A SCHAUDER BASIS FOR $L_{1}(0, \infty)$ CONSISTING OF NON-NEGATIVE FUNCTIONS

WILLIAM B. JOHNSON AND GIDEON SCHECHTMAN

Abstract

We construct a Schauder basis for L_{1} consisting of non-negative functions and investigate unconditionally basic and quasibasic sequences of non-negative functions in $L_{p}, 1 \leq p<\infty$.

1. Introduction

In [5], Powell and Spaeth investigate non-negative sequences of functions in $L_{p}, 1 \leq p<\infty$, that satisfy some kind of basis condition, with a view to determining whether such a sequence can span all of L_{p}. They prove, for example, that there is no unconditional basis or even unconditional quasibasis (frame) for L_{p} consisting of non-negative functions. On the other hand, they prove that there are non-negative quasibases and non-negative M-bases for L_{p}. The most important question left open by their investigation is whether there is a (Schauder) basis for L_{p} consisting of non-negative functions. In Section 2, we show that there is basis for L_{1} consisting of non-negative functions.

In Section 3, we discuss the structure of unconditionally basic non-negative normalized sequences in $L_{p}, 1 \leq p<\infty$. The main result is that such a sequence is equivalent to the unit vector basis of ℓ_{p}. We also prove that the closed span in L_{p} of any unconditional quasibasic sequence embeds isomorphically into ℓ_{p}.

We use standard Banach space theory, as can be found in [4] or [1]. Let us just mention that L_{p} is $L_{p}(0, \infty)$, but in as much as this space is isometrically isomorphic under an order preserving operator to $L_{p}(\mu)$ for any separable purely non-atomic measure μ, our choice of $L(0, \infty)$ rather than, for example,

[^0]$L_{p}(0,1)$, is a matter of convenience. Again as a matter of convenience, in the last part of Section 3, we revert to using $L_{p}(0,1)$ as a model for L_{p}.

2. A Schauder basis for $L_{1}(0, \infty)$ consisting of non-negative functions

For $j=1,2, \ldots$ let $\left\{h_{n, i}^{j}\right\}_{n=0, i=1}^{\infty 2^{n}}$ be the mean zero L_{1} normalized Haar functions on the interval $(j-1, j)$. That is, for $n=0,1, \ldots, i=1,2, \ldots, 2^{n}$,

$$
h_{n, i}^{j}(t)= \begin{cases}2^{n}, & j-1+\frac{2 i-2}{2^{n+1}}<t<j-1+\frac{2 i-1}{2^{n+1}} \\ -2^{n}, & j-1+\frac{2 i-1}{2^{n+1}}<t<j-1+\frac{2 i}{2^{n+1}}, \\ 0, & \text { otherwise } .\end{cases}
$$

The system $\left\{h_{n, i}^{j}\right\}_{n=0, i=1, j=1}^{\infty 2^{n} \infty}$, in any order which preserves the lexicographic order of $\left\{h_{n, i}^{j}\right\}_{n=0, i=1}^{\infty 2^{n}}$ for each j, constitutes a basis for the subspace of $L_{1}(0, \infty)$ consisting of all functions whose restriction to each interval $(j-1, j)$ have mean zero. To simplify notation, for each j we shall denote by $\left\{h_{i}^{j}\right\}_{i=1}^{\infty}$ the system $\left\{h_{n, i}^{j}\right\}_{n=0, i=1}^{\infty 2^{n}}$ in its lexicographic order. We shall also denote by $\left\{h_{i}\right\}_{i=1}^{\infty}$ the union of the systems $\left\{h_{i}^{j}\right\}_{i=1}^{\infty}, j=1,2, \ldots$, in any order that respects the individual orders of each of the $\left\{h_{i}^{j}\right\}_{i=1}^{\infty}$.

Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_{i} be the two dimensional space spanned by $2 \mathbf{1}_{(\pi(i)-1, \pi(i))}+\left|h_{i}\right|$ and h_{i}.

Proposition 1. $\sum_{i=1}^{\infty} F_{i}$ is an $F D D$ of $\overline{\operatorname{span}}^{L_{1}}\left\{F_{i}\right\}_{i=1}^{\infty}$.
Proof. The assertion will follow from the following inequality, which holds for all scalars $\left\{a_{i}\right\}_{i=1}^{\infty}$ and $\left\{b_{i}\right\}_{i=1}^{\infty}$,

$$
\begin{align*}
& \frac{1}{2} \sum_{i=1}^{\infty}\left|a_{i}\right|+\frac{1}{8}\left\|\sum_{i=1}^{\infty} b_{i} h_{i}\right\| \tag{1}\\
& \quad \leq\left\|\sum_{i=1}^{\infty} a_{i}\left(2 \mathbf{1}_{(\pi(i)-1, \pi(i))}+\left|h_{i}\right|\right)+\sum_{i=1}^{\infty} b_{i} h_{i}\right\| \\
& \quad \leq 3 \sum_{i=1}^{\infty}\left|a_{i}\right|+\left\|\sum_{i=1}^{\infty} b_{i} h_{i}\right\| .
\end{align*}
$$

The right inequality in (1) follows easily from the triangle inequality. As for the left inequality, notice that the conditional expectation projection onto the closed span of $\left\{\mathbf{1}_{(i-1, i)}\right\}_{i=1}^{\infty}$ is of norm one and the complementary projection, onto the closed span of $\left\{h_{i}\right\}_{i=1}^{\infty}$, is of norm 2. It follows that

$$
\left\|\sum_{i=1}^{\infty} a_{i}\left(2 \mathbf{1}_{(\pi(i)-1, \pi(i))}\right)+\sum_{i=1}^{\infty} b_{i} h_{i}\right\| \geq \max \left\{2 \sum_{i=1}^{\infty}\left|a_{i}\right|, \frac{1}{2}\left\|\sum_{i=1}^{\infty} b_{i} h_{i}\right\|\right\} .
$$

Since $\left\|\sum_{i=1}^{\infty} a_{i}\left|h_{i}\right|\right\| \leq \sum_{i=1}^{\infty}\left|a_{i}\right|$, we get

$$
\left\|\sum_{i=1}^{\infty} a_{i}\left(2 \mathbf{1}_{(\pi(i)-1, \pi(i))}+\left|h_{i}\right|\right)+\sum_{i=1}^{\infty} b_{i} h_{i}\right\| \geq \max \left\{\sum_{i=1}^{\infty}\left|a_{i}\right|, \frac{1}{4}\left\|\sum_{i=1}^{\infty} b_{i} h_{i}\right\|\right\}
$$

from which the left-hand side inequality in (1) follows easily.
Proposition 2. Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_{i} be the two dimensional space spanned by $2_{(\pi(i)-1, \pi(i))}+$ $\left|h_{i}\right|$ and h_{i}. Then $\overline{\operatorname{span}}^{L_{1}}\left\{F_{i}\right\}_{i=1}^{\infty}$ admits a basis consisting of non-negative functions.

Proof. In view of Proposition 1, it is enough to show that each F_{i} has a two term basis consisting of non-negative functions and with uniform basis constant. Put $x_{i}=2 \mathbf{1}_{(\pi(i)-1, \pi(i))}+\left|h_{i}\right|+h_{i}$ and $y_{i}=2 \mathbf{1}_{(\pi(i)-1, \pi(i))}+\left|h_{i}\right|-h_{i}$. Then clearly $x_{i}, y_{i} \geq 0$ everywhere and $\left\|x_{i}\right\|=\left\|y_{i}\right\|=3$. We now distinguish two cases: If $\mathbf{1}_{(\pi(i)-1, \pi(i))}$ is disjoint from the support of h_{i} then, for all scalars a, b,

$$
\left\|a x_{i}+b y_{i}\right\| \geq\left\|a\left(\left|h_{i}\right|+h_{i}\right)+b\left(\left|h_{i}\right|-h_{i}\right)\right\|=|a|+|b| .
$$

If the support of h_{i} is included in $(\pi(i)-1, \pi(i))$, let 2^{-s} be the size of that support, $s \geq 0$. Then for all scalars a, b,

$$
\begin{aligned}
\left\|a x_{i}+b y_{i}\right\| & \geq\left\|a\left(\left|h_{i}\right|+h_{i}\right)+b\left(\left|h_{i}\right|-h_{i}\right)+2(a+b) \mathbf{1}_{\operatorname{supp}\left(h_{i}\right)}\right\| \\
& =2^{-s-1}\left(\left|\left(2^{s+1}+2\right) a+2 b\right|+\left|\left(2^{s+1}+2\right) b+2 a\right|\right. \\
& \geq \max \{|a|,|b|\} .
\end{aligned}
$$

Theorem 1. $L_{1}(0, \infty)$, and consequently any separable L_{1} space, admits a Schauder basis consisting of non-negative functions.

Proof. When choosing the order on $\left\{h_{i}\right\}$ we can and shall assume that $h_{1}=h_{0,1}^{1}$; that is, the first mean zero Haar function on the interval $(0,1)$. Let π be any permutation of \mathbb{N} such that $\pi(1)=1$ and for $i>1$, if $h_{i}=h_{n, k}^{j}$ for some n, k, and j then $\pi(i)>j$. It follows that except for $i=1$ the support of h_{i} is disjoint from the interval $(\pi(i)-1, \pi(i))$. It is easy to see that such a permutation exists. We shall show that under these assumptions $\sum_{i=1}^{\infty} F_{i}$ spans $L_{1}(0, \infty)$ and, in view of Proposition 2, this will prove the theorem for $L_{1}(0, \infty)$. First, since $\pi(1)=1$ we get that $31_{(0,1)}=2 \mathbf{1}_{(\pi(1)-1, \pi(1))}+\left|h_{1}\right| \in F_{1}$, and since all the mean zero Haar functions on $(0,1)$ are clearly in $\sum_{i=1}^{\infty} F_{i}$, we get that $L_{1}(0,1) \subset \sum_{i=1}^{\infty} F_{i}$.

Assume by induction that $L_{1}(0, j) \subset \sum_{i=1}^{\infty} F_{i}$. Let l be such that $\pi(l)=$ $j+1$. By our assumption on π, the support of h_{l} is included in $(0, j)$, and so by the induction hypothesis, $\left|h_{l}\right| \in \sum_{i=1}^{\infty} F_{i}$. Since also $2 \mathbf{1}_{(j, j+1)}+\left|h_{l}\right| \in \sum_{i=1}^{\infty} F_{i}$ we get that $\mathbf{1}_{(j, j+1)} \in \sum_{i=1}^{\infty} F_{i}$. Since the mean zero Haar functions on $(j, j+1)$ are also in $\sum_{i=1}^{\infty} F_{i}$ we conclude that $L_{1}(0, j+1) \subset \sum_{i=1}^{\infty} F_{i}$.

This finishes the proof for $L_{1}(0, \infty)$. Since every separable L_{1} space is order isometric to one of the spaces $\ell_{1}^{k}, k=1,2, \ldots, \ell_{1}, L_{1}(0, \infty), L_{1}(0, \infty) \bigoplus_{1} \ell_{1}^{k}$, $k=1,2, \ldots$, or $L_{1}(0, \infty) \bigoplus_{1} \ell_{1}$, and since the discrete L_{1} spaces $\ell_{1}^{k}, k=$ $1,2, \ldots$, and ℓ_{1} clearly have non-negative bases, we get the conclusion for any separable L_{1} space.

3. Unconditional non-negative sequences in L_{p}

Here we prove the following theorem.
Theorem 2. Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a normalized unconditionally basic sequence of non-negative functions in $L_{p}, 1 \leq p<\infty$. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_{p}.

Proof. First, we give a sketch of the proof, which should be enough for experts in Banach space theory. By unconditionality, we have for all coefficients a_{n} that $\left\|\sum_{n} a_{n} x_{n}\right\|_{p}$ is equivalent to the square function $\left\|\left(\sum_{n}\left|a_{n}\right|^{2} x_{n}^{2}\right)^{1 / 2}\right\|_{p}$, and, by nonnegativity of x_{n}, is also equivalent to $\left\|\sum_{n}\left|a_{n}\right| x_{n}\right\|_{p}$. Thus by trivial interpolation when $1 \leq p \leq 2$, and by extrapolation when $2<$ $p<\infty$, we see that $\left\|\sum_{n} a_{n} x_{n}\right\|_{p}$ is equivalent to $\left\|\left(\sum_{n}\left|a_{n}\right|^{p} x_{n}^{p}\right)^{1 / p}\right\|_{p}=$ $\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{1 / p}$.

We now give a formal argument for the benefit of readers who are not familiar with the background we assumed when giving the sketch. Let K be the unconditional constant of $\left\{x_{n}\right\}_{n=1}^{\infty}$. Then

$$
\begin{align*}
K^{-1}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p} & \leq B_{p}\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2} x_{n}^{2}\right)^{1 / 2}\right\|_{p} \tag{2}\\
& \leq B_{p}\left\|\sum_{n=1}^{N}\left|a_{n}\right| x_{n}\right\|_{p} \\
& \leq B_{p} K\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p}
\end{align*}
$$

where the first inequality is obtained by integrating against the Rademacher functions (see, e.g., [4, Theorem 2.b.3]). The constant B_{p} is Khintchine's constant, so $B_{p}=1$ for $p \leq 2$ and B_{p} is of order \sqrt{p} for $p>2$. If $1 \leq p \leq 2$, we get from (2)

$$
\begin{equation*}
K^{-1}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p} \leq\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p} x_{n}^{p}\right)^{1 / p}\right\|_{p} \leq K\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p} \tag{3}
\end{equation*}
$$

Since $\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p} x_{n}^{p}\right)^{1 / p}\right\|_{p}=\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p}$, this completes the proof when $1 \leq p \leq 2$. When $2<p<\infty$, we need to extrapolate rather than do (trivial)
interpolation. Write $1 / 2=\theta / 1+(1-\theta) / p$. Then

$$
\begin{align*}
& (4) \begin{aligned}
\left(K B_{p}\right)^{-1}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p} & \leq\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2} x_{n}^{2}\right)^{1 / 2}\right\|_{p} \\
& \leq\left\|\sum_{n=1}^{N}\left|a_{n}\right| x_{n}\right\|_{p}\left\|\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p} x_{n}^{p}\right)^{1 / p}\right\|_{p}^{1-\theta} \\
& \leq K\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p}^{\theta}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{(1-\theta) / p}, \quad \text { so that } \\
\left(K^{2} B_{p}\right)^{(-1) /(1-\theta)}\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p} & \leq\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right)^{1 / p} \leq K\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p}
\end{aligned} . \quad \square \tag{4}
\end{align*}
$$

As stated, Theorem 2 gives no information when $p=2$ because every normalized unconditionally basic sequence in a Hilbert space is equivalent to the unit vector basis of ℓ_{2}. However, if we extrapolate slightly differently in the above argument (writing $1 / 2=\theta / 1+(1-\theta) / \infty$) we see that, no matter what p is, $\left\|\sum_{n=1}^{N} a_{n} x_{n}\right\|_{p}$ is also equivalent to $\left\|\max _{n}\left|a_{n}\right| x_{n}\right\|_{p}$. From this one can deduce, for example, that only finitely many Rademachers can be in the closed span of $\left\{x_{n}\right\}_{n=1}^{\infty}$; in particular, $\left\{x_{n}\right\}_{n=1}^{\infty}$ cannot be a basis for L_{p} even when $p=2$. However, the proof given in [5] that a normalized unconditionally basic sequence of non-negative functions $\left\{x_{n}\right\}_{n=1}^{\infty}$ in L_{p} cannot span L_{p} actually shows that only finitely many Rademachers can be in the closed span of $\left\{x_{n}\right\}_{n=1}^{\infty}$. This is improved in our last result, which shows that the closed span of an unconditionally non-negative quasibasic sequence in $L_{p}(0,1)$ cannot contain any strongly embedded infinite dimensional subspace (a subspace X of $L_{p}(0,1)$ is said to be strongly embedded if the $L_{p}(0,1)$ norm is equivalent to the $L_{r}(0,1)$ norm on X for some - or, equivalently, for all $-r<p$; see e.g. [1, p. 151]). The main work for proving this is contained in Lemma 1.

Before stating Lemma 1, we recall that a quasibasis for a Banach space X is a sequence $\left\{f_{n}, g_{n}\right\}_{n=1}^{\infty}$ in $X \times X^{*}$ such that for each x in X the series $\sum_{n}\left\langle g_{n}, x\right\rangle f_{n}$ converges to x. (In [5], a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in X is a called a quasibasis for X provided there exists such a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$. Since the sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ is typically not unique, we prefer to specify it up front.) The quasibasis $\left\{f_{n}, g_{n}\right\}_{n=1}^{\infty}$ is said to be unconditional provided that for each x in X the series $\sum_{n}\left\langle g_{n}, x\right\rangle f_{n}$ converges unconditionally to x. One then gets from the uniform boundedness principle (see, e.g., [5, Lemma 3.2]) that there is a constant K so that for all x and all scalars a_{n} with $\left|a_{n}\right| \leq 1$, we have $\left\|\sum_{n} a_{n}\left\langle g_{n}, x\right\rangle f_{n}\right\| \leq K\|x\|$. A sequence $\left\{f_{n}, g_{n}\right\}_{n=1}^{\infty}$ in $X \times X^{*}$ is said to be [unconditionally] quasibasic provided $\left\{f_{n}, h_{n}\right\}_{n=1}^{\infty}$ is an [unconditional]
quasibasis for the closed span $\left[f_{n}\right]$ of $\left\{f_{n}\right\}_{n=1}^{\infty}$, where h_{n} is the restriction of g_{n} to $\left[f_{n}\right]$.

Lemma 1. Suppose that $\left\{f_{n}, g_{n}\right\}_{n=1}^{\infty}$ is an uncondtionally quasibasic sequence in $L_{p}(0,1), 1<p<\infty$, with each f_{n} non-negative. If $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a normalized weakly null sequence in the closed linear span $\left[f_{n}\right]$ of $\left\{f_{n}\right\}_{n=1}^{\infty}$, then $\left\|y_{n}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. If the conclusion is false, we get a normalized weakly null sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ in $\left[f_{n}\right]$ and a $c>0$ so that for all n we have $\left\|y_{n}\right\|_{1}>c$.

By passing to a subsequence of $\left\{y_{n}\right\}_{n=1}^{\infty}$, we can assume that there are integers $0=m_{1}<m_{2}<\cdots$ so that for each n,

$$
\begin{array}{r}
\sum_{k=1}^{m_{n}}\left|\left\langle g_{k}, y_{n}\right\rangle\right|\left\|f_{k}\right\|_{p}<2^{-n-3} c \quad \text { and } \\
\left\|\sum_{k=m_{n+1}+1}^{\infty}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{p}<2^{-n-3} c . \tag{5}
\end{array}
$$

Effecting the first inequality in (5) is no problem because $y_{n} \rightarrow 0$ weakly, but the second inequality perhaps requires a comment. If y_{n} satisfies the first inquality in (5), from the unconditional convergence of the expansion of y_{n} and the nonnegativity of all f_{k} we get that $\left\|\sum_{k=N}^{\infty}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$, which allows us to select m_{n+1} to satisfy the second inequality in (5).

Since $\left\|y_{n}\right\|_{1}>c$, from (5) we also have for every n that

$$
\begin{equation*}
\left\|\sum_{k=m_{n}+1}^{m_{n+1}}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{1} \geq\left\|\sum_{k=m_{n}+1}^{m_{n+1}}\left\langle g_{k}, y_{n}\right\rangle f_{k}\right\|_{1} \geq c / 2 \tag{6}
\end{equation*}
$$

Since L_{p} has an unconditional basis, by passing to a further subsequence we can assume that $\left\{y_{n}\right\}_{n=1}^{\infty}$ is unconditionally basic with, say, constant K_{p}. Set $s=p \wedge 2$. Then L_{p} has type s (see [1, Theorem 6.2.14]), so for some constant K_{p}^{\prime} we have for every N the inequality

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} y_{n}\right\|_{p} \leq K_{p}^{\prime} N^{1 / s} \tag{7}
\end{equation*}
$$

On the other hand, letting $\delta_{k}=\operatorname{sign}\left\langle g_{k}, y_{n}\right\rangle$ when $m_{n}+1 \leq k \leq m_{n+1}$, $n=1,2,3, \ldots$, we have
(8) $K K_{p}\left\|\sum_{n=1}^{N} y_{n}\right\|_{p}$
$\geq K_{p}\left\|\sum_{n=1}^{N} \sum_{k=1}^{\infty} \delta_{k}\left\langle g_{k}, y_{n}\right\rangle f_{k}\right\|_{p}$

$$
\begin{aligned}
& \geq\left\|\sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{p}-\left\|\sum_{n=1}^{N} \sum_{k \notin\left[m_{n}+1, m_{n+1}\right]} \delta_{k}\left\langle g_{k}, y_{n}\right\rangle f_{k}\right\|_{p} \\
& \geq\left\|\sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{1}-\left\|\sum_{n=1}^{N} \sum_{k \notin\left[m_{n}+1, m_{n+1}\right]}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{p} \\
& \geq \sum_{n=1}^{N}\left\|\sum_{k=m_{n}+1}^{m_{n+1}}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{k}\right\|_{1} \\
& \quad-\sum_{n=1}^{N}\left(\sum_{k=1}^{m_{n}}\left|\left\langle g_{k}, y_{n}\right\rangle\right|\left\|f_{k}\right\|_{p}+\left\|\sum_{k=m_{n+1}+1}^{\infty}\left|\left\langle g_{k}, y_{n}\right\rangle\right| f_{n}\right\|_{p}\right) \\
& \geq N c / 2-c / 4 \text { by (6) and (5) }
\end{aligned}
$$

This contradicts (7).
THEOREM 3. Let $\left\{f_{n}, g_{n}\right\}_{n=1}^{\infty}$ be an unconditional quasibasic sequence in $L_{p}(0,1), 1 \leq p<\infty$, with each f_{n} non-negative. Then the closed span $\left[f_{n}\right]$ of $\left\{f_{n}\right\}_{n=1}^{\infty}$ embeds isomorphically into ℓ_{p}.

Proof. The case $p=1$ is especially easy: Assume, as we may, that $\left\|f_{n}\right\|_{1}=1$. There is a constant K so that for each y in $\left[f_{n}\right]$

$$
\begin{equation*}
\|y\|_{1} \leq\left\|\sum_{n=1}^{\infty}\left|\left\langle g_{n}, y\right\rangle\right| f_{n}\right\|_{1} \leq K\|y\|_{1} \tag{9}
\end{equation*}
$$

hence the mapping $y \mapsto\left\{\left\langle g_{k}, y\right\rangle\right\}_{k=1}^{\infty}$ is an isomorphism from $\left[f_{n}\right]$ into ℓ_{1}.
So in the sequel assume that $p>1$. From Lemma 1 and standard arguments (see, e.g., [1, Theorem 6.4.7]), we have that every normalized weakly null sequence in $\left[f_{n}\right]$ has a subsequence that is an arbitrarily small perturbation of a disjoint sequence and hence the subsequence is $1+\epsilon$-equivalent to the unit vector basis for ℓ_{p}. This implies that $\left[f_{n}\right]$ embeds isomorphically into ℓ_{p} (see [3] for the case $p>2$ and [2, Theorems III.9, III.1, and III.2] for the case $p<2$).

References

[1] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298
[2] W. B. Johnson, On quotients of L_{p} which are quotients of ℓ_{p}, Compos. Math. 34 (1977), no. 1, 69-89. MR 0454595
[3] W. B. Johnson and E. Odell, Subspaces of L_{p} which embed into ℓ_{p}, Compos. Math. 28 (1974), 37-49. MR 0352938
[4] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer, Berlin, 1977. MR 0500056
[5] A. M. Powell and A. H. Spaeth, Nonnegativity constraints for structured complete systems, to appear in Trans. Amer. Math. Soc.; DOI:10.1090/tran/6562.

William B. Johnson, Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA

E-mail address: johnson@math.tamu.edu
Gideon Schechtman, Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel

E-mail address: gideon@weizmann.ac.il

[^0]: Received February 25, 2015; received in final form September 10, 2015.
 William B. Johnson was supported in part by NSF DMS-1301604 and the U.S.-Israel Binational Science Foundation.

 Gideon Schechtman was supported in part by the U.S.-Israel Binational Science Foundation. Participant, NSF Workshop in Analysis and Probability, Texas A\&M University. 2010 Mathematics Subject Classification. 46B03, 46B15, 46E30.

