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NEW CHARACTERIZATIONS OF BESOV AND
TRIEBEL–LIZORKIN SPACES VIA THE T1 THEOREM

FANGHUI LIAO, YANCHANG HAN AND ZONGGUANG LIU

Abstract. The main purpose of this paper is to provide new
characterizations of Besov and Triebel–Lizorkin spaces on spaces

of homogeneous type with the “reverse” doubling property. To

achieve our goal, the key idea is to prove a T1 theorem with only
half the usual smoothness and cancellation conditions.

1. Introduction and statement of main results

In the earlier of 1970s, Coifman and Weiss [1] introduced spaces of ho-
mogeneous type in order to extend the Calderón–Zygmund singular operator
theory to a more general setting. These spaces have no dilations, translations
and analogues of the Fourier transform. Let us recall briefly spaces of homo-
geneous type in the sense of Coifman and Weiss. A quasi-metric ρ on a set X
is a function ρ :X ×X → [0,∞) satisfying (i) ρ(x, y) = 0 if and only if x= y;
(ii) ρ(x, y) = ρ(y,x) for all x, y ∈X ; (iii) There exists a constant A ∈ [1,∞)
such that for all x, y and z ∈X ,

ρ(x, y)≤A
[
ρ(x, z) + ρ(z, y)

]
.(1)

Any quasi-metric defines a topology, for which the balls

B(x, r) =
{
y ∈X : ρ(y,x)< r

}
for all x ∈X and all r > 0 form a basis. We say that (X,ρ,μ) is a space of
homogeneous type in sense of Coifman and Weiss if ρ is a quasi-metric and μ is
a nonnegative Borel regular measure on X satisfying the doubling condition,
that is, for all x ∈X , r > 0, then 0< μ(B(x, r))<∞ and

μ
(
B(x,2r)

)
≤Cμ

(
B(x, r)

)
,(2)
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where μ is assumed to be defined on a σ-algebra which contains all Borel sets
and all balls B(x, r), and the constant 0 < C <∞ is independent of x ∈X
and r > 0.

Maćıas and Segovia [8] showed that the quasi-metric ρ can be replaced
by another quasi-metric d such that the topologies induced on X by ρ and
d coincide. Moreover, d has the following regularity property: there exist
constants C > 0 and 0< θ < 1 such that for all x,x′, y ∈X ,∣∣d(x, y)− d

(
x′, y

)∣∣≤Cd
(
x,x′)θ[d(x, y) + d

(
x′, y

)]1−θ
.(3)

Moreover, if B(x, r), the ball defined by the metric d, then

μ
(
B(x, r)

)
≈ r.(4)

Note that the condition (4) is much stronger than the doubling property (2).
In [9], Nagel and Stein developed the product theory on Carnot–

Carathéodory spaces with a smooth quasi-metric d and a measure μ sat-
isfying the condition (2) and the “reverse” doubling condition, that is,
there exist constants a0,C ∈ (1,∞) such that for all x ∈ X and all 0 < r <
supx,y∈X d(x, y)/a0,

Cμ
(
B(x, r)

)
< μ

(
B(x,a0r)

)
.(5)

We point out that the doubling condition (2) and “reverse” doubling con-
dition (5) implies that there exist positive constants ω (the upper dimension
of μ), κ ∈ (0, ω] (the lower dimension of μ) and c ∈ (0,1], C > 1 such that for
all x ∈X , 0< r < supx,y∈X d(x, y)/2 and 1≤ λ < supx,y∈X d(x, y)/2r,

cλκμ
(
B(x, r)

)
≤ μ

(
B(x,λr)

)
≤Cλωμ

(
B(x, r)

)
.(6)

Spaces of homogeneous type include many important examples, such as Eu-
clidean space, Ahlfors regular metric measure spaces, Lie groups of polynomial
growth and Carnot–Carathéodory spaces with doubling measures. All these
examples fall under the scope of the study of RD-spaces introduced in [5]. To
be more precise, a RD-space (X,d,μ) is a space of homogeneous type in sense
of Coifman and Weiss where the quasi-metric d satisfies regularity (3) and the
measure μ satisfies the “reverse” doubling property (6).

On the other hand, the seminal work on spaces of homogeneous type is the
T1 theorem. More precisely, in order to study the L2 boundedness of gener-
alized Calderón–Zygmund singular integral operators, David and Journé [2]
proved the remarkable T1 theorem on R

n. David, Journé and Semmes [3]
provided the T1 theorem on (X,d,μ) where d satisfy the regularity in (3) and
the measure μ satisfy the property in (4). Han and Sawyer [6] established the
T1 theorem for the Besov and Triebel–Lizorkin spaces on such spaces of ho-
mogeneous type. Moreover, they gave new characterizations of the Besov and
Triebel–Lizorkin spaces with only half the usual smoothness and cancellation
conditions on the approximate to the identity. See [6] for more details and
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[4] and [7] for the related results. A theory of the Besov and Triebel–Lizorkin
spaces on RD-spaces was established in [5], where these spaces were charac-
terized by the family of operators whose kernels satisfy the usual smoothness
and cancellation conditions and the T1 theorems with the usual smoothness
and cancellation conditions were proved. See [5] for more details.

A natural question arises: Can one characterize the Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type of RD-spaces as established
in [5] by only half the usual smoothness and cancellation conditions on the
approximate to the identity?

The main purpose of this paper is to answer this question. The key tool
to achieve our goal is to prove a new T1 theorem for the Besov and Triebel–
Lizorkin spaces on spaces of homogeneous type of RD-spaces, where, however,
the kernel of T satisfies only half the usual smoothness and cancellation condi-
tions. To state the main results in this paper, throughout this paper, (X,d,μ)
are spaces of homogeneous type of RD-spaces. We use C to denote positive
constants, whose value may vary from line to line. Constants with subscripts,
such as C1, do not change in different occurrences. We denote by f ∼ g that
there exists a constant C > 0 independent of the main parameters such that
C−1g < f < Cg. M is the Hardy–Littlewood maximal operator. For any
1< q <∞, we denote by q′ its conjugate index, that is, 1/q + 1/q′ = 1. We
also denote min{a, b} by a∧ b for any a, b ∈R. For all x ∈X and all r > 0, we
use the abbreviations

Vr(x) := μ
(
B(x, r)

)
, V (x, y) := V

(
x,d(x, y)

)
.

Now we begin with recalling the definition of an approximate to the identity,
which plays the same role as the heat kernel H(s,x, y) does in [9].

Definition 1.1 ([5]). Let θ be the regularity exponent of X . A sequence
{Sk}k∈Z of linear operators is said to be an approximation to the identity if
there exists a constant C > 0 such that for all k ∈ Z and all x,x′, y, y′ ∈X ,
Sk(x, y), the kernel of Sk, is a function from X ×X into C satisfies

(i) Sk(x, y) = 0 if d(x, y)≥C2−k and |Sk(x, y)| ≤C 1
V
2−k (x)+V

2−k (y)
;

(ii) |Sk(x, y)− Sk(x
′, y)| ≤C2kθd(x,x′)θ 1

V
2−k (x)+V

2−k (y)
;

(iii) |Sk(x, y)− Sk(x, y
′)| ≤C2kθd(y, y′)θ 1

V
2−k (x)+V

2−k (y)
;

(iv) |[Sk(x, y)−Sk(x, y
′)]− [Sk(x

′, y)−Sk(x
′, y′)]| ≤C22kθd(x,x′)θd(y, y′)θ ×

1
V
2−k (x)+V

2−k (y)
;

(v)
∫
Sk(x, y)dμ(y) = 1;

(vi)
∫
Sk(x, y)dμ(x) = 1.

To define the Besov and Triebel–Lizokin spaces, we need the following
spaces of test functions and distributions.
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Definition 1.2 ([5]). Let θ be the regularity exponent of X and 0 <
β,γ ≤ θ. A function f defined on X is said to be a test function of type (β,γ)
centered at x0 ∈X with width r > 0 if f satisfies the following conditions:

(i) |f(x)| ≤C 1
Vr(x0)+V (x0,x)

rγ

(r+d(x,x0))γ
;

(ii) |f(x) − f(y)| ≤ C( d(x,y)
r+d(x,x0)

)β 1
Vr(x0)+V (x0,x)

rγ

(r+d(x,x0))γ
for d(x, y) ≤

1
2A (r+ d(x,x0));

(iii)
∫
f(x)dμ(x) = 0.

If f is a test function of type (β,γ) centered at x0 with width r > 0, we
write f ∈M(x0, r, β, γ), and the norm of f in M(x0, r, β, γ) is defined by

‖f‖M(x0,r,β,γ) = inf
{
C > 0 : (i) and (ii) hold

}
.

We denote by M(β,γ) the class of all f ∈M(x0,1, β, γ). It is easy to see
that M(x1, r, β, γ) =M(β,γ) with the equivalent norms for all x1 ∈X and
r > 0. Furthermore, it is also easy to check that M(β,γ) is a Banach space
with respect to the norm in M(β,γ).

Let M̃(β,γ) be the completion of the space M(θ, θ) in M(β,γ) with 0<

β,γ ≤ θ. If f ∈ M̃(β,γ), we then define ‖f‖M̃(β,γ)
= ‖f‖M(β,γ).

We define the distribution space (M̃(β,γ))′ by all linear functionals L from

M̃(β,γ) to C with the property that there exists a constant C ≥ 0 such that

for all f ∈ M̃(β,γ), ∣∣L(f)∣∣≤C‖f‖M̃(β,γ)
.

Now the Besov space Ḃα,q
p and the Triebel–Lizorkin space Ḟα,q

p are defined
as follows.

Definition 1.3 ([5]). Suppose that {Sk}k∈Z is an approximation to the
identity and Dk = Sk − Sk−1. Let −θ < α < θ and 1< p, q <∞. The Besov

space Ḃα,q
p is the collection of all f ∈ (M̃(β,γ))′ with 0< β,γ < θ such that

‖f‖Ḃα,q
p

=

{∑
k∈Z

(
2kα

∥∥Dk(f)
∥∥
Lp

)q} 1
q

<∞.

The Triebel–Lizorkin space is the collection of all f ∈ (M̃(β,γ))′ with 0 <
β,γ < θ such that

‖f‖Ḟα,q
p

=

∥∥∥∥
{∑

k∈Z

(
2kα

∣∣Dk(f)
∣∣)q} 1

q
∥∥∥∥
Lp

<∞.

The authors [5] proved that Definition 1.3 is well defined, namely Defini-
tion 1.3 is independent of the choice of Dk. To state the main results in this
paper, we also need the following definitions.
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For η ∈ (0, θ], let Cη
0 (X) be the set of all continuous functions f on X with

compact support such that

‖f‖Cη
0
= sup

x �=y

|f(x)− f(y)|
d(x, y)η

<∞.

Endow Cη
0 (X) with the natural topology and let (Cη

0 (X))′ be its dual space.

Definition 1.4. A continuous complex-valued function K(x, y) defined on

Ω=
{
(x, y) ∈X ×X : x �= y

}
is called a standard kernel if there exist constants ε ∈ (0, θ] and C1 > 0 such
that ∣∣K(x, y)

∣∣≤C1
1

V (x, y)
;(7)

∣∣K(x, y)−K
(
x′, y

)∣∣≤C1
d(x,x′)ε

d(x, y)ε
1

V (x, y)
for d

(
x,x′)≤ d(x, y)/2A(8)

and ∣∣K(x, y)−K
(
x, y′

)∣∣≤C1
d(y, y′)ε

d(x, y)ε
1

V (x, y)
for d

(
y, y′

)
≤ d(x, y)/2A.(9)

Calderón–Zygmund singular integral operators are given by the following.

Definition 1.5. A continuous linear operator T :Cη
0 (X)→ (Cη

0 (X))′ is a
Calderón–Zygmund singular integral operator if there exists a standard kernel
K such that

〈Tf, g〉=
∫ ∫

K(x, y)f(y)g(x)dμ(x)dμ(y)

for all f, g ∈Cη
0 (X) with disjoint supports.

We also need the notion of the weak boundedness property.

Definition 1.6 ([3]). A Calderón–Zygmund singular integral operator T
is said to have the weak boundedness property, if there exist constants C2 > 0
and η ∈ (0, θ] such that for all x0 ∈X and r > 0∣∣〈Tf, g〉∣∣≤C2Vr(x0)r

2η‖g‖Cη
0
‖f‖Cη

0
,

where f, g ∈ Cη
0 (X) with supp f, g ⊂B(x0, r), ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1, ‖f‖Cη

0
≤

r−η and ‖g‖Cη
0
≤ r−η , and if T satisfies the weak boundedness property, we

denote by T ∈WBP .

The main results in this paper can be stated as follows.

Theorem 1.1. Suppose that T is a Calderón–Zygmund singular integral
operator with the kernel satisfying (7), (8), T (1) = 0 and T ∈WBP . Then T

can be extended to a bounded linear operator on Ḃα,q
p and Ḟα,q

p for 0< α< ε
and 1< p, q <∞.
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Theorem 1.2. Suppose that T is a Calderón–Zygmund singular integral
operator with the kernel satisfying (7), (9), T ∗(1) = 0 and T ∈WBP . Then T

can be extended to a bounded linear operator on Ḃα,q
p and Ḟα,q

p for −ε < α< 0
and 1< p, q <∞.

We would like to point out that, as mentioned, the T1 theorem where the
kernel of T in [5] satisfies (7), (8), (9) and T (1) = T ∗(1) = 0. As a consequence
of the above T1 theorems, we give new characterizations of the Besov and
Triebel–Lizorkin spaces with only half the usual smoothness and cancellation
conditions on the approximate to the identity.

Theorem 1.3. Let 0 < α < θ and 1 < p, q < ∞, {Sk}k∈Z be an ap-
proximation to the identity satisfies (i), (ii) and (v) of Definition 1.1 and
Ek = Sk − Sk−1.

(i) For f ∈ Ḃα,q
p , then{∑

k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

∼ ‖f‖Ḃα,q
p

.

(ii) For f ∈ Ḟα,q
p , then∥∥∥∥

{∑
k∈Z

(
2kα

∣∣Ek(f)
∣∣)q} 1

q
∥∥∥∥
Lp

∼ ‖f‖Ḟα,q
p

.

Theorem 1.4. Let −θ < α < 0 and 1 < p, q < ∞, {Sk}k∈Z be an ap-
proximation to the identity satisfies (i), (iii) and (vi) of Definition 1.1 and
Ek = Sk − Sk−1.

(i) For f ∈ Ḃα,q
p , then{∑

k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

∼ ‖f‖Ḃα,q
p

.

(ii) For f ∈ Ḟα,q
p , then∥∥∥∥

{∑
k∈Z

(
2kα

∣∣Ek(f)
∣∣)q} 1

q
∥∥∥∥
Lp

∼ ‖f‖Ḟα,q
p

.

We remark that Theorem 1.1 and Theorem 1.2 generalize the similar results
proved in [6] on spaces of homogeneous type with the measure μ satisfies the
condition (4).

2. Proof of Theorem 1.1 and Theorem 1.2

In this section, we show the T1 theorem of the Besov and Triebel–Lizorkin
spaces on RD-spaces. We first give Calderón’s reproducing formula which is
a main tool in this paper.
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Lemma 2.1 ([5]). Let {Sk}k∈Z be an approximation to the identity defined
in Definition 1.1 and Dk = Sk − Sk−1. Then there exist families of linear

operators D̃k and
˜̃
Dk for k ∈ Z such that for all f ∈ M̃(β,γ) with 0< β,γ < θ,

f =
∑
k∈Z

D̃kDk(f) =
∑
k∈Z

Dk
˜̃
Dk(f),(10)

where the series converges in both the norms of M̃(β′, γ′) with 0 < β′ < β

and 0 < γ′ < γ, and Lp with 1 < p < ∞. When f ∈ (M̃(β,γ))′, the series

converges in the norm of (M̃(β′, γ′))′ with β < β′ < θ, γ < γ′ < θ. Moreover,

for any θ′ ∈ (0, θ), D̃k(x, y) and
˜̃
Dk(x, y), the kernels of D̃k and

˜̃
Dk, satisfy

the similar estimates but with x and y interchange in (ii):

(i)

∣∣D̃k(x, y)
∣∣≤C

1

V2−k(x) + V (x, y)

2−kθ′

(2−k + d(x, y))θ′ ;(11)

(ii)

(12)
∣∣D̃k(x, y)− D̃k

(
x′, y

)∣∣
≤C

(
d(x,x′)

2−k + d(x, y)

)θ′
1

V2−k(x) + V (x, y)

2−kθ′

(2−k + d(x, y))θ′

for d(x,x′)≤ 1
2A (2−k + d(x, y));

(iii) ∫
D̃k(x, y)dμ(y) =

∫
D̃k(x, y)dμ(x) = 0.(13)

In order to prove Theorem 1.1, we need the following estimates.

Proposition 2.1. Suppose that T satisfies the hypotheses of Theorem 1.1
and {Dk}k∈Z be given in Definitions 1.3. Then there exists a constant C > 0
such that

(14)
∣∣DlTDk(x, y)

∣∣
≤C

(
2(k−l)ε ∧ 1

) 1 + (l− l ∧ k)

V2−(k∧l)(x) + V (x, y)

2−(k∧l)ε

(2−(k∧l) + d(x, y))ε
.

Proof. We need to consider four cases.
Case 1: l≤ k, d(x, y)≥ 4A3C2−l.
We first make the following observations: note that if d(x,u)≤ C2−l and

d(v, y)≤C2−k, then

d(x, y)≤Ad(x,u) +Ad(u, y)≤Ad(x,u) +A2d(u, v) +A2d(v, y)

≤ 2A2C2−l +A2d(u, v),
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so d(u, v)≥ d(x,y)
2A2 and 1

2Ad(u, v)≥ d(x,u); since d(x, y)≥ 4A3C2−l, we have

V2−l(x) + V2−l(y)≤CV (x, y).

Using the above facts, the smoothness condition on the kernel K(u, v) and
the moment property of Dl(x,u), we obtain∣∣∣∣

∫ ∫
Dl(x,u)K(u, v)Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
=

∣∣∣∣
∫ ∫

Dl(x,u)
[
K(u, v)−K(x, v)

]
Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
≤C

∫ ∫ ∣∣Dl(x,u)
∣∣d(x,u)ε
d(u, v)ε

1

V (u, v)

∣∣Dk(v, y)
∣∣dμ(u)dμ(v)

≤C
2−lε

d(x, y)ε
1

V (x, y)

≤C
2−lε

(2−l + d(x, y))ε
1

V2−l(x) + V (x, y)
.

Case 2: l≤ k, d(x, y)< 4A3C2−l.
Suppose that a smooth cut-off function φ0 ∈C∞(R) satisfies that φ0(x) = 1

when |x| ≤ 1 and φ0(x) = 0 when |x| ≥ 2. Set φ1 = 1− φ0 and write∣∣∣∣
∫ ∫

Dl(x,u)K(u, v)Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
≤
∣∣∣∣
∫ ∫

Dl(x,u)K(u, v)Dk(v, y)φ0

(
d(x, v)

C32−l

)
dμ(u)dμ(v)

∣∣∣∣
+

∣∣∣∣
∫ ∫

Dl(x,u)K(u, v)Dk(v, y)φ1

(
d(x, v)

C32−l

)
dμ(u)dμ(v)

∣∣∣∣
:= I1 + I2.

For I1, set ψk(v) =Dk(v, y)φ0(
d(x,v)
C32−l ). Since T ∈WBP , then

I1 =
∣∣〈Dl(x, ·), Tψk(·)

〉∣∣≤CV2−l(x)2−2lη‖ψk‖Cη
0

∥∥Dl(x, ·)
∥∥
Cη

0
.

It is easy to verify that ‖Dl(x, ·)‖Cη
0
≤C2lη[V2−l(x)]−1 and

‖ψk‖Cη
0
≤C2lη

[
V2−l(y)

]−1
.

From the above estimates, we get

I1 ≤C
1

V2−l(x)
≤C

2−lε

(2−l + d(x, y))ε
1

V2−l(x) + V (x, y)
.

We now deal with term I2. Note that d(x,u)≤C2−l and that by the support
of φ1, d(x, v)≥C32

−l, where C3 is large enough such that d(x,u)≤Cd(u, v),
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and then

V (u, v)≥CV2−l(u)∼CV2−l(x).

Thus, we have

I2 ≤C

∫ ∫ ∣∣Dl(x,u)
∣∣∣∣Dk(v, y)

∣∣ 1

V (u, v)
dμ(u)dμ(v)

≤C
1

V2−l(x)
≤C

2−lε

(2−l + d(x, y))ε
1

V2−l(x) + V (x, y)
.

Case 3: l > k, d(x, y)≥ 4A3C2−k.
In this case, using the fact that Dl(1) = 0, we get∣∣∣∣

∫ ∫
Dl(x,u)K(u, v)Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
=

∣∣∣∣
∫ ∫

Dl(x,u)
[
K(u, v)−K(x, v)

]
Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
≤C

∫ ∫ ∣∣Dl(x,u)
∣∣d(x,u)ε
d(u, v)ε

1

V (u, v)

∣∣Dk(v, y)
∣∣dμ(u)dμ(v)

≤C
2−lε

d(x, y)ε
1

V (x, y)
,

which implies (14) for the case whenever l > k, d(x, y)≥ 4A3C2−k.
Case 4: l > k, d(x, y)< 4A3C2−k.
Using the facts that Dl(1) = T (1) = 0, we have∣∣∣∣
∫ ∫

Dl(x,u)K(u, v)Dk(v, y)dμ(u)dμ(v)

∣∣∣∣
=

∣∣∣∣
∫ ∫

Dl(x,u)K(u, v)
[
Dk(v, y)−Dk(x, y)

]
φ0

(
d(x, v)

4A3C2−l

)
dμ(u)dμ(v)

∣∣∣∣
+

∣∣∣∣
∫ ∫

Dl(x,u)
[
K(u, v)−K(x, v

][
Dk(v, y)−Dk(x, y)

]
× φ1

(
d(x, v)

4A3C2−l

)
dμ(u)dμ(v)

∣∣∣∣
:= I3 + I4.

Since ‖[Dk(·, y)−Dk(y,x)]φ0(
d(x,·)

4A3C2−l )‖Cη
0
≤C[V2−k(y)]−12kε2−lε2lη , then,

by the fact that T ∈WBP ,

I3 ≤CV2−l(x)2−2lη
[
V2−k(y)

]−1
2kε2−lε2lη2lη

[
V2−l(x)

]−1

≤ 2(k−l)ε
[
V2−k(x)

]−1
,
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which is dominated by the right-hand side of (14) whenever l > k, d(x, y)<
4A3C2−k.

Using the smoothness of K(x, y) in x, we have

I4 ≤C2−lε

∫
4A3C2−l<d(x,v)< 1

2A 2−k

d(x, v)−ε
[
V (x, v)

]−1

×
∣∣Dk(v, y)−Dk(x, y)

∣∣dμ(v)
+C2−lε

∫
d(x,v)≥ 1

2A 2−k

d(x, v)−ε
[
V (x, v)

]−1∣∣Dk(v, y)−Dk(x, y)
∣∣dμ(v)

≤C2(k−l)ε
[
V2−k(x)

]−1
∫
4A3C2−l<d(x,v)< 1

2A 2−k

[
V (x, v)

]−1
dμ(v)

+C2−lε
[
V2−k(x)

]−1
∫
d(x,v)≥ 1

2A 2−k

d(x, v)−ε
[
V (x, v)

]−1
dμ(v)

≤C
(
1 + (l− k)

)
2(k−l)ε

[
V2−k(x)

]−1
,

which completes the proof of Proposition 2.1. �

We now are ready to give the

Proof of Theorem 1.1. Lemma 2.1, Proposition 2.1 and Hölder’s inequality
are enable us to get

‖Tf‖Ḃα,q
p

=

{∑
l∈Z

(
2lα

∥∥Dl(Tf)
∥∥
Lp

)q}1/q

≤
{∑

l∈Z

(
2lα

∑
k∈Z

∥∥DlTDk
˜̃
Dk(f)

∥∥
Lp

)q}1/q

≤C

{∑
l∈Z

(
2lα

∑
k∈Z

(
1 + (l− l ∧ k)

)(
2(k−l)ε ∧ 1

)∥∥M( ˜̃
Dk(f)

)∥∥
Lp

)q}1/q

≤C

{∑
k∈Z

∑
l∈Z

(
1 + (l− l ∧ k)

)(
2(k−l)ε ∧ 1

)
2(l−k)α

(
2kα

∥∥ ˜̃Dk(f)
∥∥
Lp

)q}1/q

≤C

{∑
k∈Z

(
2kα

∥∥ ˜̃Dk(f)
∥∥
Lp

)q}1/q

≤C‖f‖Ḃα,q
p

,

where 0<α< θ.
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Applying Lemma 2.1, Proposition 2.1, Hölder’s inequality and Fefferman–
Stein’s vector-valued maximal inequality, we also have

‖Tf‖Ḟα,q
p

=

∥∥∥∥
{∑

l∈Z

(
2lα

∣∣Dl(Tf)
∣∣)q}1/q∥∥∥∥

Lp

≤
∥∥∥∥
{∑

l∈Z

(∑
k∈Z

2lα
∣∣DlTDk

˜̃
Dk(f)

∣∣)q}1/q∥∥∥∥
Lp

≤
∥∥∥∥
{∑

l∈Z

(∑
k∈Z

2lα
(
1 + (l− l ∧ k)

)(
2(k−l)ε ∧ 1

)
M

( ˜̃
Dk(f)

))q}1/q∥∥∥∥
Lp

≤
∥∥∥∥
{∑

l∈Z

∑
k∈Z

(
1 + (l− l ∧ k)

)(
2(k−l)ε ∧ 1

)
2(l−k)α

(
2kαM

( ˜̃
Dk(f)

))q}1/q∥∥∥∥
Lp

≤
∥∥∥∥
{∑

k∈Z

(
2kαM

( ˜̃
Dk(f)

))q}1/q∥∥∥∥
Lp

≤
∥∥∥∥
{∑

k∈Z

(
2kα

∣∣ ˜̃Dk(f)
∣∣)q}1/q∥∥∥∥

Lp

≤C‖f‖Ḟα,q
p

,

where 0<α< θ, and which concludes the proof of Theorem 1.1. �

Similar to the proof of Proposition 1.1, we can get

Proposition 2.2. Suppose that T satisfies the hypotheses of Theorem 1.2
and {Dk}k∈Z be the same as in Definition 1.3. Then there exists a constant
C > 0 such that∣∣DlTDk(x, y)

∣∣≤C
(
2(l−k)ε ∧ 1

) (1 + (k− l ∧ k))

V2−(k∧l)(x) + V (x, y)

2−(k∧l)ε

(2−(k∧l) + d(x, y))ε
.

Combining Lemma 2.1 with Proposition 2.2, by an analogous argument to
Theorem 1.1, it is immediate to obtain Theorem 1.2. Here we leave the details
to the interested reader.

3. Proof of Theorem 1.3 and Theorem 1.4

Before we verify Theorem 1.3 and Theorem 1.4, we state the duality prop-
erties of the Besov and Triebel–Lizorkin spaces as follows.

Lemma 3.1 ([5]). Let −θ < α < θ and 1< p, q <∞, then

(i) (Ḃα,q
p (X))′ = Ḃ−α,q′

p′ (X);

(ii) (Ḟα,q
p (X))′ = Ḟ−α,q′

p′ (X).
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We also need Calderón’s reproducing formula where the series converges in
the norms of the Besov and Triebel–Lizorkin spaces.

Proposition 3.1 ([5]). Let all notation be the same as in Lemma 2.1, then

Calderón’s reproducing formula (10) converges in both norms of Ḃα,q
p and Ḟα,q

p

with |α|< θ and 1< p, q <∞.

We also need the following almost orthogonal estimates.

Proposition 3.2. (i) Suppose that Ski satisfies (i), (ii) and (v) of Defi-
nition 1.1 and Eki = Ski − Ski−1 for ki ∈ Z, i= 1,2. Then there exists a
constant C > 0 such that

(15)
∣∣Ek1Ek2(x, y)

∣∣
≤C

(
2(k2−k1)θ ∧ 1

) 1

V2−(k1∧k2)(x) + V (x, y)

(
2−(k1∧k2)

2−(k1∧k2) + d(x, y)

)θ

.

(ii) Suppose that Ski satisfies (i), (iii) and (vi) of Definition 1.1 and Eki =
Ski − Ski−1 for ki ∈ Z, i= 1,2. Then there exists a constant C > 0 such
that

(16)
∣∣Ek1Ek2(x, y)

∣∣
≤C

(
2(k1−k2)θ ∧ 1

) 1

V2−(k1∧k2)(x) + V (x, y)

(
2−(k1∧k2)

2−(k1∧k2) + d(x, y)

)θ

.

Proof. We only verify (15) and the proof of (16) is similar to (15). When
k1 ≥ k2, if d(x, z) < C2−k1 , d(z, y) < C2−k2 or d(x, y) < C2−k2 implies that
d(x, y)<C2−k2 . Thus, by the cancellation condition of Ek1(x, z), we have∣∣Ek1Ek2(x, y)

∣∣
=

∣∣∣∣
∫

Ek1(x, z)
[
Ek2(z, y)−Ek2(x, y)

]
dμ(z)

∣∣∣∣
≤C

2−k2θ

(2−k2 + d(x, y))θ

×
∫
{z|d(x,z)<C2−k1}

2k2θ

V2−k1 (x) + V (x, z)

d(x, z)θ

V2−k2 (x) + V (x, y)
dμ(z)

≤C2(k2−k1)θ
1

V2−k2 (x) + V (x, y)

2−k2θ

(2−k2 + d(x, y))θ
,

which implies (15) for the case whenever k1 ≥ k2. When k1 < k2, we only use
the size condition, we also have∣∣Ek1Ek2(x, y)

∣∣
=

∣∣∣∣
∫

Ek1(x, z)Ek2(z, y)dμ(z)

∣∣∣∣
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≤C

∫
{z|d(x,z)<C2−k1 ,d(y,z)<C2−k2}

1

V2−k1 (x)

1

V2−k2 (x) + V (z, y)
dμ(z)

≤C
1

V2−k1 (x) + V (x, y)

2−k1θ

(2−k1 + d(x, y))θ
,

which finishes the proof of (15). �

Proposition 3.3. (i) Let Ek be the same as in Theorem 1.3 for k ∈ Z and

Ek(x, y) is the kernel of Ek. Then Ek(x, y) ∈ Ḃα,q
p and Ek(x, y) ∈ Ḟα,q

p

for any fixed x ∈X , −θ < α < 0 and 1< p, q <∞.
(ii) Let Ek be the same as in Theorem 1.4 for k ∈ Z and Ek(x, y) is the

kernel of Ek. Then Ek(x, y) ∈ Ḃα,q
p and Ek(x, y) ∈ Ḟα,q

p for any fixed
y ∈X , 0<α< θ and 1< p, q <∞.

Proof. We begin with the following estimate: for given x ∈ X and Dl is
the same as in Definition 1.3 for l ∈ Z, then∣∣∣∣

∫ [
Dl(z, y)−Dl(z,x)

]
Ek(x, y)dμ(y)

∣∣∣∣
≤C2(l−k)θ 1

V2−l(z) + V (z,x)

2−lθ

(2−l + d(z,x))θ
,

where l < k and Ek be given in Proposition 3.3 (i). The above inequality
follows from (16).

We now return to prove (i). By
∫
Ek(x, y)dμ(y) = 0 and the above fact,

we have{∑
l<k

(
2lα

∥∥Dl

(
Ek(x, ·)

)∥∥
Lp

)q}1/q

=C

{∑
l<k

(
2lα

(∫ ∣∣∣∣
∫ [

Dl(z, y)−Dl(z,x)
]
Ek(x, y)dμ(y)

∣∣∣∣p dμ(z)
)1/p)q}1/q

≤C

{∑
l<k

(
2lα2(l−k)θ

×
(∫ (

1

V2−l(z) + V (z,x)

2−lθ

(2−l + d(z,x))θ

)p

dμ(z)

)1/p)q}1/q

≤C
∑
l<k

2lα2(l−k)θ 1

V2−l(x)1−
1
p

≤C
∑
l<k

2(l−k)(θ+α)2kα
1

V2−k(x)1−
1
p

≤Ck <∞,
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where −θ < α < 0. When l ≥ k, using the size conditions of Dl(z, y) and
Ek(x, z), then{∑

l≥k

(
2lα

∥∥Dl

(
Ek(x, ·)

)∥∥
Lp

)q}1/q

=C

{∑
l≥k

(
2lα

(∫ ∣∣∣∣
∫

Dl(z, y)Ek(x, y)dμ(y)

∣∣∣∣p dμ(z)
)1/p)q}1/q

≤C

{∑
l≥k

(
2lα

(∫ (∫
1

V2−l(z) + V (z, y)

2−lθ

(2−l + d(z, y))θ

× 1

V2−k(y) + V (y,x)

2−kθ

(2−k + d(y,x))θ
dμ(y)

)p

dμ(z)

)1/p)q}1/q

≤C

{∑
l≥k

(
2lα

(∫ (
1

V2−k(x) + V (z,x)

2−kθ

(2−k + d(z,x))θ

)p

dμ(z)

)1/p)q}1/q

≤C
∑
l≥k

2lα
1

V2−k(x)1−
1
p

≤C
∑
l≥k

2(l−k)α2kα
1

V2−k(x)1−
1
p

≤Ck <∞,

where −θ < α < 0 and which concludes the proof of Ek(x, y) ∈ Ḃα,q
p for any

fixed x ∈X . We also can deal with that Ek(x, y) ∈ Ḟα,q
p for any fixed x ∈X ,

−θ < α < 0 and 1< p, q <∞. Here we omit the details.
To verify (ii), for any fixed y ∈ X , 0 < α < θ and 1 < p, q < ∞, we only

consider Ek(x, y) ∈ Ḟα,q
p , and Ek(x, y) ∈ Ḃα,q

p can be handled similarly. When
l≤ k, we get∥∥∥∥

{∑
l≤k

(
2lα

∣∣Dl

(
Ek(·, y)

)∣∣)q}1/q∥∥∥∥
Lp

=

(∫ {∑
l≤k

(
2lα

∣∣∣∣
∫

Dl(x, z)Ek(z, y)dμ(z)

∣∣∣∣
)q}p/q

dμ(x)

)1/p

≤C
∑
l≤k

2lα
(∫ (

1

V2−l(x) + V (x, y)

2−lθ

(2−l + d(x, y))θ

)p

dμ(x)

)1/p

≤C
∑
l≤k

2lα
1

V2−l(y)1−
1
p

≤C
∑
l≤k

2(l−k)α2kα
1

V2−k(y)1−
1
p

≤Ck <∞,
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where 0<α< θ. When l > k, by an analogous argument to (15), then

(17)

∣∣∣∣
∫

Dl(x, z)
[
Ek(z, y)−Ek(x, y)

]
dμ(z)

∣∣∣∣
≤C2(k−l)θ 1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ
.

Using the estimate (17), we obtain∥∥∥∥
{∑

l>k

(
2lα

∣∣Dl

(
Ek(·, y)

)∣∣)q}1/q∥∥∥∥
Lp

=
∑
l>k

2lα
(∫ ∣∣∣∣

∫
Dl(x, z)

[
Ek(z, y)−Ek(x, y)

]
dμ(z)

∣∣∣∣p dμ(x)
)1/p

≤
∑
l>k

2lα2(k−l)θ

(∫ ∣∣∣∣ 1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ

∣∣∣∣p dμ(x)
)1/p

≤
∑
l>k

2lα2(k−l)θ 1

V2−k(y)1−
1
p

≤C
∑
l>k

2(k−l)(θ−α)2kα
1

V2−k(y)1−
1
p

≤Ck <∞,

where 0<α< θ and the proof of (ii) is finished. �

We now prove the following proposition.

Proposition 3.4. Let 0< α < θ and 1< p, q <∞. Suppose that {Sk}k∈Z

is an approximation to the identity satisfying (i), (ii) and (v) of Definition 1.1
and Ek = Sk − Sk−1. Then there exists a constant C > 0 such that{∑

k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

≤C‖f‖Ḃα,q
p

,(18)

and ∥∥∥∥
{∑

k∈Z

(
2kαEk(f)

)q} 1
q
∥∥∥∥
Lp

≤C‖f‖Ḟα,q
p

.(19)

Proof. Suppose that f ∈ Ḃα,q
p with 0 < α < θ and 1 < p, q < ∞. By

Lemma 3.1 and Proposition 3.1, we can write

Ek(f) =Ek

(∑
l∈Z

D̃lDl(f)

)
=
∑
l∈Z

EkD̃lDl(f).(20)
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Applying (20), (15), Minkowski’s inequality, Young’s inequality and Hölder’s
inequality, we have

(21)

{∑
k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

≤
{∑

k∈Z

(
2kα

∑
l∈Z

∥∥EkD̃lDl(f)
∥∥
Lp

)q} 1
q

≤C

{∑
k∈Z

(∑
l∈Z

2kα‖EkD̃l‖L1→L1

∥∥Dl(f)
∥∥
Lp

)q} 1
q

≤C

{∑
k∈Z

(∑
l∈Z

(
2(l−k)θ ∧ 1

)
2(k−l)α2lα

∥∥Dl(f)
∥∥
Lp

)q} 1
q

≤C

{∑
k∈Z

∑
l∈Z

(
2(l−k)θ ∧ 1

)
2(k−l)α

(
2lα

∥∥Dl(f)
∥∥
Lp

)q} 1
q

≤C

{∑
l∈Z

(
2lα

∥∥Dl(f)
∥∥
Lp

)q} 1
q

=C‖f‖Ḃα,q
p

with 0<α< θ. When f ∈ Ḟα,q
p with 0< α< θ and 1< p, q <∞, (19) can be

dealt with similarly, and which finishes the proof of Proposition 3.4. �

To finish the proof of Theorem 1.3, we need to show the reverse inequalities
(18) and (19). For this purpose, we will use Theorem 1.1 and Coifman’s idea.
To be precisely, let I be the identity operator and Ek be the same as in
Theorem 1.3 for k ∈ Z, then I =

∑
k∈Z

Ek in L2. Applying Coifman’s idea,
we rewrite

I =
∑
k∈Z

∑
l∈Z

ElEk =
∑
k∈Z

∑
|l|≤N

El+kEk +
∑
k∈Z

∑
|l|>N

El+kEk(22)

=
∑
k∈Z

EN
k Ek +

∑
k∈Z

∑
|l|>N

El+kEk := TN +RN ,

where EN
k =

∑
|l|≤N El+k.

Similar to the proof of (17), we observe that for given integer N , let Ek

and EN
l be as in (22) for k, l ∈ Z, then∣∣EkE

N
l (f)

∣∣≤CN

(
2(l−k)θ ∧ 1

)
M(f)(x),(23)

where constant CN depends only on N .
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Using (23), by an analogous argument to (21), for f ∈ L2 ∩ Ḃα,q
p , we have

(24)
∥∥TN (f)

∥∥
Ḃα,q

p
=

{∑
k∈Z

(
2kα

∥∥Dk

(
TN (f)

)∥∥
Lp

)q} 1
q

≤
{∑

k∈Z

(
2kα

∑
l∈Z

∥∥DkE
N
l El(f)

∥∥
Lp

)q} 1
q

≤C

{∑
k∈Z

(∑
l∈Z

(
2(l−k)θ ∧ 1

)
2kα

∥∥M(
El(f)

)∥∥
Lp

)q} 1
q

≤C

{∑
l∈Z

(
2lα

∥∥El(f)
∥∥
Lp

)q} 1
q

.

We first assume that T−1
N exists and is bonded on Ḃα,q

p for large integer N .

For f ∈ L2 ∩ Ḃα,q
p , then

(25) ‖f‖Ḃα,q
p

=
∥∥T−1

N TN (f)
∥∥
Ḃα,q

p
≤C

∥∥TN (f)
∥∥
Ḃα,q

p

≤C

{∑
l∈Z

(
2lα

∥∥El(f)
∥∥
Lp

)q} 1
q

.

For f ∈ Ḃα,q
p and {

∑
l∈Z

(2lα‖El(f)‖Lp)q} 1
q < ∞, we can choose a sequence

{fn}∞n=1 with fn ∈ L2 ∩ Ḃα,q
p such that

lim
n→∞

‖fn − f‖Ḃα,q
p

= 0,

since L2 ∩ Ḃα,q
p is dense in Ḃα,q

p . Thus, using the above fact and (18), then

‖f‖Ḃα,q
p

= lim
n→∞

‖fn‖Ḃα,q
p

≤C lim
n→∞

{∑
k∈Z

(
2kα

∥∥Ek(fn)
∥∥
Lp

)q}1/q

≤C lim
n→∞

{∑
k∈Z

(
2kα

∥∥Ek(fn − f)
∥∥
Lp

)q}1/q

+C

{∑
k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q}1/q

≤C lim
n→∞

‖fn − f‖Ḃα,q
p

+C

{∑
k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q}1/q

=C

{∑
k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q}1/q

,
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This finishes proof of the reverse inequality of (18). We can similarly get the

desired result for f ∈ Ḟα,q
p .

We now need to verify that T−1
N exists and is bonded on Ḃα,q

p and Ḟα,q
p

for a fixed large integer N . By the fact that T−1
N = (I −RN )−1 =

∑∞
m=0R

m
N ,

it suffices to prove that RN is bounded on Ḃα,q
p and Ḟα,q

p with an operator
norm less than 1. We write RN =

∑
|l−k|>N ElEk, and consider the sums for

k− l > N and l− k >N , respectively.

Proposition 3.5. Let El be the same as in Theorem 1.3 for l ∈ Z. Suppose
that 0<α< θ and 1< p, q <∞. Then there exists a constant C > 0 such that∥∥∥∥ ∑

k−l>N

ElEk(f)

∥∥∥∥
Ḃα,q

p

≤C2−Nα‖f‖Ḃα,q
p

(26)

and ∥∥∥∥ ∑
k−l>N

ElEk(f)

∥∥∥∥
Ḟα,q

p

≤C2−Nα‖f‖Ḟα,q
p

.(27)

Proof. We only prove (26) and the proof of (27) is similar. By the definition

of Ḃα,q
p , Proposition 3.3, Hölder’s inequality and the fact that 0<α< θ, then

we get

(28)

∥∥∥∥ ∑
k−l>N

ElEk(f)

∥∥∥∥
Ḃα,q

p

=

{∑
j∈Z

(
2jα

∥∥∥∥Dj

( ∑
k−l>N

ElEk(f)

)∥∥∥∥
Lp

)q} 1
q

≤C

{∑
j∈Z

( ∑
k−l>N

2jα
(
2(l−j)θ ∧ 1

)∥∥Ek(f)
∥∥
Lp

)q} 1
q

=C

{∑
j∈Z

( ∑
k−l>N

(
2(l−j)θ ∧ 1

)
2(j−l)α2(l−k)α2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

≤C

{∑
j∈Z

∑
k−l>N

(
2(l−j)θ ∧ 1

)
2(j−l)α2(l−k)α

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

≤C2−Nα

{∑
k∈Z

(
2kα

∥∥Ek(f)
∥∥
Lp

)q} 1
q

≤C2−Nα‖f‖Ḃα,q
p

,

where the last inequality follows from Proposition 3.4 and this is a desired
result. �

Now we prove the following proposition.



NEW CHARACTERIZATIONS OF BESOV AND TRIEBEL–LIZORKIN SPACES 409

Proposition 3.6. Let El be the same as in Theorem 1.3 for l ∈ Z. Suppose
that 0<α< θ and 1< p, q <∞. Then there exist constants C,δ > 0 such that∥∥∥∥ ∑

l−k>N

ElEk(f)

∥∥∥∥
Ḃα,q

p

≤C2−Nδ‖f‖Ḃα,q
p

(29)

and ∥∥∥∥ ∑
l−k>N

ElEk(f)

∥∥∥∥
Ḟα,q

p

≤C2−Nδ‖f‖Ḟα,q
p

.(30)

Proof. Let R̃N =
∑

l−k>N ElEk and R̃N (x, y) be the kernel of R̃N . We

claim that for 0< θ′ < θ, there exist constants C,δ > 0 such that R̃N satisfies

R̃N (1) = 0, R̃N ∈WBP and the kernel R̃N (x, y) satisfies∣∣R̃N (x, y)
∣∣≤C2−Nδ 1

V (x, y)
;(31)

∣∣R̃N (x, y)− R̃N

(
x′, y

)∣∣≤C2−Nδ d(x,x
′)θ

′

d(x, y)θ′
1

V (x, y)
(32)

for d(x,x′)≤ 1
2Ad(x, y).

To show the claim, we rewrite

R̃N =
∑

l−k>N

ElEk =
∑
l>N

∑
k∈Z

Ek+lEk.

Let
˜̃
RN =

∑
k∈Z

Ek+lEk and
˜̃
RN (x, y) be the kernel of

˜̃
RN . Proposition 3.3

and [5, Lemma 3.5] imply

(33)
∣∣ ˜̃RN (x, y)

∣∣= ∣∣∣∣∑
k∈Z

∫
Ek+l(x, z)Ek(z, y)dμ(z)

∣∣∣∣
≤C

∑
k∈Z

2−lθ 1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ

≤C2−lθ 1

V (x, y)
.

Thus, we have∣∣R̃N (x, y)
∣∣≤C

∑
l>N

2−lθ 1

V (x, y)
≤C2−Nθ 1

V (x, y)
,(34)

which implies (31). When 2−ld(x, y)< d(x,x′)≤ 1
2Ad(x, y), by (34), we have

∣∣ ˜̃RN (x, y)− ˜̃
RN

(
x′, y

)∣∣≤C2−lθ

(
1

V (x, y)
+

1

V (x′, y)

)
≤C2−lθ 1

V (x, y)
.(35)
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When d(x,x′)≤ 2−ld(x, y), using the kernel of Ek+l, for large N , we get

d(x, z)≤C2−(k+l) ≤ 1

2A
2−k.(36)

Thus, we obtain

(37)
∣∣ ˜̃RN (x, y)− ˜̃

RN

(
x′, y

)∣∣
≤
∑
k∈Z

∣∣∣∣
∫ [

Ek+l(x, z)−Ek+l

(
x′, z

)]
Ek(z, y)dμ(z)

∣∣∣∣
=
∑
k∈Z

∣∣∣∣
∫ [

Ek+l(x, z)−Ek+l

(
x′, z

)][
Ek(z, y)−Ek(x, y)

]
dμ(z)

∣∣∣∣
≤C

∑
k∈Z

1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ

∫
d(x,x′)θ

(2−(k+l) + d(x, z))θ

× 1

V2−(k+l)(x) + V (x, z)

2−(k+l)θ

(2−(k+l)) + d(x, z)θ

(
d(x, z)

2−k + d(x, y)

)θ

dμ(z)

≤C
∑
k∈Z

1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ
d
(
x,x′)θ 1

d(x, y)θ

≤C
d(x,x′)θ

d(x, y)θ
1

V (x, y)
,

where we use the fact Ek+l(1) = 0. By the geometric mean of (35) and (37),
we can get

∣∣ ˜̃RN (x, y)− ˜̃
RN

(
x′, y

)∣∣≤C2−lδ d(x,x
′)θ

′

d(x, y)θ′
1

V (x, y)

with 0< θ′ < θ and δ = θ− θ′. Thus when d(x,x′)≤ 1
2Ad(x, y), we have

∣∣R̃N (x, y)− R̃N

(
x′, y

)∣∣≤C
∑
l>N

2−lδ d(x,x
′)θ

′

d(x, y)θ′
1

V (x, y)

≤C2−Nδ d(x,x
′)θ

′

d(x, y)θ′
1

V (x, y)
.

Obviously, R̃N (1) = 0. Fix two functions φ and ψ with supp φ, supp
ψ ∈ B(x0, r) for x0 ∈ X and r > 0, ‖φ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1, ‖φ‖Cη

0
≤ r−η and

‖ψ‖Cη
0
≤ r−η . We have∣∣〈R̃Nφ,ψ〉

∣∣
≤

∑
l>N

∑
k∈Z

∣∣∣∣
∫ ∫ ∫

Ek+l(x, z)Ek(z, y)φ(y)ψ(x)dμ(z)dμ(y)dμ(x)

∣∣∣∣
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≤
∑
l>N

∑
2−k>r

∣∣∣∣
∫ ∫ ∫

Ek+l(x, z)
[
Ek(z, y)−Ek(x, y)

]

× φ(y)ψ(x)dμ(z)dμ(y)dμ(x)

∣∣∣∣
+

∑
l>N

∑
2−k≤r

∣∣∣∣
∫ ∫ ∫

Ek+l(x, z)
[
Ek(z, y)−Ek(x, y)

][
φ(y)− φ(x)

]

×ψ(x)dμ(z)dμ(y)dμ(x)

∣∣∣∣
:= I1 + I2.

In order to estimate I1, since supp ψ ⊂B(x0, r), we have d(x,x0)≤ r < 2−k,
and then

V2−k(x)∼ V2−k(x0).

Thus, we get

(38) I1 ≤C
∑
l>N

∑
2−k>r

∫ ∫ ∫ ∣∣Ek+l(x, z)
∣∣ d(x, z)θ

(2−k + d(x, y))θ

× 1

V2−k(x) + V (x, y)

2−kθ

(2−k + d(x, y))θ
∣∣φ(y)∣∣∣∣ψ(x)∣∣dμ(z)dμ(y)dμ(x)

≤C
∑
l>N

∑
2−k>r

2−(k+l)θ2kθ
1

V2−k(x0)

[
Vr(x0)

]2
≤C2−NθVr(x0).

For I2, by the fact d(x, y)≤C2−k and (36), we obtain

(39) I2 ≤C
∑
l>N

∑
2−k≤r

∫ ∫ ∫ ∣∣Ek+l(x, z)
∣∣ d(x, z)θ

(2−k + d(x, y))θ

× 1

V2−k(x) + V (x, y)

2−kε

(2−k + d(x, y))θ

× d(x, y)η‖φ‖Cη
0

∣∣ψ(x)∣∣dμ(z)dμ(y)dμ(x)
≤C

∑
l>N

∑
2−k≤r

2−(k+l)θ2kθ2−kηr−ηVr(x0)

≤C2−NθVr(x0).

Combining (38) with (39), then∣∣〈R̃Nφ,ψ〉
∣∣≤C2−NθVr(x0),
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which shows R̃N ∈WBP . By Theorem 1.1, for all f ∈ Ḃα,q
p , then∥∥∥∥ ∑

l−k>N

ElEk(f)

∥∥∥∥
Ḃα,q

p

≤C2−Nδ‖f‖Ḃα,q
p

.

For all f ∈ Ḟα,q
p , we also have∥∥∥∥ ∑

l−k>N

ElEk(f)

∥∥∥∥
Ḟα,q

p

≤C2−Nδ‖f‖Ḟα,q
p

.

We finish the proof of Proposition 3.6. �
From Lemma 3.1, Propositions 3.1, 3.2 and 3.3, the proof of Theorem 1.4

is similar to Theorem 1.3 with necessary modification. We leave the details
to the interested reader.
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paces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin, 1971.
MR 0499948
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