N

k0+1

dx

)∣∣f(y)∣∣dy
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≤C

∫
B∗

j

( ∞∑
i=2

(ρ(xj))
N

k0+1ω(B(xj ,2
iρ(xj)))

(2iρ(xj))
n+ N

k0+1

dx

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

( ∞∑
i=2

(1 + 2i)θ

(2i)
N

k0+1

ω(y)

)∣∣f(y)∣∣dy
≤C

∫
B∗

j

∣∣f(y)∣∣ω(y)dy =C‖χB∗
j
f‖L1

ω(Rn),

which completes the proof of (6.13) and hence the proof of this lemma. �

Next, we give several estimates about (p, q, s)ω-atoms and (p, q)ω-single-
atom, which are important for our conclusion.

Lemma 6.7. Let a be a (p, q, s)ω-atom, and suppa⊂Q(x0, r), then for any

x ∈ (4Q)�, we have the following estimates:

(i) If L2ρ(x0)≤ r ≤ L1ρ(x0), then for any M > 0,

T ∗a(x)� ‖a‖L1(Rn)
rM

|x− x0|n+M
,

(ii) If r < L2ρ(x0) and |x− x0| ≤ 2ρ(x0), then there exists δ > 0 such that

T ∗a(x)� ‖a‖L1(Rn)
rδ

|x− x0|n+δ
,

(iii) If r < L2ρ(x0) and |x−x0| ≥ ρ(x0)/
√
n, then there exists δ > 0 such that

for any M > 0,

T ∗a(x)� ‖a‖L1(Rn)
rδ

|x− x0|n+δ

(
ρ(x0)

|x− x0|

)M

.

Proof. If L2ρ(x0)≤ r ≤ L1ρ(x0), since |x− y| ∼ |x− x0| and ρ(y)∼ ρ(x0)

for x ∈ (4Q)� and y ∈Q, by Lemma 6.1, for any M > 0, we have

Tta(x)≤
∫
Rn

∣∣Tt(x, y)
∣∣∣∣a(y)∣∣dy

�
∫
Q

(
1 +

|x− y|
ρ(y)

)−M

|x− y|−n
∣∣a(y)∣∣dy

�
∫
Q

(
1 +

|x− x0|
ρ(x0)

)−M

|x− x0|−n
∣∣a(y)∣∣dy

� ‖a‖L1(Rn)
ρ(x0)

M

|x− x0|n+M
� ‖a‖L1(Rn)

rM

|x− x0|n+M
,

and then we obtain (i).
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If r < L2ρ(x0), by the moment condition of a and Lemma 6.3, for any
M > 0 and y′ ∈Q which satisfies |y− y′|<

√
t, we have

Tta(x) =

∫
Rn

Tt(x, y)a(y)dy

=

∫
Q

(
Tt(x, y)− Tt

(
x, y′

))
a(y)dy

�
∫
Q

(
|y− y′|√

t

)δ

t−
n
2

(
1 +

√
t

ρ(y)

)−M

exp

(
−c|x− y|2

t

)∣∣a(y)∣∣dy
�
∫
Q

(
r√
t

)δ

t−
n
2

(
1 +

√
t

ρ(x0)

)−M(
t

|x− x0|2
)K∣∣a(y)∣∣dy,

where K > 0 is any real number.
For |x− x0| ≤ 2ρ(x0), taking K = (n+ δ)/2, we obtain

Tta(x)�
∫
Q

(
r√
t

)δ

t−
n
2

(
1 +

√
t

ρ(x0)

)−M(
t

|x− x0|2
)K ∣∣a(y)∣∣dy

� ‖a‖L1(Rn)

(
r√
t

)δ

t−
n
2

(
t

|x− x0|2
)K

= ‖a‖L1(Rn)
rδ

|x− x0|n+δ
,

which implies (ii).
For |x− x0| ≥ ρ(x0)/

√
n, taking K = (n+M + δ)/2, we obtain

Tta(x)�
∫
Q

(
r√
t

)δ

t−
n
2

(
1 +

√
t

ρ(x0)

)−M(
t

|x− x0|2
)K ∣∣a(y)∣∣dy

� ‖a‖L1(Rn)

(
r√
t

)δ

t−
n
2

(
ρ(x0)√

t

)M(
t

|x− x0|2
)K

= ‖a‖L1(Rn)
rδ

|x− x0|n+δ

(
ρ(x0)

|x− x0|

)M

,

which finishes the proof of this lemma. �

Lemma 6.8. Let ω ∈ Aρ,θ
q (Rn) and a be a (p, q, s)ω-atom, which satisfies

suppa⊂Q(x0, r). Then there exists a constant C such that:

‖a‖L1(Rn) ≤C|Q|ω(Q)−1/pΨθ(Q).
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Proof. If q > 1, by Hölder inequality and the definition of Aρ,θ
q (Rn) weights,

we have

‖a‖L1(Rn) =

∫
Q

∣∣a(x)∣∣ω(x)1/qω(x)−1/q dx

≤ ‖a‖Lq
ω(Rn)

(∫
Q

ω(x)−q′/q dx

)1/q′

≤ ω(Q)1/q−1/p

(∫
Q

ω(x)−q′/q dx

)1/q′(∫
Q

ω(x)dx

)1/q

ω(Q)−1/q

≤C|Q|ω(Q)−1/pΨθ(Q).

If q = 1, we have
ω(Q)≤C|Q|Ψθ(Q) inf

x∈Q
ω(x),

which implies ∥∥ω−1
∥∥
L∞(Q)

≤C|Q|ω(Q)−1Ψθ(Q).

Therefore, we get

‖a‖L1(Rn) ≤ ‖a‖L1
ω(Rn)

∥∥ω−1
∥∥
L∞(Q)

≤C|Q|ω(Q)−1/pΨθ(Q),

which finishes the proof. �
Combining above two lemmas with Ψθ(Q) � 1, we can get the following

corollary.

Corollary 6.9. Let a be a (p, q, s)ω-atom, and suppa ⊂Q(x0, r). Then

for any x ∈ (4Q)�, we have the following estimates:

(i) If L2ρ(x0)≤ r ≤ L1ρ(x0), then for any M > 0,

T ∗a(x)� ω(Q)−1/p

(
r

|x− x0|

)n+M

,

(ii) If r < L2ρ(x0) and |x− x0| ≤ 2ρ(x0), then there exists δ > 0 such that

T ∗a(x)� ω(Q)−1/p

(
r

|x− x0|

)n+δ

,

(iii) If r < L2ρ(x0) and |x−x0| ≥ ρ(x0)/
√
n, then there exists δ > 0 such that

for any M > 0,

T ∗a(x)� ω(Q)−1/p

(
r

|x− x0|

)n+δ(
ρ(x0)

|x− x0|

)M

.

Next, we give the main theorem of this section.

Theorem 6.10. Let 0 
≡ V ∈ RHn/2 and ω ∈ Aρ,∞
1 (Rn). Then h1

ρ(ω) =

H1
L(ω) with equivalent norms, that is

‖f‖h1
ρ(ω) ∼ ‖f‖H1

L(ω).
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Proof. Assume that f ∈H1
L(ω), by (6.7), we have∣∣f(x)∣∣= lim

t<ρ(x),t→0

∣∣T̃t(f)(x)
∣∣(6.14)

≤ T+
ρ (f)(x) +C lim

t→0

(
t

ρ(x)

)δ

M(f)(x)

≤ T+
ρ (f)(x).

Then according to (6.14), Lemma 6.5 and 6.6, we get f ∈ h1
ρ(ω) and

‖f‖h1
ρ(ω) �

∥∥T̃+
ρ (f)

∥∥
L1

ω(Rn)
�
∥∥T+

ρ (f)
∥∥
L1

ω(Rn)
+
∥∥E+

ρ (f)
∥∥
L1

ω(Rn)

�
∥∥T+

ρ (f)
∥∥
L1

ω(Rn)
+ ‖f‖L1

ω(Rn) �
∥∥T+

ρ (f)
∥∥
L1

ω(Rn)

�
∥∥T ∗(f)

∥∥
L1

ω(Rn)
= ‖f‖H1

L(ω).

Conversely, we need to prove that T ∗ is bounded from h1
ρ(ω) to L1

ω(R
n). By

Lemma 2.4 and Theorem 5.5, it suffices to prove that for any (1, q, s)ω-atom
or (1, q)ω-single-atom a,

(6.15)
∥∥T ∗(a)

∥∥
L1

ω(Rn)
� 1,

where 1< q ≤ 1 + δ/n.
If a is a (1, q)ω-single-atom, by Hölder inequality and Lemma 6.4, we have∥∥T ∗(a)

∥∥
L1

ω(Rn)
≤
∥∥T ∗(a)

∥∥
Lq

ω(Rn)
ω
(
R

n
)1−1/q ≤C‖a‖Lq

ω(Rn)ω
(
R

n
)1−1/q � 1.

If a is a (1, q, s)ω-atom and suppa ⊂ Q(x0, r) with r ≤ L1ρ(x0), then we
have ∥∥T ∗(a)

∥∥
L1

ω(Rn)
≤
∥∥T ∗(a)

∥∥
L1

ω(4Q)
+
∥∥T ∗(a)

∥∥
L1

ω((4Q)�) ≡ I + II .

For I , by Hölder inequality, Lemmas 2.4 and 6.4, we get∥∥T ∗(a)
∥∥
L1

ω(4Q)
≤
∥∥T ∗(a)

∥∥
Lq

ω(4Q)
ω(4Q)1−1/q ≤C‖a‖Lq

ω(Rn)ω(4Q)1−1/q

≤C
(
ω(4Q)/ω(Q)

)1−1/q � 1.

For II , if L2ρ(x0) ≤ r ≤ L1ρ(x0), by Lemma 2.4 and Corollary 6.9, taking
M > q(n+ θ)− n, we have∥∥T ∗(a)

∥∥
L1

ω((4Q)�) =

∞∑
j=3

∫
2jQ\2j−1Q

T ∗(a)(x)ω(x)dx

� 1

ω(Q)

∞∑
j=3

∫
2jQ\2j−1Q

(
r

|x− x0|

)n+M

ω(x)dx

� 1

ω(Q)

∞∑
j=3

2−j(n+M)ω
(
2jQ

)
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�
∞∑
j=3

2−j(n+M)2jnq
(
1 +

2jr

ρ(x0)

)qθ

�
∞∑
j=3

2−j[n+M−nq−qθ] � 1;

if r < L2ρ(x0), then there exists N0 ∈ Z such that 2N0−1
√
nr ≤ ρ(x0) <

2N0
√
nr. Let us assume that N0 ≥ 3, otherwise, we just need to consider

the I2 in the following decomposition:∥∥T ∗(a)
∥∥
L1

ω((4Q)�) =

(
N0∑
j=3

+

∞∑
j=N0+1

)∫
2jQ\2j−1Q

T ∗(a)(x)ω(x)dx≡ I1 + I2,

for I1, since |x − x0| < 2j
√
nr ≤ 2N0

√
nr ≤ 2ρ(x0), Ψθ(2

jQ) ≤ 3θ and q <
1 + δ/n, by Lemma 2.4 and Corollary 6.9, we get

I1 =

N0∑
j=3

∫
2jQ\2j−1Q

T ∗(a)(x)ω(x)dx

� 1

ω(Q)

N0∑
j=3

∫
2jQ\2j−1Q

(
r

|x− x0|

)n+δ

ω(x)dx

� 1

ω(Q)

N0∑
j=3

2−j(n+δ)ω
(
2jQ

)
�

N0∑
j=3

2−j[n+δ−nq] � 1,

for I2, since |x− x0| ≥ 2j−1r ≥ 2N0r ≥ ρ(x0)/
√
n, then

Ψθ

(
2jQ

)
≤
(
2j+1

√
nr/ρ(x0)

)θ
,

thus, taking M = qθ, by q < 1+ δ/n, Lemma 2.4 and Corollary 6.9, we obtain

I2 =

∞∑
j=N0+1

∫
2jQ\2j−1Q

T ∗(a)(x)ω(x)dx

� 1

ω(Q)

∞∑
j=N0+1

∫
2jQ\2j−1Q

(
r

|x− x0|

)n+δ(
ρ(x0)

|x− x0|

)M

ω(x)dx

� 1

ω(Q)

∞∑
j=N0+1

2−j(n+δ)ω
(
2jQ

)(ρ(x0)

2jr

)M

�
∞∑

j=N0+1

2−j[n+δ−nq]
(
Ψθ

(
2jQ

))q(ρ(x0)

2jr

)M

� 1,

which finally implies (6.15) and finishes the proof. �
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7. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of
weighted atoms when q <∞, its norm in hp

ρ,N (ω) can be achieved by all its

finite weighted atomic decompositions. This extends the main results in [17]
to the setting of weighted local Hardy spaces.

Definition 7.1. Let ω ∈Aρ,∞
∞ (Rn) and (p, q, s)ω be admissible as in Defi-

nition 3.2. Then hp,q,s
ρ,fin (ω) is defined to be the vector space of all finite linear

combinations of (p, q, s)ω-atoms and a (p, q)ω-single-atom, and the norm of f
in hp,q,s

ρ,fin (ω) is defined by

‖f‖hp,q,s
ρ,fin (ω) ≡ inf

{[
k∑

i=0

|λi|p
]1/p

: f =

k∑
i=0

λiai, k ∈ Z+,{λi}ki=0 ⊂C,

{ai}ki=1 are (p, q, s)ω atoms, and a0 is a (p, q)ω-single-atom

}
.

Obviously, for any admissible triplet (p, q, s)ω atom and (p, q)ω-single-atom,
hp,q,s
ρ,fin (ω) is dense in hp,q,s

ρ (ω) with respect to the quasi-norm ‖ · ‖hp,q,s
ρ (ω).

Theorem 7.2. Let ω ∈ Aρ,∞
∞ (Rn), qω be as in (2.4) and (p, q, s)ω be ad-

missible as in Definition 3.2. If q ∈ (qω,∞), then ‖ · ‖hp,q,s
ρ,fin (ω) and ‖ · ‖hp

ρ(ω)

are equivalent quasi-norms on hp,q,s
ρ,fin (ω).

Proof. Obviously, by Theorem 5.5, we have hp,q,s
ρ,fin (ω) ⊂ hp,q,s

ρ (ω) = hp
ρ(ω),

and for all f ∈ hp,q,s
ρ,fin (ω), we have

‖f‖hp
ρ(ω) ≤C‖f‖hp,q,s

ρ,fin (ω).

Therefore, it suffices to prove that for every q ∈ (qω,∞) there exists a constant
C such that for all f ∈ hp,q,s

ρ,fin (ω),

(7.1) ‖f‖hp,q,s
ρ,fin (ω) ≤C‖f‖hp

ρ(ω).

Suppose that f is in hp,q,s
ρ,fin (ω) with ‖f‖hp

ρ(ω) = 1. In this section, we take m0 ∈
Z such that 2m0−1 ≤ infx∈Rn MNf(x)< 2m0 , and if infx∈Rn MNf(x) = 0, we
write m0 =−∞. For each integer m≥m0, set

Ωm ≡
{
x ∈R

n :MNf(x)> 2m
}
,

where and in what follows N = Np,ω . For f ∈ (hp
ρ,N (ω) ∩ Lq

ω(R
n)), by

Lemma 5.4, there exist λ0 ∈ C, {λm
i }m≥k0,i ⊂ C, a (p,∞)ω-single-atom a0

and (p,∞, s)ω-atoms {ami }m≥m0,i, such that

(7.2) f =
∑

m≥m0

∑
i

λm
i ami + λ0a0

holds both in D′(Rn) and almost everywhere.
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For any x ∈ R
n, since R

n =
⋃

m≥m0
(Ω2m \Ω2k+1), there exists j ∈ Z such

that x ∈ (Ω2j \Ω2j+1). By the proof of Lemma 5.4, for all m> j, supp(ami )⊂
Q̃m

i ⊂Ωm ⊂Ωj+1. Then by (5.13) and (5.18), we have∣∣∣∣ ∑
m≥m0

∑
i

λm
i ami (x)

∣∣∣∣+ ∣∣λ0a0(x)
∣∣≤C

∑
k0≤k≤j

2k + 2k0 ≤C2j ≤CMN (f)(x).

By f ∈ Lq
ω(R

n) and Proposition 2.8(ii), we have MN (f)(x) ∈ Lq
ω(R

n), which
together with the Lebesgue dominated convergence theorem confers that∑

m≥m0

∑
i

λm
i ami + λ0a0

converges to f in Lq
ω(R

n).
Next, let us prove (7.1) for two cases of ω.
Case I: For ω(Rn) = ∞, since f ∈ Lq

ω(R
n), we know that m0 = −∞ and

a0(x) = 0 for almost every x ∈R
n in (7.2). Thus, (7.2) can be written as

f =
∑
m∈Z

∑
i

λm
i ami .

When ω(Rn) = ∞, all (p, q)ω-single-atoms are 0, which implies that f has
compact support for f ∈ hp,q,s

ρ,fin (ω). Suppose supp(f) ⊂ Q0 ≡ Q(x0, r0) and

Q̃0 ≡ Q(x0, r1), in which r1 =
√
nr0 + C2

0 (1 +R)k0+1(1 +
√
nr0/ρ(x0))ρ(x0),

then for any ψ ∈DN (Rn), x ∈Rn \ Q̃0 and 2−l ∈ (0, ρ(x)), we have

ψl ∗ f(x) =
∫
Q(x0,r0)

ψl(x− y)f(y)dy

=

∫
B(x,Rρ(x))∩Q(x0,r0)

ψl(x− y)f(y)dy = 0.

Hence, for any m ∈ Z, Ωm ⊂ Q̃0, we have supp(
∑

m∈Z

∑
i λ

m
i ami )⊂ Q̃0.

For each positive integer K, let

FK ≡
{
(m, i) :m ∈ Z,m≥m0, i ∈N, |m|+ i≤K

}
,

and

fK ≡
∑

(m,i)∈FK

λm
i ami .

Then, we have fK converges to f in Lq
ω(R

n), and for any given ε ∈ (0,1),

there exists a K0 ∈N large enough such that supp(f − fK0)/ε⊂ Q̃0 and∥∥(f − fK0)/ε
∥∥
Lq

ω(Rn)
≤
[
ω(Q̃0)

]1/q−1/p
.

For Q̃0, since l(Q̃0) = r1 > 2ρ(x0), we can decompose it into finite disjoint

cubes {Qj}j such that Q̃0 =
⋃N0

j=1Qj and lj/4< ρ(x)≤C0(3
√
n)k0 lj for some
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x ∈ Qj = Q(xj , lj). Moreover, each lj satisfies L2ρ(xj) < lj < L1ρ(xj). It is
clear that for q ∈ (qω,∞) and p ∈ (0,1] we have∥∥(f − fK0)χQi/ε

∥∥
Lq

ω(Rn)
≤
[
ω(Q̃0)

]1/q−1/p ≤
[
ω(Qj)

]1/q−1/p
,

which together with supp((f − fK0)χQj/ε)⊂Qj implies that (f − fK0)χQj/ε
is a (p, q, s)ω-atom for j = 1,2, . . . ,N0. Therefore,

f = fK0 +

N0∑
j=1

ε
(f − fK0)χQj

ε

is a finite weighted atom linear combination of f almost everywhere. Then

by taking ε≡N
−1/p
0 , we obtain

‖f‖p
hp,q,s
ρ,fin (ω)

≤
∑

(m,i)∈FK

∣∣λm
i

∣∣p +N0ε
p ≤C,

which implies the Case I.
Case II: For ω(Rn)<∞, f may not have compact support. As in Case I,

for any positive integer K, let

fK ≡
∑

(m,i)∈FK

λm
i ami + λ0a0

and bK ≡ f−fK . By above proof, we know that fK converges to f in Lq
ω(R

n).
Thus, there exists a positive integer K1 ∈N large enough such that

‖bK1‖Lq
ω(Rn) ≤

[
ω
(
R

n
)]1/q−1/p

.

Therefore, bK1 is a (p, q)ω-single-atom and f = fK1 + bK1 is a finite weighted
atom linear combination of f . By Lemma 5.4, we have

‖f‖p
hp,q,s
ρ,fin (ω)

≤C

( ∑
(m,i)∈FK

∣∣λm
i

∣∣p + λp
0

)
≤C.

Thus, (7.1) holds, and the theorem is proved. �

As an application of finite atomic decompositions, we establish bounded-
ness in hp

ρ(ω) of quasi-Banach-valued sublinear operators.
As in [5], a quasi-Banach space space B is a vector space endowed with

a quasi-norm ‖ · ‖B which is nonnegative, non-degenerate (i.e., ‖f‖B = 0 if
and only if f = 0), homogeneous, and obeys the quasi-triangle inequality, i.e.,
there exists a positive constant K no less than 1 such that for all f, g ∈ B,
‖f + g‖B ≤K(‖f‖B + ‖g‖B).

Let β ∈ (0,1], a quasi-Banach space Bβ with the quasi-norm ‖ ·‖Bβ
is called

a β-quasi-Banach space if ‖f + g‖βBβ
≤ ‖f‖βBβ

+ ‖g‖βBβ
for all f, g ∈ Bβ .
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For any given β-quasi-Banach space Bβ with β ∈ (0,1] and a linear space
Y , an operator T from Y to Bβ is said to be Bβ-sublinear if for any f, g ∈ Y
and λ, ν ∈C,∥∥T (λf + νg)

∥∥
Bβ

≤
(
|λ|β

∥∥T (f)∥∥βBβ
+ |ν|β

∥∥T (g)∥∥βBβ

)1/β
and ‖T (f)− T (g)‖Bβ

≤ ‖T (f − g)‖Bβ
.

If T is linear, then it is Bβ-sublinear. Moreover, if Bβ is a space of functions,
and T is nonnegative and sublinear in the classical sense, then T is also Bβ-
sublinear.

Theorem 7.3. Let ω ∈ Aρ,∞
∞ (Rn),0 < p ≤ β ≤ 1, and Bβ be a β-quasi-

Banach space. Suppose q ∈ (qω,∞) and T : hp,q,s
ρ,fin (ω)→Bβ is a Bβ-sublinear

operator such that

S ≡ sup
{∥∥T (a)∥∥Bβ

: a is a (p, q, s)ω atom or (p, q)ω-single-atom
}
<∞.

Then there exists a unique bounded Bβ-sublinear operator T̃ from hp
ρ(ω) to Bβ

which extends T .

Proof. For any f ∈ hp,q,s
ρ,fin (ω), by Theorem 7.2, there exist a set of numbers

{λj}lj=0 ⊂ C, (p, q, s)ω-atoms {aj}lj=1 and a (p, q)ω-single-atom a0 such that

f =
∑l

j=0 λjaj pointwise and

l∑
j=0

|λj |p ≤C‖f‖p
hp
ρ(ω)

.

Then by the assumption, we have

∥∥T (f)∥∥Bβ
≤C

[
l∑

j=0

|λj |p
]1/p

≤C‖f‖hp
ρ(ω).

Since hp,q,s
ρ,fin (ω) is dense in hp

ρ(ω), a density argument gives the desired results.
�

Acknowledgment. The authors would like to thank the referees for their
very valuable suggestions which made this article more readable.

References

[1] B. Bongioanni, E. Harboure and O. Salinas, Riesz transforms related to Schrödinger

operators acting on BMO type spaces, J. Math. Anal. Appl. 357 (2009), 115–131.
MR 2526811

[2] B. Bongioanni, E. Harboure and O. Salinas, Classes of weights related to Schrödinger

operators, J. Math. Anal. Appl. 373 (2011), 563–579. MR 2720705

[3] B. Bongioanni, E. Harboure and O. Salinas, Commutators of Riesz transforms related
to Schrödinger operators, J. Fourier Anal. Appl. 17 (2011), 115–134. MR 2765594

[4] M. Bownik, Anisotropic Hardy spaces and waveletes, Mem. Amer. Math. Soc., vol. 164,

Amer. Math. Soc., Providence, RI, 2003. MR 1982689

http://www.ams.org/mathscinet-getitem?mr=2526811
http://www.ams.org/mathscinet-getitem?mr=2720705
http://www.ams.org/mathscinet-getitem?mr=2765594
http://www.ams.org/mathscinet-getitem?mr=1982689


WEIGHTED LOCAL HARDY SPACES 737

[5] M. Bownik, B. Li, D. Yang and Y. Zhou, Weighted anisotropic Hardy spaces and their
applications in boundedness of sublinear operators, Indiana Univ. Math. J. 57 (2008),

3065–3100. MR 2492226
[6] B. H. Qui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62. MR 0653914
[7] J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, Amer.

Math. Soc., Providence, RI, 2000. MR 1800316
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