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ON THE BEHAVIOR OF SINGULARITIES
AT THE F -PURE THRESHOLD

ERIC CANTON, DANIEL J. HERNÁNDEZ, KARL SCHWEDE AND EMILY E. WITT

Abstract. We provide a family of examples for which the F -
pure threshold and the log canonical threshold of a polynomial

are different, but such that the characteristic p does not divide

the denominator of the F -pure threshold (compare with an ex-
ample of Mustaţă–Takagi–Watanabe). We then study the F -
signature function in the case that either the F -pure threshold

and log canonical threshold coincide, or that p does not divide

the denominator of the F -pure threshold. We show that the F -
signature function behaves similarly in those two cases. Finally,

we include an appendix that shows that the test ideal can still

behave in surprising ways even when the F -pure threshold and
log canonical threshold coincide.

1. Introduction

Inspired by connections between singularities from the minimal model pro-
gram and those from tight closure theory, S. Takagi and K. i. Watanabe intro-
duced the F -pure threshold [TW04]; see also [MTW05]. If f is a nonzero ele-
ment in a Noetherian ring R of prime characteristic, then the F -pure thresh-
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old, denoted fpt(f), is the largest positive real number t for which the pair
(R,f t) is F -pure. This number has been shown to be rational in several
contexts; for regular rings, the focus of this paper, rationality is proven in
[BMS09].

The F -pure threshold is closely related to the log canonical threshold, an
important measure of the singularities that has appeared in several guises
[Kol97, Sections 8–10]. The log canonical threshold of an element f is de-
noted lct(f), and though this invariant is often only considered when the
characteristic of the ambient space is zero, it is, in fact, defined in all charac-
teristics. Moreover, if R is a polynomial ring over Q, and fp is the reduction
of f ∈ R modulo p [HH06], then [HW02] and [Zhu13, Corollary 4.1] imply
that

(1.1) fpt(fp)≤ lct(fp)≤ lct(f).

Furthermore, standard reduction to characteristic p > 0 techniques enable one
to show that lct(fp) = lct(f) for p� 0 [HY03].

The values in (1.1) coincide for f = y2 − x3 ∈ C[x, y] when p≡ 1 mod 6 in
which case fpt(fp) = lct(fp) = lct(f) = 5

6 , but fpt(fp) =
5
6 −

1
6p if p≡ 5 mod 6.

This type of behavior seems common for many singularities. In fact, it is
conjectured that there always exists a Zariski-dense set of primes p for which
(1.1) consists of equalities [MS11], and this motivates understanding the F -
pure threshold when these numbers do not coincide.

In numerous examples, including the cusp f = y2 − x3 above, it has been
noted that when fpt(fp) �= lct(fp), it is frequently the case that p divides the
denominator of fpt(fp). It was even asked if this was always the case (including
by the third author of this paper). There is one example in the literature of
a polynomial f for which certain reductions fp satisfy fpt(fp) �= lct(fp), but p
does not divide the denominator of fpt(fp); see [MTW05, Example 4.5]. This
example, however, is not as widely known as it should be.

On the other hand, in many cases, p must divide the denominator of fpt(fp)
whenever fpt(fp) �= lct(fp). More precisely, this occurs for diagonal polyno-
mials [Her15], binomials [Her14], homogeneous polynomials with an isolated
singularity [BS15], [H+15], and all homogeneous polynomials in two vari-
ables [HT14]. We begin by providing a new family of examples for which
fpt(fp) �= lct(fp), but p does not divide the denominator of fpt(fp).

Theorem A (Proposition 2.7, Corollary 2.10). Fix a prime p > 2 and
an F -finite field k containing Fp. Suppose that d ≥ n ≥ 3, d > 3, and
p � d(n(d− 2)− d). If

f = xd
1 + · · ·+ xd

n + (x1 · · ·xn)
d−2 ∈R= k[x1, . . . , xn],

then lct(f) = n
d . If, in addition, p≡−1 mod d, then fpt(f) = n(p−d+1)+d

d(p−1) .

In particular, there exist infinitely many primes p for which fpt(f) �= lct(f),
yet p does not divide the denominator of fpt(f).
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Remark 1.1. A forthcoming paper of the second and fourth authors will
explore large classes of polynomials for which fpt(f) �= lct(f), but where p
does not divide the denominator of the F -pure threshold.

If p does not divide the denominator of fpt(f), the F -singularities of the
pair (R,f fpt(f)) are similar to the F -singularities of F -pure rings. For exam-
ple, in both cases, the test ideal is reduced and cuts out an F -pure scheme
[Vas98], [Sch08]. On the other hand, if p divides the denominator of the
F -pure threshold, then the test ideal of the pair need not even be reduced
[MY09]. Thus, when searching for conditions that guarantee that the pair
(R,f fpt(f)) is “well behaved,” there are at least two clear candidates:

(a) The characteristic does not divide the denominator of the F -pure thresh-
old.

(b) The F -pure threshold and log canonical threshold coincide.

The example [MTW05, Example 4.5] and our Theorem A show that these are
distinct conditions, and it is natural to ask whether there are other conditions
that either imply, or are implied by, (a) and/or (b).

Toward this end, we shift our focus toward the F -signature function, which
asymptotically counts certain Frobenius splittings associated to a pair (R,f).
It is important to recall that if R is an F -finite local ring, then this func-
tion is continuous and convex, so that one-sided derivatives exist at all points
[BST13, Theorems 3.2, 3.5]. Furthermore, these derivatives encode other im-
portant numerical invariants; for example, if R is a domain, then the negative
of the right derivative at zero is the Hilbert–Kunz multiplicity of R/f , while
the negative of the left derivative at one is the (traditional) F -signature of
R/f [BST13, Theorem 4.4]. Motivated by this, and the fact the F -signature
function is supported on the interval [0, fpt(f)], it is therefore natural to con-
sider the left derivative of the F -signature function at the F -pure threshold.
We show that either of the conditions (a) or (b) imply similar behavior of the
F -signature function at the F -pure threshold.

Theorem B (Theorem 3.4, Theorem 3.7). Suppose that f is a square-free
element of an F -finite regular local ring R of characteristic p > 0. Suppose
further that the F -pure threshold of f is less than one, and one of the following
two conditions holds:

(1) p does not divide the denominator of the F -pure threshold, or
(2) fpt(f) = lct(f), and there exists a divisor E on some birational model

such that the discrepancy of (R,f lct(f)) is −1 along E.1

Then the left derivative of the F -signature function associated to (R,f) at the
F -pure threshold of f equals zero.

1 Such an E always exists assuming the existence of resolution of singularities.
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Note that the portion of this result showing that the derivative vanishes
under condition (a) originally appeared in an unpublished preprint of the first
author [Can12].

Finally, an appendix written by a separate set of authors is included. The
results therein demonstrate another way that conditions (a) and (b) differ.
In particular, the appendix provides an example in which condition (b) is
satisfied, and hence the left derivative of the F -signature function is zero, but
the test ideal is not radical. Note that the test ideal is always radical under
condition (a) [FW89], [Vas98], [Sch08].

2. A family of examples

The F -pure threshold of an element f of an F -finite regular ring R may
be described as the supremum over all positive real parameters λ such that
(R,fλ) is sharply F -pure, or equivalently, as the supremum over all λ > 0
such that τ(R,fλ) = R. This invariant is always a positive rational number
in the unit interval [BMS08].

For the convenience of the reader, we review these notions below in a par-
ticularly interesting (and simple) setting: Suppose that (R,m) is an F -finite
regular local ring, and that λ is a positive rational number whose denominator
(in lowest terms) is not divisible by p. In other words, λ= a/(q − 1), where
q is a power of p and a is some positive integer. In this context, (R,fλ) is
sharply F -pure whenever fa /∈m[q] [Sch08, Corollary 3.4], and τ(R,fλ) is the
minimal ideal b of R (with respect to inclusion) with fa ∈ (b[q] : b) [Sch10,
Theorem 6.3]. It is important to note that both of these notions depend only
on the parameter λ, and not on the particular representation λ= a/(q − 1).
Finally, we recall that τ(R,f fpt(f)) is a proper ideal containing f , and that
(R,f fpt(f)) is sharply F -pure if and only if the denominator of fpt(f) is not
divisible by p (see, e.g., [Sch08, Remark 5.5] or [Her12, Theorem 4.1]).

2.1. Some characterizations. Below, we characterize when the F -pure
threshold of a hypersurface in an F -finite regular local ring has a certain
special form.

Setup 2.1. Suppose that f is an element of an F -finite regular local ring
(R,m), and that λ= a/(q− 1), where q is a power of p and a is some positive
integer.

The following definition is not required to understand most of the results
in this paper (especially when working over a regular ambient ring). However,
some find it convenient to work in this framework. For any regular ring, we
let F e

∗R denote R viewed as an R-module via e-iterated Frobenius.

Definition 2.2 (Uniformly F -compatible ideals). An ideal I of R (which
is not necessarily regular) is uniformly (f t, F )-compatible if for every R-linear
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map

φ : F e
∗R→R,

we have that φ(F e
∗ f

�t(pe−1)�I)⊆ I .

When R is regular and local, this is equivalent to the requirement that
f�t(pe−1)� ∈ (I [p

e] : I) for all e≥ 0 [Sch10, Proposition 3.11]. For λ= a/(q−1),
to check that I is uniformly (fλ, F )-compatible, it suffices to verify that fa ∈
(I [q] : I). Therefore, the test ideal τ(R,fλ) is the unique smallest uniformly
(fλ, F )-compatible ideal of R. If a pair (R,f t) is sharply F -pure, then every
uniformly (f t, F )-compatible ideal is radical [Sch10, Corollary 3.3].

Proposition 2.3. In the context of Setup 2.1, we have that fpt(f) = λ=
a/(q − 1) if and only if there exists a proper ideal b of R such that fa ∈
(b[q] : b) \m[q]. In this case, f ∈ b.

Proof. First, suppose that fpt(f) = λ. The form of λ implies that (R,fλ)
is sharply F -pure, so that fa /∈m[q], and we may then set b= τ(R,fλ). Next,
suppose that fa /∈m[q], and that fa ∈ (b[q] : b) for some proper ideal b. This
first condition implies that (R,fλ) is sharply F -pure, and so fpt(f)≥ λ, while
the second condition, and the minimality of the test ideal, shows that τ(R,fλ)
is contained in b, and is therefore a proper ideal. The characterization of
the F -pure threshold via test ideals then shows that fpt(f) ≤ λ. It remains
to show that f ∈ b. However, the assumption that fa /∈ m[q] implies that
λ ≤ 1, and as test ideals decrease as the parameter increases, we have that
〈f〉= τ(R,f1)⊆ τ(R,fλ)⊆ b. �

One can also prove the above result using the language of uniformly F -
compatible ideals. In the (⇐) direction, the key point is that the ideal b is
uniformly (fλ, F )-compatible and hence contains the test ideal.

Next, we obtain a refined statement in the case f has an isolated singularity.

Lemma 2.4. In the context of Setup 2.1, if x1, . . . , xn is a system of
parameters for R and

√
τ(R,fλ) = m (e.g., if the hypersurface defined by

f has an isolated singularity at m), then fpt(f) = λ if and only if fa ≡
u(x1 · · ·xn)

q−1 mod m[q] for some unit u ∈R.

Proof. If fa satisfies the desired congruence modulo m[q], then one may
take b = m in Proposition 2.3. Next, assume that fpt(f) = λ. Since (R,fλ)
is sharply F -pure, τ = τ(R,fλ) =

√
τ =m and fa ∈ ((x1 · · ·xn)

q−1R+m[q]) \
m[q], so fa ≡ u(x1 · · ·xn)

q−1 mod m[q]. �

2.2. Some computations.

Setup 2.5. Fix integers d and n satisfying d≥ n≥ 4 or d > n= 3, and

p � d
(
n(d− 2)− d

)
.
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We also fix a field k of characteristic p > 0 with [k : kp]<∞, and set

f = xd
1 + · · ·+ xd

n + (x1 · · ·xn)
d−2 ∈ S = k[x1, . . . , xn].

Finally, we use R to denote the localization of S at m= 〈x1, . . . , xn〉 ⊆ S.

Remark 2.6. In the context of Setup 2.5, the identities

d
(
n(d− 2)− d

)
xd
i = d(d− 2)f +

(
n(d− 2)− 2d+2

)
xi

∂f

∂xi
− (d− 2)

∑
j �=i

xj
∂f

∂xj

and our assumption on p shows that m=
√
(f, ∂f

∂x1
, . . . , ∂f

∂xn
). Consequently,

the hypersurface defined by f has an isolated singularity at the origin, so that
fpt(S, f) = fpt(R,f).

Proposition 2.7. In the context of Setup 2.5, if p ≡ −1 mod d, then

fpt(S, f) = n(p−d+1)+d
d(p−1) .

Proof. Set a= (p−d+1)/d ∈N. According to Remark 2.6 and Lemma 2.4,
to show that fpt(S, f) = fpt(R,f) = na+1

p−1 , we must show that

(2.1) fna+1 =
∑

s1,...,sn,t≥0
s1+···+sn+t=na+1

(
na+ 1

s1, . . . , sn, t

)
x
ds1+t(d−2)
1 · · ·xdsn+t(d−2)

n

is congruent to u(x1 · · ·xn)
p−1 mod m[p] for some nonzero u ∈ k. Our approach

will be to show that the only summand in (2.1) not contained in m[p] corre-
sponds to the index (s1, . . . , sn, t) = (a, . . . , a,1); for this index, the associated
monomial is

(xd
1 · · ·xd

n)
a(x1 · · ·xn)

d−2 = (x1 · · ·xn)
(p−d+1)+(d−2) = (x1 · · ·xn)

p−1,

with coefficient
(

na+1
a,...,a,1

)
, which is nonzero modulo p since na+ 1< p by our

assumptions.
Toward this end, we begin by noting that if a term in (2.1) is not contained

in m[p], then t = 0 or t = 1. Indeed, for such a term, we must have that
dsi+ t(d−2)≤ p−1 for each 1≤ i≤ n, and summing these inequalities shows
that

d(s1 + · · ·+ sn) + nt(d− 2)≤ n(p− 1).

After substituting the identity s1 + · · · + sn = na + 1 − t and isolating all
terms with t appearing on the left-hand side, we find that t(n(d− 2)− d)≤
n(d− 2)− d. The assumed conditions on d and n imply that n(d− 2)− d > 0,
so that t≤ 1.

It remains to show that a term in (2.1) is in m[p] if t= 0, or if t= 1 and the
index satisfies (s1, . . . , sn) �= (a, . . . , a). However, in either case, it is easy to
see that some si ≥ a+1, so that the power of xi is at least d(a+1) = p+1. �
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We now turn our attention to the log canonical threshold. First, we recall
the definition of a log canonical pair in our setting.

Suppose that Y = SpecR where R is a regular local ring or polynomial ring.
In this case, a Q-divisor is simply Δ= a

m div(f) for some rational number a
m

and some 0 �= f ∈ R. Hence (Y,Δ) carries exactly the same information as
(R,f

a
m ). Furthermore, we can pick our canonical divisor KY = 0 and observe

that mΔ= adiv(f) is Cartier (in other words, Δ is Q-Cartier).
Now consider a birational map from a normal X , π :X → Y . In this case,

the canonical divisor KX = Kπ is an exceptional divisor that measures the
Jacobian of the birational map π, see [BFS13, Section 2.4]. Write

ΔX :=
1

m
π∗(mΔ)−KX =

a

m
divX f −KX ,

a Q-divisor that is supported on the union of the strict transform π−1
∗ Δ and

the divisorial component E =
∑

Ei of the exceptional locus of π.

Definition 2.8. We say that (Y,Δ) is log canonical if the coefficients of
ΔX are at most one for every birational morphism π :X → Y , with X normal.

The general condition of log canonicity is often impossible to verify since
we need to check every birational morphism. However, if (Y,Δ) admits a log
resolution, the condition simplifies greatly. Recall that a proper birational
morphism π : X → Y of varieties is called a log resolution of (Y,Δ) if X is
smooth, the exceptional set E of π is a divisor, and supp(π∗Δ) ∪ supp(E) is
in simple normal crossings. Then (Y,Δ) is log canonical if and only if the
coefficients of ΔX are at most one for a single log resolution π : X → Y of
(Y,Δ). See, for instance, [KM98, Section 2.3] for further discussion on this
topic.

Now, λΔ is Q-Cartier for every rational number λ≥ 0. We can then con-
sider the set of all rational λ ≥ 0 for which (Y,λΔ) is log canonical. The
supremum over all such λ is the log canonical threshold of (Y,Δ), denoted
lct(Y,Δ).

Proposition 2.9. In the context of Setup 2.5, blowing up the origin in An
k

provides a log resolution of (An
k ,div(f)).

Proof. Let π :X →An
k be the blowup of An

k at the origin, E the exceptional
divisor of π, and D the strict transform of div(f). Since π∗ div(f) =D+ dE,
it suffices to show that D is smooth and that D and E intersect transversally.

By symmetry, it suffices to establish these facts on the affine chart U of
X on which π is given by the map S → k[x1, y2, . . . , yn] sending x1 �→ x1 and
xi �→ x1yi for 2≤ i≤ n. On this chart, E is defined by x1 and D is defined by

g = 1+ yd2 + · · ·+ ydn + x
n(d−2)−d
1 (y2 · · ·yn)d−2.

Given these equations, it is apparent that D and E intersect transversally
on U since p does not divide d. Moreover, setting N = n(d − 2) − d, the
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easily-verified identity

dN = dNg+ (N − d+ 2)x1
∂g

∂x1
−N

n∑
i=2

yi
∂g

∂yi

and our assumption that p � dN implies that g is smooth on U . �

Corollary 2.10. In the context of Setup 2.5, the log canonical threshold of
(An

k ,div(f)) equals n/d. In particular, if p≡−1 mod d, then lct(An
k ,div(f)) �=

fpt(S, f), yet the denominator of the latter is not divisible by p.

Proof. We adopt the notation used in the proof of Proposition 2.9. It is well
known that Kπ = (n− 1)E, so that Kπ − λ · π∗ div(f) = (n− 1− λd)E − λD.
Consequently, (An

k , λdiv(f)) is log canonical if and only if 0< λ≤ n/d. �

3. The left derivative of the F -signature function
at the F -pure threshold

In this section, we consider the F -signature function2 associated to an
element f of an F -finite regular local ring (R,m). We begin by summarizing
the needed theory, directing the interested reader to [BST12] and [BST13]
for a complete development with historical context. Set ae(t) = λR(R/(m[pe] :
f�t(pe−1)�)). The F -signature is defined [BST13, 3.11] as

s
(
R,f t

)
= lim

e→∞
ae(t)/p

edim(R).

Assuming that (R,f t) is sharply F -pure, then we define the splitting prime
P = P (R,f t) to be the largest proper ideal such that

f�t(pe−1)� ∈
(
P [pe] : P

)
for all e ≥ 0 (in other words, P is the largest proper uniformly (f t, F )-
compatible ideal). It is a prime ideal, see [AE05, Definition 3.2], [Sch10]
and [BST13, 2.12] for further discussion. By [BST13, 4.2],

0< lim
e→∞

ae(t)

pedim(R/P )
≤ 1.

The limit above is called the F -splitting ratio rF (R,f t). By definition,
s(R,f t)≤ rF (R,f t).

• If t < fpt(f), then P = 0, so the F -signature and the F -splitting ratio agree.

2 If ϕ(R,f t) denotes the function in [MT04, Definition 2.4] (with I =m and h= f) or the
one in [MT06, Definition 1.1], then it is easy to see that the F -signature function satisfies

the identity

s
(
R,f t

)
= 1−ϕ

(
R,f t

)
.

Thus, in the settings considered by Monsky and Teixeira, many of the properties of s(R,f t)
recalled in this section follow from the corresponding properties for ϕ(R,f t) established in

[MT04], [MT06].
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• When t= fpt(f),3 dim(R/P )< dim(R) and s(R,f fpt(f)) = 0.
• Finally, if (R,f t) is not sharply F -pure (for instance if t > fpt(f)), then
f �t(pe−1)� ∈m[pe], so ae(t) = 0.

Summarizing, s(R,f t)> 0 for all t < fpt(f) and s(R,f t) = 0 for t≥ fpt(f). In
the case that t= a/q, the F -signature is computed as

(3.1) s
(
R,f t

)
=

λR(R/(m[q] : fa))

qdim(R)
,

which does not depend on the particular representation t = a/q [BST13,
Proposition 4.1].

By [BST13], all one-sided derivatives of s(R,f t) exist. In this section, we
show that the left derivative at t = fpt(f) equals zero whenever the F -pure
threshold is “mild.” We note that Lemma 3.1 and Theorem 3.4 originally
appear in the unpublished manuscript [Can12].

Lemma 3.1. Suppose that f is a square-free element of an F -finite regular
local ring (R,m). If q is a power of p and a is some positive integer less than
q − 1, then the height of any ideal b of R containing f with fa ∈ (b[q] : b) is
at least two.

Proof. By way of contradiction, assume that there exists a minimal prime
P of b with ht(P ) = 1. As P is prime, the containment f ∈ P allows us to
write f = f1 · · ·fr as a product of distinct irreducible factors with f1 ∈ P .
However, being a height one prime in a regular local ring, P is principal, and
must therefore be generated by the element f1. Moreover, the irreducibility
of f1 and the assumption that a≤ q− 2 implies that

fa · P = fa · 〈f1〉=
〈
fa+1
1 fa

2 · · ·fa
r

〉
�
〈
fq
1

〉
= P [q].

Thus, fa /∈ (P [q] : P ), contradicting [Sch10, Proposition 4.10]. �

Lemma 3.2. Suppose f is an element of a regular F -finite local ring (R,m).
If q is a power of p, then the left derivative of s(R,f t) at t = fpt(f) equals
zero if and only if

lim
e→∞

λR(R/(m[qe] : f�qe fpt(f)�−1))

qe(dim(R)−1)
= 0.

Proof. Set α= fpt(f). As the sequence αe =
�αqe�−1

qe converges to α from

below, the fact that s(R,fα) = 0 and (3.1) allow us to realize this left-
derivative as

(3.2) lim
e→∞

s(R,fαe)

αe − α
=− lim

e→∞

λR(R/(m[qe] : f�αqe�−1))

qe(dimR−1) · βe
,

3 This implies that denominator of t is not divisible by p [Sch08], [Her12].
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where βe = αqe −�αqe�+1. To complete the proof, it suffices to observe that
βe is a bounded sequence that is bounded away from zero (indeed, if d is a
denominator for the rational number α, it is straightforward to verify that
1/d≤ βe ≤ 1 for every e≥ 1). �

Remark 3.3. In the context of Lemma 3.2, suppose that fpt(f) = a/(q−1)

for q a power of p and a a positive integer. Setting δe =
qe−1
q−1 and substituting

the identity �qe fpt(f)� = aδe + 1 into (3.2) shows that the left derivative of
s(R,f t) at t= fpt(f) equals

− 1

fpt(f)
· lim
e→∞

λR(R/(m[qe] : faδe))

qe(dim(R)−1)
.

Theorem 3.4. Suppose that f is a square-free element of an F -finite regu-
lar local ring (R,m). If the F -pure threshold of f is less than one, and p does
not divide its denominator, then the left derivative of s(R,f t) at t= fpt(f) is
zero.

Proof. Write fpt(f) = a
q−1 , and set δe =

qe−1
q−1 . By Proposition 2.3, there

exists f ∈ b⊆m such that fa ·b⊆ b[q]. Inducing on e shows that faδe ·b⊆ b[q
e]

for all e≥ 1, so that b+m[qe] ⊆ (m[qe] : faδe) for every e≥ 1. Setting A=R/b,
this and [Mon83] show that

λR

(
R/

(
m[qe] : faδe

))
≤ λR

(
R/

(
b+m[qe]

))
= λA

(
A/m[qe]A

)
= eHK(A) · qedimA + εq,

where eHK(A) is the Hilbert–Kunz multiplicity of A and εq =O(qe(dimA−1)).
To conclude the proof, simply note that dimA≤ dimR− 2 by Lemma 3.1, so
that the limit in Remark 3.3 equals zero. �

The hypothesis that f be square-free in Theorem 3.4 is necessary, as we
see below.

Example 3.5. If f = x2y ∈ R = Fp[[x, y]] with p �= 2, then fpt(f) = 1
2 =

(p−1)/2
p−1 . This shows we may take a= (p− 1)/2 and q = p in Theorem 3.4. As

f is a monomial, it is easy to compute that the left derivative of s(R,f t) at
t= 1

2 is −1: Indeed, the expression aδe in Remark 3.3 equals (pe − 1)/2, and(
m[pe] : faδe

)
=
(
m[pe] : xpe−1y(p

e−1)/2
)
=
〈
x, y(p

e+1)/2
〉
.

Therefore,

λR

(
R/

(
m[pe] : faδe

))
=
(
pe + 1

)
/2,

so the left-derivative formula in Remark 3.3 equals −2 · 1
2 =−1.

The following refinement of the argument presented above appears in
[Can12].



BEHAVIOR AT THE F -PURE THRESHOLD 679

Remark 3.6 (Additional statements involving splitting primes). We adopt
the context of Lemma 3.2. Given a positive integer n, the limit

�n(R,f) := lim
t→fpt(f)−

s(R,f t)

(t− fpt(f))n

can be thought of as an “approximate left nth derivative” of the F -signature

function at the F -pure threshold. If fpt(f) = a/(q − 1) and δe = qe−1
q−1 , a

straightforward generalization of (3.2) and Remark 3.3 shows that if �n(R,f)
exists, then

(3.3) �n(R,f) =

(
− 1

fpt(f)

)n

· lim
e→∞

λR(R/(m[qe] : faδe))

qe(dimR−n)
.

The vanishing of the limit in (3.3) is determined by the height of the split-
ting prime P = P (R,f fpt(f)). In light of (3.3), [BST12, Definition 4.5] may
be restated as

(3.4) htP =min

{
n ∈N : lim

e→∞

λR(R/(m[qe] : faδe))

qe(dimR−n)
�= 0

}
=min

{
n : �n(R,f) �= 0

}
,

where in the last equality, we assume that �n(R,f) exists for every n ∈N.
Observe that (3.3) and the first equality in (3.4) give another proof of

Theorem 3.4: in this case, Lemma 3.1 shows that htP ≥ 2, and so �1(R,f)
(which always exists) equals zero. Finally, we observe that by (3.3),

�htP (R,f) =

(
− 1

fpt(f)

)htP

· lim
e→∞

λR(R/(m[qe] : faδe))

qe(dimR/P )
=

rF (R,f fpt(f))

(− fpt(f))htP
.

In the final result of this section, we show that the left derivative of the
F -signature function at the F -pure threshold also vanishes whenever the F -
pure threshold agrees with the log canonical threshold. In preparation for
Theorem 3.7, we recall some standard notation and basic facts: If R is an
arbitrary ring of characteristic p > 0, then F e

∗R will denote the R-module
obtained from restriction of scalars via the eth iterate of the Frobenius map.
Given an element x ∈ R, we denote the corresponding element in F e

∗R by
F e
∗x; in this notation, rF e

∗x= F e
∗ (r

pe

x) for every r, x ∈ R. If R is a domain
with fraction field K, then any map φ ∈ HomR(F

e
∗R,R) extends to one in

HomK(F e
∗K,K) via the rule

φ

(
F e
∗

(
x

y

))
:=

φ(F e
∗ (y

p−1x))

y
.

Finally recall that if (R,m) is F -finite and regular, then for every e≥ 1 and
g ∈R,

(3.5) g ∈m[pe] if and only if φ
(
F e
∗ g

)
⊆m for every φ ∈HomR

(
F e
∗R,R

)
.
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Theorem 3.7. Suppose that f is an element of an F -finite regular local
ring (R,m) of dimension at least two. Assume, further, that there exists a
prime exceptional divisor E of a proper birational morphism π : Y → X =
Spec(R) with Y normal such that m ∈ π(E), and that the E-coefficient of
KY − fpt(f) ·divY (f) is −1. (Note these hypotheses hold if a log resolution of
singularities exists, fpt(f) = lct(f)< 1, and 〈f〉 is radical.) In this case, the
left derivative of s(R,f t) at t= fpt(f) is zero.

Proof. Since the F -signature cannot decrease after localization [AL03,
Proposition 1.3], we can assume that m= π(E) after localizing R at the generic
point of π(E) (since E is exceptional, we still have that dim(R)≥ 2). Let v
denote the divisorial valuation, with valuation ring Rv and uniformizer r, on
the fraction field K of R corresponding to E, and for every positive number
γ, let mv≥γ = r�γ�Rv consist of all fractions whose value is at least γ. Note
that as π(E) =m, we have that mv≥1 ∩R=m.

The key technical point of this proof is the following claim. First, some
abuse of notation. By localization, the map φ can be extended to the fraction
field of R, φ : F e

∗K(R)→K(R). One can then restrict the domain to F e
∗Rv to

obtain a map which we also call φ : F e
∗Rv →K(R). This definition extension

of φ is what is meant in the following claim.

Claim 3.8. If α= fpt(f) = lct(f), then

φ
(
F e
∗
(
f�αpe� ·mv≥1

))
⊆mv≥1 for every e≥ 1 and φ ∈HomR

(
F e
∗R,R

)
.

Proof. Consider such a φ. As in [BS12, Section 4], φ yields a Q-divisor

Δφ ≥ 0. We consider the new Q-divisor Δ′ = Δφ + �peα�
pe−1 divX(f). Because

the E coefficient of

KY − α · divY (f) =KY − π∗(α · divX(f)
)

equals −1, we see that β := coeffE(KY −π∗Δ′) is ≤−1. Define a new map on
the fraction field, ψ(F e

∗ ) := φ(F e
∗ f

�αpe� ). Note that ψ|F e
∗R corresponds

to the divisor Δ′. Hence, by [BS12, Lemma 7.2.1], ψ|F e
∗Rv corresponds to the

divisor −β · divRv (r)≥ divRv (r).
Thus, if Φv ∈HomRv (F

e
∗Rv,Rv) generates HomRv (F

e
∗Rv,Rv) as an F e

∗Rv-
module, we can write ψv(F

e
∗ ) = Φv(F

e
∗ur

−β(pe−1) ) for some unit u ∈Rv .
We then have that

φ
(
F e
∗
(
f�αpe� ·mv≥1

))
= ψ

(
F e
∗mv≥1

)
=Φv

(
F e
∗ur

−β(pe−1)mv≥1

)
⊆Φv

(
F e
∗ r

pe

Rv

)
⊆ rRv

=mv≥1.

This proves the claim. �
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As mv≥1 ∩R=m, the above and (3.5) then imply that(
f�αpe� ·mv≥1

)
∩R⊆m[pe] for every e≥ 1.

Next, note that if g ∈R satisfies v(g)≥ v(f) + 1, then g/f ∈mv≥1, and thus

gf�αpe�−1 = f�αpe� · g/f ∈
(
f�αpe� ·mv≥1

)
∩R⊆m[pe] for every e≥ 1.

This shows that mv≥v(f)+1 ∩R is contained in (m[pe] : f�αpe�−1), and there-

fore the length of R/(m[pe] : f�αpe�−1) is bounded above by the length of
R/(mv≥v(f)+1∩R) for every e≥ 1. The theorem then follows from Lemma 3.2
(here, it is important that dimR≥ 2). �

We conclude by highlighting a few questions arising from our investigation.

Question 3.9. If the left derivative of the F -signature function at the F -
pure threshold vanishes, does this guarantee any “nice” behavior (e.g., from
the point of view of any of the well-studied singularities defined via Frobe-
nius)?

Question 3.10. Do the higher (left) derivatives of the F -signature function
exist at the F -pure threshold? If so, how are they related to the approxima-
tions considered in Remark 3.6?

Question 3.11. Do all of the results of this section hold when the ambient
ring is not regular?

Appendix: Another interesting example4

Consider the pair (R,f fpt(f)). In the Introduction, the authors discussed
two conditions which seem to imply that this pair is “well behaved.”

(a) The characteristic does not divide the denominator of the F -pure thresh-
old (fpt).

(b) The F -pure threshold (fpt) and log canonical threshold (lct) coincide.

[MTW05, Example 4.5] and the paper above show that these conditions are
distinct. It was also shown that both conditions imply certain behavior of
the F -pure threshold. It is thus natural to ask whether there are any other
conditions that are implied by these. If the characteristic does not divide
the denominator of the fpt, then the pair (R,f fpt(f)) is sharply F -pure and
hence the corresponding test ideal τ(R,f fpt(f)) is radical. One might then
hope that if the F -pure threshold and log canonical threshold coincide, then
the test ideal is likewise radical.

The purpose of this appendix is to exhibit examples where fpt = lct but
the test ideal is not radical. In fact, we are able to produce a family of such
examples, indexed by n ∈N, where the the length of R/τ(R,f fpt(f)) increases

4 By Alessandro De Stefani, Jack Jeffries, Zhibek Kadyrsizova, Robert Walker, and George

Whelan.
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as n increases. Our examples are inspired by the examples of Mustaţă and
Yoshida in [MY09].

Let n � 2 be an integer, and let N = 2n + 1. Consider R = F2[x, y] and
set

(A.1) f = x2y2 + xN + yN ∈R.

By [BMS08], since the characteristic is 2, we have that τ(f1/2) = 〈f〉[1/2].
We can write f = (xy)2 · 1 + (xn)2 · x + (yn)2 · y, therefore we obtain that
τ = 〈f〉[1/2] = 〈xn, xy, yn〉. In particular, note that the test ideal τ is not
radical. Furthermore, we see that the length λR(R/τ) = 2n− 1 =N − 2 and
so it even has unbounded length.

Proposition A.1. With f as in (A.1), fpt(f) = 1/2 = lct(f).

Proof. Given that τ(f1/2) = 〈xn, xy, yn〉 �=R, we see that fpt(f)≤ 1/2. To
show the other inequality, we prove that (R,f1/2) is F -pure5 or equivalently
that (R,f1/2−ε) is sharply F -pure for ε > 0. Indeed,

fpt(f) = sup
{
r ∈R≥0 | τ

(
fr

)
=R

}
= sup

{
t ∈R≥0 |

(
R,f t

)
is F -pure

}
.

For all integers e≥ 1, we have that �2e−1
2 �= 2e−1− 1. It is easy to see that in

the expansion of f
 1
2 (2

e−1)� = f2e−1−1, the term (x2y2)2
e−1−1 = (xy)2

e−2 has
the smallest possible degree of any term. Hence, (xy)2

e−2 does not get can-

celed and it appears in the expansion of f
 1
2 (2

e−1)� with non-zero coefficient.
As (xy)2

e−2 /∈m[2e], we conclude that f
 1
2 (2

e−1)� /∈m[2e]. Therefore, the pair
(R,f1/2) is F -pure, as claimed. This shows that fpt(f)≥ 1/2.

Now we turn our attention to lct(f), the log canonical threshold. Since
lct(f)≥ fpt(f) = 1/2, it suffices to show that 1/2≥ lct(f). To this end, blow
up the origin to obtain π : Y →A2 = SpecR. Note that the relative canonical
divisor is simply one copy of the exceptional divisor KY/A2 =E. In the chart
SpecF2[

y
x , x] = SpecF2[u,x], we have that the pullback of f is

x4
(
u2 + xN−4 + uNxN−4

)
.

By symmetry, we see that π∗ div(f) = 4E + H̃ where H̃ is the strict trans-

form of div(f). Note that H̃ is defined by u2 + xN−4 + uNxN−4 in the
chart we wrote down. In order for (R,f t) to be log canonical, we must have
coeffE(KY/A2 − tπ∗ div(f)) ≥ −1. By our previous computation, this is the
same as requiring that

1− 4t≥−1

or in other words that t≤ 1/2. It follows that

lct(f) = sup
{
t ∈R≥0 |

(
R,f t

)
is log canonical

}
≤ 1/2.

As discussed above, this completes the proof. �

5 Following [HW02], this just means that f�1/2(pe−1)� /∈m[2e] for e� 0.
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In conclusion is the following corollary.

Corollary A.2. There exist examples f ∈ R where fpt(f) = lct(f), and
hence the derivative of the F -signature is zero by Theorem 3.7 but where
τ(R,f fpt(f)) is not radical.
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