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MINIMAL GENUS OF LINKS AND FIBERING
OF CANONICAL SURFACES

A. STOIMENOW

Abstract. This paper contains some further applications of the
study of knot diagrams by genus. Introducing a procedure of reg-
ularization for knot generators, and using invariants derived from

the Jones polynomial (degrees, congruences, and the Fiedler–
Polyak–Viro Gauß diagram formulas for its Vassiliev invariants),

we examine the existence of genus-minimizing diagrams for al-
most alternating and almost positive knots. In particular, we

examine the existence of such knots such that either all or none
of their almost alternating/positive diagrams have the minimal

genus property. We prove that the genus of almost positive non-
split links is determined by the Alexander polynomial.
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1. Introduction

Introducing the genus g(K) of a knot K, Seifert [64] gave a construction
of compact oriented surfaces in 3-space bounding the knot (Seifert surface)
by an algorithm starting with some diagram of the knot (see [3, §4.3] or
[62]). The surface given by this algorithm is called canonical. A natural
problem is to determine when the diagram is genus-minimizing (or of minimal
genus), that is, its canonical Seifert surface has minimal genus (among all
Seifert surfaces of the knot). This problem has been studied over a long
period. First, the minimal genus property was shown for alternating diagrams,
independently by Crowell [16] and Murasugi [50]. Their algebraic proof uses
the Alexander polynomial Δ [6] and the inequality maxdegΔ≤ g (which thus
they prove to be exact for alternating knots). Later Gabai [26] developed a
geometric method using foliations, called disk decomposition, and showed
that this method is successful, too, for alternating diagrams. Murasugi [51]
introduced the operation *-product. It was shown to behave naturally with
respect to the Alexander polynomial by himself, and later by Gabai [25], [27]
in the geometrical context. These results imply the extension of the minimal
genus property of alternating diagrams to the homogeneous diagrams of [13].
An important other subclass of the class of homogeneous diagrams and links
are the positive diagrams and links. Such links have been considered (in
general or in special cases) independently before. (See, e.g., [11], [15], [22],
[57], [63], [80], [82], [83].) The minimal genus property for such diagrams
follows from yet a different source, the work of Bennequin [8] on contact
structures. His inequality (Theorem 3 in that paper) in fact allows one to
estimate the difference between the genus of the diagram and the genus of the
knot in terms of the number of positive or negative crossings.

Recently other extensions of the class of alternating and positive links have
been proposed, in an attempt to generalize the variety of well-known results
for them. In [4], Adams et al. introduced almost alternating links and later
[2] toroidally alternating links. While some of the topological results for al-
ternating links could be extended, there is a lot of evidence that the useful
properties [78], [79], [39], [53], [54] of link polynomials [36], [23], [40] can not.

The idea of considering ‘almost’-. . . diagrams is natural and occurred in
the case of almost positive links first independently in papers of Cromwell
[13] (as a technical detail) and (with direct focus) Przytycki and Taniyama
[61]. Przytycki observed that such links can be studied based on Taniyama’s
previous work [77], but their manuscript, despite being announced a long ago,
was completed only recently. In the meantime, I had studied this class using
several combinatorial methods [70], [71] and extended most of the results on
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link polynomials of positive links to almost positive links. With regard to
Seifert surfaces, almost alternating (and implicitly almost positive) diagrams
were considered recently by Hirasawa [32] and Goda–Hirasawa–Yamamoto
[30]. In the latter paper, using cut-and-paste methods, a criterion was given
to decide for an almost alternating diagram when its canonical Seifert surface
is a fiber surface. Later, an extended and simpler form of this criterion was
found, also with a simpler combinatorial proof [71]. The work of [71] also
implied a criterion to decide when the surface is of minimal genus. Here
we will use this result and several types of knot invariants to investigate
the question whether some, or all, almost positive or almost alternating link
diagrams D of a particular link L give a minimal genus surface. Let us write
(see Section 2.2) χ(L) and χ(D) for the Euler characteristic of L and D, resp.
(Thus, D has minimal genus if and only if χ(L) = χ(D).)

Theorem 1.1. Any almost alternating link L has almost alternating di-
agrams D whose surfaces have arbitrarily large genus (in particular, not all
have minimal genus). That is, χ(L)− χ(D) can be arbitrarily large for any
almost alternating link L.

This is an easy observation based on Adams’ tongue move, and is included
only for completeness. More effort will be required to show the following
results, that considerably extend the three examples 942, 944 and 945 in [30].
We start with non-fibered examples, by classifying them into several cases.
We will assume knowledge of the standard facts [62] that if a knot K is
fibered, then maxdegΔ(K) = g(K), maxcf Δ(K) = ±1 (see Section 2.4 for
explanation of these notations), and a fiber and minimal genus surface are
unique (up to isotopy) and coincide.

Theorem 1.2. There are almost alternating knots with Δ = 1, none of
whose almost alternating diagrams has a minimal genus surface. Among them
there are knots that

(a) have no diagrams at all with a minimal genus surface, or
(b) have such diagrams.

There are non-fibered almost alternating knots with minimal genus diagrams,
but such that none of these diagrams are almost alternating, whose Alexander
polynomials have the following properties:

(c) maxdegΔ= g, but maxcf Δ �=±1, or
(d) maxdegΔ= g, and maxcf Δ=±1.

There are infinitely many knots for each of these four combinations of prop-
erties.

We obtain fibered examples (as in [30]) as well, but we have in fact the
following stronger statement. It generalizes also (even if by totally different
means) the result of Morton [48] (to which we will come back shortly).
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Theorem 1.3. There are infinitely many fibered almost alternating knots
with the same Alexander polynomial, whose fibers are canonical surfaces.

(Fibered knots, without examination of almost alternation, whose fibers
are not canonical were constructed by Nakamura [56].) An a consequence, we
obtain the following corollary.

Corollary 1.1. There are infinitely many fibered almost alternating knots
with diagrams of minimal genus but no almost alternating such diagrams.

All these results suggest that, at least from the present point of view, almost
alternating links are a too large class to inherit many interesting properties.

Turning to almost positive knots, one immediately observes a rather differ-
ent situation. Theorem 1.1 is no longer true, since, by Bennequin’s inequality,
we have for an almost positive diagram D of a link L,

(1) χ(D) ∈
{
χ(L)− 2, χ(L)

}
.

(For a longer discussion see, e.g., [68].) In [71] we found how to decide to
which type the diagram D belongs (Lemma 3.1 below), and almost positive
links L usually admit diagrams D of both types. We will show here, though,
that exceptions occur on either side.

Theorem 1.4. There exist almost positive knots with either none or all of
their almost positive diagrams having minimal genus.

Even if this theorem appears to say much less than the previous ones, it
requires more effort than all of them taken together, in the form of a “regular-
ization” procedure for knot generators. (See also the remarks in Section 4.2.)
The fact that many of the link polynomial properties of positive links extend
to almost positive links, creates considerable difficulties in obtaining and prov-
ing the correctness of the corresponding examples. In particular, concerning
the Alexander polynomial, we will show the following theorem:1

Theorem 1.5. If L is an almost positive non-split link, then
2maxdegΔ(L) = 1− χ(L).

2. Preliminaries

2.1. Abbreviations. First, we fix some general (mathematical and linguis-
tic) terminology.

For a set S, the expressions |S| and #S are equivalent and both denote
the cardinality of S. In the sequel the symbol ‘⊂’ denotes a not necessarily
proper inclusion.

1 This theorem was first claimed in a preliminary version of [71], but the subtlety of its

argument was originally overlooked by the author.
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Figure 1. Eliminating a reducible crossing.

Figure 2. Diagram connected sum.

2.2. Knots and knot diagrams. Knots/links and their diagrams must be
oriented (even if orientation is not always displayed).

A crossing p in a knot diagram D is called reducible (or nugatory) if it
looks like on the left of Figure 1 (or its reflection). The diagram D is called
reducible if it has a reducible crossing; otherwise, it is called reduced. The
reducing of the reducible crossing p is the move depicted on Figure 1. Each
diagram D can be (made) reduced by a finite number of these moves.

We assume in the following all diagrams reduced, unless otherwise stated.
The diagram on the right of Figure 2 is called the connected sum A#B of

the diagrams A and B. We say that A and B are (connected sum) factors
of D. If a diagram D can be represented as the connected sum of diagrams
A and B, such that both A and B have at least one crossing, then D is
called composite; otherwise, it is called prime. A knot or link K is prime if,
whenever D =A#B is a composite diagram of K, one of A and B represent
an unknotted arc (but not both; the unknot is not prime per convention).
Every diagram (and link) has a decomposition into prime factors, unique up
to permutation.

Theorem 2.1 ([46]). If D is a prime alternating non-trivial diagram of a
link K, then K is prime.

A diagram D is split or disconnected if its plane curve is a disconnected set
in R

2, that is, there is a simple closed curve disjoint from D, whose interior
and exterior contain parts of D. A diagram which is not disconnected is
connected or non-split. A link is a split link if it has a split diagram, and
otherwise a non-split link. In analogy to connected sum, one can present
every diagram and every link as a split union of split components (which are
non-split diagrams/links). A split component of a link (resp., diagram) is
trivial, if it is an unknot(ted circle).

The (Seifert) genus g(K) resp. Euler characteristic χ(K) of a knot or link
K is said to be the minimal genus resp. maximal Euler characteristic of a
Seifert surface of K. For a diagram D of K, g(D) is defined to be the genus
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(a) (b)

Figure 3. Positive (a) and negative (b) crossing.

of the Seifert surface obtained by Seifert’s algorithm on D, and χ(D) its Euler
characteristic. Let c(D) denote the number of crossings of D; write n(D) =
n(K) for the number of components of D or K (i.e., n(K) = 1 if K is a knot),
and s(D) for the number of Seifert circles of D. Then χ(D) = s(D)− c(D)
and 2g(D) = 2− n(D)− χ(D).

Theorem 2.2 (See [50], [16], [26], [13]). If D is an alternating or positive
diagram of K, then g(K) = g(D) and χ(D) = χ(K).

The crossing number c(K) is the minimal crossing number of all diagrams
D of K. The canonical genus g̃(K) resp. canonical Euler characteristic χ̃(K)
is defined as the minimal genus resp. maximal Euler characteristic of all dia-
grams of K. In general, we can have g(K)< g̃(K), that is, no diagrams of K
of minimal genus (see [49]).

The writhe or sign of a crossing is a number ±1. A crossing as in Figure 3(a)
has writhe 1 and is called positive. A crossing as in Figure 3(b) has writhe
−1 and is called negative. The writhe w(D) of a link diagram D is the sum
of writhes of all its crossings.

Let c±(D) be the number of positive, respectively negative crossings of a
diagram D, so that c(D) = c+(D) + c−(D) and w(D) = c+(D)− c−(D). Let
c±(K) for a knot K denote the minimal number of positive resp. negative
crossings of a diagram of K.

Definition 2.1. A clasp is a tangle that consists of two crossings, that
is, a pair of crossings that bound a bigonal (2-corner) region in the plane
complement of a diagram. The clasp is called positive, negative or trivial, if
both crossings are positive/negative, resp. of different sign. Depending on the
orientation of the involved strands (for an oriented diagram), we distinguish
between

a reverse clasp and a parallel clasp

(both up to reflection). Thus, a clasp is reverse if it contains a full Seifert
circle, and parallel otherwise.

Definition 2.2. A flype is a move on a diagram shown in Figure 4. We
say that a crossing admits a flype if it can be represented as the crossing p
displayed in the diagrams in the figure (up to reflection), and both tangles
have at least one crossing.
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Figure 4. A flype near the crossing p.

Figure 5. Wave-moves. The number of strands on left and
right of the shaded circle may vary. It is only important
that the parities are equal resp. different, and that the left-
outgoing strands are fewer that the right-outgoing ones.

By the fundamental work of Menasco–Thistlethwaite, we have a proof of
the Tait flyping conjecture.

Theorem 2.3 ([47]). For two alternating diagrams of the same prime al-
ternating link, there is a sequence of flypes taking the one diagram into the
other.

A wave move, or bridge rerouting, is a replacement of a too long bridge by
a shorter one; see Figure 5 (or [69] for example).

A diagram is almost alternating [3], [4], [2], [30] if it can be turned by one
crossing change into an alternating one. A knot is almost alternating, if it has
an almost alternating diagram, but is not alternating.

A diagram is positive if all its crossings are positive. A diagram is almost
positive if all its crossings are positive except exactly one. A knot is positive if
it has a positive diagram. (See, e.g., [15], [57], [82], [83].) It is almost positive
if it is not positive but has an almost positive diagram. More generally, a
diagram D is k-almost positive if it has exactly k negative crossings, that is,
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c−(D) = k, and a knot K is k-almost positive if it has a k-almost positive,
but no k− 1-almost positive diagram, that is, c−(K) = k.

A Seifert circle is called separating if both of its complementary regions
in the plane contain other Seifert circles. A diagram is special if no Seifert
circle is separating. It is an easy observation that for connected diagrams two
of the properties alternating, positive/negative and special imply the third.
A diagram with these properties is called special alternating. A knot is special
alternating if it has a special alternating diagram. Such knots were introduced
and studied by Murasugi [53] and have a series of special features. Contrarily,
all knots have a special (not necessarily alternating) diagram. Hirasawa [31]
shows how to a modify any knot diagram D into a special diagram D′ so that
g(D) = g(D′) (actually, the canonical surfaces of D and D′ are isotopic).

Definition 2.3. In analogy to almost positive and almost alternating, one
can also define a diagram to be almost special alternating if it turns into a
special alternating diagram by one crossing change. A knot is almost special
alternating if it is not special alternating, but has an almost special alternating
diagram.

The notion of a homogeneous diagram/link was introduced by Cromwell
[13], in an attempt to extend certain results on positive and alternating links.

Definition 2.4 (See [13, §1]). The Seifert picture (union of Seifert circles)
of a link diagram D separates the plane into regions. A non-empty part of D
lying in some such region is called a block. Then we say that D is homogeneous
if all blocks Di of D are positive or negative (i.e., special alternating). A link
is homogeneous if it has a homogeneous diagram.

In the terms of Definition 2.4, a Seifert circle is separating if it bounds
blocks on both sides, and a diagram is special if it has only one block. In
particular, any of the blocks of D is special.

Since in positive/negative diagrams all blocks are positive/negative, such
diagrams are homogeneous. Alternating diagrams are also homogeneous, this
time so that blocks which are bordering along a Seifert circle have opposite
sign.

Definition 2.5 (See, for example, [55]). The operation that reconstructs
a diagram from its blocks by gluing them back along the separating Seifert
circles is called (diagrammatic) ∗-product or Murasugi sum.

This operation is (here) defined for a pair of diagrams A,B and a pair of
distinguished non-separating Seifert circle a, b. We draw A so that all of it
lies in the interior of a and B so that all of B is in the exterior of b. Then we
identify a and b, such that at a place where a crossing is attached to b (resp. a)
we delete an interval of a (resp. b). There may be a sequence of consecutive
deleted intervals along a or b; we identify them. Then the number of such
deleted intervals is an even integer; it can be called the degree of the Murasugi
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sum. A Murasugi sum of degree 2 is just a connected sum. A Murasugi sum
of degree 4 is called a plumbing. If one of A or B is a Hopf band, it is a Hopf
plumbing. The converse operations to (Hopf) plumbing and Murasugi sum
are called (Hopf) deplumbing and Murasugi desum. (See, e.g., [30] for some
geometric pictures.)

The operation on the canonical surfaces of these diagrams is likewise called
Murasugi sum. (This operation can be defined for Seifert surfaces in a more
general form.)

Definition 2.6. A knot or link L is fibered, if S3 \ L is a surface bundle
over a circle.

Theorem 2.4 (Neuwirth–Stallings). If L is fibered, then a fiber surface is
a minimal genus surface, and a minimal genus surface is unique.

Definition 2.7. A knot or link L will be called canonically fibered, if L is
fibered, and the fiber is a canonical surface for some diagram of L.

The following helpful theorem of Gabai will be applied a few times.

Theorem 2.5 (Gabai [27], [28], [29]). If a surface S decomposes as Mura-
sugi sum A ∗B, then S is of minimal genus if and only if A and B are so,
and S is a fiber surface if and only if A and B are so.

We will use, unless explicitly noted otherwise, KnotScape’s [34] notation
for ≥ 11 crossing knots throughout the rest of the paper. It is organized so
that non-alternating knots are appended to alternating ones instead of using
‘a’ and ‘n’ superscripts. For ≤10 crossings, we use the numbering of [62], with
the Perko duplication removed (and index of the last four knots shifted down
by 1).

The mirror image of a diagram D is written !D, and !K is the mirror image
of K. Clearly g(!D) = g(D) (and therefore g̃(K) = g̃(!K)), and g(!K) = g(K).

2.3. Rational, pretzel, and Montesinos links. We will repeatedly men-
tion (specific) rational, pretzel, and Montesinos tangles, diagrams and links,
and thus we clarify here (our convention of) terminology. In the following, we
use the approach of Conway [12].

Definition 2.8. A tangle diagram is a diagram consisting of strands cross-
ing each other, and having four ends. A rational tangle diagram is the one
that can be obtained from the primitive Conway tangle diagrams by iterated
left-associative product in the way displayed in Figure 6. (A simple but typical
example of is shown in the figure.)

Let the continued (or iterated) fraction [[s1, . . . , sr]] for integers si be de-
fined inductively by [[s]] = s and

[[s1, . . . , sr−1, sr]] = sr +
1

[[s1, . . . , sr−1]]
.
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Figure 6. Conway’s tangles and operations with them.
(The designation ‘product’ is very unlucky, as this operation
is neither commutative, nor associative, nor is it distributive
with ‘sum’. Also, ‘sum’ is associative, but not commutative.)

The rational tangle T (p/q) is the one with Conway notation c1 c2 . . . cn,
when the ci are chosen so that

(2) [[c1, c2, c3, . . . , cn]] =
p

q
.

One can assume without loss of generality that (p, q) = 1, and 0 < q < |p|.
A rational (or 2-bridge) link S(p, q) is the closure of T (p/q).

Montesinos links (see, e.g., [44]) are generalizations of pretzel and ratio-
nal links and special types of arborescent links. They are denoted in the
form M( q1p1

, . . . , qnpn
, e), where e, pi, qi are integers, (pi, qi) = 1 and 0< |qi|< pi.

Sometimes e is called the integer part, and n the length of the Montesinos
link. If e= 0, it is omitted in the notation.

To visualize the link, let pi/qi be continued fractions of rational tangles
c1,i . . . cni,i with [[c1,i, c2,i, c3,i, . . . , cli,i]] =

pi

qi
. Then M( q1p1

, . . . , qnpn
, e) is the

link that corresponds to the Conway notation

(3) (c1,1 . . . cl1,1), (c1,2 . . . cl2,2), . . . , (c1,n . . . cln,n), e0.

The defining convention is that all qi > 0 and if pi < 0, then the tangle is
composed so as to give a non-alternating sum with a tangle with pi±1 > 0.
This defines the diagram up to mirroring.

A typical example is shown on Figure 7.
An easy exercise shows that if qi > 0 resp. qi < 0, then

(4) M(. . . , qi/pi, . . . , e) =M
(
. . . , (qi ∓ pi)/pi, . . . , e± 1

)
,

that is, both forms represent the same link (up to mirroring).
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Figure 7. The Montesinos knot M(3/11,−1/4,2/5,4) with
Conway notation (213,−4,22,40).

If the length n < 3, an easy observation shows that the Montesinos link is
in fact a rational link. A pretzel link is a Montesinos link with all |qi| = 1.
Geometric properties of Montesinos links are discussed in detail in [10].

A Montesinos diagram (resp. rational or pretzel diagram) is the diagram
of a closed Montesinos (or rational, or pretzel) tangle. In other words, it is
a diagram that can be given in Conway notation (3) in the above specified
manner (or its described special cases).

2.4. Link polynomials. Let X ∈ Z[t, t−1]. The minimal or maximal de-
gree mindegX or maxdegX is the minimal resp. maximal exponent of t with
non-zero coefficient in X . Let spantX =maxdegtX −mindegtX . The coef-
ficient in degree d of t in X is denoted [X]td or [X]d. The leading coefficient
maxcfX of X is its coefficient in degree maxdegX . If X ∈ Z[x±1

1 , x±1
2 ], then

maxdegx1
X denotes the maximal degree in x1. Minimal degree and coeffi-

cients are defined similarly, and of course [X]xk
1
is regarded as a polynomial

in x±1
2 .

The skein polynomial P [23], [43] is a Laurent polynomial in two variables
l and m of oriented knots and links and can be defined by being 1 on the
unknot and the (skein) relation

(5) l−1P
( )

+ lP
( )

=−mP
( )

.

(The convention differs from [43] by the interchange of l and l−1.) We will
denote in each triple as in (5) the diagrams (from left to right) by D+, D− and
D0. For a diagram D of a link L, we will use all of the notations P (D) = PD =
PD(l,m) = P (L) = PL(l,m) for its skein polynomial, with the self-suggestive
meaning of indices and arguments.
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The Jones polynomial [36] V , and (one variable) Alexander polynomial [6]
Δ are obtained from P by the substitutions (with i=

√
−1)

V (t) = P
(
−it, i

(
t−1/2 − t1/2

))
,(6)

Δ(t) = P
(
i, i

(
t1/2 − t−1/2

))
.(7)

Hence, these polynomials also satisfy corresponding skein relations. (In alge-
braic topology, the Alexander polynomial is usually defined only up to units in
Z[t, t−1]; the present normalization is so that Δ(t) =Δ(1/t) and Δ(1) = 1. For
links there are also multi-variable versions, but we use only the one-variable
polynomial throughout the paper.)

We will use sometimes instead of Δ also the Conway polynomial [12] ∇(z)
with ∇(t1/2 − t−1/2) =Δ(t). It satisfies the skein relation

(8) ∇(D+)−∇(D−) = z∇(D0).

Note that maxdeg∇= 2maxdegΔ, which we use in particular to implicitly
restate some of the results of [13] in the sequel. It is well known that for a link
L of n components, ∇L ∈ zn−1

Z[z2], and that each such polynomial occurs
for some L, except for knots (n= 1) where we pose additionally the condition
[∇]0 = 1.

Since we have 2maxdegΔ ≤ 1 − χ for every link, it is clear that in any
diagram D,

(9) 2maxdegΔ(D)≤ 1− χ(D).

The proofs of Theorem 2.2 of [50], [16] (for alternating diagrams D) and [13]
(for positive diagrams D) follow from showing that (9) becomes an equality,

(10) 2maxdegΔ(D) = 1− χ(D).

Further, Murasugi proved a multiplicativity of the maximal (possible) coeffi-
cients under Murasugi sum.

Theorem 2.6 (Murasugi [51]; see also [55]). If a diagram D decomposes
as Murasugi sum A ∗B, then[

Δ(D)
]
(1−χ(D))/2

=
[
Δ(A)

]
(1−χ(A))/2

·
[
Δ(B)

]
(1−χ(B))/2

.

Note also that

(11) χ(A ∗B) = χ(A) + χ(B)− 1.

The following property of the Alexander polynomial of fibered links is well
known. We call a polynomial Δ in Z[t±1] monic if maxcf Δ=±1.

Theorem 2.7 (See, e.g., [62]). If L is fibered, then 2maxdegΔL = 1−χ(L)
and ΔL is monic.
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2.5. The signature. The signature σ is a Z-valued invariant of knots and
links, originally defined in terms of Seifert matrices [62]. We have that σ(L)
has the opposite parity to the number of components of a link L, whenever
the determinant det(L) = |ΔL(−1)| �= 0. This in particular always happens
for L being a knot (since ΔL(−1) is always odd in this case), so that σ takes
only even values on knots. Most of the early work on the signature was done
by Murasugi [52], who showed several properties of this invariant.

Then, for links L±,0 with diagrams as in (5), we have

σ(L+)− σ(L−) ∈ {0,1,2},(12)

σ(L±)− σ(L0) ∈ {−1,0,1}.(13)

(Note: In the first property, one can also have {0,−1,−2} instead of {0,1,2},
since other authors, like Murasugi, take σ to be with opposite sign. Thus,
(12) not only defines a property, but also specifies our sign convention for σ.)

The following further property is very useful: σ(!L) =−σ(L), where !L is
the mirror image of L.

If K is a positive knot, then σ(K)> 0 [11]. One goal of [61] was to improve
and extend this result. In particular, it was found that σ(K)≥ 4 if g(K)≥ 2;
furthermore, σ(K)> 0 if K is almost positive or 2-almost positive, except a
twist knot. See [70], [65], [73] for previously written (though not identical)
proofs. We showed in [75] also that for K positive, σ(K)≥ 6 if g(K)≥ 4 and
K �= 1445657.

2.6. Gauß sum invariants. We recall briefly the definition of Gauß sum
invariants. They were introduced first in [19] for braids, and later [20], [59]
for knots. It is known that all they give formulas for Vassiliev invariants [7].
(See §2,3 of [59], for example, for more details.)

Definition 2.9 ([20]). A Gauß diagram of a knot diagram is an oriented
circle with arrows connecting points on it mapped to a crossing and oriented
from the preimage of the undercrossing (underpass) to the preimage of the
overcrossing (overpass).

We will call the two arrow ends the hook and tail.

Example 2.1. As an example, Figure 8 shows the knot 62 in its commonly
known (alternating) diagram and the corresponding Gauß diagram.

The simplest (non-trivial) Vassiliev invariant is the Casson invariant v2 =
[∇]2 [5], with −6v2 = V ′′(1), for which Polyak–Viro [59], [60] gave the simple
Gauß sum formula

(14) v2 = =
1

2

⎛
⎝ +

⎞
⎠ .
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Figure 8. The standard diagram of the knot 62 and its Gauß diagram.

Here the point on the circle corresponds to a point on the knot diagram, to be
placed arbitrarily except on a crossing. (The expression does not alter with
the position of the basepoint; we will hence have, and need, the freedom to
place it conveniently.)

A Gauß diagram Γ, occurring in a formula as (14) of an invariant, must be
read as follows. It is understood as an integer-valued map on knot diagramsD.
It evaluates by summations over all appropriate embeddings of Γ into the
Gauß diagram G(D) of D. (That is, the arrows of Γ should match a subset
of arrows of G(D).) For each embedding, the contribution summed, called
weight, is made up of the writhes of the crossings in D corresponding to the
arrows of G(D) matching Γ; by default, the weight is the product of these
writhes.

Other formulas Polyak–Viro, and also Fiedler, gave for the degree-3-
Vassiliev invariant v3. To make precise which variation of the degree-3-
Vassiliev invariant we mean, we have

v3 =− 1

12
V ′′(1)− 1

36
V (3)(1).

Fiedler’s formula for v3 [20], [21] reads2

(15) 4v3 =
∑
(3,3)

wpwqwr +
∑
(4,2)0

wpwqwr +
1

2

∑
p, q linked

(wp +wq),

where the configurations are

(16)

(3,3) (4,2)0 p, q linked

2 Note the factor 4 by which (15) differs from the definition in [68].
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Here chords depict arrows which may point in both directions (i.e., a chord
in Γ matches an arrow in G(D) of either orientation), and wp denotes the
writhe of the crossing p.

If two chords p and q intersect, we call the corresponding crossings linked
and write p ∩ q. Otherwise, we say p and q are unlinked and write p �∩ q. In
that case, the crossing, whose over-pass (arrow head) is followed in counter-
clockwise orientation of the circle by the under-pass (arrow tail) of the other
crossing is called distinguished. (In the third diagram of (16) it is the arrow
going from lower right to upper left.)

A configuration will be denoted below as a pair (p, q) or triple (p, q, r) of
crossings; hereby, no regard is given to their order, that is, which crossing
matches which arrow in a Gauß diagram.

For a given Gauß diagram formula and fixed diagram to evaluate it on,
we call a configuration positive, negative or neutral, depending on whether its
weight is positive, negative, or zero, respectively. (In the formulas we use, we
have no neutral three-arrow configurations.)

The below is an easy observation on Gauß diagrams, already known in [18],
and named “even valence” in [68].

Lemma 2.1 (“Even valence”). The number of crossings linked with a given
one is always even.

There is a (similarly obvious) refinement of this condition in positive dia-
grams.

Lemma 2.2 (“Extended even valence” [68]). In a positive diagram, each
crossing is distinguished in exactly one half of the linked pairs it is contained
in.

A further property of Gauß diagrams observed in [68] is the following.

Lemma 2.3 (“Double connectivity” [68]). If a ∩ b, a ∩ c, but b �∩ c, then
there is a d �= a with d∩ b and d∩ c.

We note, that v3 is asymmetric, that is, v3(!K) = −v3(K), while v2 is
symmetric, that is, v2(K) = v2(!K). The latter property also justifies the
second equality in (14). Moreover, v2 and v3 are integer-valued (even if for v3
this is not quite obvious from its Gauß diagram formula).

2.7. Genus generators. Now let us recall, from [67], [73], some basic facts
concerning knot generators of given genus. An explanation is given also in
Section 5.3 in [14]. (There are several equivalent forms of these definitions, and
we choose here one that closely leans on the previously set up terminology of
Gauß diagrams.) We will also fix some notations and conventions used below.

Definition 2.10. Let D be a knot diagram, and p and q be crossings.

(1) We call p and q equivalent, q � p, if for all r �= p, q we have r∩p ⇐⇒ r∩q.
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(2) We call p and q ∼-equivalent and write p ∼ q if p and q are equivalent
and p �∩ q.

(3) Similarly p and q are called ∼∗ -equivalent, p ∼∗ q, if p and q are equivalent
and p∩ q.

(4) Finally, p and q are called twist equivalent, if there is a sequence of cross-
ings p = p0, . . . , pn = q such that pi and pi+1 form a clasp (cf. Defini-
tion 2.1).

It is an exercise to check that ∼ is an equivalence relation, and two crossings
are ∼-equivalent if and only if after a sequence of flypes they can be made to
form a reverse clasp. Similarly, one can see that two crossings are ∼∗ -equivalent,
if and only if by flypes they can be joined into a parallel clasp.

Definition 2.11. Call two crossings p and q Seifert equivalent, p∼S q, if
they connect the same two Seifert circles.

Let us record an easy but useful observation.

Lemma 2.4. Two ∼∗ -equivalent crossings are Seifert equivalent. The con-
verse is true in special diagrams.

A ∼-equivalence class consisting of one crossing is called trivial, a class of
more than one crossing non-trivial. We call a ∼-equivalence class sometimes
also a group of crossings.

Definition 2.12. Let t(D) be the number of ∼-equivalence classes of D.
For i = 1, . . . , t(D) let ti(D) be the number of crossings in the ith ∼-
equivalence class. Then for i = 1, . . . , t(D) and j = 1, . . . , ti(D) let p(D, i, j)
be the jth crossing in the ith ∼-equivalence class of D.

Definition 2.13. A t̄′2 move or twist at a crossing x in a diagram D is
a move, which creates a pair of ∼-equivalent crossings to x of the same sign
as x. (This is well-defined up to flypes.) Accordingly, we can distinguish
between a positive and a negative twist (we will mostly use the former).

Definition 2.14. An alternating diagram D is called t̄′2 irreducible or
a generating diagram, if ti(D) ≤ 2 for i = 1, . . . , t(D). An alternating knot
K is called generator if some of its alternating diagrams are generating. The
diagrams obtained from D by t̄′2 moves and crossing changes form the sequence
or series 〈D〉 of D.

Observe that, since ∼-equivalence is invariant under flypes, Theorem 2.3
implies that some alternating diagram of K is generating if and only if all its
alternating diagrams are so.

A flype in Figure 4 is called trivial if one of the tangles contains only
crossings equivalent to the crossing admitting the flype.
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Figure 9. A flype of types A and B.

We introduced (see [76]) a distinction of flypes according to the orientation
near the crossing p at which the flype is performed. See Figure 9, and compare
with the right of Figure 4 (again p is meant up to reflection).

A flype is of type A if the strand orientation is so that strands on the
left/right side of each tangle are directed equally with respect to the tangle
(i.e., both enter or both exit). Otherwise it is a flype of type B. So the
property to admit a type A resp. type B flype is an invariant of the ∼∗ resp.
∼-equivalence class.

An important observation is that each crossing admits at most one of the
types A and B of flypes, and this remains so after applying any sequence on
flypes on the diagram.

Theorem 2.8 ([9], [67]). There exist only finitely many generators of given
genus. All diagrams of that genus can be obtained from diagrams of these
generators, under t̄′2 twists, flypes, and crossing changes.

In [74], we obtained rather sharp estimates on the maximal number of
crossings and ∼-equivalence classes of generators. This, together with the
examples in [76], determined the maximal crossing number of a knot generator
to be 10g− 7 for genus g ≥ 2. In practice (in particular as we will see below),
it is important to obtain the list of generators for small genus. Genus one is
easy, and also observed independently.

Theorem 2.9 ([67]; see also [9], [63]). There are two generators of genus
one, the trefoil and figure-8-knot.

Genus two and three require much more work. For suggestive reasons, it
is sufficient to find prime diagrams, and by Theorem 2.1, prime generators.

Theorem 2.10 ([73]). There are 24 prime generators of genus two. They
have at most 9 ∼-equivalence classes. There are 4017 prime generators of
genus 3, of at most 15 ∼-equivalence classes.

A classification, by means of obtaining the list of prime generators, is also
possible for genus g = 4, and is explained in [75]. Note that, with the rapid
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growth of complexity, apart from a computational challenge, each new genera-
tor list required an entirely different (and considerably more efficient) method
to compile.

It follows from Theorem 2.3 that the series of different (alternating) dia-
grams of the same generating knot are equivalent up to mutations. For tests
based on the Jones polynomial, which is invariant under mutations, it is legit-
imate that a priori we fix throughout Section 3 and Section 4 a single specific
diagram D for each generator K, and work only with (the series of) this di-
agram. Then we write t(K) = t(D), ti(K) = ti(D) and p(K, i, j) = p(D, i, j),
and speak of the sequence or series 〈K〉= 〈D〉 of K.

For the purpose of Section 3 and Section 4, let us parametrize diagrams
in the series of a generator K as K(x1, . . . , xl), where l = t(K), the l ∼-
equivalence classes of K are ordered in some fixed way, and xi are defined as
follows.

For a trivial ∼-equivalence (i.e., ti = 1), xi ≥ 1 means a ∼-equivalence class
of 2xi − 1 positive crossings, or alternatively, the result of applying (xi − 1)
t̄′2-moves to a single positive crossing in the generator. If xi ≤ 0, then we have
a ∼-equivalence class of 1−2xi negative crossings, that is, a negative crossing
with (−xi) t̄

′
2-moves applied.

For a ∼-equivalence class of ti = 2 crossings, xi > 0 means a ∼-equivalence
class of 2xi positive crossings, or alternatively, the result of applying (xi − 1)
t̄′2-moves to one of the two positive crossings in the generator. The parameter
xi = 0 designates that the two crossings have opposite sign, that is, form a
trivial clasp after flypes. Finally, xi < 0 indicates −2xi negative crossings in
the ∼-equivalence class, that is, the result of (−1−xi) t̄

′
2-moves on one of the

negative two crossings in the generator.
This convention will remain valid for the rest of the paper. Note that it

implies that we discard diagrams with crossings of different sign within the
same ∼-equivalence class (unless xi = 0 and ti = 2). Such diagrams have a
trivial clasp after flypes, and are usually of little interest.

3. Genus-minimizing almost alternating diagrams

We start with the results and examples concerning almost alternating dia-
grams, since they are easier to obtain and argue about.

We will need the following lemma that easily combines some less easy
ingredients.

Lemma 3.1. An almost positive diagram is genus-minimizing if and only
if the negative crossing has no Seifert equivalent one (see Definition 2.11).

Proof. An almost positive diagram decomposes under Murasugi sum into
special alternating blocks and one almost special alternating one D0. By
Theorem 2.5, we need to look only at D0. The claim for D0 is an easy
consequence of [71, Corollary 5] (see also the proof of Theorem 5 of [71]).
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Figure 10. A tongue move.

This corollary states that if in an almost special alternating diagram D0 the
negative crossing p has no Seifert equivalent (positive) one, then D0 is of
minimal genus and satisfies (10). Notice that the property easily extends to
an equivalence: if p has a Seifert equivalent crossing q, by a flype (in a special
diagram), one can include p in a trivial parallel clasp with q (see Lemma 2.4).
Then D0 is not of minimal genus (and in particular (10) fails for D0). �

Proof of Theorem 1.1. Adams introduced a tongue move allowing to build
more complicated almost alternating diagrams from a given one. This move
is shown in Figure 10. Herein the crossing needed to be switched to obtain
an alternating diagram is encircled; we call this crossing the dealternator.

Now let us trace the effect of a tongue move on the Seifert circle picture.
The result depends somewhat on the orientation of the strands. Let c be the
overpassing strand of the dealternator p and a the underpassing strand. Let b
be the underpassing strand of one of the crossings q neighbored to p along c.
We can assume that q �= p since otherwise p is nugatory.

If now a and b point in the same direction with regard to c, then it is easy
to see that a tongue move of a and b does not alter the Seifert circle picture,
while it creates two new crossings. Then the diagram genus goes up by one.
If a and b are oppositely oriented with respect to c, then the number of Seifert
circles is altered at most by ±2. Thus the diagram genus may or may not
increase, but it certainly does not decrease.

Since the orientation of c does not matter in this argument, there are two
strands on which a tongue move with strand a can be applied, the ones that
cross c directly before and after a. Call them b1 and b2. If one or both of
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Figure 11. Augmenting diagram genus using tongue moves.

Table 1. Properties of the KT and C knots

Name Perko number KnotScape number Sliceness Genus
KT 473 409 Yes 2
C 471 401 Unknown 3

them cross c in the same direction as a, this move would augment the diagram
genus. Otherwise b1,2 have equal orientation with respect to c. Apply first
a tongue move with a and b1, and now that b1,2 intersect c consecutively, a
tongue move with b1,2 (see Figure 11). At least the second of those moves
strictly augments the genus.

The claim follows by iterating this procedure. �

This simple argument shows that we can certainly not hope every almost
alternating diagram to have minimal genus. More interestingly, however, we
will show that for some knots no minimal genus diagram exists at all.

We recall the two Δ= 1 knots of 11 crossings, the Kinoshita–Terasaka KT
and Conway C knots. Table 1 should help distinguishing them. (The Perko
number refers to [58]; the genera have been determined by Gabai [26].) See
Figure 12 for diagrams of these knots.
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Figure 12. Diagrams of the Kinoshita–Terasaka and Con-
way knots.

Proof of Theorem 1.2. Part (a). We use an observation from [71]. The
Kinoshita–Terasaka knot has genus two [26, Figure 5], and is almost alternat-
ing by the verification in [3], [4], while the calculation in [43, Example 11.1]
gives maxdegmP = 6, so that by Morton’s inequality [49],

(17) maxdegmP (K)≤ 2g̃(K),

we have g̃ = 3. (A genus three canonical surface is not too hard to find, see
below.) This knot thus does not have any diagram whatsoever of minimal
genus.

Now KT unknots in its diagram in Figure 12 by one crossing change in the
upper tangle of 6 crossings. (We let the reader find it.) Call this crossing p.
Applying t̄′2-twists at this crossing (without switching), we obtain a series of
diagrams Di of knots Ki. We choose the indexing so that K0 is the unknot,
K1 = KT , and Di is obtained from D1 by (i− 1) t̄′2-twists at p, henceforth
assuming i > 0. Since Δ(K0) = Δ(K1) = 1, the skein relation for Δ immedi-
ately implies that Δ(Ki) = 1 for all i. Thus, Ki are trivial or non-alternating
[50]. Now consider the skein polynomial. Since p is negative, its skein relation
implies

(18)
(
−l2 + 1

)
P (!Ki−1) + l2P (!Ki−2) = P (!Ki).

Since P (K0) = 1 and maxdegmP (K1) = 6, we easily find maxdegmP (Ki) = 6
and for i > 1

maxdegl
[
P (!Ki)

]
m6 =maxdegl

[
P (!Ki−1)

]
m6 + 2.

Thus by (17) the knots have g̃(Ki)≥ 3, and are distinct. Now g(K0) = 0 and
g(K1) = 2, so that by Corollary 2.4 of [29] (as explained in Remark 11.1 of
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Figure 13. Moves of the Conway knot diagram in Figure 12
to one of minimal genus.

[73]) we have g(Ki) = 2 for all i > 0. In particular, the Ki are non-trivial,
and so non-alternating, and g̃(Ki)> g(Ki). That they are almost alternating
follows in the same way as for KT in the verification in [3], [4], since the twists
at p keep the upper tangle of Di alternating, and do not affect the wrongly
mirrored (3,2)-pretzel tangle in the bottom.

Part (b). Now consider the other knot C. This knot has genus 3, and has a
diagram of minimal genus. Gabai gives its canonical surface, slightly isotoped,
in his op. cit. drawing. (A mutation of this diagram gives a canonical surface
of genus 3 for KT .) But we need a particular sequence of moves that turns
the diagram in Figure 12 into a genus 3 diagram. See Figure 13. Again the
diagram of C in Figure 12 has a negative unknotting crossing p in the upper
tangle. The sequence of moves in Figure 13 is chosen so that p is preserved,
and switching p or applying t̄′2 moves at p commutes with these moves. Now
consider Ki defined an analogy to KT . Most of the argument repeats, except
that now the moves in Figure 13 show g̃(Ki) ≤ 3, and Gabai’s result that
g(Ki) = 3, so that g̃(Ki) = g(Ki) = 3, as we claimed. The diagrams obtained
after t̄′2 moves at p from Figure 12 are still needed to ensure that Ki are almost
alternating. Now assume that some Ki had an almost alternating diagram D
of minimal genus. Then from [71] we would have that

(19) maxdegΔ(Ki) = g(D) = g(Ki)

(see below), but maxdegΔ(Ki) = 0, a contradiction.
Thus for the rest of the proof of this part, we explain (19). The canonical

surface of D is the Murasugi sum of the canonical surfaces of its blocks (see
Definition 2.5). Then D is a Murasugi sum of an almost special alternating
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block with special alternating blocks. The latter are of minimal genus and sat-
isfy (10). The property (10) for genus-minimizing almost special alternating
diagrams D is an easy consequence of the proof of Lemma 3.1. By Murasugi
[51], and also Murasugi–Przytycki [55], the top coefficient of the Alexander
polynomial is multiplicative under Murasugi sum (Theorem 2.6). Murasugi
sum also preserves the minimal genus property of the canonical surface by the
work of Gabai (Theorem 2.5). This completes the explanation of (19).

Part (c). Of course, if a knot is supposed to have a diagram of minimal
genus and maxdegΔ= g, both Morton’s inequality and the condition of [71]
on the Alexander polynomial do not apply, and we must seek a different
method. The one we use was explained in [73, §9] and involves values of the
Jones polynomial at roots of unity.

Consider an almost alternating genus two diagram D, which does not sim-
plify to an alternating one. If D represents a prime non-alternating knot,
it is easy to see that D is prime. Thus from now on consider only prime
generators K. We write l= t(K) for the number of ∼-equivalence classes.

It is clear that the dealternator of D must be single in its ∼-equivalence
class. Formally written, D =K(x1, . . . , xl), where K(x̃1, . . . , x̃l) is the alter-
nating generator diagram, and (up to taking the mirror image of D) with
gi = 1 − ti/2, we have hi = (xi − gi)(x̃i − gi) > 0 except for exactly one
i= 1, . . . , l, for which hi =−1/4.

Now consider for n ∈N the residue

Vn(D) = V (D) mod
t2n − 1

t2 − 1
.

It was observed (by work of Przytycki) in Theorem 9.2 and Corollary 9.1 of
[73] that for D =K(x1, . . . , xl), the value Vn(D) depends only on xi mod n.
(Note that K(x1, . . . , xi + n, . . . , xl) differs from K(x1, . . . , xi, . . . , xl) by a t2n
move.) Now one can adjust the sign of xi by adding a multiple of n. Thus

if K̂ is prime and non-alternating, and has an almost alternating diagram of
genus 2, then, depending on the sign of the dealternator, one of Vn(K̂) or

Vn(!K̂) must be element in the set

(20) Vn :=

⎧⎪⎨
⎪⎩Vn(D) :

D =K(x1, . . . , xl), K prime generator of

genus 2, all xi > 0 except exactly one

i= 1, . . . , l, where ti = 1 and xi = 0

⎫⎪⎬
⎪⎭ .

To find knots, where this is not the case, the proper value of n to take depends
on a balance between the strength of the invariant Vn and the number of in-
variants to compute. Since Vn depends only on xi mod n, for the calculation
of Vn at most nl polynomials in the sequence of K are needed. For genus 2,
we have 24 prime generators K, with l= t(K)≤ 9. In [73, §9], we found that
n= 5 is a good choice. Then V5 can be calculated similarly as there, and is
found to have 86,701 elements. For the computations in [73], we also compiled
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prime ≤16 crossing non-alternating knots with maxdegmP ≤ 4. A check in
this list shows that the pretzel knots (−3,−3,3,3,3) 15184486, (−3,3,−3,3,3)
15184487, and (3,3,3,3,−3) 15197572 (see also Figure 10 in [73]) are the de-

sired examples K̂. For all of them neither V5(K̂) nor V5(!K̂) belong to V5.
(Note that the first two have the same polynomial, being mutants.) Since
maxdegΔ = 2, and the pretzel diagrams have genus 2, the knots have dia-
grams of minimal genus. Also [Δ(t)]2 = −14 resp. 4, so that the knots are
obviously not fibered. It remains to argue why they are almost alternating. It
is easy to see that they are not alternating (for example, their Jones polyno-
mials violate the properties of [78] to have alternating coefficients and to be
monic on either side). Then it is an easy exercise using Conway [12] transfor-
mations that any non-alternating pretzel, in fact, more generally Montesinos,
link is almost alternating. (See Proposition 6.5 in [1] or [3, §3] — for 15197572
Theorem 3.1(i) there even applies directly, or the remarks in §2 of [2].)

To obtain infinitely many examples, remember that V5 is invariant under
five t̄′2 twists (applied at the same crossing). Thus, the (x1, . . . , x5)-pretzel
knots with all xi ≡±3 mod 10 have the same V5. (We can choose the ‘±’ for
each xi independently, except that at least one should be positive and at least
one negative.) The knots are prime for example by the criterion in [41]. If
xi ≡±3 mod 20, then Δ mod 2 is preserved, and [Δ(t)]2 �=±1. Now [Δ(t)]2
is easily seen to depend polynomially on the xi, and this polynomial does not
vanish for some particular values of xi (that satisfy these congruences). Then
it does not vanish for generic such values, and for proper values (with signs
that can be given a priori) becomes arbitrarily large, so that infinitely many of
the knots are distinct. The knots are not alternating for

∑
sgn(xi) =±1, since

by [44, example, p. 529] they have adequate non-alternating diagrams, and by
[79] such prime knots are non-alternating. Then they are almost alternating
by the above remark.

Part (d). Consider the (2a,2b,2c)-pretzel diagram of a 3-component link,
oriented so that it is special (all twists are reverse). The triples (a, b, c) for
which its canonical surface is a fiber were classified by Kanenobu [38] and
Gabai [28]. (See in Gabai’s paper Theorem 6.7, case 1(B) and (C), p. 538,
and historical remark, p. 542.) For such triples, at least two of a, b, c are
±1. They are much fewer than those, for which [Δ]t = ab + ac + bc = ±1.
The simplest example is (−1,2,3). One easily finds in fact infinitely many
(2a,2b,2c)-pretzel diagrams with [Δ]t =±1, whose canonical surfaces are not
fibers. The previous triple extends for k ∈ Z to series like

(a, b, c) =
(
−1 + 125k2 + 5k,2− 25k,3 + 25k

)
.

Using plumbings of positive Hopf bands (of 1 full twist), in the way shown
by example in Figure 11 of [71], one constructs from these pretzel diagrams
genus two knots with [Δ]t2 =±1. By [25], [27] a Hopf plumbing does not alter
the fiber property. The knots obtained after plumbings from such surfaces
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are therefore not fibered. They are Montesinos, and hence alternating or
almost alternating. But if they had an almost alternating diagram of minimal
genus, then maxcf Δ = ±1 implies by [71, Theorem 7] (modified as in the
proof of Corollary 1.1) that they are fibered, a contradiction. The same
contradiction arises from [51], assuming they were alternating. It remains to
see that infinitely many of them are distinct. This can be done using v2. One
can find, for example, from (14), that, applying the plumbings as in Figure 11
of [71], it is an affine-linear combination of a, b and c. Also, taking positive
Hopf bands for plumbing ensures that all coefficients of this linear function
(except possibly the absolute one) are non-zero. �

Proof of Theorem 1.3. Recapture the final arguments in the previous
proof. Now use for (a, b, c) the values (−1,1, n/2), n ∈ 2Z. Then by
Kanenobu–Gabai, the (2a,2b,2c)-pretzel surface is a fiber. Plumb Hopf bands
of different sign near the ±2 half-twists to obtain the Montesinos knot with
Conway [12] notation (n,22,−2− 2). Since smoothing out a crossing in the
group of n gives the 2-component unlink, the Alexander polynomials of these
knots are all the same. That the knots are distinct follows from studying
v3. It behaves polynomially in n (see [66]), and a direct calculation shows
that for n= 0 we have 41#41 with v3 = 0, while for n=±2 we obtain 10137
and its mirror image with v3 = ±2. The knots are of Montesinos type, and
so almost alternating or alternating. The latter situation can occur only for
finitely many. This follows from several results, for example, of [17] (by means
of a bound on the crossing number of an alternating knot of given Δ(−1)),
or [13, Corollary 5.1] (by means of such a bound depending on maxdegΔ for
maxcf Δ=±1). �

Remark 3.1. Since the fiber of 41#41 is clearly a Hopf plumbing, the
Melvin–Morton condition [45] on Δ, used in [30] for 942, 944 and 945, does
not apply to any of our last examples.

Proof of Corollary 1.1. This is a combination of Theorem 1.3 with the fact
that there are only finitely many almost alternating knot diagrams whose
canonical surfaces are fibers of given genus. This latter property is an easy
consequence of [71, Theorem 7], and we explain how.

First, Theorem 7 in [71] is stated for almost positive diagrams. As no-
ticed also there, though, it holds as well for almost alternating diagrams,
since almost positive diagrams and almost alternating diagrams differ only
by mirroring some blocks (in Definition 2.4). Mirroring preserves the fibering
property, and by Gabai (Theorem 2.5), so does Murasugi sum. This explains,
for almost alternating diagrams, the equivalence of conditions (2) and (4) in
Theorem 7 in [71]. (Condition (1) also follows easily, and for (3) one can use
Theorem 2.6, although those parts will not be needed here.)
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Then, for the finiteness we asserted, note first that because of (11) and
χ(Di) ≤ 0 for the blocks Di of D, the number of these blocks is at most
1− χ(D). It is thus enough to see the finiteness for special diagrams D with
fixed χ(D) (since there is a finite number of ways to perform Murasugi sum).
Now use the characterization in part (4) of the theorem. Observe that for a
diagram D as in Figure 8 in [71], the number of vertices of the graph on the
left is at least 2 and equal to 2− χ(D). �

4. Almost positive knots

4.1. The degree of the Alexander polynomial. We will first show that
the property 2maxdegΔ(L) = 1−χ(L) [16], [50], [13] extends to almost pos-
itive non-split links L, as stated in Theorem 1.5. Thus, we have for such L

(21) 2maxdegΔ(L) = 1− χ(L) =maxdegmP (L).

Note that the second equality in (21) is from [71, Theorem 6], and much eas-
ier to prove than Theorem 1.5, although much less natural to interpret. The
equality maxdegmP (L) = 1− χ̃(L) (that is, the exactness of one of the in-
equalities of [49]) would be its natural counterpart. This leads to the following
question.

Question 4.1. Is χ(L) = χ̃(L) for every almost positive link L?

An answer is difficult to give, despite that the examples below suggest as
more likely a negative one.

For the proof of Theorem 1.5, we need to recall some terminology and
results of [71], Definition 2.11, and Lemma 3.1.

Proof of Theorem 1.5. Consider an almost positive diagram D of L. If D
is genus-minimizing, then we know the assertion from [71, Corollary 5]. We
thus assume for the entire proof that D is not genus-minimizing, that is,
χ(D) = χ(L)− 2. (Note that always χ(D)≥ χ(L)− 2, as stated in (1).)

Let p be the negative crossing of D. Let a and b be the Seifert circles
connected by p, such that the overpass of p moves from b to a.
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Let q be the first positive crossing between a and b along a, when starting
at p. (We know from Lemma 3.1 that such a crossing exists.)

Label the regions into which a, b, p and q separate the plane A, B, C and E
as follows.

Note that by choice of q there is no crossing in D joining a and b within
region E.

Let e be the part of a between p and q (that is, starting from p and ending
on q, in the direction of the orientation of a). Similarly, let f be the part
of b between q and p, and let e′ and f ′ be the remaining parts of a and b,
resp.

Let e1, . . . , en be the Seifert circles in E connected by a crossing to e, and
p1, . . . , pν be those crossings. (Note that ν ≥ n, since there may be sev-
eral crossings for one Seifert circle.) Let e′1, . . . , e

′
n′ be those Seifert circles

in A connected by a crossing to e, and p′1, . . . , p
′
ν′ be the connecting cross-

ings. Let f1, . . . , fm be the Seifert circles in C connected by crossings qj
to f , and f ′

1, . . . , f
′
m′ those in B connected to f by crossings q′j . See Fig-

ure 15.
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Now consider the (binary rooted) skein tree of [13]. We describe how it is
obtained, with some more details and modifications.

The root is labelled by D. In D we distinguish a bridge β (line seg-
ment consisting only of overcrossings), which starts before the overcrossing
of p, and is extended in the orientation of the component maximally, that
is, until an undercrossing occurs. Then each binary node of the tree looks
like

In other words, β is always extended until the first undercrossing whose over-
crossing does not belong to β. We do extend the bridge through undercrossings
with itself.

Then to build the two nodes below D+ switch resp. smooth out the under-
crossing terminating the bridge β.

A terminal node is the one in which the bridge β closes to a loop, that is,
reaches its start. (This is not exactly what is a terminal node in the usual
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Figure 14. An almost positive link diagram, used to illus-
trate the proof of Theorem 1.5.

sense, described in [13], but it is sufficient and more suitable for our purpose

here.) Note that in a terminal node the component marked by β is trivial

(i.e., unknotted, since any crossing with itself is passed by β first as an over-

pass) and split from other components of the link (if there are any; since all

crossings with such components are passed as an overpass).
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Figure 15. The link diagram in Figure 14 together with its
Seifert circle picture, except that the crossings p and q are
not smoothed out.

Now note that by this choice of skein resolution tree, each crossing is
switched at most once, and only a positive crossing is switched in a non-
terminal node D+. Also, all overpasses of negative crossings are contained in
β, so that in particular a terminal node contains a positive link (with a trivial
split component).
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Since the contributions of the terminal nodes do not cancel, and are pos-
itive polynomials, we obtain the positivity of ∇ on almost positive links, as
proved in [13, Corollary 2.2].

To show now that maxdeg∇(L) = 1− χ(L) = −1− χ(D), we must show
that a terminal node Dt has a non-zero contribution in degree −1− χ(Dt).
This is the same as saying that some node D′

t in the tree has such a contri-
bution in degree −1− χ(D′

t), since Dt will exist in the subtree for D′
t. (Note

that smoothing out a crossing brings in a factor z from the skein relation of
∇, which accords to the augmentation of χ by 1.)

We describe now how to find D′
t. For this, we need to specify the path from

D to D′
t in the resolution tree. In other words, we need to specify a sequence

of choices between a switch and a smoothing of crossings to extend β.
Let x be the end of β in orientation direction.
Assume x is on e, and reaches a crossing pt in E, connecting it to the

Seifert circle ek. Let ek separate the plane into regions S and S′, and S be
the region containing a. Since pk is positive, we let (by maximal extension) β
pass over pt to ek. Then we smooth out every non-nugatory crossing passed
as undercrossing. If a crossing we reach as undercrossing is nugatory, then we
switch it. (Note that the existence of certain crossings and their nugatority
status are altered by applications of this rule to previous crossings.)

Optionally, we allow the move (22), where r is nugatory. Now we argue
that we can perform this procedure in a nice way.

Lemma 4.1. After a sequence of switches/smoothings, and with an appro-
priate optional choice of moves (22) (and their reflections), x can be made to
reach the undercrossing of pt, but not to leave ek or its interior S′ through
another crossing r �= pt attached to ek on the same side S as a.

(22)

Proof. First, r is reached as undercrossing from within ek, so if r is not nu-
gatory, it is smoothed out. Now assume some of these crossings r is nugatory.
Then there is a loop γ such that D∩γ = {r}. Let Γ be the region of γ contain-
ing ek. It obviously also must contain a, since ek is connected to a by pt, and
r �= pt by assumption. Then the effect would be the same as if we flip r and
the region Γ′ =R

2 \ Γ into ek, so that it is contained in S′, as shown in (22).
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We have now ensured that β does not leave S′ until it reaches the under-
crossing of pt. �

Lemma 4.2. When x reaches the undercrossing of pt, all crossings β passes
within ek are nugatory.

Note that this lemma means in particular that pt becomes nugatory when
passed by x the second time (as undercrossing).

Proof of Lemma 4.2. Assume μ were a non-nugatory crossing β passes.
Then we argue that, by the way β was chosen, μ is positive. To see this,
note first that, since μ is positive in D, if μ were negative, it must have been
switched, and hence passed by x. However, if it is non-nugatory after being
passed by x, it is so before. Therefore, when μ is passed by x the first time
(i.e., one of the strands crossing at μ is passed by x), then by construction
of β, if μ is underpassed by x, it would have been smoothed out. Thus it is
overpassed, and not switched. If/when μ is passed by x the second time, it is
a self-crossing of β, and so not affected.

Note also that the part of β between the two passes of pt is an unknotted,
splittable arc, that is, turns into an unknotted, split component φ if pt would
have been smoothed out. Since a positive diagram of the unknot has only nu-
gatory crossings, all self-crossings of φ are nugatory. If such arc has a positive
crossing with some other component ψ in S′, it would also have a negative one
by the Jordan curve theorem, and because lk(φ,ψ) = 0. But any crossing be-
tween different components is non-nugatory, whereas by construction, all the
negative crossings passed by β are nugatory. This gives a contradiction. �

Now, if β passes a crossing p′t connecting e with some Seifert circle e′k in
A, then if p′t is not nugatory, smooth it out (since it is passed from below,
when coming from e, thereby remaining with x in e⊂ a), or otherwise apply
the same procedure as with the region Γ′ before.

After passing q with x, handle f ′
i as the e′i and fi as the ei. In B there

may be crossings f ′
i that connect a and b, but these are “handled” by being

smoothed out.
After all fi and f ′

i , we arrive with x at the start of β, the overcrossing of
p, and β closes to a split loop. See Figure 16.

All crossings on β are nugatory except p and q. Now if D is of the form

(23) ,

then L is split and ∇= 0. Otherwise the elements of at least one of the four
pairs of Seifert circle segments {e, e′}, {e′, f}, {f, f ′}, {f ′, e} are connected to
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Figure 16. The diagram from Figure 15, but now with the
result of the smoothings described in the proof of Theo-
rem 1.5. The component that passes over the crossings p
and q is now the curve β, and the intermediate points δi of
x are also indicated.

each other by a chain of crossings and (possible) intermediate Seifert circles.

Let τ(D) be the number of such pairs.
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Now, mark on e∪ f points δ1, . . . , δn before and after passing p and q, and
between two crossings attached to e or f . Start the indexing with the point
δ1 after (the overpass of) p.

Let β1, . . . , βn be the intermediate parts of β obtained as described above,
when x passes through δ1, . . . , δn, and D1, . . . ,Dn be the corresponding dia-
grams in the skein tree, so that D =D1. Note that between δi and δi+1, the
bridge β exits e ∪ f into one of the regions A,B,C,E and returns on e ∪ f
through the exiting crossing. Thus, by the previous lemmas, in all Di the
crossings on β are nugatory except p and q (if latter is on β). Also, since only
one of A,B,C,E is altered between δi and δi+1, we have that τ(Di+1) = τ(Di)
or τ(Di+1) = τ(Di)− 1. Now let n′ be the maximal i ∈ {1, . . . , n}, such that
τ(Di)> 0. Such n′ exists, because in Dn all crossings �= p, q on β are nugatory,
and e∪ f ⊂ β, so that τ(Dn) = 0, while τ(D) = τ(D1)> 0.

Then we set D′
t := Dn′ . This diagram D′

t is non-split by choice of β,
since we never smoothed out nugatory crossings. Since τ(D′

t) = 1, it is easy
to see that D′

t can be turned into a positive non-split diagram D′′
t with

χ(D′′
t ) = χ(D′

t) + 2. To achieve this, first remove all crossings on β different
from p and q (as they are nugatory), and then apply a flype, and Reidemeister
II move, annihilating p and q. Then deg∇(D′

t) =−1−χ(D′
t), and thus D′

t has
a non-trivial contribution in degree −1−χ(D′

t), with which we are done. �

The following is easy to see directly, but also worth mentioning as a con-
sequence of our proof.

Corollary 4.1. Assume a link L has an almost positive non-split diagram
that is not of the form (23) (where the four encircled tangles may contain only
positive crossings). Then L is non-split.

Remark 4.1. The non-cancellation argument in the skein resolution tree
seems essential, and also explains why the equality in Theorem 1.5 cannot be
proved in this way for other classes. Indeed, for example it is not always true
for almost alternating links. However, Corollary 4.1 holds in an analogous
form for almost alternating link diagrams, and was proved by Tsukamoto
[81].

As a consequence using Theorem 5 of [71], we have the following corollary.

Corollary 4.2. If L is an almost positive non-split link, then
maxdegΔL =mindegVL.

This solves Conjecture 5.2 of [70], which stated this property for almost
positive knots. Using the work therein, we obtain:

Corollary 4.3. There are only finitely many almost positive knots with
the same Alexander polynomial.



433

4.2. General properties of examples. Almost positive knots seem a much

smaller class than almost alternating ones. (For example, the property of

all Montesinos links to be alternating or almost alternating, which we con-

veniently used several times before in the proofs, does not hold for almost

positive links.) Since there are equally many almost positive and almost al-

ternating diagrams (up to mirroring) of given crossing number, this suggests

that in general almost alternating diagrams admit much more drastic crossing

number reductions. We also realized that an almost alternating knot has in-

finitely many almost alternating diagrams, while from [70] we know an almost

positive knot has only finitely many (reduced) almost positive diagrams.

The examples proving Theorem 1.4 are much more complicated to obtain,

in that consideration of diagrams of genus g = 2 is no longer sufficient. (The

reason will be explained in the end of this section.) In addition, the in-

strumentarium of applicable (criteria of) invariants is considerably restricted,

since almost positive links inherit many properties of invariants of positive

links, as we proved in [70], [71] and in Section 4.1. Relevant to our context,

we know already for theoretical reasons that Morton’s inequality (17), and

the condition maxdegΔ = g cannot be used anymore (in the way we did it

for almost alternating knots).

In practice, the method of calculating Vn of (20) fails, too, for genus g = 3.

In that case, Theorem 2.10 renders Vn beyond the scope of any even moder-

ately reasonable computability for n≥ 5. For n≤ 3, we observed in [73] that

Vn gives almost entirely trivial information, because of the very special type of

the evaluations of V it captures [42], [37]. Trying to translate the calculation

of Section 9 of [73] to genus 3, we found enough V4-values in genus 3 diagrams

to cover V4(K) for any of the more than 100,000 prime non-alternating ≤16

crossing knots K with maxdegmP (K)≤ 6. This suggests the V4-test to be of

little relevance either. On our examples (explained and given below), we at-

tempted the stronger skein polynomial congruence test for n= 4, as explained

in [73, §9]. Then the same outcome was observed.

This explains why new tools are necessary. We will again use information

completely obtainable from the Jones polynomial, but in a very different way.

Still our methods succeed only at some cost. Beside the increase in algorith-

mical and computational effort, they also, unfortunately, do not permit us to

decide on further properties. In particular, we do not know whether these ex-

amples have or have not at all minimal genus diagrams, thereby leaving open

Question 4.1. Also, we cannot control easily their Alexander polynomials, or

construct infinitely many. Remember we know from Corollary 4.3 that an

analogue of Theorem 1.3 is no longer true.

Before we turn to rigorous arguments, let us mention that our results lend

further interest to the following question.
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Question 4.2. Assume an almost positive knot has maxcf Δ = 1. Is it
(always) fibered? (Cromwell [13, Corollary 2.2] proved that maxcf Δ> 0.)

The answer is in general firmly negative for almost alternating knots, as we
showed. But we know from [71] that it is positive if an almost positive knot
has an almost positive diagram of minimal genus. Such knots are much more
common than their almost alternating counterparts. Still now we know that
they are not all. On the opposite hand-side, all our examples for Theorem 1.4
have maxcf Δ> 1.

4.3. The Vassiliev invariant test. The first, theoretically secure, but not
most efficient tool is provided by the Gauß diagram formulas.

Lemma 4.3. Let D be an almost positive diagram with negative crossing p,
and x a positive crossing. Let D′ be obtained from D by a t̄′2 twist applied at x.
Then v2(D

′) ≥ v2(D) and v3(D
′) ≥ v3(D). Moreover, in both inequalities,

equality holds if and only if there is a crossing x′ � p, such that the only
crossings x is linked with are x′ and p.

Proof. Assume without loss of generality that D is prime. (Since v2 and
v3 are additive under connected sum, the composite case easily reduces to the
prime one.) Assume first that a crossing x′ exists such that x′ � p, and x′

and p are the only crossings linked with x. Then we have a Gauß diagram
like this:

The diagram D is prime, and x′ � p means that no chord intersects one of x′

and p but not the other. This implies that there are no basepoints of chords
on the segments a and b. Then in the knot diagram, x′ and p form a trivial
clasp. Resolving that clasp renders x nugatory, which shows that in fact twists
at x in D are isotopies, whence v2(D

′) = v2(D) and v3(D
′) = v3(D).

Now assume the opposite situation, that is, that no such x′ exists. We
will show the increase of v2 and v3 as follows. We will argue that among
the ‘new’ matching configurations in (14) and (15), that is, those involving a
crossing created by the twist, the positive ones outnumber the negative ones.
In the case of v3, this is done by assigning to each new negative configuration
an ‘equilibrating’ (new) positive one. We need to pay attention that each
positive new configuration gets assigned at most once, and to observe that at
least one remains unassigned.

Lemma 2.3 easily implies that if x is linked with only two crossings, and
p is one of them, then the other crossing x′ � p. With the argument, we can
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assume that x is linked with (a) only positive crossings, or (b) with p and at

least 3 other crossings. Let xi for i ∈ {0,1} be the two new crossings added

by the twist at x.

In case (a) a twist at x creates only positive linked pairs for v2, and at least

one of them is counted in one of the terms on the right of (14). Thus, v2 is

augmented.

As for v3, let us trace what negative configurations the twist creates. No

negative (3,3)-configuration is created, since by assumption p �∩ x (and hence

also p �∩ xi). Moreover, with one negative crossing in the diagram, no negative

linked pair exists (with the weight in (15)). The only new negative config-

urations created may be of type (4,2)0. Each such configuration (xi, p, q) is

made up of a chord q ∩ x and xi, i ∈ {0,1} being one of the two new positive

crossings created by the twist. Observe that only one of the xi occurs in such

configuration because of the orientation of arrows. Without loss of generality,

let this be x1.

Then (x1, q) is a positive new linked pair which we make equilibrate this

negative (4,2)0 configuration. Note that this way each (x1, q) is assigned to

at most one negative (4,2)0 configuration (x1, q, p).

Since (x,x1, q) is a new (and unassigned) positive (4,2)0 for each q ∩ x

(with the arrow orientations as in the diagram above), v3 increases.

In case (b), for v2, the twist at x creates at least 6 new positive linked

pairs and two negative ones. After choosing the basepoint in (14) near some

endpoint of x, we see that exactly one half of the groups of new linked pairs

of either sign contribute to the right sum in (14). Thus, v2 increases.

Regarding v3, we first note that p∩ x implies p∩ x0,1. There are now new

negative configurations of type (3,3) and (4,2)0. (As before, a negative linked

pair in (15) would require two negative crossings.)

Consider first new negative configurations of type (4,2)0. There are two

types.

The first type are of the form (p,xi, q), such that q ∩ p and q �∩ xi. (The

latter property is equivalent to q = x or q �∩ x.) By Lemma 2.3, there is a p′
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with (p′, xi, q) ∈ (4,2)0 equilibrating (p,xi, q).

Any (p′, xi, q) equilibrates at most one (p,xi, q), since one can regain (p,xi, q)
from (p′, xi, q) in a unique way: discard the arrow p′ intersecting both other
arrows, and put p instead.

The other type of negative (4,2)0 configurations are (p,xi, q) with q∩x and
q �∩ p, such that (p,x, q) is a (4,2)0. These are equilibrated by the positive
linked pair (xi, q).

Consider now new negative configurations of type (3,3). For each q∩x (and
q ∩ xi) giving a negative configuration (p, q, xi) ∈ (3,3), we have the positive
linked pair (q, xi) equilibrating it (the linked pairs (p,xi) are neutral).

Now there are at least three positive arrows p′ with p′ ∩ x. For each such
p′, the triple (x1, x, p

′) ∈ (4,2)0 is positive. At most one of these at least three
(4,2)0 configurations is used to equilibrate a negative configuration (x1, x, p)
of type (4,2)0. Thus two positive contributions remain unassigned. Therefore,
v3 increases. �

Definition 4.1. For a generator K, let

IK := {0} ∪
{
i= 1, . . . , t(K) : ti(K) = 1

}
be the set of admissible groups of negative crossings of positive or almost
positive diagrams in the series of K. (We exclude almost positive diagrams
that have trivial reverse clasp after flypes.) Let us include positive diagrams
into this scheme, meeting the convention that for such diagrams we set the
group to 0.

Proof of Theorem 1.4. We consider a positive or almost positive dia-
gram D.

Now take a generator K of genus g, and let l= t(K). We first specify the
minimal values of the xi in the representation D =K(x1, . . . , xl). Let i0 ∈ IK ,
and p= p(K, i0,1) be the negative crossing of D if i0 �= 0. Set for i= 1, . . . , l

(24) si =

⎧⎪⎨
⎪⎩
0 i= i0,

2 if ti(K) = 1 and p(K, i,1) ∼∗ p,

1 otherwise.

Notice that if p ∼∗ q and r ∼ q, then one of p and r is equal to q. This means that
∼∗ -equivalent crossings to p (different from p) are alone in their ∼-equivalence
class.
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For i0 �= 0 the diagram D =K(x1, . . . , xl) is almost positive, and it has no
trivial (parallel) clasp after flypes for xi0 = si0 = 0 and xi ≥ si when i �= i0.
In order to discard uninteresting cases, we impose these conditions on the xi

in this proof. If i0 = 0, then D is positive. Let us meet the convention that
if i0 = 0, any condition on xi0 is understood (also for the rest of the paper)
to be empty, and the definition of si in (24) is understood so that all si = 1
(that is, we demand xi ≥ 1 for all i= 1, . . . , l).

Then any almost positive (resp. positive) diagram D of an almost positive
(resp. positive) knot K0 of genus g can be written as K(x1, . . . , xl), where
0 �= i0 ∈ IK (resp. i0 = 0) fixed, xi0 = 0 and xi ≥ si for i �= i0, and K is some
generator of genus g or g+ 1 (resp. only genus g).

Since on any such diagram, any t̄′2 move at a positive crossing strictly
augments v2 and v3, there are only finitely many diagrams that have given v2
and v3. Similarly, one proceeds for positive diagrams. It is easy to implement
an algorithm that performs this twisting and uses (14) and (15) to calculate
v2 and v3 on each diagram. Thus, knowing the list of generators, one can
obtain a complete list of prime positive and almost positive diagrams of genus
g and given v2 and v3.

Consider the (prime) knot !121930 of [34]. It is almost positive (see [71,
Corollary 8]), of genus 2. The above procedure was applied with v2 = 11
and v3 = 35 on generators of genus 2 and 3, and then diagrams with v2
and v3 matching were tested for coincidence of the Jones polynomial with
!121930. The result was that !121930 has only its obvious two almost posi-
tive diagrams, the 12 crossing table diagram (see Figure 8 of [68]), and the
13-crossing (3,3,3,3,−1)-pretzel diagram, both of genus 2. This means that
!121930 has no almost positive diagram of genus 3, leading to the proof of the
second part of Theorem 1.4.

For the first claim in Theorem 1.4, consider the following 17 crossing knot,
shown on Figure 17. (We verified its crossing number by checking in the tables
of [34] that it does not share its skein polynomial with any ≤16 crossing prime
knot.)

For this knot g =mindegV = 3 is easily found using [71, Theorem 5]. One
calculates v2 = 17 and v3 = 66, and can apply the same procedure as for !121930
on genus 3 generators. Again only prime generators suffice, since the knot is
prime. This can be seen most easily by calculation of its hyperbolic volume
(≈28.062). However, the test is much slower now, since v2 and v3 are higher,
more twists are necessary to attain them, and accordingly more options exist
to distribute these twists among the different ∼-equivalence classes. We must
also consider positive diagrams, since we do not know a priori that the knot is
not positive. But obviously, Lemma 4.3 holds for positive diagrams, too. �

There is a way to accelerate the verification procedure. In fact, this opti-
mization was crucially needed to find the 17 crossing example (and 143 other
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Figure 17. An almost positive knot with no almost positive
minimal genus diagram.

ones), which in contrast to !121930 is not simple and not easy to arrive at. The
idea is useful also for several later applications, and thus we explain it now.

4.4. Regularization of generators. We call this method regularization.
The restrictions to crossing numbers of almost positive diagrams one can ob-
tain from it are much stronger than those from v2 and v3, but they do not
apply universally, in that they require certain initial conditions that must be
checked case-by-case. We will explain the procedure for maxdegV , which was
applied in our situation, and then indicate possible refinements and general-
izations.

Fix a generator K and i0 ∈ IK a priori. Let l= t(K) and D =K(x1, . . . , xl)
be a positive or almost positive diagram with negative crossing p= p(K, i0,1)
(that is, xi0 = 0 and all other xi > 0). Call D genus-preserving if D has mini-
mal genus, and genus-reducing otherwise. Remark that which of either occurs
can also be tested from the Jones polynomial, since from [71, Theorem 5] we
know that for an almost positive knot K, mindegV (K) = g(K). It can, of
course, also be tested using Lemma 3.1 and Lemma 2.4.

Definition 4.2. Define the vector (x1, . . . , xl)̂ = (x̂1, . . . , x̂l) by x̂i =

min(xi,2). For D =K(x1, . . . , xl) let D̂ =K(x̂1, . . . , x̂l).

Definition 4.3. A generator K is called weakly regular if it satisfies the
following property.

Consider a positive or almost positive diagram D0 =K(x1, . . . , xl) with l=

t(K) and D0 = D̂0 (that is, xi0 = 0 for some i0 ∈ IK , and all other xi ∈ {1,2}).
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Then for each such D0 and each j = 1, . . . , l with xj = 2 we have
(25)

maxdegV
(
K(x1, . . . , xj − 1, . . . , xl)

)
≤maxdegV

(
K(x1, . . . , xj , . . . , xl)

)
.

Lemma 4.4. If K is weakly regular, then for each positive or almost positive
diagram D ∈ 〈K〉 in the series of K we have

(26) maxdegV (D)≤maxdegV (D̂)− c(D̂) + c(D).

Proof. IfD = D̂, then there is nothing to prove. Otherwise use induction on
c(D). Since D =K(x1, . . . , xl) �= D̂, some xi0 > 2. Let D1 =K(x1, . . . , xi0 −1,
. . . , xl) and D2 = K(x1, . . . , xi0 − 2, . . . , xl). Then the skein relation for V
easily implies

(27) V (D) =
(
t2 + 1

)
V (D1)− t2V (D2).

We always have D̂1 = D̂. If now also D̂2 = D̂ (i.e., xi0 > 3), then the claim
easily follows by induction. Otherwise let xi0 = 3.

Since c(D1,2)< c(D), by induction assumption

maxdegV (D2) ≤ c(D2)− c(D̂2) +maxdegV (D̂2),(28)

maxdegV (D1) ≤ c(D1)− c(D̂1) +maxdegV (D̂1).(29)

Now

c(D1)− c(D̂1) = c(D2)− c(D̂2) = 2
∑

i �=i0:xi>2

(xi − 2) =
∑

i �=i0:ti>4

(ti − 4).

Also
maxdegV (D̂2)≤maxdegV (D̂1),

by applying (25) to j = i0 and xj = xi0 − 1. Thus by taking (26) for D1

(instead of D), and using D̂ = D̂1, we see that for both i= 1,2,

maxdegV (Di)≤maxdegV (D̂) + c(D1)− c(D̂).

Then from (27)

maxdegV (D) ≤ 2 +maxdegV (D̂) + c(D1)− c(D̂)

= c(D)− c(D̂) +maxdegV (D̂),

as claimed. �

Now consider a diagram D = K(x1, . . . , xl) with l = t(K) and xi0 = 0
(or i0 = 0) which is genus-preserving, that is, mindegV (D) = g(D). By
Lemma 3.1, this is equivalent to the property that either D is positive, or
that the negative crossing p= p(D, i0,1) has no Seifert equivalent one. This
means that for i= 1, . . . , l with i �= i0 we have

(30) xi ≥ xi,min :=

{
2 if ti(D) = 1 and i0 �= 0 and p(D, i,1)∼S p,

1 otherwise.
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Notice that if x ∼ q and x ∼S r, and q, r �= x, then q = r. This means that
(for i0 �= 0) Seifert equivalent crossings to p are alone in their ∼-equivalence
class (unless they are in the one of p, which we excluded a priori by genus

minimality). Furthermore, we remark that D is genus-preserving iff D̂ is so.

Definition 4.4. Assume that K is weakly regular and additionally that
(25) is a strict inequality (i.e., not an equality) when D =K(x1, . . . , xj , . . . , xl)
is genus-preserving. Then we call K regular. Otherwise K is irregular.

Lemma 4.5. If K is regular, then on any genus-preserving positive or al-
most positive diagram D in the sequence of K the inequality (26) is sharp
(i.e., an equality).

Proof. If D = D̂, the claim is trivial. Otherwise use induction on c(D).

Since D = K(x1, . . . , xl) �= D̂, some xi0 > 2. Let D1 = K(x1, . . . , xi0 −
1, . . . , xl) and D2 = K(x1, . . . , xi0 − 2, . . . , xl). Apply (27). Again D̂1 = D̂,

and if D̂2 = D̂ (that is, xi0 > 3), we are easily done by induction. Otherwise
let xi0 = 3.

Again (28) and (29) hold, but now since D̂1 = D̂ is genus-preserving,

maxdegV (D̂2)<maxdegV (D̂1)

by assumption of the lemma. Also, (29) is sharp by induction assumption.
Thus, maxdegV (D2) <maxdegV (D1). Then by (27), maxdegV (D) = 2 +
maxdegV (D1), as we wish. �

An important consequence of Lemma 4.5 is the following corollary.

Corollary 4.4. Assume K is a regular generator. Then c(D0) −
maxdegV (D0) is bounded (above) on positive and genus-preserving almost
positive diagrams D0 in the sequence of K.

Note that, since diagrams D with D = D̂ are finitely many (in the sequence
of K they are 2l if i0 = 0 and 2l−1 otherwise), the regularity conditions can
be tested. If they are found fulfilled, one can also calculate

mK := max

⎧⎪⎨
⎪⎩c(D0)−maxdegV (D0) :

D0 positive or genus-preserving

almost positive diagram in the

series of K

⎫⎪⎬
⎪⎭ ,

by evaluating the maximum only over (the finite number of) diagrams D0 =

D̂0.
The result of testing regularity was as follows:

Proposition 4.1. Only 126 of the 4017 prime genus 3 generators K are
irregular. They have at most 12 ∼-equivalence classes. All other (regular) K
satisfy mK ≤ 6.
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Since most generators K turn out regular, including those with the most
∼-equivalence classes, the effort can be significantly reduced (see below). Let
us make a few remarks on variations of the regularization procedure, even if
they did not come to practical use here.

Note that the regularity conditions can be tested and used not only for
given generator K, but in fact for a given pair (K, i0) with i0 ∈ IK . Then we
have analogous mK,i0 , and mK =max{mK,i0 : i0 ∈ IK}. (This equality can
be extended to irregular K or pairs (K, i0) by the convention that mK resp.
mK,i0 is set to be ∞ in this case.) However, since pairs (K, i0) are much more
than K, the required splitting of the tests leads to an economy only if many
K are irregular (or have large mK).

The idea of “regularizing” genus g generators is not restricted to maxdegV -
regularity. An analogue of (27) holds also for P , and we used it as (18) already
in one of our previous proofs. Then so do analogues of Lemmas 4.4 and 4.5,
when maxdegV is replaced by maxdegl P . However, it became apparent after
a few tests that more generators become maxdeglP -irregular. There are more
invariants to regularize with. For example, instead of maxdegl P one can take

maxdegl,O P := max
k∈O

maxdegl[P ]mk

for any non-emptyO⊂G= {0,2, . . . ,2g} (so that maxdegl P =maxdegl,GP ).
Alternatively, one can use maxdegt PS(t) of substitutions PS(t) := P (t, S(t))
for any S ∈ C[tQ]. This includes the case of maxdegV , since (6) expresses
V (it) by PS(t) for an S ∈Ct1/2 +Ct−1/2.

For diagrams of a fixed number (more than one) of negative crossings still
variants of such regularity tests remain theoretically valid. We apply such
a test extensively in [75] (omitting the repetition of the analogous theoreti-
cal details). When some proper initial “regularity” conditions are assumed,
Vassiliev invariant tests may also apply.

4.5. Selection and verification of examples. After the regularity test
and calculation of mK , the restriction to a stand-alone v2–v3-test is necessary
only for a small portion of the generators. Otherwise we have an additional
crossing number bound of c(D0) for a positive or almost positive diagram D0

of a genus 3 knot K0 in the series of K, given by

(31) c(D0)≤mK +maxdegV (K0).

This bound is in general considerably sharper than the one coming from the
v2–v3-test. For example, the 17 crossing knot in Figure 17 has maxdegV = 16,
and since mK ≤ 6 for all regular K, in the series of regular generators, we are
restricted to ≤22 crossings. In contrast, we found diagrams with up to 40
crossings matching the v2 and v3 of this knot. (They were generated when
the v2–v3-test was performed in isolation to verify the example after it was
obtained.)
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In fact, in order to obtain the 17 crossing example (and the other 143),
this reduction is very important. First, we generated some genus-reducing
diagrams of ≤20 crossings and genus 4. (They were found using the generators
of genus 4, which were compiled as described in [75].) Then we discarded
diagrams that admit a crossing-number reducing wave move (see Figure 5).
It is easy to see that such a move does not spoil almost positivity, unless
the diagram becomes positive. If the reduced diagram is positive, or almost
positive and genus-preserving, the candidate can be discarded. Otherwise
we have a simpler diagram of the same candidate. Since one diagram per
candidate suffices, the original diagram is not useful to maintain in either
case. (For genus reducing diagrams of genus two the list of candidates became
empty already after this step. This was expected, since we proved in [73] that
almost positive knots of genus one do not exist.)

We applied then the tool knotfind to discard those knots that can be
transformed (by some of the moves in knotfind’s repertoire) into positive or
almost positive genus 3 diagrams. This tool is used (in some enhanced form)
in the compilation of knot tables by Hoste, Thistlethwaite, and Weeks [35],
and is indirectly included in their program KnotScape [34]. It also brought
the remaining diagrams to ‘minimal’ form in order to eliminate most of the
duplications of the same knots. (Starting with genus reducing diagrams of
genus 3, the list of diagrams remained empty after this step. This strongly
suggests that genus two examples do not exist, and explains the necessity of
considering genus 3 knots.)

Then we had about 5000 candidates to be tested against all possible prime
positive and genus-preserving almost positive genus 3 diagrams. We calculated
V , v2 and v3, and generated diagrams with matching v2 and v3. For regular
generators K, we restricted ourselves additionally to the maximal crossing
number (31) imposed by mK . (Even if many more diagrams were necessary
to consider for irregular generators, this was now feasible, due to the fact that
at most 12 ∼-equivalence classes occur.) We calculated the Jones polynomial
of all diagrams and discarded candidates as soon as their Jones polynomial
occurred. After testing all 4017 generators, 144 of the about 5000 candidates
remained. The 17 crossing knot in Figure 17 is apparently the unique example
among them of smallest crossing number.

Remark 4.2. The tool knotfind has several known bugs. Most notably,
the moves applied during the reduction process occasionally change the knot
type of the diagram. This problem occurred also several times in the present
procedure. However, in our case it simply suffices to locate, by calculation of
invariants, (the results of) these faulty reductions, and to discard them. Of
course, this restricts the list of potential examples, but only insignificantly,
and the subsequent success justifies this decision. Obviously, we cannot claim
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anyway that our list of examples is complete in whatever sense (see the re-
mark just below). Thus, the compilation of candidates is only heuristically to
motivate. It is the examination of their validity that has to be rigorous, and
this verification does not use knotfind.

Years later after this calculation was originally performed, an attempt at
verification by a similar, but not identical procedure, reproduced this 17 cross-
ing example, along with adding 5 others (verifiably) of 17 crossings, and some
more (apparently) 18 crossing ones. In this course, we found that the irregu-
larities in the 126 generators of Proposition 4.1 can be completely eliminated
(at the only cost of having mK ≤ 7) when one defines regularity by demanding
that (25) is strict whenever xj = xj,min+1 (with xj,min from (30) and j �= i0).

4.6. Almost special alternating knots and a problem. The verification
algorithm developed for the examples in Theorem 1.4 can of course be used
in a broader context. The following is easy (recall Definition 2.3).

Proposition 4.2. If K is almost special alternating, then all almost special
alternating diagrams of K have minimal genus.

Proof. In a special diagram Seifert equivalent crossings are ∼∗ -equivalent
(see Lemma 2.4). Thus, from Lemma 3.1, a non-minimal genus almost special
alternating diagram reduces to a special alternating one. �

Clearly an almost special alternating knot is positive or almost positive.
The converse is not always true, as follows from a condition of Murasugi on
the signature σ [52].

Corollary 4.5. If K is almost special alternating, then σ ≥ 2g− 2.

Proof. All almost special alternating diagrams of K have minimal genus.
Then from the work of [52] we have σ = 2g in a special alternating diagram,
and σ changes by 0 or 2 under a crossing switch. �

Many non-alternating positive and almost positive knots have σ < 2g − 2,
but none of them is very simple in crossing number. Among positive knots,
we know meanwhile that all such knots have genus g ≥ 5, except the knot
1445657 (with g = σ = 4; see [75]). By Theorem 1.5, beside positive [13], also
almost positive knots satisfy maxdegΔ = g. Thus, we tested (more easily)
σ < 2maxdegΔ− 2, and then other direct-to-verify necessary conditions to
be positive or almost positive. From the non-alternating prime knot tables of
[34] up to 16 crossings we obtained 275 possible examples. (Most of them are
indeed positive or almost positive, but we could not definitely verify it for all
of them.)

The regularity and v2–v3-tests allow to find other examples of g = 3.

Proposition 4.3. There are non-alternating, positive knots with σ ≥ 2g−
2, which are not almost special alternating.
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Proof. One such knot is 139684 (shown in [33], where another peculiar prop-
erty of it was discovered). We explain how it was obtained.

We started with a list of non-alternating knots from the ≤16 crossing prime
knot tables of [34], that satisfy necessary conditions to be positive or almost
positive of genus 3. By Proposition 4.2, to prove some of them not to be
almost special alternating, only the 1867 prime special alternating generators
of genus 3 need to be processed. In their series, only almost positive (and
no positive) diagrams need to be considered. Knots with matching Jones
polynomial in some of these diagrams were discarded.

Testing the other 2150 non-special generators (but now with positive dia-
grams included) then allows the identification of the positive or almost positive
knots, and give reasonable evidence that the others are not. (Such evidence
is accurate modulo the identification of knots from diagrams, see Remark 4.2,
and the existence of examples as in Figure 17 of ≤16 crossings.) There re-
mained 69 knots, of which 139684 has the fewest crossings. (This method also
eliminated all potential genus 2 examples.) This knot 139684 was later verified
separately using the alone v2–v3-test on special generators (which took only
about a minute!).

We know from [70] that for positive knots of g ≥ 2 we have σ ≥ 4, so none
of the positive knots with g = 3 has σ < 2g − 2. (For example, 139684 has
σ = 2g = 6.) �

The real challenge was now to show that some of these examples are almost
alternating. Clearly an almost special alternating knot is also almost alter-
nating, since in [72] we proved that an alternating knot is not almost positive,
and an alternating positive knot is special alternating. However, none of the
examples we found (neither by the σ condition, nor by the regularity and
v2–v3-tests) could be proved to be almost alternating. (A similar outcome
occurred in genus 4. While the 1.4 million special generators, determined in
[75], are too many to check, the first 9000 already sufficed to discredit all
candidates.)

Question 4.3. If K is positive or almost positive, and almost alternating,
is then K always almost special alternating? An equivalent formulation of this
question is: if K has almost positive and almost alternating (but no alternat-
ing) diagrams, does it also always have diagrams which are simultaneously
both?

Note that in an almost positive almost alternating diagram either the deal-
ternator is the negative crossing (and the diagram is almost special alternat-
ing), or both are the only 2 crossings in a block (as specified in Definition 2.4),
and then cancel after a possible flype to a special alternating diagram.

We should in contrast stress that we could exclude only 10 of the 275
knots of σ < 2g − 2 from being almost alternating, using the fact that they
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are not hyperbolic. Among the 69 examples with σ ≥ 2g − 2, none could be
excluded. In particular, the most conspicuous instances in both series, 139684
and 1445657, remain undecided. Unfortunately, the lack of generally workable
conditions on almost alternation makes the examination of the status even of
single such examples more into a speculation.
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