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EXTENDING HUPPERT’S CONJECTURE FROM
NON-ABELIAN SIMPLE GROUPS TO QUASI-SIMPLE

GROUPS

NGUYEN NGOC HUNG, PHILANI R. MAJOZI,
HUNG P. TONG-VIET AND THOMAS P. WAKEFIELD

Abstract. We propose to extend a conjecture of Bertram Hup-
pert [Illinois J. Math. 44 (2000) 828–842] from finite non-Abelian

simple groups to finite quasi-simple groups. Specifically, we con-
jecture that if a finite group G and a finite quasi-simple group H

with Mult(H/Z(H)) cyclic have the same set of irreducible char-
acter degrees (not counting multiplicity), then G is isomorphic

to a central product of H and an Abelian group. We present a

pattern to approach this extended conjecture and, as a demon-
stration, we confirm it for the special linear groups in dimensions
2 and 3.

1. Introduction

It is well known that the character degree set cd(G) of a finite group G has
a strong influence on the structure of G. While cd(G) does not completely
determine the structure of G in general, non-Abelian simple groups seem to
have a very close connection with their character degrees. Indeed, in the late
1990s, Huppert [9] put forward the following, which predicted that every finite
non-Abelian simple group is essentially determined by its character degrees.
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Conjecture 1.1 (Huppert’s conjecture). Let S be a finite non-Abelian
simple group and G be a finite group. Then cd(G) = cd(S) if and only if
G∼= S ×A for an Abelian group A.

Though Huppert’s conjecture is still open, there has been much progress
on the verification of the conjecture for several families of simple groups,
especially the simple groups of exceptional Lie type and simple classical groups
in low dimension, see [9], [23], [24], [25], [26], [27], [28], [29].

Recently, interesting examples have been found [18], [19] showing that the
character degree set does not determine the solvability of the group. That
is, if cd(G) = cd(H) and H is solvable, then G need not be solvable. In fact,
the group G in these examples can be chosen to be perfect, and therefore
Conjecture 1.1 cannot not be generalized to arbitrary perfect groups. Can it
be extended at least to quasi-simple groups?

It has been recently shown in [1], [22] that if a finite group G and a
quasi-simple group H have isomorphic complex group algebras, then G∼=H .
Equivalently, the set of character degrees counting multiplicities of a finite
quasi-simple group uniquely determines the group. Inspired by this result, we
propose to extend Huppert’s conjecture from non-Abelian simple groups to
quasi-simple groups as follows. Here and from now on, the Schur multiplier
of a group X is denoted by Mult(X).

Conjecture 1.2. Let G be a finite group and H a finite quasi-simple group
with Mult(H/Z(H)) cyclic. Then cd(G) = cd(H) if and only if G ∼=H ◦ A,
a central product of H and an Abelian group A.

The condition on the Schur multiplier of H/Z(H) is essential and we would
like to thank the referee for bringing this to our attention. For example,
consider G= 22 ·Ω+

8 (2) and H =G/Z for Z a central subgroup of G of order 2.
Since G has no faithful irreducible representations, we have cd(G) = cd(H),
but G is not isomorphic to a central product of H with any Abelian group.
Note that most of the finite simple groups have cyclic Schur multipliers, except
the orthogonal groups PΩ+

2n(q) with n even and some “small” groups of Lie
type which can be found in [5]. To make the conjecture valid for all quasi-
simple groups, we propose the following: Let G be a finite group and H a
finite quasi-simple group. Then cd(G) = cd(H) if and only if G ∼= K ◦ A,
where K is a cover of H/Z(H) such that cd(K) = cd(H) and A is an Abelian
group.

Recall that a group G is said to be a central product of two groups H
and A (over Z) if Z =H ∩A, [H,A] = 1, and G=HA. For any λ ∈ Irr(Z),
there is then a bijective correspondence Irr(H|λ)× Irr(A|λ)→ Irr(G|λ) such
that if (α,β) �→ χ then χ(1) = α(1)β(1). (Here Irr(G|λ) denotes the set of
irreducible characters of G lying above λ.) Therefore, when A is Abelian,
we have cd(H ◦ A) = cd(H) and thus the “if” implication of the conjecture
follows. The real work on the conjecture is therefore the “only if” implication.
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Huppert outlined in [9] a pattern consisting of five steps to attack his
conjecture, and this pattern and variants thereof have been successfully used in
verifying the conjecture for several non-Abelian simple groups. Drawing upon
his method, we propose the following pattern to approach Conjecture 1.2. In
the following, assume that cd(G) = cd(H), where H is a finite quasi-simple
group.

Step 1 : Show G′ =G′′.
Step 2 : Suppose that G′/M is a chief factor of G. Then G′/M ∼= Sk,

where S is a non-Abelian simple group and k ≥ 1 is an integer. Show G′/M ∼=
H/Z(H).

Step 3 : Show that G′ is isomorphic to a perfect central cover of H/Z(H).
Step 4 : Show that G=G′ ◦CG(G

′) and CG(G
′) is Abelian. In particular,

cd(G) = cd(G′), and thus cd(G′) = cd(H).
Step 5 : Show that the perfect central covers of H/Z(H) have distinct sets

of character degrees. Together with Steps 3 and 4, we have H ∼= G′, and it
follows that G∼=H ◦CG(G

′).

It is worth commenting that Steps 1, 2, and 4 in our pattern are similar
and correspond to Steps 1, 2, and 5, respectively, in Huppert’s pattern; while
Steps 3 and 5 here are new and needed to work with quasi-simple groups. As
a demonstration, we confirm Conjecture 1.2 for the special linear groups in
dimensions 2 and 3.

Theorem 1.3. Let G be a finite group and let H ∼= SL2(q) with q ≥ 5
or H ∼= SL3(q) with q ≥ 2. Then cd(G) = cd(H) if and only if G ∼= H ◦ A,
a central product of H and an Abelian group A.

We could have followed the above method to prove the theorem for SL2(q)
but this is rather long. Instead we utilize the notion of prime graphs of finite
groups and provide a much shorter proof, see Section 3. Recall that the prime
graph Δ(G) of a finite group G is a graph whose vertices are the primes
dividing at least one character degree in cd(G), and two distinct vertices
r, s are joined if and only if the product rs divides some character degree
of G. Observe that Δ(SL2(q)) with q ≥ 5 is disconnected. It follows that
Δ(G) is disconnected whenever cd(G) = cd(SL2(q)) and thus we can apply
the structure theorem for these groups due to Lewis and White in [13]. This
prime-graph method however does not work for SL3(q) since the prime graph
of this group is connected when q ≥ 4.

2. Some preliminary lemmas

For the reader’s convenience, we collect and prove in this section some
preliminary results which will be useful for the proof of Theorem 1.3. We begin
with a known fact on characters of a central product, see [11, Lemma 5.1], for
instance.
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Lemma 2.1. Let G=H ◦K be a central product with Z =H∩K and let λ be
a linear character of Z. Given any character α ∈ Irr(H|λ) and β ∈ Irr(K|λ),
there exists a unique character χ ∈ Irr(G|λ) such that χH and χK are multiples
of α and β, respectively. Furthermore, for every h ∈H and k ∈K, we have
χ(hk) = α(h)β(k), and every irreducible character of G arises in this way.

The next technical lemma will be needed in Step 1.

Lemma 2.2 (Lemma 2.3 of [25]). Let G/N be a solvable factor group of G,
minimal with respect to being non-Abelian. Then two cases can occur:

(a) G/N is an r-group for some prime r. Hence there exists ψ ∈ Irr(G/N)
such that ψ(1) = rb > 1 for some prime r. If χ ∈ Irr(G) and r � χ(1), then
χτ ∈ Irr(G) for all τ ∈ Irr(G/N).

(b) G/N is a Frobenius group with an elementary Abelian Frobenius kernel
F/N . Then l= |G : F | ∈ cd(G), |F :N |= rc for some prime r, and c is the
smallest integer such that rc − 1≡ 0 (mod l). Also, for every ψ ∈ Irr(F ),
either |G : F |ψ(1) ∈ cd(G) or |F :N | | ψ(1)2. Moreover,
(i) If no proper multiple of l is in cd(G), then χ(1) | l for all χ ∈ Irr(G)

such that r � χ(1), and if χ ∈ Irr(G) such that χ(1) � l, then rc | χ(1)2.
(ii) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then

either l divides χ(1) or rc divides χ(1)2. Moreover, if χ(1) is divisible
by no non-trivial proper character degree in G, then l = χ(1) or rc |
χ(1)2.

The following two results are Lemmas 2 and 3 in [9].

Lemma 2.3. Let N �G and χ ∈ Irr(G).

(a) If χN = θ1 + θ2 + · · · + θk with θi ∈ Irr(N), then k divides |G : N |. In
particular, if χ(1) is relatively prime to |G :N |, then χN ∈ Irr(N).

(b) (Gallagher) If χN ∈ Irr(N), then χθ ∈ Irr(G) for every θ ∈ Irr(G/N).

Lemma 2.4. Suppose N �G and ϑ ∈ Irr(N). By I = IG(ϑ) we denote the
inertia subgroup of ϑ in G.

(a) If ϑI =
∑k

i=1ϕi with ϕi ∈ Irr(I), then ϕG
i ∈ Irr(G). In particular ϕi(1)|G :

I| ∈ cd(G).
(b) If ϑ allows an extension ϑ0 to I , then (ϑ0τ)

G ∈ Irr(G) for all τ ∈
Irr(I/N). In particular ϑ(1)τ(1)|G : I| ∈ cd(G).

(c) If � ∈ Irr(I) such that �N = eϑ, �= ϑ0τ0, where ϑ0 is a character of an
irreducible projective representation of I of degree ϑ(1) while τ0 is the
character of an irreducible projective representation of I/N of degree e.

The next lemma will be used to verify Steps 2 and 3.

Lemma 2.5 ([2, Lemma 5]). Let N be a non-Abelian minimal normal sub-
group of G so that N ∼= Sk, where S is a non-Abelian simple group and k ≥ 1
is an integer. If σ ∈ Irr(S) extends to Aut(S), then σk ∈ Irr(N) extends to G.
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We shall combine Lemma 2.5 with the following result to prove Step 2.

Lemma 2.6. Let S be a non-Abelian simple group. The following holds.

(a) If S is an alternating group An with n ≥ 7, then Irr(S) contains at
least five non-linear irreducible characters of different degrees which ex-
tend to Aut(An); moreover, S has two consecutive characters of degrees
n(n− 3)/2 and (n− 1)(n− 2)/2 that both extend to Aut(S).

(b) If S is a sporadic simple group or the Tits group then S has at least
five distinct non-linear irreducible characters of different degrees which
extend to Aut(S). Moreover, S has two non-linear irreducible characters
of relatively prime degrees which both extend to Aut(S).

(c) If S is a simple group of Lie type in characteristic p, then the Steinberg
character StS of S of degree |S|p extends to Aut(S).

Proof. If S = A7, the Tits group or a sporadic simple group, then Irr(S)
contains at least five non-linear irreducible characters of different degrees
which extend to Aut(S) by inspecting [5]. Now suppose that S = An with
n≥ 8. Then the irreducible characters of Sn =Aut(An) labelled by the par-
titions

(n− 1,1),
(
n− 2,12

)
, (n− 2,2),

(
n− 3,13

)
, (n− 3,3)

are all irreducible upon restriction to An and have distinct non-trivial degrees.
So, Irr(An) contains at least five non-linear irreducible characters of different
degrees which extend to Aut(S). Other statements can be found in [2]. �

The next results will be used to verify Step 3.

Lemma 2.7 ([9, Lemma 3]). Let N�G and let θ ∈ Irr(N) be G-invariant. If
φ ∈ Irr(G) lies above θ then φ= θ0τ , where θ0 is the character of an irreducible
projective representation of G of degree θ(1) and τ is the character of an
irreducible projective representation of G/N .

Lemma 2.8 ([15, Theorem 2.3]). Let N be a normal subgroup of a finite
group G and let θ ∈ Irr(N) be G-invariant. If χ(1)/θ(1) is a power of a fixed
prime p for every χ ∈ Irr(G|θ) then G/N is solvable.

Recall that Mult(G) denotes the Schur multiplier of G. A group H is called
a covering group (or a cover for short) of G if there exists a subgroup A of H
such that A≤H ′ ∩Z(H) and H/A∼=G. A covering group H of G is called a
universal cover or a Schur cover if |Z(H)|= |Mult(G)|.

We would like to take this opportunity to correct an inaccuracy in [21,
Lemma 7.3]. It should be as follows.

Lemma 2.9. Let S be a non-Abelian simple group. Let A be an Abelian
group such that |A| ≤ |Mult(S)|. We have

(a) if S is not PSL3(4) and PSU4(3) then |S|> |Aut(A)|,
(b) if S =PSU4(3) and |A| | |Mult(S)| then |S|> |Aut(A)|, and
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(c) if S =PSL3(4) and |A| | |Mult(S)| then any perfect cover of S cannot be
imbedded into Aut(A).

In particular, for any S, if |A| divides |Mult(S)| then any perfect cover of
S cannot be imbedded into Aut(A).

Proof. When S is not PSL3(4) and PSU4(3) then the proof follows as
in [21, Lemma 7.3]. Recall that Mult(PSU4(3)) = C3 × C3 × C4 is of or-
der 36. So if |A| divides |Mult(PSU4(3))| then the maximal value of |Aut(A)|
is |GL2(3)||GL2(2)|, which is smaller than |PSU4(3)|. Finally, recall that
Mult(PSL4(3)) =C4 ×C4 ×C3 is of order 48. It is easy to see that if |A| | 48
and |Aut(A)| ≥ |PSL4(3)| then A ∼= C4

2 or C4
2 × C3, and in either case, any

perfect cover of PSL4(3) cannot be embedded into Aut(A). �

The inaccuracy in [21, Lemma 7.3] fortunately does not affect the main re-
sults there. One just replaces the hypothesis |M | ≤ |Mult(S)| in Lemmas 7.4,
7.5, and 7.6 by |M | | |Mult(S)| and argues as before. Now we apply Lemma 2.9
to have the following result, which is essential in Step 3.

Lemma 2.10. Let H be a quasi-simple group, G be a perfect group, and
M a normal subgroup of G such that G/M ∼= H and |M : M ′| divides
|Mult(H/Z(H))|. Then G/M ′ is isomorphic to a perfect cover of H/Z(H).

Proof. As M/M ′ is Abelian and normal in G/M ′, we have

M/M ′ ≤CG/M ′
(
M/M ′)�G/M ′.

We first consider the case CG/M ′(M/M ′) = G/M ′. Then M/M ′ is central
in G/M ′ and we deduce that G/M ′ is a perfect cover of G/M ∼= H , which
implies that G/M ′ is a perfect cover of H/Z(H), as wanted.

The lemma is proved if we can show that CG/M ′(M/M ′) cannot be a proper
normal subgroup of G/M ′. Assume so, then

CG/M ′(M/M ′)

M/M ′ � G/M ′

M/M ′
∼=G/M ∼=H.

Therefore,

CG/M ′(M/M ′)

M/M ′ ≤Z(G/M)∼=Z(H)

and hence

G/M ′

CG/M ′(M/M ′)
∼= G/M

CG/M ′(M/M ′)/(M/M ′)

is a perfect cover of H/Z(H). But the factor group on the left-hand side can
be embedded into Aut(M/M ′) and this violates Lemma 2.9. �
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3. Proof of Theorem 1.3 for SL2(q)

For a finite group G, let ρ(G) denote the set of prime divisors of the char-
acter degrees of G. The prime graph Δ(G) of G is the graph whose vertex set
is ρ(G) and there is an edge between two distinct primes p and q if and only
if the product pq divides some character degree of G.

From now on, we write π(n) to denote the set of prime divisors of a positive
integer n.

We now prove Theorem 1.3 for the linear groups SL2(q).

Theorem 3.1. Let G be a finite group and let q = pf ≥ 5 be a power of a
prime p. Then cd(G) = cd(SL2(q)) if and only if G∼= SL2(q) ◦A, where A is
Abelian.

Proof. In view of Theorem 2 in [9], we can assume that q ≥ 5 is odd. In
this case, recall that

cd
(
SL2(q)

)
=

{
1,

1

2
(q± 1), q, q± 1

}

and the prime graph Δ(SL2(q)) of SL2(q) is disconnected with two connected
components, namely {p} and π(q2 − 1).

(1) G′ =G′′.
Assume, to the contrary, that G′ �=G′′. Then we can find a solvable factor

group G/N , minimal with respect to being non-Abelian. By Lemma 2.2, G/N
is an r-group for some prime r or a Frobenius group.

Consider the possibility that G/N is an r-group for some prime r. Choose
χ ∈ Irr(G) such that χ(1) is coprime to r, and furthermore χ(1) = q or q+1.
Then χN ∈ Irr(N) and hence χτ ∈ Irr(G) for every τ ∈ Irr(G/N). This is
impossible since a proper multiple of q or q+ 1 cannot be a character degree
of SL2(q).

We may now assume that G/N is a Frobenius group with elementary
Abelian Frobenius kernel F/N . Then |G : F | ∈ cd(G) and |F : N | = rc for
some prime r and a positive integer c. Furthermore, c is the smallest
positive integer such that |G : F | | (rc − 1). Assume first that r �= p. In
Lemma 2.2(b)(ii), by choosing χ ∈ Irr(G) to be a character of degree q, we
deduce that |G : F | | q and thus |G : F |= q. It follows that, for every ϕ ∈G of
degree q± 1, ϕF ∈ Irr(F ). Therefore, Lemma 2.2(b) implies that rc | (q± 1)2,
which in turns implies that rc | 4q. As q | (rc − 1), we then have rc | 4, which
implies that q ≤ 3, a contradiction.

It remains to assume that r = p. Using Lemma 2.2(ii)(b) again, we have
|G : F | divides q ± 1, which implies that |G : F |= 2. This is possible only if
q = 5. But then, in Lemma 2.2(ii)(b), by taking χ ∈ Irr(G) of degree 3, we
again get a contradiction.

(2) G′ ∼= SL2(q) or PSL2(q).
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Since G′ is perfect, it is the smallest normal subgroup of G such that
G/G′ is solvable and hence by [13, Theorem 6.3], G′/N ∼=PSL2(q1) for some

prime power q1 = pf11 , where p1 is a prime, C/N ⊆ Z(G/N) with C/N =
CG/N (G′/N); p � |G :CG′|; and if N > 1, then either G′ ∼= SL2(q1) or there is a
normal subgroup L of G such that G′/L∼= SL2(q1), L is elementary Abelian of
order q21 , and G′/L acts transitively on the nonprincipal characters in Irr(L).
Moreover, the connected components of Δ(G) are {p1} and π(|G : CG′|) ∪
π(q21 − 1). Clearly, by comparing the sizes of the connected components, we
see that p = p1. Moreover, it is well known that the Steinberg character
of G′/N ∼= PSL2(q1) of degree q1 is extendible to G and hence, G has an
irreducible character of degree q1 = pf1 > 1, from which it follows that q1 = q
as cd(G) = cd(SL2(q)) and q is the only non-trivial p-power degree in cd(G).
If G′ ∼= SL2(q) or PSL2(q), then we are done, so one can assume that N is
elementary Abelian of order q2. Since G′/L acts transitively on Irr(L) \ {1L},
it is easy to deduce that G′ has an irreducible character of degree q2−1. Since
G′ �G, every character degree of G′ divides some character degree of G and
thus q2 − 1 must divide some character degree in cd(G), which is impossible
as q ≥ 5.

(3) G/C ∼=PSL2(q) or PGL2(q).
Let G1 �G such that G1/C = (G/C)∩PGL2(q). By [30, Theorem A], we

have |G :G1|(q− 1) ∈ cd(G). Since q ≥ 5, we must have |G :G1|(q− 1) = q− 1
and thus G=G1. Hence, PSL2(q)�G/C ≤ PGL2(q). Now the claim follows
as PSL2(q) has index 2 in PGL2(q).

(4) G′ ∼= SL2(q).
Suppose to the contrary that G′ ∼= PSL2(q). Let M = G′C � G. Then

M =G′ ×C as G′ ∩C = 1. Notice that C is central in G since N = 1 in this
case. Now if G/C ∼=PSL2(q), then G=M =G′ ×C and thus cd(G) = cd(G′)
which implies that cd(SL2(q)) = cd(PSL2(q)), a contradiction. Thus by (3),
we have G/C ∼=PGL2(q) and hence |G :M |= 2.

Let χ ∈ Irr(G) with χ(1) = (q − ε)/2 ≥ 2 where q ≡ ε (mod 4). Let φ ∈
Irr(M) be an irreducible constituent of χM . Then φ= ψ×λ, where ψ ∈ Irr(G′)
and λ ∈ Irr(C). Notice that C is Abelian and G′ is simple. As (q+ ε)/2 is the
smallest non-trivial degree of G′, we deduce that ψ = 1G′ , but then φ= ψ×λ
is a linear G-invariant character and since G/M ∼= C2 is cyclic, φ extends to
G, so χ ∈ Irr(G|φ) must be linear by Gallagher’s theorem [10, Corollary 6.17],
a contradiction.

We can also choose χ ∈ Irr(G) with χ(1) = (q + ε)/2. Then gcd(χ(1), |G :
M |) = 1 and hence χM ∈ Irr(M). In particular, χM is G-invariant. Since
M = G′ × C, where C is central in G, we deduce that χM = ψ × λ with
ψ ∈ Irr(G′) and λ ∈ Irr(C). Then ψ(1) = χ(1) = (q + ε)/2 and we know that
every irreducible character of G′ of degree (q+ ε)/2 is not invariant under the
diagonal automorphism and λ is G-invariant so that IG(χM ) =M <G, which
is a contradiction.
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(5) G∼=G′ ◦C and C is Abelian.
Since G′/N ∼=PSL2(q) is non-Abelian simple, we deduce that G′ ∩C =N

and N = Z(G′)�G, and hence N ⊆ Z(G) as |N |= 2. Since G′ is perfect, by
the Three Subgroups Lemma, we obtain that [G′,C] = 1, and so G′C =G′ ◦C
is a central product.

Assume that G/C ∼= PGL2(q). Let M = G′C �G be a normal subgroup
of index 2. Let χ ∈ Irr(G) with χ(1) = (q + ε)/2. Then φ = χM ∈ Irr(M) =
Irr(G′ ◦ C) since gcd(χ(1), |G : M |) = 1. Let φN = φ(1)λ = χ(1)λ with λ ∈
Irr(N). If λ �= 1N , then φ ∈ Irr(G′ ◦ C|λ) and so by Lemma 2.1, φ = θ · ϕ
where θ ∈ Irr(G′|λ) and ϕ ∈ Irr(C|λ). Notice that the degrees of faithful
irreducible characters of G′ ∼= SL2(q) are (q− ε)/2, q− 1 or q+1. Then θ(1) ∈
{(q − ε)/2, q ± 1}. Since φ(1) = θ(1)ϕ(1) = (q + ε)/2, we see that θ(1) must
divide (q + ε)/2, which is impossible. Thus, λ= 1N and so φ ∈ Irr(M/N) =
Irr(G′/N×C/N). Hence, φ= φ1×φ2 with φ1 ∈ Irr(G′/N) and φ2 ∈ Irr(C/N).
Since C/N ⊆ Z(G/N), φ2 is G-invariant. However, we know that φ1 is not
invariant under the diagonal automorphism of G′/N ∼=PSL2(q) so that φG ∈
Irr(G) and thus χ= φG, a contradiction. Therefore we conclude that G/C ∼=
PSL2(q), and so G=G′ ◦C.

We now show that C is Abelian. Suppose by contradiction that C is non-
Abelian and let ν ∈ Irr(N) be a non-trivial character of N . Let λ ∈ Irr(C)
with λ(1)> 1. Then λ ∈ Irr(C|ν) as C/N is Abelian. By Lemma 2.1, G has
an irreducible character of degree (q + 1)λ(1) as G′ ∼= SL2(q) has a faithful
irreducible character of degree q+1. However, this is impossible as q+1 is the
largest character degree of G. Therefore, C must be Abelian and the proof is
complete. �

4. Step 1 for SL3(q)

The rest of the paper is devoted to the proof of Theorem 1.3 forH = SL3(q).
Indeed, if q �≡ 1 (mod 3) then SL3(q) = PSL3(q), and Theorem 4.1 is exactly
Huppert’s conjecture for PSL3(q), which was already solved in [29]. Therefore,
to complete the proof of Theorem 1.3 for SL3(q), it suffices to prove the
following.

Theorem 4.1. Let G be a finite group and q = pf ≥ 4 be a power of a
prime p. Suppose that q ≡ 1 (mod 3). Then cd(G) = cd(SL3(q)) if and only
if G∼= SL3(q) ◦A, where A is Abelian.

The irreducible character degrees of SL3(q) are available in [7]. For a prime
power 7≤ q ≡ 1 (mod 3), we have

cd
(
SL3(q)

)
=

{
1, q3, q(q+ 1), (q− 1)2(q+ 1), q

(
q2 + q+ 1

)
,

(q− 1)
(
q2 + q+ 1

)
,
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q2 + q+ 1, (q+ 1)
(
q2 + q+ 1

)
,
1

3
(q− 1)2(q+ 1),

1

3
(q+ 1)

(
q2 + q+ 1

)}
.

When q = 4 then cd(SL3(4)) is as above excluding (q+ 1)(q2 + q+ 1).
To prove Steps 1 and 2, we need to identify the character degrees of G

which are non-trivial powers or prime powers. We first observe that q(q + 1)
is the minimal non-trivial degree of SL3(q).

Lemma 4.2. The number q2 + q+1 is not of the form yn for y,n ∈ Z and
n > 1.

Proof. This is Lemma 3.1 of [29]. �

Lemma 4.3. The only non-trivial powers among the degrees of SL3(q) are
q3 and possibly q3 − 1, (q− 1)2(q+ 1) and (q− 1)2(q+ 1)/3.

Proof. By [6, Theorem 1], the product q(q + 1) of consecutive integers q
and q+1 is never a non-trivial power. As q2+ q+1 is not a non-trivial power
by Lemma 4.2 and gcd(q, q2+ q+1) = gcd(q2+ q+1, q+1) = 1, we have that
q2 + q+ 1, q(q2 + q+ 1) and (q+ 1)(q2 + q+ 1) are not non-trivial powers.

We are left to show that (q + 1)(q2 + q + 1)/3 is not a non-trivial power.
Suppose by contradiction that (q + 1)(q2 + q + 1)/3 = yn for some integers
n ≥ 2 and y ≥ 2. Since 3 | q2 + q + 1 and gcd(q + 1, (q2 + q + 1)/3) = 1, we
deduce that q2 + q + 1 = 3an and q + 1 = bn for some integers a, b ≥ 2 with
y = ab. By [17], we obtain that n= 2. Since b2 is congruent to 0 or 1 modulo
3, we deduce that q = b2 − 1 is congruent to −1 or 0 modulo 3, contradicting
our assumption that q ≡ 1 (mod 3). �

Let χ ∈ Irr(G). Then χ is said to be isolated in G if χ(1) is divisible by no
proper non-trivial character degree of G, and no proper multiple of χ(1) is a
character degree of G.

Lemma 4.4. For q > 2, the character degrees q3, q(q+1), q(q2+ q+1) and
(q − 1)2(q + 1) are maximal with respect to divisibility among the degrees of
SL3(q). Moreover, q3 and q(q+ 1) are isolated degrees of SL3(q).

Proof. The degrees q3, (q − 1)2(q + 1), q(q + 1) are maximal with respect
to divisibility among the degrees of SL3(q) since gcd(q, (q − 1)2(q + 1)) =
1, gcd(q3, (q − 1)2(q + 1)) = 1, gcd(q, q2 + q + 1) = gcd(q3, q2 + q + 1) = 1,
gcd(q + 1, q2 + q + 1) = 1, gcd(q, q + 1) = gcd(q3, q + 1) = 1 and gcd(q2 + q +
1, (q − 1)2(q + 1)) = 1. Furthermore, we observe that both q3 and q(q + 1)
have no non-trivial proper divisor in cd(SL3(q)). �

We are now ready to establish Step 1.

Proposition 4.5. Under the hypotheses of Theorem 4.1, G′ =G′′.
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Proof. By way of contradiction, suppose G′ �= G′′. Then there exists a
normal subgroup N of G such that G/N is a solvable group and is minimal
with respect to being non-Abelian. By Lemma 2.2, G/N is a Frobenius group
or an r-group for some prime r.

(1) G/N is an r-group for some prime r. As G/N is non-Abelian, it has
an irreducible character η of degree rb > 1. We now consider the cases r = p
and r �= p separately.

(1a) r = p. We observe that q3 is the only non-trivial p-power character de-
gree of G, and hence rb = q3 ∈ cd(G/N). Let χ ∈ Irr(G) with χ(1) = q2+q+1.
Then r � χ(1) and by Lemma 2.3(a), χN ∈ Irr(N). By Lemma 2.3(b), we then
have ηχ ∈ Irr(G), whence η(1)χ(1) = q3(q2 + q+ 1) ∈ cd(G), a contradiction.

(1b) r �= p. Let χ ∈ Irr(G) with χ(1) = q3. Then gcd(r,χ(1)) = 1, so that
gcd(|G/N |, χ(1)) = 1, and thus χN ∈ Irr(N). We then have ηχ ∈ Irr(G), and
hence q3 < rbq3 ∈ cd(G), which is impossible.

(2) G/N is a Frobenius group with elementary Abelian Frobenius kernel
F/N , where |F :N |= rc for some prime r. In addition, l= |G : F | ∈ cd(G).

(2a) r �= p. Let χ ∈ Irr(G) with χ(1) = q3. As r � χ(1) and no proper
multiples and no proper divisors of this degree are in cd(G), we deduce from
Lemma 2.2(b)(ii) that l = q3. Let ϕ ∈ Irr(G) with ϕ(1) = q(q + 1) and let
ψ ∈ Irr(F ) be an irreducible constituent of ϕF . Then (ϕ(1)/ψ(1)) | |G : F |=
q3, which implies that (q + 1) | ψ(1). Since r �= p, by Lemma 2.2(b) we have
rc | ψ(1)2p′ . As q ≥ 4 and |G : F | | (rc − 1), we have

l= q3 ≤ rc − 1≤ ψ(1)2p′ − 1< (q+ 1)2 = q2 + 2q+ 1< q3,

which is a contradiction.
(2b) r = p. We have |G : F | = l ∈ cd(G) and l | (rc − 1) = (pc − 1).

Therefore, the character degree q(q + 1) does not divide l, and it follows
from Lemma 2.2(b)(i) that rc | q2(q + 1)2. Hence, rc | q2. We now have
l | (rc − 1)≤ q2 − 1 and hence l≤ q2 − 1. This is impossible since the smallest
non-trivial character degree of G is q(q+ 1).

�

5. Step 2 for SL3(q)

Suppose G′/M is a chief factor of G. By Step 1, we have G′/M ∼= Sk for
some integer k ≥ 1 and some non-Abelian simple group S. We will show in
this section that

G′/M ∼= Sk ∼=PSL3(q).

By the classification of the finite non-Abelian simple groups, S is one of
the 26 sporadic simple groups, the Tits group, an alternating groups An for
n≥ 7, or a non-Abelian simple group of Lie type. (Note that A5

∼=PSL2(5)∼=
PSL2(4) and A6

∼=PSL2(9), so A5 can A6 can be considered as simple groups
of Lie type.) We must show that k = 1 and S ∼=PSL3(q).
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5.1. Eliminating the alternating, sporadic, and the Tits groups.

Proposition 5.1. If S is an alternating group An with n≥ 7, a sporadic
simple group, or the Tits group, then k = 1.

Proof. By way of contradiction, assume that k > 1. By Lemma 2.6, S has
nonlinear irreducible characters ψi,1≤ i≤ 5, of distinct degrees which extend
to Aut(S). By Lemma 2.5, we have that ψk

i ,1≤ i≤ 5, extend to G. Thus G
has at least 5 non-linear irreducible characters whose degrees are distinct non-
trivial powers, which contradicts Lemma 4.3. Therefore, k = 1 as required. �

Proposition 5.2. If k = 1, then S is not an alternating group An with
n≥ 7.

Proof. As n ≥ 7, S ∼= An has irreducible characters θi,1 ≤ i ≤ 3, which
extend to Aut(S)∼= Sn of degree n− 1, n(n− 3)/2 and n(n− 3)/2 + 1 = (n−
1)(n − 2)/2, respectively. So, n − 1, n(n − 3)/2 and (n − 1)(n − 2)/2 are
character degrees of G, where the last two are consecutive integers. Since
n(n− 3)/2 > n− 1 > 1 and q(q + 1) is the non-trivial minimal degree of G,
we deduce that n(n − 3)/2 = q3 − 1 and q3 = (n − 1)(n − 2)/2. (Note that
(q(q+1), q2 + q+1) and (q3 − 1, q3) are the only pairs of consecutive integers
among character degrees of G.) Since n≥ 7 and gcd(n− 1, n− 2) = 1, we see
that the latter equation cannot hold. �

Proposition 5.3. If k = 1, then S is neither a sporadic simple group nor
the Tits group.

Proof. For each possibility of S, we can find some irreducible characters
of S that are extendible to Aut(S), and then show that the degrees of these
characters cannot be all in cd(G) = cd(SL3(q)). This is straightforward and
we skip the details. �

5.2. Eliminating the simple groups of Lie type. If S is a simple group
of Lie type and StS is the Steinberg character of S, then StS(1) is a power
of the characteristic of the defining field of S. By Lemma 2.6, StS extends
to Aut(S). By Lemma 2.5, it follows that StS(1)

k is a character degree of G.
As the only prime power among character degrees of G is q3, we deduce that
StS(1)

k = q3. Hence, the defining characteristic of S must be the same as the
only prime divisor of q3, which is p.

We write S = S(q1) to indicate that S is defined over the field of q1 elements.
A mixed degree of S is a character degree of S which is divisible by q1 but not
a power of q1. We rely upon the following result on mixed degrees of simple
groups of Lie type.

Lemma 5.4 ([26, Lemma 5.6]). If S is a simple group of Lie type and
S � PSL2(q1), then S possesses an irreducible character of mixed degree.
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Proposition 5.5. If S is a simple group of Lie type and S � PSL2(q1),
then k=1.

Proof. Since S � PSL2(q1), by Lemma 5.4, S possesses an irreducible char-

acter of mixed degree, say ψ. Recall that G′/M ∼= Sk. Hence, there is an
irreducible character of G′/M found by multiplying k − 1 copies of StS with

ψ. Then (Stk−1
S ψ)(1) is a mixed degree of G′/M . As every character degree

of G′/M divides a degree of G, it follows that the degree of this irreducible
character divides one of the mixed degrees of G. The highest power of q in
any mixed degree of G is q. Assume that StS(1) = qj1. Then, as StS(1)

k = q3,

qjk1 = q3 and hence q = q
jk/3
1 . The power of q1 in (Stk−1

S ψ)(1) is at least

q
j(k−1)
1 . We now have j(k − 1)≤ jk/3, which reduces to 2k ≤ 3. This means
that k = 1, as claimed. �

Proposition 5.6. The simple group S is not PSL2(q1) for any k ≥ 1.

Proof. Arguing as in Proposition 5.5, we can show that k ≤ 2. First, assume
that k = 1. As the degree of the Steinberg character of PSL2(q1) is q1, we
must have q1 = q3. It follows that q1+1= q3+1 is a character of S as well as
G′, and hence q3+1 divides a character degree of G, which is impossible. Now

consider k = 2. Then q21 = q3. Thus (
√

q3+1)2 is a character degree of G′/M .

This is again impossible since (
√

q3+1)2 does not divide any character degree
of G. �

Proposition 5.7. S is not a simple group of exceptional Lie type.

Proof. We will examine each family of simple groups of exceptional Lie
type.

(1) S ∼= 2B2(q
2
1) where q21 = 22m+1 with m≥ 1. Recall that

cd
(
2B2

(
q21
))

=
{
1, q41 , q

4
1 + 1,

(
q21 − 1

)
a,
(
q21 − 1

)
b,
(
q21 − 1

)
u
}
,

where q21 = 22m+1 ≥ 8, u = 1√
2
q1, a = q21 +

1√
2
q1 + 1, and b = q21 − 1√

2
q1 + 1.

The largest character degree of 2B2(q
2
1) is (q

2
1 − 1)a= (q21 − 1)(q21 +

1√
2
q1+1).

As the Steinberg character of S has a degree q41 , we have q41 = q3, and so

q
4/3
1 = q.
By [14], the unipotent character of degree (q21 − 1)u of S is extendible to

Aut(S). Hence u(q21 − 1) ∈ cd(G). Since q = q
4/3
1 , q is even and so u(q21 − 1) is

an even degree of G but not a 2-power, so u(q21 −1) = q(q+1) or q(q2+ q+1).
Comparing the even parts, we deduce that 2m = u= q = 2(4m+2)/3, which is
absurd.

(2) S ∼=G2(q1) with q1 > 2. Following the notation for unipotent charac-
ters in [4, Section 13.8], the unipotent character φ2,2 of S extends to Aut(S)
and thus φ2,2(1) = q1(q1 + 1)(q31 + 1)/2 ∈ cd(G). By our assumption on q1,
φ2,2(1) is divisible by p but not a power of p since q21 = q and q31 + 1 is prime



914 N. N. HUNG ET AL.

Table 1. Some characters of the simple groups of Lie type

S St(1) Symbol χ(1)p

PSL�+1(q1) q
�(�+1)/2
1 (1,1,1, . . . ,1,2) q

�(�−1)/2
1

PSU�+1(q1
2) q

�(�+1)/2
1 (1,1,1, . . . ,1,2) q

�(�−1)/2
1

Ω2�+1(q1) q�
2

1

(
0 1 2 · · · �− 2 �− 1 �
1 2 · · · �− 2

)
q�

2−2�+1
1

PSp2�(q1), p > 2 q�
2

1

(
0 1 2 · · · �− 2 �− 1 �
1 2 · · · �− 2

)
q�

2−2�+1
1

PSp2�(q1), p= 2 q�
2

1

(
0 1 2 · · · �− 2 �− 1 �
1 2 · · · �− 2

)
1
2q

�2−2�+1
1

PΩ+
2�(q1) q

�(�−1)
1

(
0 1 2 · · · �− 3 �− 1
1 2 3 · · · �− 2 �− 1

)
q�

2−3�+3
1

PΩ−
2�(q1) q

�(�−1)
1

(
0 1 2 · · · �− 2 �

1 2 · · · �− 2

)
q�

2−3�+2
1

3D4(q
3
1) q121 φ′′

1,3 q71
F4(q1) q241 φ9,10 q101
E6(q1) q361 φ6,25 q251
2E6(q

2
1) q361 φ′′

2,16 q251
E7(q1) q631 φ′′

7,46 q461
E8(q1) q1201 φ8,91 q911

to p. So, φ2,2(1) = q(q + 1) or q(q2 + q + 1). Now if p is odd, then by com-
paring the p-part, we have q1 = q which is impossible as q = q21 . If p is even,
then q1/2 = q = q21 , a contradiction again.

(3) S ∼= 2G2(q
2
1), q

2
1 = 32m+1, m≥ 1. Consider the unipotent character of

S of degree q1(q
2
1 − 1)(q21 + 1)/

√
3. This is a mixed degree, so it must divide

either q(q+1) or q(q2 + q+1). This character degree is even as q1 is a power
of 3. Thus, it must divide q(q + 1) since q(q2 + q + 1) is odd. The Steinberg
character of S has a degree q61 , so q = q21 . Hence, we have (q21 − 1)(q21 + 1)
divides q21 + 1, a contradiction.

(4) For the remaining simple groups of exceptional Lie type, we argue as
follows. Let S = S(q1) be a simple group of exceptional Lie type defined
over a field of q1 elements. Now, suppose that the Steinberg character of S

has degree qj1. By Lemma 2.5, q3 = qj1, and thus q = q
j/3
1 . For each of the

remaining possibilities for S, there is a mixed character degree of S whose

power on q1 is greater than q
j/3
1 > q, as shown in Table 1, and this is a

contradiction. In this table we follow the notation for unipotent characters in
[4, Section 13.8]. �
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We have already shown that k = 1. So Step 2 is complete once we have the
following.

Proposition 5.8. S ∼=PSL3(q).

Proof. By the previous propositions, we now may assume that S = S(q1)
is a simple classical group defined over a field of q1 elements. The Steinberg
character of S has degree qj1 for some j. By Lemma 2.5, q3 = qj1 and hence

q = q
j/3
1 .

(1) S ∼=PSLl+1(q1) or S ∼=PSUl+1(q
2
1) with l≥ 1.

Since k = 1, we must have l(l− 1)/2≤ l(l+1)/6, which implies that l≤ 2.
Since the cases S ∼= PSU2(q

2
1) and S ∼= PSL2(q1) were already handled in

Proposition 5.6, it remains to assume that l = 2. It then follows that the
Steinberg character of S has degree q31 , and therefore by Lemma 2.5, q31 ∈
cd(G). This forces q1 = q so that S ∼=PSL3(q) or PSU3(q

2).
If S ∼= PSU3(q

2), then S has a mixed degree, namely q(q − 1), but this
degree does not divide any degree of G, a contradiction. We conclude that
S ∼=PSL3(q), as claimed.

(2) S ∼=PΩ±
2l(q1) with l≥ 4.

As shown in Table 1, we have l2 − 3l+ 2≤ l(l− 1)/3, which is impossible.
(3) S ∼=Ω2l+1(q1) or S ∼=PSp2l(q1) with l≥ 2.
As shown in Table 1, we must have l2− 2l+1≤ l2/3, which is not satisfied

for l ≥ 3. If q1 is even, then the exponent on q1 in the degree is at least
l2 − 2l+ 1− (l− 1). But l2 − 2l+ 1− (l− 1)≤ l2/3 is not satisfied for l ≥ 4.
Suppose that l = 2. For q1 = 3, the degree of the Steinberg character is 34,
which cannot possibly extend to q3. Assume q1 �= 3. Note that S possesses
unipotent characters of degree q1(q

2
1 + 1)/2 and q1(q1 − 1)2/2. The degree of

the Steinberg character of S is q41 . Thus, we must have that q = q
4/3
1 . But these

degrees cannot divide q
4/3
1 (q

4/3
1 + 1) and so they must divide q(q2 + q + 1) =

q
4/3
1 (q

8/3
1 + q

4/3
1 + 1). Both these degrees must divide q(q2 + q + 1). Hence,

q2 + q+ 1 has factors q1 − 1 and q21 +1. This implies q2 + q+ 1 has a divisor
congruent −1 modulo 3, contradicting [29, Lemma 2.1].

Now suppose that l = 3. From [4, Section 13.8], we see that S has a
unipotent character χα of degree

χα(1) =
1

2
q41(q1 + 1)

(
q21 − q1 + 1

)
corresponding to the symbol

α=

(
1 2 3

0 1

)
.

When l= 3, the degree of the Steinberg character of S is q91 , so we have q = q31 .
Hence, χα(1) divides no degree of G. The proof is complete. �
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6. Step 3 for SL3(q)

In this section, we will prove that G′ is isomorphic to a perfect central
cover of PSL3(q), and then deduce that G′ must be either SL3(q) or PSL3(q).
We begin with a known lemma on maximal subgroups of SL2(q).

Lemma 6.1. ([27, Lemma 6]) Assume that q ≥ 3 is a prime power. If M
is a maximal subgroup of SL2(q) whose index divides q ± 1 or q, then one of
the following cases holds.

(a) If q ≥ 13 is odd or q ≥ 4 is even, then M is the Borel subgroup of index
q+1. Moreover, q+1 is the smallest index of a maximal subgroup of SL2(q).

(b) If q ∈ {3,5,7,11}, then either M is the Borel subgroup of index q + 1
or M is a non-Abelian subgroup of index q.

(c) If q = 9, then M is the Borel subgroup of index 10 and 6 is the smallest
index of a maximal subgroup of SL2(9).

Lemma 6.2. Let q ≥ 4 be a prime power and q ≡ 1 (mod 3). Let K � L
be such that L/K ∼= SL2(q) and let δ ∈ Irr(K). If χ(1) divides q or q ± 1 for
every χ ∈ Irr(L | δ), then δ is L-invariant.

Proof. Suppose by contradiction that δ is not L-invariant and let V :=
IL(δ). Write

δV =
∑
i

ηi where ηi ∈ Irr(V | δ).

It follows that, for each i, ηLi ∈ Irr(L | δ) and ηLi (1) = |L : V |ηi(1) divides q
or q ± 1. Let M be a subgroup of L such that V ≤M and M/K is maximal
in L/K. From Lemma 6.1, since |L :M | divides q ± 1 or q, we deduce that
|L :M |= q and q ∈ {7,11} or |L :M |= q+1 and M/K is the Borel subgroup
of L/K.

First, we consider the case q = 7 or 11 and |L :M | = q. Then M/K is a
non-Abelian subgroup of L/K of index q. It follows that

ηLi (1) = |L :M | · |M : V |ηi(1) = q · |M : V |ηi(1)
divides q, which forces M = V and ηi(1) = 1 for every i. Hence, V/K =
M/K is Abelian as δ extends to V and all irreducible characters of V/K
are linear. However, this leads to a contradiction as M/K is non-Abelian by
Lemma 6.1(b).

Now assume M/K is isomorphic to the Borel subgroup of L/K and |L :
M |= q+ 1. Since ηLi (1) divides q or q± 1, we have

ηLi (1) = |L :M | · |M : V |ηi(1) = (q+ 1) · |M : V |ηi(1)
must divide q + 1 and we deduce that |M : V |ηi(1) = 1. This implies that
M = V and ηi(1) = 1 for every i, M/K = V/K is isomorphic to the Borel
subgroup of SL2(q) of index q + 1 and that all constituents of δV are linear.
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Table 2. Maximal subgroups of PSL2(q) (see [12], [24])

Subgroup Condition Index
D(q−1) q ≥ 13, odd 1

2qΦ2

D2(q−1) q even 1
2qΦ2

D(q+1) q �= 7,9, odd 1
2qΦ1

D2(q+1) q even 1
2qΦ1

Borel subgroup Φ2

PSL2(q0)(2, α) q = qα0
S4 q = p≡±1 mod 8

q = p2,3< p≡±3 mod 10
A4 q = p≡±3 mod 8, q > 3
A5 q = p≡±1 mod 10

q = p2, p≡±3 mod 10

By Lemma 2.3(b), we deduce that the Borel subgroup M/K is Abelian. This
contradiction completes the proof. �

Lemma 6.3. Let q ≥ 7 be a prime power such that q ≡ 1 (mod 3). Let X be
a perfect group and M �X such that X/M is a cover of PSL3(q) and every
character degree of X divides a character degree of SL3(q). Then every linear
character of M is stable under X .

Proof. Let ϑ ∈ Irr(M) with ϑ(1) = 1. Assume to the contrary that ϑ is not
stable under X , we have I := IX(ϑ)�X . Hence, I is contained in a maximal
subgroup, say P , of X . Let

ϑI =
∑
i

ϕi for ϕi ∈ Irr(I).

By Lemma 2.4, ϕi(1)|X : I| is a character degree of X and hence it divides
some character degree of SL3(q).

Thus, we will need to find indices of maximal subgroups of PSL3(q) which
divide some character degrees of SL3(q). From the list of maximal subgroups
of PSL2(q) and PSL3(q) in [12], [24], we produce Tables 2 and 3. In these
tables, [q2] denotes an unspecified group of order q2, A : B denotes a split
extension, A ◦ B denotes a central product, and A · B denotes a non-split
extension.

We first notice that X/M ∼= SL3(q) or PSL3(q) since 7 ≤ q ≡ 1 (mod 3)
and the Schur multiplier of PSL3(q) is cyclic of order 3. Moreover, the sets of
indices of maximal subgroups of SL3(q) and PSL3(q) are the same.

By inspecting Table 3, the only possibility for P/M is [q2] : GL2(q) or its
image in PSL3(q) according to whether X/M ∼= SL3(q) or PSL3(q). Then
P/M ∼= [q2] : GL2(q) = [q2] : SL2(q)(q− 1) or [q2] : SL2(q)(q− 1)/3.
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Table 3. Maximal subgroups of PSL3(q) (see [7], [12], [24])

Subgroup Condition
∧[q2] : GL2(q)
∧(Zq−1)

2 · S3 q ≥ 5
∧Zq2+q+1 · 3 q �= 4
PSL(q0) · ((q− 1,3), b) q = qb0, b prime
32 · SL2(3) q = p≡ 1 mod 9
32 ·Q8 q = p≡ 4,7 mod 9
SO3(q) q odd
PSU3(q0) q = q20
A6 p≡ 1,2,4,7,8,13 mod 15
PSL2(7) 2< q = p≡ 1,2,4 mod 7

We have that |X : P | = q2 + q + 1 and for every i, |P : I|ϕi(1) divides q
and q ± 1. Let S � T be normal subgroups of P such that S/M ∼= [q2], and
T/S ∼= SL2(q).

Observe that if χ ∈ Irr(T | ϑ), then χ(1) divides q or q± 1.
Assume S ≤ I ≤ P . Write

ϑS =

k∑
i=1

δi where δi ∈ Irr(S | ϑ).

We now show that S/Kerϑ is Abelian. It suffices to show that S′ ≤Ker δi for
all i since

k⋂
i=1

Ker δi =KerϑS ≤Ker(ϑ)≤M.

Suppose by contradiction that S′ �Ker δj , for some j, hence 1 = ϑ(1)< δj(1)
and p | δj(1). As Irr(T | δj) ⊆ Irr(T | ϑ), by Lemma 6.2, we see that δj is
T -invariant.

As q ≡ 1 (mod 3), we observe that q �= 9 so the Schur multiplier of T/S ∼=
SL2(q) is trivial. From [10, Theorem 11.7], δj extends to δ0 ∈ Irr(T ) and
hence by Lemma 2.3(b), δ0η are all the irreducible constituents of δT for
η ∈ Irr(T/S). Taking η ∈ Irr(T/S) with η(1) = q, we then see that δ0(1)η(1) =
qδj(1) divides q and q ± 1, which is impossible. Hence, S/Kerϑ is Abelian.
By Lemma 6.2, each linear δi is T -invariant. Therefore,

[T,S]≤
k⋂

i=1

Ker δi ≤KerϑS ≤M,

which is a contradiction as T acts non-trivially on S/M ∼= [q2].
Assume S � I ≤ P . Since I∩S � S, one can find δ ∈ Irr(S | ϑ) with p | δ(1).

Since Irr(T |δ)⊆ Irr(T |ϑ), for every χ ∈ Irr(T |δ), χ(1) divides q or q ± 1 and
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Table 4. Maximal subgroups of PSL3(4)

Structure Order Index
24 : A5 960 21
A6 360 56
PSL2(7) 168 120
32 :Q8 72 280

hence by Lemma 6.2, δ is T -invariant. Now since q ≥ 7, q �= 9, the Schur
multiplier of T/S ∼= SL2(q) is trivial and by [10, Theorem 11.7] δ extends to
δ0 ∈ Irr(T |ϑ). Hence, by Lemma 2.3(b), δ0η are all the irreducible constituents
of δT for η ∈ Irr(T/S). Taking η ∈ Irr(T/S) with η(1) = q, δ0(1)η(1) = qδ(1)
must divide q or q± 1, which is impossible. �

Lemma 6.4. Let X be a perfect group and M �X such that X/M is a
cover of PSL3(4) and every character degree of X divides a degree of SL3(4).
Then every linear character of M is stable under X .

Proof. The hypotheses imply that X/M is isomorphic to PSL3(4) or SL3(4)
since any other cover of PSL3(4) has a character degree that does not divide
a degree of SL3(4). Let ζ ∈ Irr(M) with ζ(1) = 1. By way of contradiction,
suppose ζ is not invariant under X . Then the inertia group IX(ζ) of ζ is
contained in a maximal subgroup of X .

We will prove that there is no such maximal subgroup. Let I := IX(ζ)�X
and let P be maximal such that I ≤ P �X . If

ζI =
∑
i

ξi for ξi ∈ Irr(I)

then, by Lemma 2.4, ξi(1)|X : I| is a character degree of X and thus divides
some degree of SL3(4). Hence, we need to all maximal subgroups P/M of
X/M such that |X : P | divides some character degrees of SL3(4). Recall that
X/M is isomorphic to PSL3(4) or SL3(4).

Maximal subgroups of PSL3(4) are available in Atlas [5] and listed in Ta-
ble 4. The corresponding maximal subgroups of SL3(4) are

3× 24 : A5,3 ·A6,3×PSL2(7),3
1+2
+ : Q8.

Inspecting the character degrees of SL3(4), we observe that the index |X :
P | divides some degree SL3(4) only if |X : P |= 21.

It follows that P/M ∼= 24 : A5 or 3× 24 : A5 and |P : I|ei(1) divides 4 for
every i. Using GAP [3], we can check that P/M has no maximal subgroup
whose index divides 4, therefore P = I and that ξi(1) is a power of 2 for all
i’s. By Lemma 2.8, P/M must be solvable which is impossible. Thus, every
linear character of M is X-invariant as wanted. �
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We now complete the proof of Step 3. By combining Steps 1 and 2, we have
G′/M ∼=PSL3(q). As every character degree of G′ divides a character degree
of G, Lemmas 6.3 and 6.4 imply that every linear character of M is stable
under G′. It follows from [9, Lemma 6] that |M :M ′| divides |Mult(G′/M)|=
|Mult(PSL3(q))|. Lemma 2.10 then yields that G′/M ′ is isomorphic to a cover
of PSL3(q).

Repeating the above arguments by using Lemmas 6.3, 6.4, 2.10, and [9,
Lemma 6], we deduce that G′/M (i) is isomorphic to a cover of PSL3(q) for
every i ≥ 0. Therefore, if M is solvable then G′ is isomorphic to a cover of
PSL3(q). This immediately implies that G′ is isomorphic to PSL3(q) or SL3(q)
if q ≥ 7. When q = 4, we have the same conclusion by noticing that any cover
of PSL3(4) different from PSL3(4) and SL3(4) has a character degree which
does not divide a degree of SL3(4).

The proof of Step 3 is complete once we can show that M cannot be non-
solvable. Assume so, then there is an integer i such that

M (i) =M (i+1) > 1.

Let N ≤M (i) be a normal subgroup of G′ so that M (i)/N ∼= T k for some non-
Abelian simple group T . By [16, Lemma 4.2], T has a non-principal irreducible
character ϕ that extends to Aut(T ). Now Lemma 2.5 implies that ϕk extends
to Φ ∈ Irr(G/N). Therefore, by Gallagher’s theorem, Φχ ∈ Irr(G′/N) for
every χ ∈ Irr(G′/M (i)). In particular,

ϕ(1)kχ(1) ∈ cd
(
G′/N

)
⊆ cd

(
G′).

However, we have that G′/M (i) is isomorphic to a cover of PSL3(q). Choosing
χ to be the Steinberg character of degree q3 of G′/M (i), we deduce that
q3ϕk(1) is a character degree of G′ and therefore it divides a degree of G.
This is a contradiction by inspecting cd(SL3(q)).

7. Step 4 for SL3(q)

In this section, we aim to show that G = G′ ◦ C where C := CG(G
′) is

Abelian. From Step 3, we know that G′ is isomorphic to either PSL3(q) or
SL3(q). We deduce that G/C is an almost simple group with socle PSL3(q).
In other words,

PSL3(q)�G/C ≤Aut
(
PSL3(q)

)
.

As q ≥ 4 and q ≡ 1 (mod 3), by [8, Theorem 2.5.12], we have

Out
(
PSL3(q)

)
= 〈d〉 :

(
〈σ〉 × 〈τ〉

)
,

where τ is a graph automorphism of order 2, σ is a field automorphism of
order f with q = pf , and d is a diagonal automorphism of order 3.

(1) First, we show that C is Abelian. Let Z :=Z(G′). Then Z is normal
in G and G′/Z × C/Z �G/Z. Assume that C/Z is non-Abelian. We then
can find λ ∈ Irr(C/Z) with λ(1) > 1 and let μ ∈ Irr(G′/Z) with μ(1) = q3.
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Then we know that μ×λ ∈ Irr(G′/Z ×C/Z) and so (μ×λ)(1) = q3λ(1) must
divide some character degree of G, which is impossible as q3λ(1) > q3. We
have shown that C/Z is Abelian.

If |Z| = 1 then C = C/Z is Abelian as we wanted. So it remains to as-
sume that |Z| = 3 so that G′ ∼= SL3(q). By [7], SL3(q) has a faithful irre-
ducible character of degree q(q2 + q + 1). Hence, there exist 1 �= ν ∈ Irr(Z)
and μ ∈ Irr(G′|ν) with μ(1) = q(q2 + q + 1). Assume by contrary that C is
non-Abelian. Then, as C/Z is non-Abelian, we can find λ ∈ Irr(C|ν) such
that λ(1)> 1. Using Lemma 2.1, we deduce that there exists χ ∈ Irr(G′ ◦C)
of degree μ(1)λ(1) = λ(1)q(q2+q+1). It follows that λ(1)q(q2+q+1) divides
some character degree of G, which is impossible as q(q2 + q + 1) is maximal
with respect to divisibility among the character degrees of SL3(q). We there-
fore conclude that C is Abelian.

(2) Next, we claim that every irreducible character of C is G-invariant.
Assume to the contrary that λ ∈ Irr(C) is not G-invariant. If Z lies in the
kernel of λ, then χ = StG′/Z × λ is an irreducible character of G′C/Z and
is not G-invariant, and it follows that G has a character degree which is
a proper multiple of q3, a contradiction. So Z does not lie in Ker(λ). In
particular, Z is nontrivial and G′ ∼= SL3(q). Suppose that λ ∈ Irr(C|ν) where
ν ∈ Irr(Z) is nontrivial. We know that G′ ∼= SL3(q) has a faithful irreducible
character μ of degree (q − 1)2(q + 1) and is G-invariant. (This follows from
the fact that no proper multiple of (q− 1)2(q+ 1) is a degree of SL3(q).) So,
χ= μλ is an irreducible character of G′C which is not G-invariant, and thus
G has a character degree which is a proper multiple of (q − 1)2(q + 1) which
is impossible.

(3) We finally show that G=G′ ◦C. Assume not, then G/C induces a
non-trivial outer automorphism on G′, say α. We shall show that cd(G/C)�
cd(SL3(q)), and this violates the hypothesis.

(3i) Assume α = daτ with 0≤ a < 3. By a result of Zsigmondy [31], we
can find ω ∈ Fp of order which is a primitive prime divisor of p3f − 1 = q3− 1;

that is a prime divisor of p3f −1 that does not divide
∏3f−1

i=1 (pi−1). We then

consider a semisimple element s ∈ SL3(q) with eigenvalues ω,ωq and ωq2 . The
image of s under the canonical projection GL3(q)→ PGL3(q) is a semisimple
element of PGL3(q), which we denote by s. Since τ is the inverse-transpose,
the eigenvalues of τ(s) are exactly those of s−1. Therefore, s−1 and τ(s) are
conjugates in PGL3(q). This and [20, Corollary 2.5] imply that

(χs)
τ = χτ(s) = χs−1 = χs.

On the other hand, as the eigenvalues of s and s−1 are different, the semisimple
character χs is non-real, which means that

χs �= χs.
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Therefore, we have shown that χs ∈ Irr(SL3(q)) is not invariant under τ .
Moreover, since s is contained in [PGL3(q),PGL3(q)] = PSL3(q), Z(SL3(q))⊆
Ker(χs) so that χs can also be viewed as a character of PSL3(q).

We have produced the irreducible character χs ∈ Irr(G′) which is not in-
variant under τ . It is easy to calculate that χs(1) = (q − 1)2(q + 1). Since
PGL3(q) has no irreducible character of degree 3χs(1), χs is invariant under
d. It follows that χs is not α-invariant, which implies that G/C has a char-
acter degree which is a proper multiple of χs(1) = (q − 1)2(q + 1). This is
impossible.

(3ii) Assume α = daσbτ c with 0 < b < f , 0 ≤ a < 3, and 0 ≤ c < 2. Now
we can find ω1 ∈ Fp of order q + 1. We then consider a semisimple element

s1 ∈ SL3(q) with eigenvalues 1, ω1, and ωq
1 = ω−1

1 . The image of s1 under the
projection GL3(q)→ PGL3(q) is a semisimple element of PGL3(q), which we
denote by s1. Now the eigenvalues of s1, s1

−1, and τ(s1) are all the same.
Therefore, by [20, Corollary 2.5],

(χs1)
τ = χτ(s1) = χs1−1 = χs1 = χs1 .

In other words, χs1 is fixed under τ . As above, since s1 ∈ [PGL3(q),PGL3(q)],
we have Z(SL3(q))⊆Ker(χs1) so that χs1 can also be viewed as a character
of PSL3(q). So we found the character χs1 ∈ Irr(G′) of degree χs1(1) = q3 − 1
which is fixed under τ . Since PGL3(q) has no irreducible character of degree
3χs1(1), χs1 is also fixed under d.

Now the eigenvalues of σb(s1) are 1, ωpb

, and ωqpb

, which are not the same
as those of s1. Using [20, Corollary 2.5] again, we deduce that χs1 ∈ Irr(G′) is
not fixed under σb. It follows that χs1 is not α-invariant. Therefore, G has a
character degree which is a proper multiple of χs1(1) = q3−1, a contradiction
again.

(3iii) Finally, assume G/C induces only the diagonal automorphisms on G′.
Then G/C ∼=PGL3(q). From [7] again, SL3(q) has exactly three (nonfaithful)
irreducible characters of degree (q + 1)(q2 + q + 1)/3 which are fused under
the diagonal automorphisms. Therefore, if χ is an irreducible character of
degree (q + 1)(q2 + q + 1)/3 of G, χ must lie above μ ∈ Irr(G′) with μ(1) <
(q+1)(q2+q+1)/3. This cannot happen since SL3(q) has no character degree
which is nontrivial proper divisor of (q+ 1)(q2 + q+ 1)/3.

8. Step 5 for SL3(q)

We have shown that G = G′ ◦ C where C := CG(G
′) is Abelian and

G′ ∼= SL3(q) or PSL3(q). We need to show that G′ ∼= SL3(q). Suppose by
contradiction that G′ ∼=PSL3(q). Then G=G′×C, and thus cd(G) = cd(G′),
which means that cd(SL3(q)) = cd(PSL3(q)). This is impossible since

1

3
(q− 1)2(q+ 1) ∈ cd

(
SL3(q)

)
− cd

(
PSL3(q)

)
,
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and we have completed the proof of Theorem 4.1.
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