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A SCHAUDER BASIS FOR L1(0,∞) CONSISTING OF
NON-NEGATIVE FUNCTIONS

WILLIAM B. JOHNSON AND GIDEON SCHECHTMAN

Abstract. We construct a Schauder basis for L1 consisting of
non-negative functions and investigate unconditionally basic and
quasibasic sequences of non-negative functions in Lp, 1≤ p <∞.

1. Introduction

In [5], Powell and Spaeth investigate non-negative sequences of functions in
Lp, 1≤ p <∞, that satisfy some kind of basis condition, with a view to deter-
mining whether such a sequence can span all of Lp. They prove, for example,
that there is no unconditional basis or even unconditional quasibasis (frame)
for Lp consisting of non-negative functions. On the other hand, they prove
that there are non-negative quasibases and non-negative M -bases for Lp. The
most important question left open by their investigation is whether there is a
(Schauder) basis for Lp consisting of non-negative functions. In Section 2, we
show that there is basis for L1 consisting of non-negative functions.

In Section 3, we discuss the structure of unconditionally basic non-negative
normalized sequences in Lp, 1 ≤ p <∞. The main result is that such a se-
quence is equivalent to the unit vector basis of �p. We also prove that the
closed span in Lp of any unconditional quasibasic sequence embeds isomor-
phically into �p.

We use standard Banach space theory, as can be found in [4] or [1]. Let us
just mention that Lp is Lp(0,∞), but in as much as this space is isometrically
isomorphic under an order preserving operator to Lp(μ) for any separable
purely non-atomic measure μ, our choice of L(0,∞) rather than, for example,
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Lp(0,1), is a matter of convenience. Again as a matter of convenience, in the
last part of Section 3, we revert to using Lp(0,1) as a model for Lp.

2. A Schauder basis for L1(0,∞) consisting of non-negative
functions

For j = 1,2, . . . let {hj
n,i}∞2n

n=0,i=1 be the mean zero L1 normalized Haar

functions on the interval (j − 1, j). That is, for n= 0,1, . . . , i= 1,2, . . . ,2n,

hj
n,i(t) =

⎧⎪⎨
⎪⎩
2n, j − 1 + 2i−2

2n+1 < t < j − 1 + 2i−1
2n+1 ,

−2n, j − 1 + 2i−1
2n+1 < t < j − 1 + 2i

2n+1 ,

0, otherwise.

The system {hj
n,i}∞2n∞

n=0,i=1,j=1, in any order which preserves the lexicographic

order of {hj
n,i}∞2n

n=0,i=1 for each j, constitutes a basis for the subspace of

L1(0,∞) consisting of all functions whose restriction to each interval (j−1, j)

have mean zero. To simplify notation, for each j we shall denote by {hj
i}∞i=1

the system {hj
n,i}∞2n

n=0,i=1 in its lexicographic order. We shall also denote by

{hi}∞i=1 the union of the systems {hj
i}∞i=1, j = 1,2, . . . , in any order that re-

spects the individual orders of each of the {hj
i}∞i=1.

Let π be any permutation of the natural numbers and for each i ∈N let Fi

be the two dimensional space spanned by 21(π(i)−1,π(i)) + |hi| and hi.

Proposition 1.
∑∞

i=1Fi is an FDD of spanL1{Fi}∞i=1.

Proof. The assertion will follow from the following inequality, which holds
for all scalars {ai}∞i=1 and {bi}∞i=1,

1

2

∞∑
i=1

|ai|+
1

8

∥∥∥∥∥
∞∑
i=1

bihi

∥∥∥∥∥(1)

≤
∥∥∥∥∥

∞∑
i=1

ai
(
21(π(i)−1,π(i)) + |hi|

)
+

∞∑
i=1

bihi

∥∥∥∥∥
≤ 3

∞∑
i=1

|ai|+
∥∥∥∥∥

∞∑
i=1

bihi

∥∥∥∥∥.
The right inequality in (1) follows easily from the triangle inequality. As for
the left inequality, notice that the conditional expectation projection onto the
closed span of {1(i−1,i)}∞i=1 is of norm one and the complementary projection,
onto the closed span of {hi}∞i=1, is of norm 2. It follows that∥∥∥∥∥

∞∑
i=1

ai(21(π(i)−1,π(i))) +

∞∑
i=1

bihi

∥∥∥∥∥≥max

{
2

∞∑
i=1

|ai|,
1

2

∥∥∥∥∥
∞∑
i=1

bihi

∥∥∥∥∥
}
.
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Since ‖
∑∞

i=1 ai|hi|‖ ≤
∑∞

i=1 |ai|, we get∥∥∥∥∥
∞∑
i=1

ai
(
21(π(i)−1,π(i)) + |hi|

)
+

∞∑
i=1

bihi

∥∥∥∥∥≥max

{ ∞∑
i=1

|ai|,
1

4

∥∥∥∥∥
∞∑
i=1

bihi

∥∥∥∥∥
}

from which the left-hand side inequality in (1) follows easily. �

Proposition 2. Let π be any permutation of the natural numbers and for
each i ∈ N let Fi be the two dimensional space spanned by 21(π(i)−1,π(i)) +

|hi| and hi. Then spanL1{Fi}∞i=1 admits a basis consisting of non-negative
functions.

Proof. In view of Proposition 1, it is enough to show that each Fi has a
two term basis consisting of non-negative functions and with uniform basis
constant. Put xi = 21(π(i)−1,π(i))+ |hi|+hi and yi = 21(π(i)−1,π(i))+ |hi|−hi.
Then clearly xi, yi ≥ 0 everywhere and ‖xi‖= ‖yi‖= 3. We now distinguish
two cases: If 1(π(i)−1,π(i)) is disjoint from the support of hi then, for all scalars
a, b,

‖axi + byi‖ ≥
∥∥a(|hi|+ hi

)
+ b

(
|hi| − hi

)∥∥= |a|+ |b|.
If the support of hi is included in (π(i)− 1, π(i)), let 2−s be the size of that
support, s≥ 0. Then for all scalars a, b,

‖axi + byi‖ ≥
∥∥a(|hi|+ hi

)
+ b

(
|hi| − hi

)
+ 2(a+ b)1supp(hi)

∥∥
= 2−s−1(

∣∣(2s+1 + 2
)
a+ 2b

∣∣+ ∣∣(2s+1 + 2
)
b+ 2a

∣∣
≥max

{
|a|, |b|

}
. �

Theorem 1. L1(0,∞), and consequently any separable L1 space, admits a
Schauder basis consisting of non-negative functions.

Proof. When choosing the order on {hi} we can and shall assume that
h1 = h1

0,1; that is, the first mean zero Haar function on the interval (0,1). Let

π be any permutation of N such that π(1) = 1 and for i > 1, if hi = hj
n,k for

some n,k, and j then π(i) > j. It follows that except for i = 1 the support
of hi is disjoint from the interval (π(i)− 1, π(i)). It is easy to see that such
a permutation exists. We shall show that under these assumptions

∑∞
i=1Fi

spans L1(0,∞) and, in view of Proposition 2, this will prove the theorem for
L1(0,∞). First, since π(1) = 1 we get that 31(0,1) = 21(π(1)−1,π(1))+ |h1| ∈ F1,

and since all the mean zero Haar functions on (0,1) are clearly in
∑∞

i=1Fi,
we get that L1(0,1)⊂

∑∞
i=1Fi.

Assume by induction that L1(0, j) ⊂
∑∞

i=1Fi. Let l be such that π(l) =
j+1. By our assumption on π, the support of hl is included in (0, j), and so by
the induction hypothesis, |hl| ∈

∑∞
i=1Fi. Since also 21(j,j+1) + |hl| ∈

∑∞
i=1Fi

we get that 1(j,j+1) ∈
∑∞

i=1Fi. Since the mean zero Haar functions on (j, j+1)

are also in
∑∞

i=1Fi we conclude that L1(0, j + 1)⊂
∑∞

i=1Fi.
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This finishes the proof for L1(0,∞). Since every separable L1 space is order
isometric to one of the spaces �k1 , k = 1,2, . . . , �1,L1(0,∞), L1(0,∞)

⊕
1 �

k
1 ,

k = 1,2, . . . , or L1(0,∞)
⊕

1 �1, and since the discrete L1 spaces �k1 , k =
1,2, . . . , and �1 clearly have non-negative bases, we get the conclusion for
any separable L1 space. �

3. Unconditional non-negative sequences in Lp

Here we prove the following theorem.

Theorem 2. Suppose that {xn}∞n=1 is a normalized unconditionally ba-
sic sequence of non-negative functions in Lp, 1 ≤ p < ∞. Then {xn}∞n=1 is
equivalent to the unit vector basis of �p.

Proof. First, we give a sketch of the proof, which should be enough for ex-
perts in Banach space theory. By unconditionality, we have for all coefficients
an that ‖

∑
n anxn‖p is equivalent to the square function ‖(

∑
n |an|2x2

n)
1/2‖p,

and, by nonnegativity of xn, is also equivalent to ‖
∑

n |an|xn‖p. Thus
by trivial interpolation when 1 ≤ p ≤ 2, and by extrapolation when 2 <
p < ∞, we see that ‖

∑
n anxn‖p is equivalent to ‖(

∑
n |an|pxp

n)
1/p‖p =

(
∑

n |an|p)1/p.
We now give a formal argument for the benefit of readers who are not

familiar with the background we assumed when giving the sketch. Let K be
the unconditional constant of {xn}∞n=1. Then

K−1

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

≤ Bp

∥∥∥∥∥
(

N∑
n=1

|an|2x2
n

)1/2∥∥∥∥∥
p

(2)

≤ Bp

∥∥∥∥∥
N∑

n=1

|an|xn

∥∥∥∥∥
p

≤ BpK

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

,

where the first inequality is obtained by integrating against the Rademacher
functions (see, e.g., [4, Theorem 2.b.3]). The constant Bp is Khintchine’s
constant, so Bp = 1 for p≤ 2 and Bp is of order

√
p for p > 2. If 1≤ p≤ 2, we

get from (2)

(3) K−1

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

≤
∥∥∥∥∥
(

N∑
n=1

|an|pxp
n

)1/p∥∥∥∥∥
p

≤K

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

.

Since ‖(
∑N

n=1 |an|pxp
n)

1/p‖p = (
∑N

n=1 |an|p)1/p, this completes the proof when
1≤ p≤ 2. When 2< p <∞, we need to extrapolate rather than do (trivial)
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interpolation. Write 1/2 = θ/1 + (1− θ)/p. Then

(KBp)
−1

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

≤
∥∥∥∥∥
(

N∑
n=1

|an|2x2
n

)1/2∥∥∥∥∥
p

(4)

≤
∥∥∥∥∥

N∑
n=1

|an|xn

∥∥∥∥∥
θ

p

∥∥∥∥∥
(

N∑
n=1

|an|pxp
n

)1/p∥∥∥∥∥
1−θ

p

≤K

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
θ

p

(
N∑

n=1

|an|p
)(1−θ)/p

, so that

(
K2Bp

)(−1)/(1−θ)

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

≤
(

N∑
n=1

|an|p
)1/p

≤K

∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥
p

.
�

As stated, Theorem 2 gives no information when p= 2 because every nor-
malized unconditionally basic sequence in a Hilbert space is equivalent to
the unit vector basis of �2. However, if we extrapolate slightly differently in
the above argument (writing 1/2 = θ/1 + (1− θ)/∞) we see that, no matter

what p is, ‖
∑N

n=1 anxn‖p is also equivalent to ‖maxn |an|xn‖p. From this one
can deduce, for example, that only finitely many Rademachers can be in the
closed span of {xn}∞n=1; in particular, {xn}∞n=1 cannot be a basis for Lp even
when p= 2. However, the proof given in [5] that a normalized uncondition-
ally basic sequence of non-negative functions {xn}∞n=1 in Lp cannot span Lp

actually shows that only finitely many Rademachers can be in the closed span
of {xn}∞n=1. This is improved in our last result, which shows that the closed
span of an unconditionally non-negative quasibasic sequence in Lp(0,1) can-
not contain any strongly embedded infinite dimensional subspace (a subspace
X of Lp(0,1) is said to be strongly embedded if the Lp(0,1) norm is equivalent
to the Lr(0,1) norm on X for some – or, equivalently, for all – r < p; see e.g.
[1, p. 151]). The main work for proving this is contained in Lemma 1.

Before stating Lemma 1, we recall that a quasibasis for a Banach space
X is a sequence {fn, gn}∞n=1 in X ×X∗ such that for each x in X the series∑

n〈gn, x〉fn converges to x. (In [5], a sequence {fn}∞n=1 in X is a called a
quasibasis for X provided there exists such a sequence {gn}∞n=1. Since the
sequence {gn}∞n=1 is typically not unique, we prefer to specify it up front.)
The quasibasis {fn, gn}∞n=1 is said to be unconditional provided that for each
x in X the series

∑
n〈gn, x〉fn converges unconditionally to x. One then

gets from the uniform boundedness principle (see, e.g., [5, Lemma 3.2]) that
there is a constant K so that for all x and all scalars an with |an| ≤ 1, we
have ‖

∑
n an〈gn, x〉fn‖ ≤K‖x‖. A sequence {fn, gn}∞n=1 in X ×X∗ is said

to be [unconditionally] quasibasic provided {fn, hn}∞n=1 is an [unconditional]
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quasibasis for the closed span [fn] of {fn}∞n=1, where hn is the restriction of
gn to [fn].

Lemma 1. Suppose that {fn, gn}∞n=1 is an uncondtionally quasibasic se-
quence in Lp(0,1), 1 < p < ∞, with each fn non-negative. If {yn}∞n=1 is a
normalized weakly null sequence in the closed linear span [fn] of {fn}∞n=1,
then ‖yn‖1 → 0 as n→∞.

Proof. If the conclusion is false, we get a normalized weakly null sequence
{yn}∞n=1 in [fn] and a c > 0 so that for all n we have ‖yn‖1 > c.

By passing to a subsequence of {yn}∞n=1, we can assume that there are
integers 0 =m1 <m2 < · · · so that for each n,

mn∑
k=1

∣∣〈gk, yn〉∣∣‖fk‖p < 2−n−3c and

∥∥∥∥∥
∞∑

k=mn+1+1

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
p

< 2−n−3c.

(5)

Effecting the first inequality in (5) is no problem because yn → 0 weakly,
but the second inequality perhaps requires a comment. If yn satisfies the
first inquality in (5), from the unconditional convergence of the expansion of
yn and the nonnegativity of all fk we get that ‖

∑∞
k=N |〈gk, yn〉|fk‖p → 0 as

n→∞, which allows us to select mn+1 to satisfy the second inequality in (5).
Since ‖yn‖1 > c, from (5) we also have for every n that

(6)

∥∥∥∥∥
mn+1∑

k=mn+1

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
1

≥
∥∥∥∥∥

mn+1∑
k=mn+1

〈gk, yn〉fk

∥∥∥∥∥
1

≥ c/2.

Since Lp has an unconditional basis, by passing to a further subsequence
we can assume that {yn}∞n=1 is unconditionally basic with, say, constant Kp.
Set s = p ∧ 2. Then Lp has type s (see [1, Theorem 6.2.14]), so for some
constant K ′

p we have for every N the inequality

(7)

∥∥∥∥∥
N∑

n=1

yn

∥∥∥∥∥
p

≤K ′
pN

1/s.

On the other hand, letting δk = sign〈gk, yn〉 when mn + 1 ≤ k ≤ mn+1,
n= 1,2,3, . . . , we have

KKp

∥∥∥∥∥
N∑

n=1

yn

∥∥∥∥∥
p

(8)

≥Kp

∥∥∥∥∥
N∑

n=1

∞∑
k=1

δk〈gk, yn〉fk

∥∥∥∥∥
p
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≥
∥∥∥∥∥

N∑
n=1

mn+1∑
k=mn+1

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
p

−
∥∥∥∥∥

N∑
n=1

∑
k/∈[mn+1,mn+1]

δk〈gk, yn〉fk

∥∥∥∥∥
p

≥
∥∥∥∥∥

N∑
n=1

mn+1∑
k=mn+1

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
1

−
∥∥∥∥∥

N∑
n=1

∑
k/∈[mn+1,mn+1]

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
p

≥
N∑

n=1

∥∥∥∥∥
mn+1∑

k=mn+1

∣∣〈gk, yn〉∣∣fk
∥∥∥∥∥
1

−
N∑

n=1

(
mn∑
k=1

∣∣〈gk, yn〉∣∣‖fk‖p +
∥∥∥∥∥

∞∑
k=mn+1+1

∣∣〈gk, yn〉∣∣fn
∥∥∥∥∥
p

)

≥Nc/2− c/4 by (6) and (5)

This contradicts (7). �
Theorem 3. Let {fn, gn}∞n=1 be an unconditional quasibasic sequence in

Lp(0,1), 1≤ p <∞, with each fn non-negative. Then the closed span [fn] of
{fn}∞n=1 embeds isomorphically into �p.

Proof. The case p = 1 is especially easy: Assume, as we may, that
‖fn‖1 = 1. There is a constant K so that for each y in [fn]

(9) ‖y‖1 ≤
∥∥∥∥∥

∞∑
n=1

∣∣〈gn, y〉∣∣fn
∥∥∥∥∥
1

≤K‖y‖1,

hence the mapping y → {〈gk, y〉}∞k=1 is an isomorphism from [fn] into �1.
So in the sequel assume that p > 1. From Lemma 1 and standard arguments

(see, e.g., [1, Theorem 6.4.7]), we have that every normalized weakly null
sequence in [fn] has a subsequence that is an arbitrarily small perturbation
of a disjoint sequence and hence the subsequence is 1 + ε-equivalent to the
unit vector basis for �p. This implies that [fn] embeds isomorphically into �p
(see [3] for the case p > 2 and [2, Theorems III.9, III.1, and III.2] for the case
p < 2). �
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