TENSOR PRODUCTS OF MEASURABLE OPERATORS

M. ANOUSSIS, V. FELOUZIS AND I. G. TODOROV

Abstract

We introduce and study a stability property for submodules of measurable operators and Calkin spaces and characterize the tensor stable singly generated Calkin spaces. Given semifinite von Neumann algebras $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$ and corresponding measurable operators S, T, we provide a necessary and sufficient condition for the operator $S \otimes T$ to be measurable with respect to $(\mathcal{M} \otimes \mathcal{N}, \tau \otimes \sigma)$.

1. Introduction

Weiss considered in [14] a property for ideals of $\mathbf{B}(\mathcal{H})$, called "tensor product closure property", or "tensor stability". In a previous paper [1], we studied the analogous property for Calkin sequence spaces. In particular, we established a necessary and sufficient condition for the tensor stability of a singly generated Calkin sequence space.

In this paper, we study the analogous stability property for submodules of measurable operators and Calkin function spaces. Using results of O'Neil, we describe a large class of stable submodules of measurable operators. We then focus on singly generated Calkin function spaces. We give a necessary and sufficient condition for the tensor stability of a singly generated Calkin function space and provide examples of stable singly generated Calkin function spaces.

Let $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$ be two semifinite von Neumann algebras and S, T measurable operators with respect to $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$. In the first part of the paper, we give a necessary and sufficient condition for $S \otimes T$ to be a $\tau \otimes \sigma$ measurable operator. This characterization is used in an essential way in the study of stable submodules.

We now introduce some notation. If \mathcal{H} is a Hilbert space, we denote by $\mathbf{B}(\mathcal{H})$ the algebra of bounded linear operators on \mathcal{H}. If X is a set and $A \subseteq$
X, we denote by χ_{A} the characteristic function of A. By m we denote the Lebesgue measure. If \mathcal{M} is a von Neumann algebra, and $P \in \mathcal{M}$ we say that P is a projection if P is a selfadjoint idempotent.

2. The algebra $\overline{\mathcal{M}}$

Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space \mathcal{H}. Let $\widetilde{\mathcal{M}}$ be the set of all operators T in \mathcal{H} which are densely defined, closed and affiliated to \mathcal{M}.

Assume that \mathcal{M} admits a faithful semi-finite normal trace τ. Let $\overline{\mathcal{M}}$ be the subset of $\widetilde{\mathcal{M}}$ consisting of all $T \in \widetilde{\mathcal{M}}$ such that $\lim _{s \rightarrow+\infty} \tau\left(E^{|T|}(s,+\infty)\right)=$ 0 , where $|T|=\left(T^{*} T\right)^{1 / 2}$ and $E^{|T|}(s,+\infty)$ is the spectral projection of $|T|$ corresponding to the interval $(s,+\infty)$. Then $\overline{\mathcal{M}}$ is a $*$-algebra with respect to the operations $(S, T) \mapsto \overline{S+T},(S, T) \mapsto \overline{S T}, T \mapsto T^{*}$, where \bar{T} denotes the closure of an operator T [5, Paragraph 1.4]. The operators in $\overline{\mathcal{M}}$ are called τ-measurable. In the sequel, we shall write $S+T$ instead of $\overline{S+T}$ and $S T$ instead of $\overline{S T}$.

On $\overline{\mathcal{M}}$, we consider the measure topology, introduced in [10], which is the translation invariant topology defined by the neighborhoods of 0 of the form

$$
\begin{aligned}
U_{\varepsilon, \delta}= & \{T: \text { there exits a projection } P \in \mathcal{M} \\
& \text { such that } \left.\|T P\|<\varepsilon \text { and } \tau\left(P^{\perp}\right)<\delta\right\}
\end{aligned}
$$

where $\varepsilon, \delta>0$ and, for a projection P, we have set $P^{\perp}=I-P$. Then $\overline{\mathcal{M}}$ becomes a complete topological $*$-algebra and \mathcal{M} is a dense $*$-subalgebra of $\overline{\mathcal{M}}$ [10].

Let $T \in \overline{\mathcal{M}}$ and $t>0$. We set

$$
\mu_{t}(T)=\inf \{\|T P\|: P \text { is a projection in } \mathcal{M} \text { and } \tau(1-P) \leq t\}
$$

We will denote the function $t \rightarrow \mu_{t}(T)$ by $\mu(T)$.
We collect some properties of the function $\mu(T)$ in the following proposition [5, Proposition 2.2, Lemmata 2.5, 2.6].

Proposition 2.1. Let T, S, R be τ-measurable operators. Then the following properties are satisfied:
(i) The map $t \rightarrow \mu_{t}(T)$ from $(0,+\infty)$ to $[0,+\infty]$ is non-increasing and rightcontinuous. Moreover,

$$
\lim _{t \rightarrow 0} \mu_{t}(T)=\|T\| \in[0,+\infty]
$$

(ii) $\mu_{t}(T)=\mu_{t}(|T|)=\mu_{t}\left(T^{*}\right)$, for $t>0$.
(iii) $\mu_{t}(T)=\inf \left\{s \geq 0: \tau\left(E^{|T|}(s,+\infty)\right) \leq t\right\}$.
(iv) $\mu_{t+s}(T+S) \leq \mu_{t}(T)+\mu_{s}(S)$, for $t>0, s>0$.
(v) $\mu_{t}(R T S) \leq\|R\|\|S\| \mu_{t}(T), t>0$.
(vi) For every $t>0$ and for every projection $P \in \mathcal{M}$ with $\tau(P) \leq t$ we have that $\mu_{t}(T P)=0$.
(vii) For every $t>0$ and for every projection $P \in \mathcal{M}$ with $\tau(P)>t$ we have that $\mu_{t}(P)=1$.
Let T in $\overline{\mathcal{M}}$. We will say that T is a τ-finite-rank operator if there exists a projection $P \in \mathcal{M}$ such that $\tau(P)<+\infty$ and $T=P T$. It follows from Proposition 2.1(ii), (iii) and (vi) that T is a τ-finite rank operator if and only if $m(\operatorname{supp}(\mu(T)))<+\infty$. It follows from Proposition $2.1(\mathrm{i})$ that T is bounded if and only if $\mu(T)$ is bounded.

3. Tensor admissibility

Let (X, ν) be a σ-finite measure space. Let us denote by $\mathscr{M}(X)$ the linear space of all ν-measurable functions $f: X \rightarrow \mathbb{C}$, where we identify the functions which are equal ν-a.e. Let $f \in \mathscr{M}(X)$. The distribution function of f is the function $\delta_{f}:(0,+\infty) \rightarrow[0,+\infty]$ given by

$$
\delta_{f}(s)=\nu(\{x \in X:|f(x)|>s\}) .
$$

It is trivial to verify that δ_{f} is a non-increasing right-continuous function. The decreasing rearrangement of f is the function $f^{\star}:(0,+\infty) \rightarrow[0,+\infty]$ given by:

$$
f^{\star}(t)=\inf \left\{s \geq 0: \delta_{f}(s) \leq t\right\} .
$$

Note that, since δ_{f} is right continuous, the latter infimum is attained, and that f^{\star} is right continuous [2, Chapter 2, Proposition 1.7].

The following are equivalent for a function $f \in \mathscr{M}(X)$:
(1) there exists a $t>0$ such that $\delta_{f}(t)<+\infty$,
(2) $\lim _{t \rightarrow+\infty} \delta_{f}(t)=0$,
(3) $f^{\star}(t) \neq+\infty$ for every $t>0$.

We call a function $f \in \mathscr{M}(X)$ admissible if f satisfies the above conditions. The set of all admissible functions is a subspace of $\mathscr{M}(X)$ [2, Chapter 2 , Proposition 1.3] which we will denote by $\mathscr{L}(X)$.

We equip the set $(0,+\infty)$ with the Lebesgue measure m and set $\mathscr{M}=$ $\mathscr{M}((0,+\infty))$ and $\mathscr{L}=\mathscr{L}((0,+\infty))$.

Let $L^{\infty}(m)$ be the von Neumann algebra of all m-measurable essentially bounded functions $f:(0,+\infty) \rightarrow \mathbb{C}$. Then the map $\tau: L^{\infty}(m) \rightarrow \mathbb{C}$ defined by $\tau(f)=\int f d m$ is a semifinite normal trace on $L^{\infty}(m)$. The space $\widetilde{L^{\infty}(m)}$ of operators affiliated to $L^{\infty}(m)$ is \mathscr{M}, while the space of τ-measurable operators $\overline{L^{\infty}(m)}$ coincides with \mathscr{L} and $\mu(f)=f^{*}$ for every $f \in \mathscr{L}$.

We will denote by \mathscr{D} the cone of all decreasing and right continuous functions $f:(0,+\infty) \rightarrow[0,+\infty)$. Note that $\mathscr{L}=\left\{f \in \mathscr{M}: f^{*} \in \mathscr{D}\right\}$.

Let $f, g \in \mathscr{L}$. We denote by $f \otimes g$ the function $f \otimes g:(0,+\infty) \times(0,+\infty) \rightarrow$ \mathbb{C} defined by

$$
(f \otimes g)(x, y)=f(x) g(y)
$$

Definition 3.1. (1) A pair $(f, g) \in \mathscr{L} \times \mathscr{L}$ is called tensor admissible if $(f \otimes g)^{\star} \in \mathscr{D}$.
(2) A function $f \in \mathscr{L}$ is called tensor admissible if the pair (f, f) is tensor admissible.
Note that, by definition, a pair (f, g) is tensor admissible if and only if $(f \otimes g)^{\star}(t)<+\infty$ for every $t>0$.

Definition 3.2. Let $f \in \mathscr{D}$ and $\theta \in(0,1)$. For $n \in \mathbb{Z}$ we set

$$
\begin{aligned}
I_{n}(f, \theta) & =\left\{t>0: \theta^{n+1}<f(t) \leq \theta^{n}\right\}, \quad J_{n}(f, \theta)=\bigcup_{i<n} I_{i}(f, \theta) \\
a_{n}(f, \theta) & =m\left(I_{n}(f, \theta)\right), \quad A_{n}(f, \theta)=\sum_{i<n} a_{i}(f, \theta)=m\left(J_{n}(f, \theta)\right), \\
L_{\theta}(f) & =\sum_{n \in \mathbb{Z}} \theta^{n} \chi_{I_{n}(f, \theta)} .
\end{aligned}
$$

We call the function $L_{\theta}(f)$ the θ-approximation of f.
Let f and g be two real valued functions in \mathscr{L}. We shall write $f \lesssim g$ if there exists a constant $C>0$ such that for every $x \in(0,+\infty)$ we have $f(x) \leq C g(x)$. If $f \lesssim g$ and $g \lesssim f$ we will say that f and g are equivalent and we will write $f \sim g$.

The following remark follows directly from the definitions.
Remark 3.3. Let $f \in \mathscr{D}$ and $\theta \in(0,1)$. Then
(1) $I_{n}(f, \theta)=\left[A_{n}(f, \theta), A_{n+1}(f, \theta)\right)=\left[A_{n}(f, \theta), A_{n}(f, \theta)+a_{n}(f, \theta)\right)$.
(2) The θ-approximation $L_{\theta}(f)$ of f is decreasing and right continuous and hence belongs to \mathscr{D}.
(3) The θ-approximation $L_{\theta}(f)$ of f satisfies $\theta L_{\theta}(f) \leq f \leq L_{\theta}(f)$. Thus, $f \sim$ $L_{\theta}(f)$.
(4) We have $I_{n}(f, \theta)=I_{n}\left(L_{\theta}(f), \theta\right)$ and $a_{n}(f, \theta)=a_{n}\left(L_{\theta}(f), \theta\right)$ for every $n \in \mathbb{Z}$.
(5) $m(\operatorname{supp} f)<+\infty$ if and only if $\sum_{n \in \mathbb{Z}} a_{n}(f, \theta)<+\infty$.
(6) f is bounded if and only if there exists n_{0} such that $a_{n}(f, \theta)=0$ for $n \leq n_{0}$.
(7) $L_{\theta}\left(L_{\theta}(f)\right)=L_{\theta}(f)$.

The proof of the following lemma is straightforward and we omit it.
Lemma 3.4. Let $f, g, f^{\prime}, g^{\prime} \in \mathscr{D}$. If $f \lesssim f^{\prime}$ and $g \lesssim g^{\prime}$ then $(f \otimes g)^{\star} \lesssim$ $\left(f^{\prime} \otimes g^{\prime}\right)^{\star}$.

In the sequel, we use the conventions $0 \cdot(+\infty)=0$ and $[+\infty,+\infty)=\emptyset$.
Theorem 3.5. Let f, g be in \mathscr{D} and $\theta \in(0,1)$. Let $a_{n}=a_{n}(f, \theta)$ and $b_{n}=a_{n}(g, \theta), n \in \mathbb{Z}$. For every $k \in \mathbb{Z}$, we set $r_{k}=\sum_{i+j<k} a_{i} b_{j}$. Then the pair (f, g) is tensor admissible if and only if there exists k_{0} such that $r_{k_{0}}<+\infty$. In that case, we have that

$$
(f \otimes g)^{\star} \sim \sum_{k \in \mathbb{Z}} \theta^{k} \chi_{\left[r_{k}, r_{k+1}\right)}
$$

Proof. It follows from Lemma 3.4 and Remark 3.3 that the pair (f, g) is tensor admissible if and only if the pair $\left(L_{\theta}(f), L_{\theta}(g)\right)$ is tensor admissible and also that $a_{n}(f, \theta)=a_{n}\left(L_{\theta}(f), \theta\right)$ and $a_{n}(g, \theta)=a_{n}\left(L_{\theta}(g), \theta\right)$. By (7) above, we may suppose that $f=L_{\theta}(f)$ and $g=L_{\theta}(g)$.

Let $t>0$.
Then $f(x) g(y)>t$ if and only if there exist i, j such that $x \in I_{i}(f, \theta)$, $y \in I_{j}(g, \theta)$ and $\theta^{i} \theta^{j}=\theta^{i+j}>t$. Therefore,

$$
\{(x, y): f(x) g(y)>t\}=\bigcup_{i, j, \theta^{i+j}>t}\left\{(x, y): x \in I_{i}(f, \theta), y \in I_{j}(g, \theta)\right\} .
$$

Let $k \in \mathbb{Z}$ be such that $\theta^{k} \leq t<\theta^{k-1}$. We have

$$
\begin{aligned}
& \bigcup_{i, j, \theta^{i+j}>t}\left\{(x, y): x \in I_{i}(f, \theta), y \in I_{j}(g, \theta)\right\} \\
& =\bigcup_{i, j, \theta^{i+j}>\theta^{k}}\left\{(x, y): x \in I_{i}(f, \theta), y \in I_{j}(g, \theta)\right\} \\
& =\bigcup_{i, j, i+j<k}\left\{(x, y): x \in I_{i}(f, \theta), y \in I_{j}(g, \theta)\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\delta_{f \otimes g}(t) & =m(\{(x, y): f(x) g(y)>t\}) \\
& =m\left(\bigcup_{i, j, i+j<k}\left\{(x, y): x \in I_{i}(f, \theta), y \in I_{j}(g, \theta)\right\}\right)=r_{k}
\end{aligned}
$$

The pair (f, g) is tensor admissible if and only if $\delta_{f \otimes g}(t)<+\infty$ for some t. Hence, the pair (f, g) is tensor admissible if and only if for some $k \in \mathbb{Z}, r_{k}<$ $+\infty$. The proof of the first assertion is complete.

Let $k \in \mathbb{Z}$ be such that $r_{k} \leq s<r_{k+1}$. Let $\varepsilon>0$ be such that $\theta^{k}+\varepsilon<\theta^{k-1}$. By the first part of the proof it follows that $\delta_{f \otimes g}\left(\theta^{k}+\varepsilon\right)=r_{k} \leq s$ which implies that $(f \otimes g)^{*}(s) \leq \theta^{k}+\varepsilon$. Let $\varepsilon>0$ be such that $\theta^{k}-\varepsilon>\theta^{k+1}$. Again by the first part of the proof we have that $\delta_{f \otimes g}\left(\theta^{k}-\varepsilon\right)=r_{k+1}>s$, which implies that $(f \otimes g)^{*}(s) \geq \theta^{k}-\varepsilon$. Hence, $(f \otimes g)^{*}(s)=\theta^{k}$.

The proof of the following corollary is contained in the proof of Theorem 3.5.

Corollary 3.6. Let f, g be in \mathscr{D} and $\theta \in(0,1)$. Assume that $f=L_{\theta}(f)$ and that $g=L_{\theta}(g)$. Let $a_{n}=a_{n}(f, \theta), b_{n}=a_{n}(g, \theta)$. For every $k \in \mathbb{Z}$, we set $r_{k}=\sum_{i+j<k} a_{i} b_{j}$. Then

$$
\begin{equation*}
(f \otimes g)^{\star}=\sum_{k \in \mathbb{Z}} \theta^{k} \chi_{\left[r_{k}, r_{k+1}\right)} . \tag{1}
\end{equation*}
$$

(2)

$$
a_{n}\left((f \otimes g)^{*}\right)=\sum_{i+j=n} a_{i} b_{j}
$$

for every $n \in \mathbb{Z}$.
Proposition 3.7. Let $f \in \mathscr{D}$. If f is unbounded and tensor admissible, then $\lim _{x \rightarrow+\infty} f(x)=0$.

Proof. Assume $\lim _{x \rightarrow+\infty} f(x)=a \neq 0$. Let $r>0$. Since f is unbounded the set $A=\{t: f(t)>r / a\}$ has positive measure. Then $\delta_{f \otimes f}(r)=(m \times m)(\{(t, s):$ $|f(t) f(s)|>r\}) \geq(m \times m)(\{(t, s): t \in A, s \in(0,+\infty)\})=+\infty$.

All the von Neumann algebras, we consider from now on, are semifinite and atomless. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces and $\mathcal{M} \subseteq B\left(\mathcal{H}_{1}\right)$ and $\mathcal{N} \subseteq B\left(\mathcal{H}_{2}\right)$ be von Neumann algebras. Assume that τ (resp. σ) is a faithful semi-finite normal trace on $\mathcal{M}($ resp. $\mathcal{N})$.

Let $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ be the Hilbert tensor product of \mathcal{H}_{1} and \mathcal{H}_{2}. We denote by $(\mathcal{M} \bar{\otimes} \mathcal{N}, \tau \otimes \sigma)$ the spatial tensor product of (\mathcal{M}, τ) and (\mathcal{N}, σ), that is, the von Neumann algebra acting on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, generated by the operators $A \otimes B$, where $A \in \mathcal{M}$ and $B \in \mathcal{N}$, equipped with the trace $\tau \otimes \sigma$ defined by $(\tau \otimes \sigma)(A \otimes B)=\tau(A) \sigma(B), A \in \mathcal{M}, B \in \mathcal{N}$. If $A \in \overline{\mathcal{M}}$ and $B \in \overline{\mathcal{N}}$ then $A \otimes B$ is a closed, densely defined operator affiliated to $\mathcal{M} \bar{\otimes} \mathcal{N}$ and $(A \otimes B)^{*}=$ $A^{*} \otimes B^{*}[12$, Theorem 8.1], but it is not true in general that $A \otimes B \in \mathcal{M} \bar{\otimes} \mathcal{N}$. The next theorem provides a characterization of the pairs $(A, B) \in \overline{\mathcal{M}} \times \overline{\mathcal{N}}$ with the property that $A \otimes B \in \overline{\mathcal{M} \bar{\otimes} \mathcal{N}}$.

Theorem 3.8. Let \mathcal{H}_{1} (resp. \mathcal{H}_{2}) be a Hilbert space, and \mathcal{M} (resp. \mathcal{N}) be a Neumann algebra equipped with a faithful semi-finite normal trace τ (resp. σ). Let $A \in \overline{\mathcal{M}}$ and $B \in \overline{\mathcal{N}}$. Then $A \otimes B \in \overline{\mathcal{M} \bar{\otimes} \mathcal{N}}$ if and only if the pair $(\mu(A), \mu(B))$ is tensor admissible. In this case, we have that

$$
\mu(A \otimes B)=(\mu(A) \otimes \mu(B))^{\star}
$$

Proof. Using polar decomposition, we may suppose that A, B are positive operators. Let E^{A} (resp. E^{B}) be the spectral measure of A (resp. B); thus, $A=\int_{0}^{+\infty} x d E^{A}(x)$ and $B=\int_{0}^{+\infty} y d E^{B}(y)$. Let $E^{A} \otimes E^{B}$ be the spectral measure on $\mathbb{R} \times \mathbb{R}$ with values in the projection lattice of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ defined by

$$
\begin{equation*}
E^{A} \otimes E^{B}\left(\delta_{1} \times \delta_{2}\right)=E^{A}\left(\delta_{1}\right) \otimes E^{B}\left(\delta_{2}\right) \tag{1}
\end{equation*}
$$

where δ_{1}, δ_{2} are Borel subsets of \mathbb{R}. It follows from [12, Theorem 8.2] that

$$
A \otimes B=\int_{0}^{+\infty} \int_{0}^{+\infty} x y d\left(E^{A} \otimes E^{B}\right)(x, y)
$$

Let us denote by $E^{A, B}$ the spectral measure on \mathbb{R} given by

$$
\begin{equation*}
E^{A, B}(\delta)=\left(E^{A} \otimes E^{B}\right)(\{(x, y): x y \in \delta\}) \tag{2}
\end{equation*}
$$

Then

$$
A \otimes B=\int_{0}^{+\infty} x d E^{A, B}(x)
$$

For every $s>0$, we set

$$
\Delta_{s}=\{(x, y) \in(0,+\infty) \times(0,+\infty): x y>s\} ;
$$

note that $E^{A, B}(s,+\infty)=\left(E^{A} \otimes E^{B}\right)\left(\Delta_{s}\right)$.
Note that $A \otimes B \in \overline{\mathcal{M} \bar{\otimes} \mathcal{N}}$ if and only if for every $t>0$ we have that $\mu_{t}(A \otimes B)<+\infty$. Since

$$
\mu_{t}(A \otimes B)=\inf \left\{s \geq 0: \tau \otimes \sigma\left(E^{A} \otimes E^{B}\left(\Delta_{s}\right)\right) \leq t\right\}
$$

and

$$
(\mu(A) \otimes \mu(B))^{\star}(t)=\inf \left\{s \geq 0:(m \times m)\left(\left\{(x, y): \mu_{x}(A) \mu_{y}(B)>s\right\}\right) \leq t\right\}
$$

the conclusion of the theorem will follow if we prove the following equality:

$$
\begin{equation*}
(\tau \otimes \sigma)\left(E^{A} \otimes E^{B}\left(\Delta_{s}\right)\right)=(m \times m)\left(\left\{(x, y): \mu_{x}(A) \mu_{y}(B)>s\right\}\right) \tag{3}
\end{equation*}
$$

Let $s>0$. For every $i, n \in \mathbb{N}$, set

$$
\begin{aligned}
& I_{(n, i)}=\left[\frac{i}{n}, \frac{i+1}{n}\right), \quad J_{(n, i)}=\left(\frac{s}{i / n},+\infty\right), \\
& \delta_{(n, i)}=I_{(n, i)} \times J_{(n, i)}, \quad \text { and } \quad \delta_{n}=\bigcup_{i=1}^{+\infty} \delta_{(n, i)} .
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\delta_{1} \subseteq \delta_{2} \subseteq \delta_{3} \subseteq \cdots \quad \text { and } \quad \Delta_{s}=\bigcup_{n=1}^{+\infty} \delta_{n} \tag{4}
\end{equation*}
$$

By [5, Remark 3.3], for every Borel subset δ of \mathbb{R} and every positive operator $T \in \overline{\mathcal{M}}$ we have that

$$
\begin{equation*}
\tau\left(E^{T}(\delta)\right)=\int_{0}^{+\infty} \chi_{\delta}\left(\mu_{t}(T)\right) d t=m\left(\left\{x: \mu_{x}(T) \in \delta\right\}\right) \tag{5}
\end{equation*}
$$

By (4) and (5),

$$
\begin{aligned}
(\tau & \otimes \sigma)\left(E^{A} \otimes E^{B}\left(\Delta_{s}\right)\right) \\
& =\lim _{n \rightarrow \infty}(\tau \otimes \sigma)\left(E^{A} \otimes E^{B}\left(\delta_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{+\infty} \tau \otimes \sigma\left(E^{A} \otimes E^{B}\left(\delta_{(n, i)}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{+\infty} \tau\left(E^{A}\left(I_{(n, i)}\right)\right) \sigma\left(E^{B}\left(J_{(n, i)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{+\infty} m\left(\left\{x: \mu_{x}(A) \in I_{(n, i)}\right\}\right) m\left(\left\{y: \mu_{y}(B) \in J_{(n, i)}\right\}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{+\infty}(m \times m)\left(\left\{x: \mu_{x}(A) \in I_{(n, i)}\right\} \times\left\{y: \mu_{y}(B) \in J_{(n, i)}\right\}\right) \\
& =\lim _{n \rightarrow \infty}(m \times m)\left(\bigcup_{i=1}^{+\infty}\left\{(x, y): \mu_{x}(A) \in I_{(n, i)}, \mu_{y}(B) \in J_{(n, i)}\right\}\right) \\
& =(m \times m)\left(\bigcup_{n=1}^{+\infty} \bigcup_{i=1}^{+\infty}\left\{(x, y): \mu_{x}(A) \in I_{(n, i)}, \mu_{y}(B) \in J_{(n, i)}\right\}\right) \\
& =(m \times m)\left(\left\{(x, y): \mu_{x}(A) \mu_{y}(B)>s\right\}\right)
\end{aligned}
$$

and (3) is established.
Recall that $L^{\infty}(m)$ is the von Neumann algebra of all m-measurable essentially bounded functions $f:(0,+\infty) \rightarrow \mathbb{C}$ equipped with the faithful semifinite normal trace τ given by $\tau(f)=\int f d m$. We also have that $\mathscr{L}=\overline{L^{\infty}(m)}$. Setting $\mathcal{M}=\mathcal{N}=L^{\infty}(m)$ in the above theorem we obtain the following.

Corollary 3.9. Let $f \in \mathscr{L}$. If f is tensor admissible, then

$$
(f \otimes f)^{\star}=\left(f^{\star} \otimes f^{\star}\right)^{\star}
$$

Definition 3.10. Let $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$ be von Neumann algebras with faithful semi-finite normal traces τ, σ. Let $T \in \overline{\mathcal{M}}, S \in \overline{\mathcal{N}}$.
(1) We will call the pair (T, S) tensor admissible if $T \otimes S \in \overline{\mathcal{M} \bar{\otimes} \mathcal{N}}$.
(2) We will call T tensor admissible if $T \otimes T \in \overline{\mathcal{M} \bar{\otimes} \mathcal{M}}$.

Remark 3.11. By Theorem 3.8, the pair (S, T) (resp. the operator T) is tensor admissible if and only if the pair $(\mu(S), \mu(T)$) (resp. the function $\mu(T)$) is tensor admissible.

Some properties of tensor admissible operators are described in the following theorem.

Theorem 3.12. Let (\mathcal{M}, τ) be a von Neumann algebra with a faithful semifinite normal trace τ. Let $S, T \in \overline{\mathcal{M}}$.
(1) If S and T are bounded, then the pair (S, T) is tensor admissible.
(2) If S and T are τ-finite-rank operators, then the pair (S, T) is tensor admissible.
(3) If T is tensor admissible and S is a bounded τ-finite-rank operator, then $T+S$ is tensor admissible.

Proof. (1) is clear.
(2) It suffices to show that the pair $(\mu(S), \mu(T))$ is tensor admissible. Since S and T are τ-finite-rank operators, there exists r_{0} such that $\mu_{r_{0}}(S)=0$ and
$\mu_{r_{0}}(T)=0$. The pair $(\mu(S), \mu(T))$ is tensor admissible if, for some $r>0$, the set $\left\{(x, y): \mu_{x}(S) \mu_{y}(T)>r\right\}$ has finite Lebesgue measure. Since

$$
\left\{(x, y): \mu_{x}(S) \mu_{y}(T)>r\right\} \subseteq\left\{(x, y): \mu_{x}(S) \mu_{y}(T)>0\right\}
$$

and $(m \times m)\left(\left\{(x, y): \mu_{x}(S) \mu_{y}(T)>0\right\}\right) \leq r_{0}^{2}$, the assertion follows.
(3) If T is a τ-finite-rank operator, the assertion follows from (2). We assume that T is not a τ-finite-rank operator. Let s_{0} be such that $\mu_{s_{0}}(S)=0$. Since T is tensor admissible, there exists r such that the measure of the set

$$
F=\left\{(x, y): \mu_{x}(T) \mu_{y}(T)>r\right\}
$$

is finite. By Proposition 2.1, for $x \leq s_{0}$ we have that

$$
\mu_{x}(T+S) \leq \mu_{x}(T)+\|S\| .
$$

Set $c=\frac{\|S\|}{\mu_{s_{0}}(T)}$ (note that, since T is not τ-finite-rank, $\left.\mu_{s_{0}}(T)>0\right)$. We have

$$
\frac{\mu_{x}(T+S)}{\mu_{x}(T)} \leq \frac{\mu_{x}(T)+\|S\|}{\mu_{x}(T)} \leq 1+\frac{\|S\|}{\mu_{x}(T)} \leq 1+\frac{\|S\|}{\mu_{s_{0}}(T)}=1+c .
$$

It follows that

$$
\begin{equation*}
\mu_{x}(T+S) \leq \mu_{x}(T)(1+c) \tag{6}
\end{equation*}
$$

if $0<x \leq s_{0}$.
For every $x>s_{0}$, by Proposition 2.1 we have that

$$
\begin{equation*}
\mu_{x}(T+S) \leq \mu_{x-s_{0}}(T)+\mu_{s_{0}}(S)=\mu_{x-s_{0}}(T) \tag{7}
\end{equation*}
$$

We show that the set

$$
E=\left\{(x, y): \mu_{x}(T+S) \mu_{y}(T+S)>r(1+c)^{2}\right\}
$$

has finite measure. Assume that $x \leq s_{0}, y \leq s_{0}$ and $(x, y) \in E$. Then

$$
\mu_{x}(T+S) \mu_{y}(T+S)>r(1+c)^{2}
$$

and hence, by $(6), \mu_{x}(T) \mu_{y}(T)>r$. Thus, the set

$$
\left\{(x, y) \in E: x \leq s_{0}, y \leq s_{0}\right\}
$$

is contained in F and therefore has finite measure.
Assume $x \leq s_{0}, y>s_{0}$ and $(x, y) \in E$. We have that

$$
\mu_{x}(T+S) \mu_{y}(T+S)>r(1+c)^{2}
$$

and hence, by (6) and (7),

$$
\mu_{x}(T) \mu_{y-s_{0}}(T)>r(1+c)>r
$$

Set

$$
A=\left\{(x, y): x \leq s_{0}, y>s_{0}, \mu_{x}(T) \mu_{y-s_{0}}(T)>r\right\}
$$

and

$$
B=\left\{(x, y): x \leq s_{0}, y>0, \mu_{x}(T) \mu_{y}(T)>r\right\} .
$$

Then B is contained in F and hence has finite measure; since A is the translate of B by the point $\left(0, s_{0}\right)$, we have that A has finite measure. Since $\{(x, y) \in$ $\left.E: x \leq s_{0}, y>s_{0}\right\}$ is contained in A, it has finite measure.

Similarly, we can show that the set $\left\{(x, y) \in E: x>s_{0}, y \leq s_{0}\right\}$ has finite measure.

Assume $x>s_{0}, y>s_{0}$ and $(x, y) \in E$. We have

$$
\mu_{x}(T+S) \mu_{y}(T+S)>r(1+c)^{2}
$$

and hence, by (7),

$$
\mu_{x-s_{0}}(T) \mu_{y-s_{0}}(T)>r(1+c)^{2}>r .
$$

Set

$$
A^{\prime}=\left\{(x, y), x>s_{0}, y>s_{0}: \mu_{x-s_{0}}(T) \mu_{y-s_{0}}(T)>r\right\}
$$

and

$$
B^{\prime}=\left\{(x, y), x>0, y>0: \mu_{x}(T) \mu_{y}(T)>r\right\} .
$$

As before, B^{\prime} has finite measure; since A^{\prime} is the translate of B^{\prime} by the point $\left(s_{0}, s_{0}\right)$, we have that A^{\prime} is of finite measure. As $\left\{(x, y) \in E: x>s_{0}, y>s_{0}\right\}$ is contained in A^{\prime}, it has finite measure. It follows that E has finite measure as the union of four sets of finite measure. The statement now follows from Remark 3.11.

The following proposition is [4, Proposition 1 and Lemma 9]. Note that [4, Lemma 9] was formulated for bounded functions f, but its proof works in the case $f \in \mathscr{D}$ as well.

Proposition 3.13. Let \mathcal{M} be a type $I I_{\infty}$ factor acting on a separable Hilbert space with a faithful semi-finite normal trace τ. There exists an increasing strongly continuous function $P:[0,+\infty) \rightarrow \mathcal{M}$, denoted $t \mapsto P_{t}$ such that:
(1) For every $t \in[0,+\infty), P_{t}$ is a projection in \mathcal{M}.
(2) For every $t \in[0,+\infty)$ we have that $\tau\left(P_{t}\right)=t$.
(3) $\lim _{t \rightarrow \infty} P_{t}=I$.

Moreover, if f is a function in \mathscr{D} and $T=\int_{0}^{+\infty} f(t) d P_{t}$, then T is a measurable operator and $\mu_{t}(T)=f(t)$.

Example 3.14 (A measurable non-tensor admissible operator). We will construct a function in \mathscr{D} which is not tensor admissible and then using Proposition 3.13 we will find a measurable non-tensor admissible operator.

Let $a>0$. We consider the function $f:(0,+\infty) \rightarrow[0,+\infty)$ defined by $f(t)=t^{-a}$. We have $I_{n}(f, 1 / 2)=\left[2^{n / a}, 2^{(n+1) / a}\right)$. Set $a_{n}=a_{n}(f, 1 / 2)$; we have

$$
a_{n}=m\left(I_{n}(f, 1 / 2)\right)=2^{n / a}\left(2^{1 / a}-1\right)
$$

It follows from Theorem 3.5 that f is tensor admissible if and only if there exists k_{0} such that $r_{k_{0}}<+\infty$, where $r_{k}=\sum_{i+j<k} a_{i} a_{j}$ for each $k \in \mathbb{Z}$. For $k \in \mathbb{Z}$, we have

$$
\begin{aligned}
r_{k} & \geq \sum_{i+j=k-1} a_{i} a_{j}=\sum_{i+j=k-1} 2^{i / a} 2^{j / a}\left(2^{1 / a}-1\right)^{2} \\
& =\sum_{i \in \mathbb{Z}} 2^{(k-1) / a}\left(2^{1 / a}-1\right)^{2}=+\infty .
\end{aligned}
$$

We conclude that f is not tensor admissible. Let \mathcal{M}, τ and P be as in Proposition 3.13, and $T=\int_{0}^{+\infty} f(t) d P_{t}$. The operator T is measurable and $\mu_{t}(T)=f(t)$. By Theorem 3.8, T is not tensor admissible.

Example 3.15 (Two tensor admissible positive measurable operators whose sum is not tensor admissible). Let $a>0$ and $f:(0,+\infty) \rightarrow[0,+\infty)$ be the function defined by: $f(t)=t^{-a}-1$ if $t \in(0,1]$ and $f(t)=0$ if $t>1$ and $g:(0,+\infty) \rightarrow[0,+\infty)$ be the function defined by: $g(t)=1$ if $t \in(0,1]$ and $g(t)=t^{-a}$ if $t>1$.

Let \mathcal{M}, τ and P be as in Proposition 3.13. Let $T_{1}=\int_{0}^{+\infty} f(t) d P_{t}, T_{2}=$ $\int_{0}^{+\infty} g(t) d P_{t}$. The operators T_{1} and T_{2} are measurable and $\mu_{t}\left(T_{1}\right)=f(t)$, $\mu_{t}\left(T_{2}\right)=g(t)$. Since T_{1} is a τ-finite-rank operator and T_{2} is bounded, it follows from Theorem 3.12 that they are tensor admissible operators. However, $T_{1}+$ T_{2} is not tensor admissible as we saw in the previous example.

4. Tensor stability

We start this section by recalling several well-known notions.
Definition 4.1. A linear subspace \mathscr{S} of \mathscr{L} is called a Calkin function space if it satisfies the following condition: for every $f \in \mathscr{S}$ and $g \in \mathscr{L}$ such that $g^{\star} \leq f^{\star}$ we have that $g \in \mathscr{S}$.

Let $\lambda>0$. We consider the dilation operator $D_{\lambda}: \mathscr{L} \rightarrow \mathscr{L}$ defined by

$$
D_{\lambda}(f)(t)=f\left(\lambda^{-1} t\right)
$$

It follows from [9, p. 54] that if \mathscr{S} is a Calkin function space, $\lambda>0$ and $f \in \mathscr{S}$, then $D_{\lambda} f \in \mathscr{S}$.

Let \mathscr{V} be a linear space. Recall that a quasi-norm on \mathscr{V} is a non-negative function $x \mapsto\|x\|$ defined on \mathscr{V} and satisfying the same axioms as a norm except for the triangle inequality which is replaced by the requirement: There exists a constant $c>0$ such that

$$
\|x+y\| \leq c(\|x\|+\|y\|)
$$

for all $x, y \in \mathscr{V}$.

Definition 4.2. A Calkin function space \mathscr{E} is called a symmetric quasinormed function space (or a symmetric quasi-normed space) if there exists a quasi-norm ρ on \mathscr{E} with the following property: If $f \in \mathscr{E}, g \in \mathscr{E}$ and $f^{\star} \leq g^{\star}$, then $\rho(f) \leq \rho(g)$. If ρ is a norm with this property, \mathscr{E} is called a symmetric normed function space (or a symmetric normed space).

Definition 4.3. Let (\mathcal{M}, τ) be a von Neumann algebra with a faithful semi-finite normal trace τ. A subspace \mathcal{J} of $\overline{\mathcal{M}}$ such that for every $T \in \mathcal{J}$ and $A, B \in \mathcal{M}$ we have that $A T B \in \mathcal{J}$ is called a submodule of $\overline{\mathcal{M}}$.

Let \mathscr{E} be a Calkin function space. Set $\mathscr{E}(\mathcal{M})=\left\{T \in \overline{\mathcal{M}}: \mu_{t}(T) \in \mathscr{E}\right\}$. By Proposition $2.1(\mathrm{v}), \mathscr{E}(\mathcal{M})$ is a submodule of $\overline{\mathcal{M}}$. It is known that, when \mathscr{M} is a semi-finite factor, the submodules of $\overline{\mathcal{M}}$ are in one-to-one correspondence with the Calkin spaces contained in \mathscr{L} [7]. It follows that, in this case, every submodule of $\overline{\mathcal{M}}$ is of the form $\mathscr{E}(\mathcal{M})$ for some Calkin space \mathscr{E}.

Let (\mathscr{E}, ρ) be a symmetric quasi-normed space and (\mathcal{M}, τ) be a von Neumann algebra with a faithful semi-finite normal trace τ. We define a function $\bar{\rho}: \mathscr{E}(\mathcal{M}) \rightarrow[0,+\infty)$ by

$$
\bar{\rho}(T)=\rho(\mu(T)), \quad T \in \mathscr{E}(\mathcal{M})
$$

It is not hard to see that $\bar{\rho}$ is a quasi-norm on $\mathscr{E}(\mathcal{M})$ (see [8]). If (\mathscr{E}, ρ) is a normed space then $(\mathscr{E}(\mathcal{M}), \bar{\rho})$ is a normed space. This important result was proved by Dodds, Dodds and de Pagter [3] in the case where ρ is a Fatou norm and by Kalton and Sukochev [8] in the general case. If (\mathscr{E}, ρ) is a Banach space then $(\mathscr{E}(\mathcal{M}), \bar{\rho})$ is also a complete normed space ([3], [8]). We also note that if (\mathscr{E}, ρ) is a complete symmetric quasi-normed space then $(\mathscr{E}(\mathcal{M}), \bar{\rho})$ is also a complete quasi-normed space ([13]).

The following theorem is a consequence of Theorem 3.8.
Theorem 4.4. Let $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$ be von Neumann algebras with faithful semi-finite normal traces τ and σ acting on the Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} respectively.
(1) Let $\mathscr{E}_{1}, \mathscr{E}_{2}, \mathscr{E}_{3}$ be Calkin function spaces. Assume that for every $f \in \mathscr{E}_{1}$ and $g \in \mathscr{E}_{2}$ we have that $(f \otimes g)^{\star} \in \mathscr{E}_{3}$. Then

$$
\mathscr{E}_{1}(\mathcal{M}) \otimes \mathscr{E}_{2}(\mathcal{N}) \subseteq \mathscr{E}_{3}(\mathcal{M} \bar{\otimes} \mathcal{N})
$$

(2) Let $\left(\mathscr{E}_{1}, \rho_{1}\right)$, $\left(\mathscr{E}_{2}, \rho_{2}\right),\left(\mathscr{E}_{3}, \rho_{3}\right)$ be symmetric quasi-normed spaces and $C>0$. Assume that for every $f \in \mathscr{E}_{1}$ and every $g \in \mathscr{E}_{2}$, we have $(f \otimes g)^{\star} \in$ \mathscr{E}_{3} and

$$
\rho_{3}\left((f \otimes g)^{\star}\right) \leq C \rho_{1}(f) \rho_{2}(g)
$$

Then

$$
\mathscr{E}_{1}(\mathcal{M}) \otimes \mathscr{E}_{2}(\mathcal{N}) \subseteq \mathscr{E}_{3}(\mathcal{M} \bar{\otimes} \mathcal{N})
$$

and for every $T \in \mathscr{E}_{1}(\mathcal{M})$ and $S \in \mathscr{E}_{2}(\mathcal{N})$ we have

$$
\bar{\rho}_{3}(T \otimes S) \leq C \bar{\rho}_{1}(T) \bar{\rho}_{2}(S)
$$

We combine the above theorem and results of O'Neil on tensor products of Lorentz spaces [11] to obtain Theorem 4.5 below. We first recall the definition of Lorentz spaces $\mathscr{L}_{(p, q)}$.

Let $f \in \mathscr{L}$ and $0<p<+\infty, 0<q \leq+\infty$. We set

$$
\|f\|_{p, q}= \begin{cases}\left(\int_{0}^{+\infty}\left(f^{*}(t) t^{\frac{1}{p}}\right)^{q} \frac{d m(t)}{t}\right)^{\frac{1}{q}} & \text { if } q<+\infty \\ \sup _{t>0} t^{\frac{1}{p}} f^{*}(t) & \text { if } q=+\infty\end{cases}
$$

and

$$
\mathscr{L}_{(p, q)}=\left\{f \in \mathscr{L}:\|f\|_{p, q}<+\infty\right\}
$$

(see [11, Definition 6.5]). It is clear that the spaces $\mathscr{L}_{(p, q)}$ are Calkin spaces and it is known that they are complete symmetric quasi-normed function spaces [6, Theorem 1.4.11]. Theorem 4.5 below follows from [11, Theorem 7.7], Theorem 4.4 and [9, Theorem 2.4.4].

Theorem 4.5. Let $0<p<+\infty$ and $0<q, r, s \leq+\infty$ and let $(\mathcal{M}, \tau),(\mathcal{N}, \sigma)$ be von Neumann algebras with faithful semi-finite normal traces τ and σ acting on the Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} respectively. A necessary and sufficient condition in order that for every $T \in \mathscr{L}_{(p, q)}(\mathcal{M})$ and $S \in \mathscr{L}_{(p, r)}(\mathcal{N})$ we have that $T \otimes S \in \mathscr{L}_{(p, s)}(\mathcal{M} \bar{\otimes} \mathcal{N})$ is that p, q, r, s satisfy the inequalities:

$$
\begin{equation*}
q \leq s, \quad r \leq s, \quad \frac{1}{p}+\frac{1}{s} \leq \frac{1}{q}+\frac{1}{r} . \tag{8}
\end{equation*}
$$

In that case there exists a constant K which depends only on p, q, r, s such that for every $T \in \mathscr{L}_{(p, q)}(\mathcal{M})$ and $S \in \mathscr{L}_{(p, r)}(\mathcal{N})$ we have that

$$
\|\mu(T \otimes S)\|_{(p, s)} \leq K\|\mu(T)\|_{(p, q)}\|\mu(S)\|_{(p, r)}
$$

From now on, we assume that (\mathcal{M}, τ) is a factor of type $I I_{\infty}$.
Definition 4.6. (1) A Calkin function space \mathscr{E} is called tensor stable if for every $f \in \mathscr{E}$ and $g \in \mathscr{E}$ we have that $(f \otimes g)^{\star} \in \mathscr{E}$.
(2) Let \mathscr{E} be a Calkin function space. We shall say that the submodule $\mathscr{E}(\mathcal{M})$ is tensor stable if \mathscr{E} is a tensor stable Calkin function space.

Remark 4.7. Let \mathscr{E} be a Calkin function space. It follows from Theorem 3.8 that the submodule $\mathscr{E}(\mathcal{M})$ is tensor stable if and only if

$$
\mathscr{E}(\mathcal{M}) \otimes \mathscr{E}(\mathcal{M}) \subseteq \mathscr{E}(\mathcal{M} \otimes \mathcal{M})
$$

Remark 4.8. Let $0<p<+\infty$ and $0<q \leq+\infty$. It follows from [11, Theorem 7.7] that the Calkin function space $\mathscr{L}_{(p, q)}$ is tensor stable if and only if $q \leq p$. It follows from Theorem 4.5 that the submodule $\mathscr{L}_{(p, q)}(\mathcal{M})$ is tensor stable if and only if $q \leq p$.

Lemma 4.9. Let $f, g \in \mathscr{D}$ and $\theta \in(0,1)$. Then there exists a constant $C>0$ such that $f \leq C g$ if and only if there exists an integer $r \geq 0$ such that for every $k \in \mathbb{Z}$ we have that

$$
A_{k}(f, \theta) \leq A_{k+r}(g, \theta)
$$

Proof. Assume $f \leq C g$. We consider $r \in \mathbb{Z}, r \geq 0$ such that $\theta^{r} C \leq 1$. Let $x \in J_{n}(f, \theta)$. Then $f(x)>\theta^{n}$ and so $g(x) \geq C^{-1} f(x) \geq \theta^{r} f(x)>\theta^{n+r}$. It follows that $x \in J_{n+r}(g, \theta)$ and $A_{k}(f, \theta) \leq A_{k+r}(g, \theta)$.

Suppose now that there exists an integer $r \geq 0$ such that for every $k \in \mathbb{Z}$ we have that $A_{k}(f, \theta) \leq A_{k+r}(g, \theta)$. Let n be such that $x \in I_{n}(f, \theta)$. Then $x \in\left[A_{n}(f, \theta), A_{n+1}(f, \theta)\right)$ and we have

$$
A_{n}(f, \theta) \leq x<A_{n+1}(f, \theta) \leq A_{n+r+1}(g, \theta)
$$

by assumption. We thus have

$$
g(x) \geq g\left(A_{n+r+1}(g, \theta)\right)>\theta^{n+r+2} .
$$

But then $f(x) \leq \theta^{n}=\theta^{n+r+2} \theta^{-r-2} \leq g\left(A_{n+r+1}(g, \theta)\right) \theta^{-r-2} \leq g(x) \theta^{-r-2}$.
Let $f \in \mathscr{D}$. Then it follows from [9, p. 54] that the set

$$
\left\{g: \text { there exists a } C>0, \text { and } \lambda>0 \text { such that } g^{\star} \leq C D_{\lambda} f\right\}
$$

is a Calkin function space and it is contained in every Calkin function space that contains f. Hence, it is the least Calkin space containing f. We will denote this space by \mathscr{S}_{f}. We will say that a Calkin space is singly generated if it is of the form \mathscr{S}_{f} for some $f \in \mathscr{D}$.

Theorem 4.10. The Calkin space generated by $f \in \mathscr{D}$ is tensor stable if and only if there exists a constant $C>0$ and $\lambda>0$ such that $(f \otimes f)^{\star} \leq C D_{\lambda} f$.

Proof. If \mathscr{S}_{f} is tensor stable, then $(f \otimes f)^{\star} \in \mathscr{S}_{f}$ and hence there exist $C>0$ and $\lambda>0$ such that $(f \otimes f)^{\star} \leq C D_{\lambda} f$.

For the converse, assume that there exist $C>0$ and $\lambda>0$ such that $(f \otimes$ $f)^{\star} \leq C D_{\lambda} f$. Let $g_{1}, g_{2} \in \mathscr{S}_{f}$. Then there exist $K>0, M>0$ and $\nu>0, \kappa>0$ such that $g_{1}^{\star} \leq K D_{\nu} f$ and $g_{2}^{\star} \leq M D_{\kappa} f$. We show that $\left(g_{1} \otimes g_{2}\right)^{\star} \in \mathscr{S}_{f}$. We have

$$
\left(g_{1} \otimes g_{2}\right)^{\star}=\left(g_{1}^{\star} \otimes g_{2}^{\star}\right)^{\star}
$$

by Corollary 3.9. Hence we may assume that $g_{1}, g_{2} \in \mathscr{D}$. Let $\xi=\max \{\nu, \kappa\}$. Then, $g_{1} \leq K D_{\nu} f \leq K D_{\xi} f$ and $g_{2} \leq M D_{\kappa} f \leq M D_{\xi} f$. By Lemma 3.4, we have

$$
\left(g_{1} \otimes g_{2}\right)^{\star} \leq K M\left(D_{\xi} f \otimes D_{\xi} f\right)^{\star} .
$$

But

$$
\left(D_{\xi} f \otimes D_{\xi} f\right)^{\star}=D_{\xi}(f \otimes f)^{\star}
$$

Hence,

$$
\left(g_{1} \otimes g_{2}\right)^{\star} \leq K M C D_{\xi} D_{\lambda} f
$$

and $\left(g_{1} \otimes g_{2}\right)^{\star} \in \mathscr{S}_{f}$.
Corollary 4.11. Let $f \in \mathscr{D}$ and $\theta \in(0,1)$. The Calkin space \mathscr{S}_{f} is tensor stable if and only if there exist an integer $r \geq 0$ and $C>0$ such that for every $k \in \mathbb{Z}$ we have

$$
A_{k}\left((f \otimes f)^{\star}, \theta\right) \leq C A_{k+r}(f, \theta)
$$

Proof. It follows from Lemma 4.9, Proposition 4.10 and the fact that $A_{k}\left(D_{\lambda} f, \theta\right)=\lambda A_{k}(f, \theta)$.

Definition 4.12. Let (\mathcal{M}, τ) be a factor of type $I I_{\infty}$ and \mathcal{J} be a submodule of $\overline{\mathcal{M}}$. We will say that \mathcal{J} is singly generated if there exists $T \in \overline{\mathcal{M}}$ such that \mathcal{J} is the least submodule of $\overline{\mathcal{M}}$ that contains T. In this case, we will say that \mathcal{J} is generated by T.

Remark 4.13. Let (\mathcal{M}, τ) be a factor of type $I I_{\infty}, T \in \overline{\mathcal{M}}$ and \mathcal{J} the submodule generated by T. Let $f=\mu(T)$. Then $\mathcal{J}=\mathscr{S}_{f}(\mathcal{M})$.

Definition 4.14. Let (\mathcal{M}, τ) be a factor of type I_{∞}. A function $f \in \mathscr{D}$ will be called tensor stable if \mathscr{S}_{f} is tensor stable. An operator $T \in \overline{\mathcal{M}}$ will be called tensor stable if the submodule of $\overline{\mathcal{M}}$ generated by T is tensor stable.

Remark 4.15. It follows from Remark 3.3 and Corollary 4.11 that a bounded τ-finite rank operator is tensor stable.

Let \mathcal{M}, τ and P be as in Proposition 3.13. Let $f \in \mathscr{D}$ and $T=$ $\int_{0}^{+\infty} f(t) d P_{t}$. The operator T is measurable and $\mu_{t}(T)=f(t)$. By Remark 4.13, the operator T is tensor stable (resp. bounded, admissible) if and only if f is a tensor stable (resp. bounded, admissible) function. It follows that in order to construct an operator in $\overline{\mathcal{M}}$ with a certain property it is sufficient to construct a function in \mathscr{D} with the corresponding property.

Example 4.16 (A bounded not tensor stable operator). Let $f \in \mathscr{D}$ be the function defined by:

$$
f=\sum_{n \in \mathbb{Z}} 2^{-n} \chi_{I_{n}},
$$

where: $I_{n}=[n, n+1)$ if $n \geq 1, I_{0}=(0,1)$ and $I_{n}=\emptyset$ if $n \leq-1$. Then $a_{n}(f, 1 / 2)=m\left(I_{n}\right)=1$ for $n \geq 0$ and $a_{n}(f, 1 / 2)=0$ for $n \leq-1$. By Corollary 3.6 , for $n>0$ we have

$$
A_{n}\left((f \otimes f)^{\star}, 1 / 2\right)=\sum_{i+j<n} a_{i}(f, 1 / 2) a_{j}(f, 1 / 2)=n(n+1) / 2 .
$$

Let $r \in \mathbb{Z}, r>0$. For $n>0$, we have

$$
A_{n+r}(f, 1 / 2)=\sum_{i=0}^{n+r-1} a_{i}(f, 1 / 2)=n+r
$$

Since there are no $C>0$ and $r \in \mathbb{Z}, r>0$ such that $n(n+1) / 2 \leq C(n+r)$ for every n, it follows from Corollary 4.11 that f is not tensor stable.

Example 4.17 (An unbounded tensor admissible not tensor stable operator). Let $f \in \mathscr{D}$ be the function defined by:

$$
f=\sum_{n \in \mathbb{Z}} 2^{-n} \chi_{I_{n}}
$$

where $I_{n}=\left[2^{n / a}, 2^{(n+1) / a}\right)$ if $n<0$ and $I_{n}=\emptyset$ if $n \geq 0$, for some $a>0$. Then $a_{n}(f, 1 / 2)=m\left(I_{n}\right)=2^{n / a}\left(2^{1 / a}-1\right)$ if $n<0$ and $a_{n}(f, 1 / 2)=0$ if $n \geq 0$. Set $a_{n}=a_{n}(f, 1 / 2)$. It follows from Theorem 3.12 that f is tensor admissible.

It follows from Corollary 3.6 that

$$
A_{n}\left((f \otimes f)^{\star}, 1 / 2\right)=\sum_{i+j<n} a_{i} a_{j}
$$

for every $n \in \mathbb{Z}$. Since for $k<-1$ we have

$$
\sum_{i+j=k} a_{i} a_{j}=\sum_{i<0, j<0, i+j=k} 2^{i / a} 2^{j / a}\left(2^{1 / a}-1\right)^{2}=(|k|-1) 2^{k / a}\left(2^{1 / a}-1\right)^{2}
$$

we obtain for $n<0$

$$
A_{n}\left((f \otimes f)^{\star}, 1 / 2\right)=\sum_{i+j<n} a_{i} a_{j}=\sum_{k=-\infty}^{n-1}(|k|-1) 2^{k / a}\left(2^{1 / a}-1\right)^{2}
$$

Assume that there exist r and C such that $A_{n}\left((f \otimes f)^{\star}, 1 / 2\right) \leq A_{n+r}(f, 1 / 2)$ for every $n \in \mathbb{Z}$. If $n \leq \min \{-1,-r\}$ we obtain

$$
\begin{aligned}
\sum_{k=-\infty}^{n-1}(|k|-1) 2^{k / a}\left(2^{1 / a}-1\right)^{2} & \leq \sum_{i=-\infty}^{n+r-1} 2^{i / a}\left(2^{1 / a}-1\right) \\
& =2^{(n+r-1) / a}\left(2^{1 / a}-1\right) \frac{2^{1 / a}}{2^{1 / a}-1}=2^{(n+r) / a}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (|n-1|-1) 2^{(n-1) / a}\left(2^{1 / a}-1\right)^{2} \leq 2^{(n+r) / a} \\
& \quad \Rightarrow \quad(|n-1|-1)\left(2^{1 / a}-1\right)^{2} \leq 2^{(r+1) / a}
\end{aligned}
$$

for every $n \in \mathbb{Z}$ such that $n \leq \min \{-1,-r\}$ which is absurd. It follows from Corollary 4.11 that f is not tensor stable.

Example 4.18 (A bounded tensor stable operator). Let a_{0}, a_{1}, \ldots be the sequence of Catalan numbers. They are defined as follows:

$$
a_{0}=1, \quad a_{n+1}=\sum_{i=1}^{n} a_{i} a_{n-i}
$$

We set $I_{n}=\emptyset$ for $n<0, I_{0}=(0,1)$ and $I_{n}=\left[\sum_{i=0}^{n-1} a_{i}, \sum_{i=0}^{n} a_{i}\right)$ for $n>0$.
Let $f \in \mathscr{D}$ be the function defined by:

$$
f=\sum_{n \in \mathbb{Z}} 2^{-n} \chi_{I_{n}}
$$

Then, $a_{n}(f, 1 / 2)=m\left(I_{n}\right)=a_{n}$ for $n \geq 0$ and $a_{n}(f, 1 / 2)=m\left(I_{n}\right)=0$ for $n<0$.

Let $n \in \mathbb{Z}$. Then

$$
\begin{aligned}
A_{n}\left((f \otimes f)^{\star}, 1 / 2\right) & =\sum_{i+j<n} a_{i}(f, 1 / 2) a_{j}(f, 1 / 2)=\sum_{i \geq 0, j \geq 0, i+j<n} a_{i} a_{j} \\
& =\sum_{k=0}^{n-1} \sum_{i \geq 0, j \geq 0, i+j=k} a_{i} a_{j}=\sum_{k=0}^{n-1} a_{k+1} \leq \sum_{k=0}^{n} a_{k} \\
& =A_{n+1}(f, 1 / 2) .
\end{aligned}
$$

It follows from Corollary 4.11 that f is tensor stable.
Example 4.19. An unbounded tensor stable operator.
Let $0=n_{0}<n_{1}<n_{2}<\cdots$ a strictly increasing sequence of positive integers satisfying the following conditions:
(1) For every $k \geq 0$,

$$
\sum_{i=0}^{k} n_{i}<n_{k+1}
$$

(2) There exists $C>0$ such that

$$
n_{k+1} / n_{k} \leq C
$$

for every $k \geq 1$.
We set $N_{0}=0$ and, $N_{k}=\sum_{i=0}^{k} n_{k}$ for $k=1,2,3, \ldots$, and

$$
\begin{equation*}
a_{0}=\frac{1}{2} \quad \text { and } \quad a_{i}=\frac{1}{n_{k+1}} \frac{1}{2^{k+2}}, \quad \text { if } i \in\left[N_{k}+1, N_{k+1}\right] . \tag{9}
\end{equation*}
$$

We also set $I_{n}=\left[1-\sum_{i=0}^{|n|} a_{i}, 1-\sum_{i=0}^{|n|-1} a_{i}\right)$ for $n<0, I_{0}=\left[1-a_{0}, 1\right)$ and $I_{n}=\emptyset$ for $n>0$.

Let $f \in \mathscr{D}$ be the function defined by: $f=\sum_{n \in \mathbb{Z}} 2^{-n} \chi_{I_{n}}=\sum_{n=-\infty}^{0} 2^{-n} \chi_{I_{n}}$. Then $a_{n}(f, 1 / 2)=a_{|n|}$ if $n \leq 0$ and $a_{n}(f, 1 / 2)=0$ if $n>0$.

Suppose that $n<0,|n| \in\left[N_{k}+1, N_{k+1}\right]$, that is $|n|=N_{k}+l$, with $1 \leq l \leq$ n_{k+1}.

We calculate $a_{n}\left((f \otimes f)^{\star}, 1 / 2\right)$. By Corollary 3.6, we have

$$
\begin{aligned}
a_{n}\left((f \otimes f)^{\star}, 1 / 2\right) & =\sum_{i+j=n} a_{i}(f, 1 / 2) a_{j}(f, 1 / 2) \\
& =\sum_{i+j=n} a_{|i|} a_{|j|}=\sum_{|i|+|j|=|n|} a_{|i|} a_{|j|} .
\end{aligned}
$$

Suppose that $|i|+|j|=|n|$; we claim that $|i|>N_{k-1}$ or $|j|>N_{k-1}$. Indeed, if $|i| \leq N_{k-1}$ and $|j| \leq N_{k-1}$, then, by (1) above, $|i|+|j| \leq 2 N_{k-1}<N_{k}+1$. This is a contradiction since $|i|+|j|=|n| \in\left[N_{k}+1, N_{k+1}\right]$. Set $I=\{|i| \leq$ $\left.N_{k-1}\right\}, J=\left\{|i|>N_{k-1}\right\}$. We have

$$
a_{n}\left((f \otimes f)^{\star}, 1 / 2\right)=\sum_{|i|+|j|=|n|} a_{|i|} a_{|j|}=\sum_{|i| \in I} a_{|i|} a_{|n|-|i|}+\sum_{|i| \in J} a_{|i|} a_{|n|-|i|} .
$$

If $|i| \in I$, then $|n|-|i|=|j|>N_{k-1}$ and

$$
a_{|n|-|i|} \leq \frac{1}{n_{k}} \frac{1}{2^{k+1}}
$$

Since $\sum_{i \in \mathbb{Z}} a_{i}=1$ we obtain

$$
\sum_{|i| \in I} a_{|i|} a_{|n|-|i|} \leq \frac{1}{n_{k}} \frac{1}{2^{k+1}}
$$

If $|i| \in J$, then $|i|>N_{k-1}$ and

$$
a_{|i|} \leq \frac{1}{n_{k}} \frac{1}{2^{k+1}}
$$

Since $\sum_{i \in \mathbb{Z}} a_{i}=1$ we obtain

$$
\sum_{|i| \in J} a_{|i|} a_{|n|-|i|} \leq \frac{1}{n_{k}} \frac{1}{2^{k+1}}
$$

Hence,

$$
a_{n}\left((f \otimes f)^{\star}, 1 / 2\right) \leq 2 \frac{1}{n_{k}} \frac{1}{2^{k+1}} \leq 4 C \frac{1}{n_{k+1}} \frac{1}{2^{k+2}}=4 C a_{n}(f, 1 / 2)
$$

For $n=0$, we have

$$
a_{0}\left((f \otimes f)^{\star}, 1 / 2\right)=a_{0}^{2} \leq 4 C a_{0}=4 C a_{0}(f, 1 / 2)
$$

since $C>1$. It follows from Corollary 4.11 that f is tensor stable.

References

[1] M. Anoussis, V. Felouzis and I. G. Todorov, s-numbers of elementary operators on C^{*}-algebras, J. Operator Theory 66 (2011), 235-260. MR 2844465
[2] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Boston, MA, 1988. MR 0928802
[3] P. G. Dodds, T. K. Dodds and B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583-597. DOI:10.1007/BF01215160. MR 1004176
[4] T. Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal. 207 (2004), 358-398. DOI:10.1016/S0022-1236(03) 00235-0. MR 2032994
[5] T. Fack and H. Kosaki, Generalized s-numbers of τ-compact operators, Pacific J. Math. 123 (1986), 269-300. MR 0840845
[6] L. Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
[7] D. Guido and T. Isola, Singular traces on semifinite von Neumann algebras, J. Funct. Anal. 134 (1995), 451-485. DOI:10.1006/jfan.1995.1153. MR 1363808
[8] N. Kalton and F. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81-121. DOI:10.1515/CRELLE.2008.059. MR 2431251
[9] S. Lord, F. Sukochev and D. Zanin, Singular traces, theory and applications, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013. MR 3099777
[10] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR 0355628
[11] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and $L(p, q)$ spaces, J. Anal. Math. 21 (1968), 1-276. MR 0626853
[12] W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15-56. MR 0102761
[13] F. Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. (N.S.) 25 (2014), 376-388. DOI:10.1016/j.indag.2012.05.007. MR 3151823
[14] G. Weiss, Classification of certain commutar ideals and the tensor product closure property, Integral Equations Operator Theory 12 (1989), 99-128. DOI:10.1007/BF01199759. MR 0973049
M. Anoussis, Department of Mathematics, University of the Aegean, 83200 Karlovasi, Samos, Greece

E-mail address: mano@aegean.gr
V. Felouzis, Department of Mathematics, University of the Aegean, 83200

Karlovasi, Samos, Greece
E-mail address: felouzis@aegean.gr
I. G. Todorov, Pure Mathematics Research Centre, Queen's University Belfast, Belfast BT7 1NN, United Kingdom

E-mail address: i.todorov@qub.ac.uk

