A SCHAUDER BASIS FOR $L_1(0,\infty)$ CONSISTING OF NON-NEGATIVE FUNCTIONS

WILLIAM B. JOHNSON AND GIDEON SCHECHTMAN

ABSTRACT. We construct a Schauder basis for L_1 consisting of non-negative functions and investigate unconditionally basic and quasibasic sequences of non-negative functions in L_p , $1 \le p < \infty$.

1. Introduction

In [5], Powell and Spaeth investigate non-negative sequences of functions in L_p , $1 \leq p < \infty$, that satisfy some kind of basis condition, with a view to determining whether such a sequence can span all of L_p . They prove, for example, that there is no unconditional basis or even unconditional quasibasis (frame) for L_p consisting of non-negative functions. On the other hand, they prove that there are non-negative quasibases and non-negative *M*-bases for L_p . The most important question left open by their investigation is whether there is a (Schauder) basis for L_p consisting of non-negative functions. In Section 2, we show that there is basis for L_1 consisting of non-negative functions.

In Section 3, we discuss the structure of unconditionally basic non-negative normalized sequences in L_p , $1 \le p < \infty$. The main result is that such a sequence is equivalent to the unit vector basis of ℓ_p . We also prove that the closed span in L_p of any unconditional quasibasic sequence embeds isomorphically into ℓ_p .

We use standard Banach space theory, as can be found in [4] or [1]. Let us just mention that L_p is $L_p(0,\infty)$, but in as much as this space is isometrically isomorphic under an order preserving operator to $L_p(\mu)$ for any separable purely non-atomic measure μ , our choice of $L(0,\infty)$ rather than, for example,

Received February 25, 2015; received in final form September 10, 2015.

William B. Johnson was supported in part by NSF DMS-1301604 and the U.S.-Israel Binational Science Foundation.

Gideon Schechtman was supported in part by the U.S.-Israel Binational Science Foundation. Participant, NSF Workshop in Analysis and Probability, Texas A&M University.

²⁰¹⁰ Mathematics Subject Classification. 46B03, 46B15, 46E30.

 $L_p(0,1)$, is a matter of convenience. Again as a matter of convenience, in the last part of Section 3, we revert to using $L_p(0,1)$ as a model for L_p .

2. A Schauder basis for $L_1(0,\infty)$ consisting of non-negative functions

For j = 1, 2, ... let $\{h_{n,i}^j\}_{n=0,i=1}^{\infty 2^n}$ be the mean zero L_1 normalized Haar functions on the interval (j-1,j). That is, for $n = 0, 1, ..., i = 1, 2, ..., 2^n$,

$$h_{n,i}^{j}(t) = \begin{cases} 2^{n}, & j - 1 + \frac{2i-2}{2n+1} < t < j - 1 + \frac{2i-1}{2n+1}, \\ -2^{n}, & j - 1 + \frac{2i-1}{2n+1} < t < j - 1 + \frac{2i}{2n+1}, \\ 0, & \text{otherwise.} \end{cases}$$

The system $\{h_{n,i}^{j}\}_{n=0,i=1,j=1}^{\infty 2^{n} \infty}$, in any order which preserves the lexicographic order of $\{h_{n,i}^{j}\}_{n=0,i=1}^{\infty 2^{n}}$ for each j, constitutes a basis for the subspace of $L_{1}(0,\infty)$ consisting of all functions whose restriction to each interval (j-1,j)have mean zero. To simplify notation, for each j we shall denote by $\{h_{i}^{j}\}_{i=1}^{\infty}$ the system $\{h_{n,i}^{j}\}_{n=0,i=1}^{\infty 2^{n}}$ in its lexicographic order. We shall also denote by $\{h_{i}\}_{i=1}^{\infty}$ the union of the systems $\{h_{i}^{j}\}_{i=1}^{\infty}$, $j = 1, 2, \ldots$, in any order that respects the individual orders of each of the $\{h_{i}^{j}\}_{i=1}^{\infty}$.

Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_i be the two dimensional space spanned by $2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|$ and h_i .

PROPOSITION 1. $\sum_{i=1}^{\infty} F_i$ is an FDD of $\overline{\text{span}}^{L_1} \{F_i\}_{i=1}^{\infty}$.

Proof. The assertion will follow from the following inequality, which holds for all scalars $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$,

(1)
$$\frac{1}{2} \sum_{i=1}^{\infty} |a_i| + \frac{1}{8} \left\| \sum_{i=1}^{\infty} b_i h_i \right\| \\ \leq \left\| \sum_{i=1}^{\infty} a_i \left(2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i| \right) + \sum_{i=1}^{\infty} b_i h_i \right\| \\ \leq 3 \sum_{i=1}^{\infty} |a_i| + \left\| \sum_{i=1}^{\infty} b_i h_i \right\|.$$

The right inequality in (1) follows easily from the triangle inequality. As for the left inequality, notice that the conditional expectation projection onto the closed span of $\{\mathbf{1}_{(i-1,i)}\}_{i=1}^{\infty}$ is of norm one and the complementary projection, onto the closed span of $\{h_i\}_{i=1}^{\infty}$, is of norm 2. It follows that

$$\left\|\sum_{i=1}^{\infty} a_i (2\mathbf{1}_{(\pi(i)-1,\pi(i))}) + \sum_{i=1}^{\infty} b_i h_i\right\| \ge \max\left\{2\sum_{i=1}^{\infty} |a_i|, \frac{1}{2}\left\|\sum_{i=1}^{\infty} b_i h_i\right\|\right\}.$$

Since $\|\sum_{i=1}^{\infty} a_i |h_i| \| \le \sum_{i=1}^{\infty} |a_i|$, we get $\left\|\sum_{i=1}^{\infty} a_i \left(2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|\right) + \sum_{i=1}^{\infty} b_i h_i\right\| \ge \max\left\{\sum_{i=1}^{\infty} |a_i|, \frac{1}{4}\left\|\sum_{i=1}^{\infty} b_i h_i\right\|\right\}$

from which the left-hand side inequality in (1) follows easily.

PROPOSITION 2. Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_i be the two dimensional space spanned by $2\mathbf{1}_{(\pi(i)-1,\pi(i))} + \mathbf{1}_{(\pi(i)-1,\pi(i))}$ $|h_i|$ and h_i . Then $\overline{\operatorname{span}}^{L_1}\{F_i\}_{i=1}^{\infty}$ admits a basis consisting of non-negative functions.

Proof. In view of Proposition 1, it is enough to show that each F_i has a two term basis consisting of non-negative functions and with uniform basis constant. Put $x_i = 2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i| + h_i$ and $y_i = 2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i| - h_i$. Then clearly $x_i, y_i \ge 0$ everywhere and $||x_i|| = ||y_i|| = 3$. We now distinguish two cases: If $\mathbf{1}_{(\pi(i)-1,\pi(i))}$ is disjoint from the support of h_i then, for all scalars a, b,

$$|ax_i + by_i|| \ge ||a(|h_i| + h_i) + b(|h_i| - h_i)|| = |a| + |b|.$$

If the support of h_i is included in $(\pi(i) - 1, \pi(i))$, let 2^{-s} be the size of that support, $s \ge 0$. Then for all scalars a, b,

$$\begin{aligned} \|ax_i + by_i\| &\geq \left\| a\big(|h_i| + h_i\big) + b\big(|h_i| - h_i\big) + 2(a+b)\mathbf{1}_{\mathrm{supp}(h_i)} \right\| \\ &= 2^{-s-1}(\left| (2^{s+1}+2)a + 2b \right| + \left| (2^{s+1}+2)b + 2a \right| \\ &\geq \max\{|a|, |b|\}. \end{aligned}$$

THEOREM 1. $L_1(0,\infty)$, and consequently any separable L_1 space, admits a Schauder basis consisting of non-negative functions.

Proof. When choosing the order on $\{h_i\}$ we can and shall assume that $h_1 = h_{0,1}^1$; that is, the first mean zero Haar function on the interval (0,1). Let π be any permutation of N such that $\pi(1) = 1$ and for i > 1, if $h_i = h_{n,k}^j$ for some n, k, and j then $\pi(i) > j$. It follows that except for i = 1 the support of h_i is disjoint from the interval $(\pi(i) - 1, \pi(i))$. It is easy to see that such a permutation exists. We shall show that under these assumptions $\sum_{i=1}^{\infty} F_i$ spans $L_1(0,\infty)$ and, in view of Proposition 2, this will prove the theorem for $L_1(0,\infty)$. First, since $\pi(1) = 1$ we get that $3\mathbf{1}_{(0,1)} = 2\mathbf{1}_{(\pi(1)-1,\pi(1))} + |h_1| \in F_1$, and since all the mean zero Haar functions on (0,1) are clearly in $\sum_{i=1}^{\infty} F_i$, we get that $L_1(0,1) \subset \sum_{i=1}^{\infty} F_i$.

Assume by induction that $L_1(0,j) \subset \sum_{i=1}^{\infty} F_i$. Let l be such that $\pi(l) =$ j+1. By our assumption on π , the support of h_l is included in (0, j), and so by the induction hypothesis, $|h_l| \in \sum_{i=1}^{\infty} F_i$. Since also $2\mathbf{1}_{(j,j+1)} + |h_l| \in \sum_{i=1}^{\infty} F_i$ we get that $\mathbf{1}_{(j,j+1)} \in \sum_{i=1}^{\infty} F_i$. Since the mean zero Haar functions on (j, j+1)are also in $\sum_{i=1}^{\infty} F_i$ we conclude that $L_1(0, j+1) \subset \sum_{i=1}^{\infty} F_i$.

This finishes the proof for $L_1(0,\infty)$. Since every separable L_1 space is order isometric to one of the spaces ℓ_1^k , $k = 1, 2, ..., \ell_1, L_1(0,\infty), L_1(0,\infty) \bigoplus_1 \ell_1^k$, k = 1, 2, ..., or $L_1(0,\infty) \bigoplus_1 \ell_1$, and since the discrete L_1 spaces ℓ_1^k , k =1, 2, ..., and ℓ_1 clearly have non-negative bases, we get the conclusion for any separable L_1 space.

3. Unconditional non-negative sequences in L_p

Here we prove the following theorem.

THEOREM 2. Suppose that $\{x_n\}_{n=1}^{\infty}$ is a normalized unconditionally basic sequence of non-negative functions in L_p , $1 \le p < \infty$. Then $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p .

Proof. First, we give a sketch of the proof, which should be enough for experts in Banach space theory. By unconditionality, we have for all coefficients a_n that $\|\sum_n a_n x_n\|_p$ is equivalent to the square function $\|(\sum_n |a_n|^2 x_n^2)^{1/2}\|_p$, and, by nonnegativity of x_n , is also equivalent to $\|\sum_n |a_n| x_n\|_p$. Thus by trivial interpolation when $1 \le p \le 2$, and by extrapolation when $2 , we see that <math>\|\sum_n a_n x_n\|_p$ is equivalent to $\|(\sum_n |a_n|^p x_n^p)^{1/p}\|_p = (\sum_n |a_n|^p)^{1/p}$.

We now give a formal argument for the benefit of readers who are not familiar with the background we assumed when giving the sketch. Let K be the unconditional constant of $\{x_n\}_{n=1}^{\infty}$. Then

(2)
$$K^{-1} \left\| \sum_{n=1}^{N} a_n x_n \right\|_p \leq B_p \left\| \left(\sum_{n=1}^{N} |a_n|^2 x_n^2 \right)^{1/2} \right\|_p$$
$$\leq B_p \left\| \sum_{n=1}^{N} |a_n| x_n \right\|_p$$
$$\leq B_p K \left\| \sum_{n=1}^{N} a_n x_n \right\|_p,$$

where the first inequality is obtained by integrating against the Rademacher functions (see, e.g., [4, Theorem 2.b.3]). The constant B_p is Khintchine's constant, so $B_p = 1$ for $p \leq 2$ and B_p is of order \sqrt{p} for p > 2. If $1 \leq p \leq 2$, we get from (2)

(3)
$$K^{-1} \left\| \sum_{n=1}^{N} a_n x_n \right\|_p \le \left\| \left(\sum_{n=1}^{N} |a_n|^p x_n^p \right)^{1/p} \right\|_p \le K \left\| \sum_{n=1}^{N} a_n x_n \right\|_p.$$

Since $\|(\sum_{n=1}^{N} |a_n|^p x_n^p)^{1/p}\|_p = (\sum_{n=1}^{N} |a_n|^p)^{1/p}$, this completes the proof when $1 \le p \le 2$. When 2 , we need to extrapolate rather than do (trivial)

interpolation. Write $1/2 = \theta/1 + (1-\theta)/p$. Then

$$(4) (KB_p)^{-1} \left\| \sum_{n=1}^{N} a_n x_n \right\|_p \leq \left\| \left(\sum_{n=1}^{N} |a_n|^2 x_n^2 \right)^{1/2} \right\|_p \\ \leq \left\| \sum_{n=1}^{N} |a_n| x_n \right\|_p^{\theta} \left\| \left(\sum_{n=1}^{N} |a_n|^p x_n^p \right)^{1/p} \right\|_p^{1-\theta} \\ \leq K \left\| \sum_{n=1}^{N} a_n x_n \right\|_p^{\theta} \left(\sum_{n=1}^{N} |a_n|^p \right)^{(1-\theta)/p}, \text{ so that} \\ (K^2 R_n)^{(-1)/(1-\theta)} \left\| \sum_{n=1}^{N} a_n x_n \right\|_p \leq \left(\sum_{n=1}^{N} |a_n|^p \right)^{1/p} \leq K \left\| \sum_{n=1}^{N} a_n x_n \right\|_p^{1/p}$$

$$(K^2 B_p)^{(-1)/(1-\theta)} \left\| \sum_{n=1}^N a_n x_n \right\|_p \le \left(\sum_{n=1}^N |a_n|^p \right)^{1/p} \le K \left\| \sum_{n=1}^N a_n x_n \right\|_p.$$

As stated, Theorem 2 gives no information when p = 2 because every normalized unconditionally basic sequence in a Hilbert space is equivalent to the unit vector basis of ℓ_2 . However, if we extrapolate slightly differently in the above argument (writing $1/2 = \theta/1 + (1-\theta)/\infty$) we see that, no matter what p is, $\|\sum_{n=1}^{N} a_n x_n\|_p$ is also equivalent to $\|\max_n |a_n| x_n\|_p$. From this one can deduce, for example, that only finitely many Rademachers can be in the closed span of $\{x_n\}_{n=1}^{\infty}$; in particular, $\{x_n\}_{n=1}^{\infty}$ cannot be a basis for L_p even when p = 2. However, the proof given in [5] that a normalized unconditionally basic sequence of non-negative functions $\{x_n\}_{n=1}^{\infty}$ in L_p cannot span L_p actually shows that only finitely many Rademachers can be in the closed span of $\{x_n\}_{n=1}^{\infty}$. This is improved in our last result, which shows that the closed span of an unconditionally non-negative quasibasic sequence in $L_p(0,1)$ cannot contain any strongly embedded infinite dimensional subspace (a subspace X of $L_p(0,1)$ is said to be strongly embedded if the $L_p(0,1)$ norm is equivalent to the $L_r(0,1)$ norm on X for some – or, equivalently, for all – r < p; see e.g. [1, p. 151]). The main work for proving this is contained in Lemma 1.

Before stating Lemma 1, we recall that a quasibasis for a Banach space X is a sequence $\{f_n, g_n\}_{n=1}^{\infty}$ in $X \times X^*$ such that for each x in X the series $\sum_n \langle g_n, x \rangle f_n$ converges to x. (In [5], a sequence $\{f_n\}_{n=1}^{\infty}$ in X is a called a quasibasis for X provided there exists such a sequence $\{g_n\}_{n=1}^{\infty}$. Since the sequence $\{g_n\}_{n=1}^{\infty}$ is typically not unique, we prefer to specify it up front.) The quasibasis $\{f_n, g_n\}_{n=1}^{\infty}$ is said to be unconditional provided that for each x in X the series $\sum_n \langle g_n, x \rangle f_n$ converges unconditionally to x. One then gets from the uniform boundedness principle (see, e.g., [5, Lemma 3.2]) that there is a constant K so that for all x and all scalars a_n with $|a_n| \leq 1$, we have $\|\sum_n a_n \langle g_n, x \rangle f_n\| \leq K \|x\|$. A sequence $\{f_n, h_n\}_{n=1}^{\infty}$ is an [unconditional]

quasibasis for the closed span $[f_n]$ of $\{f_n\}_{n=1}^{\infty}$, where h_n is the restriction of g_n to $[f_n]$.

LEMMA 1. Suppose that $\{f_n, g_n\}_{n=1}^{\infty}$ is an unconditionally quasibasic sequence in $L_p(0,1)$, $1 , with each <math>f_n$ non-negative. If $\{y_n\}_{n=1}^{\infty}$ is a normalized weakly null sequence in the closed linear span $[f_n]$ of $\{f_n\}_{n=1}^{\infty}$, then $||y_n||_1 \to 0$ as $n \to \infty$.

Proof. If the conclusion is false, we get a normalized weakly null sequence $\{y_n\}_{n=1}^{\infty}$ in $[f_n]$ and a c > 0 so that for all n we have $\|y_n\|_1 > c$.

By passing to a subsequence of $\{y_n\}_{n=1}^{\infty}$, we can assume that there are integers $0 = m_1 < m_2 < \cdots$ so that for each n,

(5)
$$\sum_{k=1}^{m_n} |\langle g_k, y_n \rangle| ||f_k||_p < 2^{-n-3}c \quad \text{and}$$
$$\left\| \sum_{k=m_{n+1}+1}^{\infty} |\langle g_k, y_n \rangle| f_k \right\|_p < 2^{-n-3}c.$$

Effecting the first inequality in (5) is no problem because $y_n \to 0$ weakly, but the second inequality perhaps requires a comment. If y_n satisfies the first inquality in (5), from the unconditional convergence of the expansion of y_n and the nonnegativity of all f_k we get that $\|\sum_{k=N}^{\infty} |\langle g_k, y_n \rangle| f_k \|_p \to 0$ as $n \to \infty$, which allows us to select m_{n+1} to satisfy the second inequality in (5).

Since $||y_n||_1 > c$, from (5) we also have for every n that

(6)
$$\left\|\sum_{k=m_n+1}^{m_{n+1}} \left| \langle g_k, y_n \rangle \right| f_k \right\|_1 \ge \left\|\sum_{k=m_n+1}^{m_{n+1}} \langle g_k, y_n \rangle f_k \right\|_1 \ge c/2.$$

Since L_p has an unconditional basis, by passing to a further subsequence we can assume that $\{y_n\}_{n=1}^{\infty}$ is unconditionally basic with, say, constant K_p . Set $s = p \wedge 2$. Then L_p has type s (see [1, Theorem 6.2.14]), so for some constant K'_p we have for every N the inequality

(7)
$$\left\|\sum_{n=1}^{N} y_n\right\|_p \le K_p' N^{1/s}.$$

On the other hand, letting $\delta_k = \operatorname{sign}\langle g_k, y_n \rangle$ when $m_n + 1 \leq k \leq m_{n+1}$, $n = 1, 2, 3, \ldots$, we have

(8)
$$KK_p \left\| \sum_{n=1}^N y_n \right\|_p$$

 $\geq K_p \left\| \sum_{n=1}^N \sum_{k=1}^\infty \delta_k \langle g_k, y_n \rangle f_k \right\|_p$

$$\geq \left\| \sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle| f_{k} \right\|_{p} - \left\| \sum_{n=1}^{N} \sum_{k \notin [m_{n}+1,m_{n+1}]}^{N} \delta_{k} \langle g_{k}, y_{n} \rangle f_{k} \right\|_{p}$$

$$\geq \left\| \sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle| f_{k} \right\|_{1} - \left\| \sum_{n=1}^{N} \sum_{k \notin [m_{n}+1,m_{n+1}]}^{N} |\langle g_{k}, y_{n} \rangle| f_{k} \right\|_{p}$$

$$\geq \sum_{n=1}^{N} \left\| \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle| f_{k} \right\|_{1}$$

$$- \sum_{n=1}^{N} \left(\sum_{k=1}^{m_{n}} |\langle g_{k}, y_{n} \rangle| \|f_{k}\|_{p} + \left\| \sum_{k=m_{n+1}+1}^{\infty} |\langle g_{k}, y_{n} \rangle| f_{n} \right\|_{p} \right)$$

$$\geq Nc/2 - c/4 \quad \text{by (6) and (5)}$$

This contradicts (7).

THEOREM 3. Let $\{f_n, g_n\}_{n=1}^{\infty}$ be an unconditional quasibasic sequence in $L_p(0,1), 1 \leq p < \infty$, with each f_n non-negative. Then the closed span $[f_n]$ of $\{f_n\}_{n=1}^{\infty}$ embeds isomorphically into ℓ_p .

Proof. The case p = 1 is especially easy: Assume, as we may, that $||f_n||_1 = 1$. There is a constant K so that for each y in $[f_n]$

(9)
$$||y||_1 \le \left\|\sum_{n=1}^{\infty} |\langle g_n, y \rangle| f_n \right\|_1 \le K ||y||_1,$$

hence the mapping $y \mapsto \{\langle g_k, y \rangle\}_{k=1}^{\infty}$ is an isomorphism from $[f_n]$ into ℓ_1 .

So in the sequel assume that p > 1. From Lemma 1 and standard arguments (see, e.g., [1, Theorem 6.4.7]), we have that every normalized weakly null sequence in $[f_n]$ has a subsequence that is an arbitrarily small perturbation of a disjoint sequence and hence the subsequence is $1 + \epsilon$ -equivalent to the unit vector basis for ℓ_p . This implies that $[f_n]$ embeds isomorphically into ℓ_p (see [3] for the case p > 2 and [2, Theorems III.9, III.1, and III.2] for the case p < 2).

References

- F. Albiac and N. J. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298
- W. B. Johnson, On quotients of L_p which are quotients of l_p, Compos. Math. 34 (1977), no. 1, 69–89. MR 0454595
- W. B. Johnson and E. Odell, Subspaces of L_p which embed into l_p, Compos. Math. 28 (1974), 37–49. MR 0352938
- [4] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer, Berlin, 1977. MR 0500056
- [5] A. M. Powell and A. H. Spaeth, Nonnegativity constraints for structured complete systems, to appear in Trans. Amer. Math. Soc.; DOI:10.1090/tran/6562.

WILLIAM B. JOHNSON, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843, USA

E-mail address: johnson@math.tamu.edu

GIDEON SCHECHTMAN, DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL

E-mail address: gideon@weizmann.ac.il