LOOKING OUT FOR FROBENIUS SUMMANDS ON A BLOWN-UP SURFACE OF \mathbb{P}^2

NOBUO HARA

ABSTRACT. For an algebraic variety X in characteristic p > 0, the push-forward $F_*^e \mathcal{O}_X$ of the structure sheaf by an iterated Frobenius endomorphism F^e is closely related to the geometry of X. We study the decomposition of $F_*^e \mathcal{O}_X$ into direct summands when X is obtained by blowing up the projective plane \mathbb{P}^2 at four points in general position. We explicitly describe the decomposition of $F_*^e \mathcal{O}_X$ and show that there appear only finitely many direct summands up to isomorphism, when e runs over all positive integers. We also prove that these summands generate the derived category $D^b(X)$. On the other hand, we show that there appear infinitely many distinct indecomposable summands of iterated Frobenius push-forwards on a ten-point blowup of \mathbb{P}^2 .

Throughout this paper, we work over an algebraically closed field k of characteristic p > 0. Let X be a smooth variety over k with the Frobenius morphism $F: X \to X$. Then the push-forward $F^e_* \mathcal{O}_X$ of the structure sheaf of X by the *e*-times iterate of the Frobenius is a locally free sheaf of rank $p^{e \dim X}$. When X is a projective curve, it is known that the structure of the vector bundle $F^e_* \mathcal{O}_X$ heavily depends on the genus g of X, as follows.

- (1) If $X = \mathbb{P}^1$, then $F^e_* \mathcal{O}_X \cong \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus p^e 1}$.
- (2) If X is an elliptic curve, then $F^e_*\mathcal{O}_X$ is semi-stable, and
 - (i) if X is ordinary, $F^e_* \mathcal{O}_X$ splits into p^e non-isomorphic p^e -torsion line bundles;
 - (ii) if X is supersingular, $F_*^e \mathcal{O}_X$ is isomorphic to Atiyah's indecomposable vector bundle \mathcal{F}_{p^e} of degree zero and rank p^e ([At]).
- (3) If $g \ge 2$, then $F^e_* \mathcal{O}_X$ is a stable vector bundle (Mehta–Pauly [MP]).

©2016 University of Illinois

Received March 2, 2015; received in final form November 23, 2015.

This work is partially supported by Grant-in-Aid for Scientific Research, JSPS.

²⁰¹⁰ Mathematics Subject Classification. Primary 14J60. Secondary 14G17, 14J26.

Putting the detailed study of the case of genus $g \ge 2$ aside, the structure of the vector bundle $F_*^e \mathcal{O}_X$ is fairly well-understood in dimension one. So it is natural to ask about the surface case. In general, the Frobenius push-forward $F_*^e \mathcal{O}_X$ of a toric variety X splits into line bundles, and there are only finitely many isomorphism classes of line bundles that appear as a direct summand of $F_*^e \mathcal{O}_X$ for some $e \ge 0$ ([T], see also [A2], [OU]). This generalizes what happens in case (1) for curves. On the other hand, works by Sannai–Tanaka [ST], Kitadai–Sumihiro [KS] and Sun [Su] generalize cases (2) and (3) for curves to higher dimension, respectively.

In view of Frobenius splitting, toric varieties are globally *F*-regular (and so *F*-split), and ordinary abelian varieties (e.g., case (2)(i) above) are *F*-split but not globally *F*-regular. In these cases, any direct summand of $F_*^e \mathcal{O}_X$ remains to be a direct summand of $F_*^{e'} \mathcal{O}_X$ for all $e' \ge e$. We call such a vector bundle that appears as a direct summand of $F_*^e \mathcal{O}_X$ for some $e \ge 0$ a *Frobenius summand* on X and ask the following questions.

- (a) Does $F^e_* \mathcal{O}_X$ splits into line bundles?
- (b) Does there exist only finitely many isomorphism classes of indecomposable Frobenius summands on X?

If X satisfies the finiteness condition in (b), it is said to be of globally finite F-representation type (or GFFRT, for short). It follows from [T] and [ST] that question (a) is affirmative for toric and ordinary abelian varieties, but it is likely that (a) fails for non-toric rational surfaces; cf. Achinger [A2]. On the other hand, the GFFRT property, which breaks down for curves of genus $g \ge 1$, holds true for smooth quadric hypersurfaces of any dimension [A1]. Actually, this follows from the fact that Frobenius summands on a smooth quadric hypersurface are arithmetically Cohen–Macaulay (ACM) bundles and that an ACM bundle on a quadric is either a line bundle or a twisted spinor bundle.

In this paper, we will develop a method to study the structure of the Frobenius push-forward $F^e_*\mathcal{O}_X$ in the case where X is obtained by blowing up the projective plane \mathbb{P}^2 at n points P_1, \ldots, P_n . Note that such a rational surface X is not toric if $n \ge 4$. As a result, we examine the GFFRT property of X in the simplest non-trivial case, that is, the case where n = 4. Our main result is the following.

MAIN THEOREM. Let $\pi: X \to \mathbb{P}^2$ be the blowup at four points P_1, P_2, P_3 , $P_4 \in \mathbb{P}^2$ in general position. Let H be a line in \mathbb{P}^2 and $E_i = \pi^{-1}(P_i)$ the exceptional curve over P_i . Then any indecomposable Frobenius summand on the surface X coincides with one of the following vector bundles of rank ≤ 3 .

(1) line bundles \mathcal{O}_X , $L_0 = \mathcal{O}_X(E_1 + E_2 + E_3 + E_4 - 2\pi^*H)$ and $L_i = \mathcal{O}_X(E_i - \pi^*H)$ for i = 1, 2, 3, 4;

(2) an indecomposable rank 2 bundle \mathcal{G} given by a unique non-trivial extension

$$0 \to \mathcal{O}_X(-\pi^*H) \to \mathcal{G} \to \mathcal{O}_X(E_1 + E_2 + E_3 + E_4 - 2\pi^*H) \to 0;$$

(3) an indecomposable rank 3 bundle \mathcal{B} given by a non-trivial extension

$$0 \to \mathcal{O}_X(E_1 - \pi^* H) \oplus \mathcal{O}_X(E_2 - \pi^* H) \to \mathcal{B} \to \mathcal{O}_X(E_3 + E_4 - \pi^* H) \to 0.$$

Furthermore, for any power $q = p^e$ of the characteristic p with $e \ge 1$ one has

$$F^e_*\mathcal{O}_X \cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L^{\oplus (q-2)}_i \oplus \mathcal{B} \oplus \mathcal{G}^{\oplus \frac{(q-2)(q-3)}{2}}.$$

We apply the above theorem to show that $F_*^* \mathcal{O}_X$ generates the derived category $D^b(X)$ in the sense of [OU]; see Proposition 6.4. In order to prove the theorem, we study the behavior of the Frobenius push-forward and Frobenius summands with respect to the blow-down morphism $\sigma \colon X \to Y$ of one of the exceptional curves, say, E_4 . It follows that any Frobenius summand \mathcal{F} on X sits in an exact sequence $0 \to \sigma^* \sigma_* \mathcal{F} \to \mathcal{F} \to \mathcal{O}_{E_4}(-1)^{\oplus n} \to 0$ with $n \leq \operatorname{rank} \mathcal{F}$ and $\sigma_* \mathcal{F}$ is a Frobenius summand on Y, which splits into a direct sum of copies of finitely many line bundles since Y is a toric surface. Then it turns out that \mathcal{F} is obtained by successive extension of line bundles either of the form $\sigma^* L$ or $\sigma^*(L) \otimes \mathcal{O}_X(E_4)$, where L is a rank one Frobenius summand on Y. Computing the involving extension classes we see that an indecomposable Frobenius summand on X is either one of those listed in (1)–(3) of the theorem. Finally, we can determine the multiplicity of each summand appearing in $F_*^e \mathcal{O}_X$ in terms of the Frobenius splitting method.

The GFFRT property of a blown-up surface of \mathbb{P}^2 would possibly break down as the number of the blown-up points gets larger than a certain bound. Actually, we can construct an example of a rational surface X obtained by blowing up \mathbb{P}^2 at more than ten points that is not GFFRT; see Proposition 6.2.

1. Preliminaries

We work over an algebraically closed field k of characteristic p > 0. It is known that the Frobenius push-forward of any line bundle on a smooth toric variety splits into a direct sum of line bundles [T]; see also [A2], [OU].

1.1. Toric surfaces. We review a few examples for basic toric surfaces.

1.1a. The case $X = \mathbb{P}^2$. Let X be the projective plane with homogeneous coordinates x_0, x_1, x_2 and let $x = x_1/x_0, y = x_2/x_0$. Let $H \subset X$ be the line

 $x_0 = 0$. For $q = p^e$ we choose a basis $\{x^{i/q}y^{j/q} | 0 \le i, j \le q-1\}$ of $K^{1/q}$ over the function field K = k(x, y) of X. Then we have a decomposition

$$F^e_*\mathcal{O}_X = \bigoplus_{0 \le i,j \le q-1} L_{ij} x^{i/q} y^{j/q}$$
$$\cong \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1)^{\oplus \frac{(q-1)(q+4)}{2}} \oplus \mathcal{O}_{\mathbb{P}^2}(-2)^{\oplus \frac{(q-1)(q-2)}{2}}$$

with respect to the basis, where

$$L_{ij} = \begin{cases} \mathcal{O}_X & \text{if } i = j = 0; \\ \mathcal{O}_X(-H) & \text{if } 1 \le i + j \le q; \\ \mathcal{O}_X(-2H) & \text{if } q + 1 \le i + j \le 2q - 2. \end{cases}$$

1.1b. The blowup of \mathbb{A}^2 at the origin. Let $\pi: X \to Y = \mathbb{A}^2 = \operatorname{Spec} k[x, y]$ be the blowup at the origin $o \in \mathbb{A}^2$ with the exceptional curve $E = \pi^{-1}(o)$. Then for $q = p^e$ we have a decomposition

$$F_*^e \mathcal{O}_X = \bigoplus_{0 \le i, j \le q-1} L_{ij} x^{i/q} y^{j/q} \cong \mathcal{O}_X^{\oplus \frac{q(q+1)}{2}} \oplus \mathcal{O}_X(E)^{\oplus \frac{q(q-1)}{2}},$$

where

$$L_{ij} = \begin{cases} \mathcal{O}_X & \text{if } 0 \le i+j \le q-1; \\ \mathcal{O}_X(E) & \text{if } q \le i+j \le 2q-2 \end{cases}$$

In view of the trivial decomposition $F^e_*\mathcal{O}_Y \cong \bigoplus_{0 \le i,j \le q-1} \mathcal{O}_Y x^{i/q} y^{j/q}$ on $Y = \mathbb{A}^2$, we have the following exact sequence

(1.1)
$$0 \to \pi^* F^e_* \mathcal{O}_Y \to F^e_* \mathcal{O}_X \to \mathcal{N} \to 0,$$

where $\mathcal{N} = \bigoplus_{q \leq i+j \leq 2q-2} \mathcal{O}_E(E) x^{i/q} y^{j/q} \cong \mathcal{O}_E(-1)^{\oplus \frac{q(q-1)}{2}}$. *1.1c. The blowup of* \mathbb{P}^2 *at a point.* Let $\pi \colon X \to \mathbb{P}^2$ be the blowup at a torus-invariant point $P \in \mathbb{P}^2$ and let $E = \pi^{-1}(P)$. If we choose P = (1:0:0), then it follows from (1.1a) and (1.1b) that

$$F^e_* \mathcal{O}_X = \bigoplus_{0 \le i, j \le q-1} L_{ij} x^{i/q} y^{j/q}$$
$$\cong \mathcal{O}_X \oplus \mathcal{O}_X (-\pi^* H)^{\oplus \frac{q^2+q-2}{2}} \oplus \mathcal{O}_X (E - \pi^* H)^{\oplus (q-1)}$$
$$\oplus \mathcal{O}_X (E - 2\pi^* H)^{\oplus \frac{q^2-3q+2}{2}},$$

where

$$L_{ij} = \begin{cases} \mathcal{O}_X & \text{if } i = j = 0; \\ \mathcal{O}_X(-\pi^*H) & \text{if } 1 \le i + j \le q - 1; \\ \mathcal{O}_X(E - \pi^*H) & \text{if } i + j = q; \\ \mathcal{O}_X(E - 2\pi^*H) & \text{if } q + 1 \le i + j \le 2q - 2 \end{cases}$$

Note that the assignment of the summands $\mathcal{O}_X(-\pi^*H)$ and $\mathcal{O}_X(E-\pi^*H)$ to the pairs (i, j) with $1 \leq i + j \leq q$ depends on the choice of a torus-invariant point P. Namely:

(1) if P = (1:0:0) then $L_{ij} = \mathcal{O}_X(E - \pi^* H)$ for $(i, j) = (1, q - 1), (2, q - 2), \dots, (q - 1, 1)$ as described above, whereas;

(2) if
$$P = (0:1:0)$$
 then $L_{ij} = \mathcal{O}_X(E - \pi^* H)$ for $(i,j) = (0,1), \dots, (0,q-1);$
(2) if $P = (0,0,1)$ then $L_{ij} = \mathcal{O}_X(E - \pi^* H)$ for $(i,j) = (0,1), \dots, (0,q-1);$

(3) if
$$P = (0:0:1)$$
 then $L_{ij} = \mathcal{O}_X(E - \pi^*H)$ for $(i,j) = (1,0), \dots, (q-1,0)$.

1.2. The blowup of \mathbb{P}^2 at more than three points. Let $\pi: X \to \mathbb{P}^2$ be the blowup of the projective plane $\mathbb{P}^2 = \mathbb{P}_k^2$ at n points $P_1, \ldots, P_n \in \mathbb{P}^2$ in general position and let $E_i = \pi^{-1}(P_i)$ be the exceptional curve over P_i . We may and will assume that $P_1 = (1:0:0), P_2 = (0:1:0)$ and $P_3 = (0:0:1)$. We factorize $\pi: X \to \mathbb{P}^2$ as $\pi = \sigma \circ \tau$, where $\tau: Y \to \mathbb{P}^2$ is the blowup at n-1 points P_1, \ldots, P_{n-1} and $\sigma = \sigma_n: X \to Y$ is the blowup at the point P_n . Then by (1.1) we have an exact sequence

$$0 \to \sigma^* F^e_* \mathcal{O}_Y \to F^e_* \mathcal{O}_X \to \mathcal{O}_{E_n}(-1)^{\oplus \frac{q(q-1)}{2}} \to 0.$$

This implies that any direct summand \mathcal{F} of $F^e_*\mathcal{O}_X$ sits in a similar exact sequence

(1.2)
$$0 \to \sigma^* \mathcal{E} \to \mathcal{F} \to \mathcal{N} \to 0,$$

where $\mathcal{E} = \pi_* \mathcal{F}$ is a direct summand of $F^e_* \mathcal{O}_Y$ and \mathcal{N} is a direct sum of copies of $\mathcal{O}_{E_n}(-1)$'s.

As for line bundle summands of $F^e_*\mathcal{O}_X$, we easily see the following: If a line bundle L is a direct summand of $F^e_*\mathcal{O}_X$, then $L' = \sigma_*L$ is also a direct summand on $F^e_*\mathcal{O}_Y$, and L sits in an exact sequence

$$0 \to \sigma^* L' \to L \to \mathcal{N} \to 0$$

with $\mathcal{N} = 0$ or $\mathcal{O}_{E_n}(-1)$. Hence $L \cong \sigma^* L'$ or $\sigma^*(L') \otimes \mathcal{O}_X(E_n)$.

We want to look out for all indecomposable Frobenius summands on X, that is, indecomposable vector bundles appearing as a direct summand of $F_*^e \mathcal{O}_X$ for some $e \ge 0$. This problem is closely related to F-splitting property: X is said to be F-split if the Frobenius map $F: \mathcal{O}_X \to F_*\mathcal{O}_X$ splits as an \mathcal{O}_X module homomorphism, or equivalently, $F_*^e \mathcal{O}_X$ has a free direct summand \mathcal{O}_X for all $e \ge 0$.¹

The following are known for the F-splitting property of smooth del Pezzo surfaces.

PROPOSITION 1.1 (Cf. [H, Example 5.5]). Assume that $n \leq 8$ under the notation of Section 1.2 above. Then X is F-split except for the following three cases.

(1) n = 6 and p = 2;

¹ When X is projective over k, the maximal rank of a free Frobenius summand is at most 1, because $H^0(X, F^*_*\mathcal{O}_X) = k$.

(2) n = 7 and p = 2 or 3; (3) n = 8 and p = 2, 3 or 5.

Our main target in this paper is the case n = 4, where X itself is a non-toric *F*-split surface but the surface Y downstairs, being the blowup of \mathbb{P}^2 at three points P_1, P_2, P_3 , is toric. Summing up the results in (1.1c), we obtain the following lemma.

LEMMA 1.2. Let $\tau: Y \to \mathbb{P}^2$ be the blowup at the three points P_1, P_2, P_3 in general position. Then $F^e_*\mathcal{O}_Y$ is isomorphic to

$$\mathcal{O}_Y \oplus \mathcal{O}_Y \left(-\tau^* H\right)^{\oplus \frac{(q-1)(q-2)}{2}} \oplus \bigoplus_{i=1}^3 \mathcal{O}_Y \left(E_i - \tau^* H\right)^{\oplus (q-1)} \\ \oplus \mathcal{O}_Y \left(E' - 2\tau^* H\right)^{\oplus \frac{(q-1)(q-2)}{2}},$$

where $q = p^e$ and $E' = E_1 + E_2 + E_3$.

LEMMA 1.3. Under the notation as in Lemma 1.2 we also have

$$F_*^e \mathcal{O}_Y \left(-\tau^* H \right) \cong \mathcal{O}_Y \left(-\tau^* H \right)^{\oplus \frac{q(q+1)}{2}} \oplus \mathcal{O}_Y \left(E' - 2\tau^* H \right)^{\oplus \frac{q(q-1)}{2}},$$

$$F_*^e \mathcal{O}_Y \left(E' - 2\tau^* H \right) \cong \mathcal{O}_Y \left(-\tau^* H \right)^{\oplus \frac{q(q-1)}{2}} \oplus \mathcal{O}_Y \left(E' - 2\tau^* H \right)^{\oplus \frac{q(q+1)}{2}},$$

and

$$F^e_*\mathcal{O}_Y(E_i - \tau^*H) \cong \mathcal{O}_Y(-\tau^*H)^{\oplus \frac{q(q-1)}{2}} \oplus \mathcal{O}_Y(E_i - \tau^*H)^{\oplus q} \oplus \mathcal{O}_Y(E' - 2\tau^*H)^{\oplus \frac{q(q-1)}{2}}$$

for i = 1, 2, 3.

Proof. The proof is similar to Lemma 1.2 and left to the reader.

Using the above lemmas, we can show that any Frobenius summand on a four-point blowup of \mathbb{P}^2 is obtained by successive extensions of line bundles. To analyze the extensions we need to know the dimension of the extension group $\operatorname{Ext}^1(L, M)$ for line bundles L, M. Since $\operatorname{Ext}^1(L, M) \cong$ $H^1(X, L^{-1} \otimes M)$, its dimension is computed with Riemann-Roch. We collect a few such computations that will be used later; see also Lemma 4.3.

LEMMA 1.4. Assume n = 4 under the notation of Section 1.2 above, let $E = E_1 + E_2 + E_3 + E_4$ and let $i, j, l \in \{1, 2, 3, 4\}$ be any distinct indexes. Then the first cohomology groups

$$H^{1}(X, \mathcal{O}_{X}(\pi^{*}H - E)), \qquad H^{1}(X, \mathcal{O}_{X}(E - 2E_{i} - \pi^{*}H)), \\ H^{1}(X, \mathcal{O}_{X}(E_{i} - E_{j} - E_{l}))$$

are one-dimensional k-vector spaces. On the other hand, $H^1(X, \mathcal{O}_X(D)) = 0$ holds for $D = \pm E_i$, $E_i - E_j$, $2\pi^*H - E$ and $\pi^*H - E''$ with $0 \le E'' \le E - E_i$.

Proof. Let
$$h^i = h^i(\mathcal{O}_X(\pi^*H - E))$$
 for $i = 0, 1, 2$. Then

$$\chi(\mathcal{O}_X(\pi^*H - E)) = h^0 - h^1 + h^2 = \frac{1}{2}(\pi^*H - E)(\pi^*H - E - K_X) + 1 = -1$$

by the Riemann-Roch formula. Here we used the fact that $K_X \sim E - 3\pi^*H$. On the other hand, $h^0 = 0$ since P_1, P_2, P_3, P_4 are not collinear, and $h^2 = h^0(\mathcal{O}_X(K_X - \pi^*H + E)) = 0$ by the Serre duality. Thus $h^1 = h^1(\mathcal{O}_X(\pi^*H - E)) = 1$, as required.

The dimensions of the other first cohomology groups are computed similarly. We just discuss the vanishing of $H^1(X, \mathcal{O}_X(\pi^*H - E''))$ from them. Let E'' be the sum of r distinct (-1)-curves with $0 \le r \le 3$. Then $\chi(\mathcal{O}_X(\pi^*H - E'')) = 3 - r$ by Riemann–Roch and $h^2(\mathcal{O}_X(\pi^*H - E'')) = 0$ by the Serre duality. It also follows that $h^0(\mathcal{O}_X(\pi^*H - E'')) = 3 - r$ from the condition of general position that no three of P_1, P_2, P_3, P_4 are collinear. Thus, $h^1(\mathcal{O}_X(\pi^*H - E'')) = 0$, as required.

2. The behavior of Frobenius summands under point-blowups

Our strategy to study Frobenius summands on a four-point blowup X of \mathbb{P}^2 is to factorize $\pi: X \to \mathbb{P}^2$ as $\pi = \sigma \circ \tau$ as in Section 1.2 and look at what happens for the blowup $\sigma: X \to Y$ at P_4 . For this purpose, we will work under the following setup in this section. Note that Frobenius summands on the blowup of \mathbb{P}^2 at four points satisfy conditions (a), (b) and (c) below; see Section 1 and especially (1.2).

2.1. Setup. Let $\sigma: X \to Y$ be the blowup at a point P on a smooth projective surface Y with exceptional curve $E = \sigma^{-1}(P)$. Let \mathcal{F} be a vector bundle of rank r on X satisfying the following conditions:

- (a) $\sigma_* \mathcal{F} \cong L_1 \oplus \cdots \oplus L_r$ for line bundles L_1, \ldots, L_r on Y.
- (b) \mathcal{F} sits in an exact sequence

$$0 \to \sigma^* \sigma_* \mathcal{F} \to \mathcal{F} \to \mathcal{O}_E(-1)^{\oplus n} \to 0,$$

where n is an integer with $0 \le n \le r$.

(c) $H^i(X, \mathcal{F}) = 0$ for i > 0.

Under condition (b), condition (c) holds if and only if $H^i(X, \sigma^*\sigma_*\mathcal{F}) = 0$ for i > 0, or equivalently if $H^i(Y, L_j) = H^i(X, \sigma^*L_j) = 0$ for i > 0 and $1 \le j \le r$. Note that this vanishing holds if L_j 's are Frobenius summands on a rational surface Y, since $H^i(Y, L_j) \subseteq H^i(Y, F_*^e\mathcal{O}_Y) = H^i(Y, \mathcal{O}_Y)$.

Let \mathcal{F} be a vector bundle of rank r on X satisfying conditions (a)–(c) as above. Let $\mathcal{E} = \sigma_* \mathcal{F} \cong L_1 \oplus \cdots \oplus L_r$, $\mathcal{E}' = L_1 \oplus \cdots \oplus L_{r-1}$ and let \mathcal{F}' be the saturation of $\sigma^* \mathcal{E}'$ in \mathcal{F} , that is, \mathcal{F}' is the kernel of the natural map $\mathcal{F} \to (\mathcal{F}/\sigma^* \mathcal{E}')/\operatorname{tors}(\mathcal{F}/\sigma^* \mathcal{E}')$. Then \mathcal{F}' , which satisfies Serre's condition (S₂)

on a smooth surface, is a vector bundle of rank r-1, since \mathcal{F}/\mathcal{F}' is a torsionfree \mathcal{O}_X -module of rank 1. We have the following commutative diagram

$$\begin{array}{ccccccc} 0 & 0 & 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \rightarrow \sigma^* \mathcal{E}' \rightarrow \sigma^* \mathcal{E} \rightarrow \sigma^* L_r \rightarrow 0 \\ \downarrow^{\alpha} & \downarrow & \downarrow^{\beta} \\ 0 \rightarrow & \mathcal{F}' \rightarrow & \mathcal{F} \rightarrow \mathcal{F} / \mathcal{F}' \rightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \rightarrow & \mathcal{N}' \rightarrow & \mathcal{N} \rightarrow & \mathcal{N}'' \rightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 & 0 & 0 \end{array}$$

with exact rows and columns, where $\mathcal{N} = \mathcal{O}_E(-1)^{\oplus n}$, and \mathcal{N}' and \mathcal{N}'' are the cokernels of the maps α and β , respectively. Since \mathcal{F}/\mathcal{F}' is isomorphic to σ^*L_r outside E, one has $(\mathcal{F}/\mathcal{F}') \otimes \sigma^*L_r^{-1} \cong \mathcal{I}_Z \otimes \mathcal{O}_X(mE)$ for an integer $m \geq 0$, where Z is a 0-dimensional closed subscheme of X supported in E. Actually, we must have m = 0 or 1 since $\mathcal{N}'' = \operatorname{Coker}(\beta)$ has an \mathcal{O}_E -module structure induced from the surjection $\mathcal{N} \twoheadrightarrow \mathcal{N}''$, and m = 1 if Z is non-empty.

CLAIM 2.1.
$$\mathcal{N}' \cong \mathcal{O}_E(-1)^{\oplus n-m}$$
, $\mathcal{N}'' \cong \mathcal{O}_E(-1)^{\oplus m}$ and $Z = \emptyset$.

Proof. Let $M = \sigma^*(L_r) \otimes \mathcal{O}_X(mE)$ and look at the exact sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{I}_Z \otimes M \to 0.$$

Then we have

$$\chi(\mathcal{F}) = \chi(\mathcal{F}') + \chi(\mathcal{I}_Z \otimes M) = \chi(\mathcal{F}') + \chi(M) - \deg Z.$$

The Euler characteristic on the left-hand side is computed as

$$\chi(\mathcal{F}) = h^0(\mathcal{F}) = h^0(\sigma^*\mathcal{E}) = h^0(\sigma^*\mathcal{E}') + h^0(\sigma^*L_r),$$

where the equalities follow from the vanishing (c), the exact sequence in (b) together with $h^0(\mathcal{N}) = 0$, and the splitting $\sigma^* \mathcal{E} \cong \sigma^* \mathcal{E}' \oplus \sigma^* L_r$, respectively. On the other hand, it follows that $\chi(M) = \chi(\sigma^* L_r) + m\chi(\mathcal{O}_E(-1)) = h^0(\sigma^* L_r)$ from the exact sequence $0 \to \sigma^* L_r \to M \to \mathcal{O}_E(-1)^{\oplus m} \to 0$ with m = 0, 1. We also have that $H^i(X, \sigma^* \mathcal{E}') = 0$ for i > 0, and all but the first cohomology groups of \mathcal{N}' vanish because of the monomorphism $\mathcal{N}' \to \mathcal{N} = \mathcal{O}_E(-1)^{\oplus n}$. Looking at the exact sequence $0 \to \sigma^* \mathcal{E}' \to \mathcal{F}' \to \mathcal{N}' \to 0$, we know that $H^0(X, \sigma^* \mathcal{E}') \cong H^0(X, \mathcal{F}'), H^2(X, \mathcal{F}') = 0$ and that $\chi(\mathcal{F}') = h^0(\mathcal{F}') - h^1(\mathcal{F}') = h^0(\sigma^* \mathcal{E}') - h^1(\mathcal{F}')$. Summing up, we have $h^1(\mathcal{F}') + \deg Z = 0$, so that $h^1(\mathcal{F}') = \deg Z = 0$. Thus, $Z = \emptyset$ and $\mathcal{N}'' \cong \mathcal{O}_E(-1)^{\oplus m}$. It then follows that the exact sequence $0 \to \mathcal{N}' \to \mathcal{N} \to \mathcal{N}'' \to 0$ splits and $\mathcal{N}' \cong \mathcal{O}_E(-1)^{\oplus n-m}$.

Thus, we are led to the following.

LEMMA 2.1. Let \mathcal{F} be a vector bundle of rank r on X satisfying conditions (a), (b) and (c) as in Section 2.1. Then there exists a filtration $0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_r = \mathcal{F}$ of subbundles \mathcal{F}_i with line bundle quotients $\mathcal{F}_i/\mathcal{F}_{i-1}$ such that the following hold for $1 \leq i \leq r$.

- (1) \mathcal{F}_i satisfies conditions (a), (b) and (c) with $\sigma_*\mathcal{F}_i \cong L_1 \oplus \cdots \oplus L_i$.
- (2) $\mathcal{F}_i/\mathcal{F}_{i-1} \cong \sigma^* L_i \text{ or } \sigma^*(L_i) \otimes \mathcal{O}_X(E)$. In particular, if \mathcal{F}_i is indecomposable, then $\mathcal{F}_i/\mathcal{F}_{i-1} \cong \sigma^*(L_r) \otimes \mathcal{O}_X(E)$.

Proof. For each i let \mathcal{F}_i be the saturation of $\sigma^*(L_1 \oplus \cdots \oplus L_i)$ in \mathcal{F} . Then \mathcal{F}_i is a vector bundle of rank i with $\sigma_* \mathcal{F}_i \cong L_1 \oplus \cdots \oplus L_i$. Moreover, it follows from the argument above that assertions (1) for i = r - 1 and (2) for i = r hold. Since \mathcal{F}_{r-1} satisfies conditions (a), (b) and (c), we obtain the whole statement (except for the case when \mathcal{F}_i is indecomposable) by descending induction on i.

Finally, suppose that \mathcal{F}_i is indecomposable and $\mathcal{F}_i/\mathcal{F}_{i-1} \cong \sigma^* L_i$. Then the splitting map $\sigma^* L_i \to \sigma^* \sigma_* \mathcal{F}_i$ composed with the inclusion map $\sigma^* \sigma_* \mathcal{F}_i \to \mathcal{F}_i$ gives a splitting of the map $\mathcal{F}_i \to \mathcal{F}_i/\mathcal{F}_{i-1}$, which contradicts to the indecomposability of \mathcal{F}_i .

COROLLARY 2.2. Let \mathcal{F} be a vector bundle of rank r on X satisfying conditions (a), (b) and (c). For any subset $I = \{i_1, \ldots, i_s\} \subset \{1, \ldots, r\}$ with $J = \{1, \ldots, r\} \setminus I$, let \mathcal{F}_I be the saturation of $\sigma^*(L_{i_1} \oplus \cdots \oplus L_{i_s})$ in \mathcal{F} and let $\overline{\mathcal{F}}_J = \mathcal{F}/\mathcal{F}_I$. Then \mathcal{F}_I and $\overline{\mathcal{F}}_J$ are vector bundles of rank s and r - s, respectively, satisfying conditions (a), (b) and (c) with $\sigma_*\mathcal{F}_I \cong \bigoplus_{i \in I} L_i$ and $\sigma_*\overline{\mathcal{F}}_J \cong \bigoplus_{i \in J} L_j$.

Proof. We will prove our assertion by descending induction on $s = \sharp I$. The case s = r is trivial. Suppose our assertion holds for s with $0 < s \le r$ and consider the following commutative diagram with exact rows and columns.²

Since \mathcal{F}_I and $\overline{\mathcal{F}}_J$ satisfy the required property by induction hypothesis, it follows from Lemma 2.1 that $\mathcal{F}_{I \setminus \{i_s\}}$ satisfies conditions (a)–(c) and that

² Note that the saturation of $\sigma^*(L_{i_1} \oplus \cdots \oplus L_{i_{s-1}})$ in \mathcal{F}_I coincides with the saturation of $\mathcal{F}_{I \setminus \{i_s\}}$ in \mathcal{F} .

 $\overline{L_{i_s}} \cong \sigma^* L_{i_s}$ or $\sigma^* (L_{i_s}) \otimes \mathcal{O}_X(E)$. Looking at the bottom exact sequence we see that $\overline{\mathcal{F}}_{J \cup \{i_s\}}$ also satisfies conditions (a)–(c).

As for indecomposable bundles of ranks 2 and 3, we have the following corollary.

COROLLARY 2.3. Under the notation of Section 2.1, assume that \mathcal{F} is indecomposable of rank 2 such that $\sigma_*\mathcal{F} \cong L \oplus M$ for line bundles L and M on Y. Then we have an exact sequence

$$0 \to \sigma^* L \to \mathcal{F} \to \sigma^*(M) \otimes \mathcal{O}_X(E) \to 0$$

given by a non-zero extension class $\varepsilon \in \operatorname{Ext}^1(\sigma^*(M) \otimes \mathcal{O}_X(E), \sigma^*L)$ sitting in

 $\operatorname{Ker}(\operatorname{Ext}^{1}(\sigma^{*}(M) \otimes \mathcal{O}_{X}(E), \sigma^{*}L) \to \operatorname{Ext}^{1}(\sigma^{*}M, \sigma^{*}L) \cong \operatorname{Ext}^{1}(M, L)) \cong k.$

Proof. By Lemma 2.1, we have an exact sequence

$$0 \to L \to \mathcal{F} \to \sigma^*(M) \otimes \mathcal{O}_X(E) \to 0$$

with $\widetilde{L} \cong \sigma^* L$ or $\sigma^*(L) \otimes \mathcal{O}_X(E)$. Suppose that $\widetilde{L} \cong \sigma^*(L) \otimes \mathcal{O}_X(E)$. Then the inclusion map $\mathcal{F} \to \sigma^* \sigma_*(\mathcal{F}) \otimes \mathcal{O}_X(E)$ composed with the map $\sigma^* \sigma_*(\mathcal{F}) \otimes \mathcal{O}_X(E) \to \sigma^*(L) \otimes \mathcal{O}_X(E)$, which is induced by the splitting map $\sigma_* \mathcal{F} \to L$, gives a splitting of the map $\widetilde{L} \to \mathcal{F}$. This absurdity implies that $\widetilde{L} \cong \sigma^* L$.

Next, we will show that the kernel of the natural map $\operatorname{Ext}^1(\overline{M}, \widetilde{L}) \xrightarrow{\rho} \operatorname{Ext}^1(M, L)$ is a vector space of dimension ≤ 1 . To this end, we consider the exact sequence

$$0 \to \sigma^* M \to \sigma^*(M) \otimes \mathcal{O}_X(E) \to \mathcal{O}_E(-1) \to 0$$

and apply the functor $\operatorname{Ext}^{\bullet}(-,\sigma^*L)$ to obtain a long exact sequence

 $\operatorname{Ext}^{1}(\mathcal{O}_{E}(-1), \sigma^{*}L) \to \operatorname{Ext}^{1}(\sigma^{*}(M) \otimes \mathcal{O}_{X}(E), \sigma^{*}L) \xrightarrow{\rho} \operatorname{Ext}^{1}(\sigma^{*}M, \sigma^{*}L) \to 0.$ It is sufficient to show that $\operatorname{Ext}^{1}(\mathcal{O}_{E}(-1), \sigma^{*}L)$ is 1-dimensional. But this follows because $\operatorname{Ext}^{1}(\mathcal{O}_{E}(-1), \sigma^{*}L) \cong H^{0}(X, \mathcal{E}xt^{1}(\mathcal{O}_{E}(-1), \sigma^{*}L))$ by the Leray spectral sequence and

$$\mathcal{E}xt^{1}(\mathcal{O}_{E}(-1),\sigma^{*}L) \cong \mathcal{E}xt^{1}(\mathcal{O}_{E},\omega_{X}) \otimes \omega_{X}(E)^{-1} \otimes \sigma^{*}L$$
$$\cong \omega_{E} \otimes \omega_{X}(E)^{-1} \otimes \sigma^{*}L$$
$$\cong \mathcal{O}_{E}.$$

COROLLARY 2.4. Under the notation of Section 2.1, assume that \mathcal{F} is indecomposable of rank 3 with $\sigma_*\mathcal{F} \cong L_1 \oplus L_2 \oplus L_3$. Then we have a non-trivial extension

$$0 \to L_1 \oplus L_2 \to \mathcal{F} \to \sigma^*(L_3) \otimes \mathcal{O}_X(E) \to 0,$$

and either one of the following two cases occurs.

- (1) $L_1 \oplus L_2 = \sigma^*(L_1) \oplus \sigma^*(L_2)$ with $L_1 \ncong L_2$.
- (2) $\widetilde{L_1 \oplus L_2}$ is indecomposable and $\det(\widetilde{L_1 \oplus L_2}) \cong \sigma^*(L_1 \otimes L_2) \otimes \mathcal{O}_X(E)$.

Proof. The proof goes similarly as in Corollary 2.3. We just show the reason why $L_1 \ncong L_2$ in (1), as well as the indecomposability in (2).

Suppose that $L_1 \cong L_2$ in case (1) and let \mathcal{F} be given by an extension class $\varepsilon = (\varepsilon_1, \varepsilon_2)$, where

$$\varepsilon_i \in K_i = \operatorname{Ker}\left(\operatorname{Ext}^1(\sigma^*(L_3) \otimes \mathcal{O}_X(E), \sigma^*L_i) \to \operatorname{Ext}^1(L_3, L_i)\right)$$

for i = 1, 2. Then $K_1 \cong K_2$ is a 1-dimensional vector space as we have seen in the proof of Lemma 2.3. It follows that an automorphism of $\sigma^* L_1 \oplus \sigma^* L_2$ transforms ε to an extension class of the form $(\varepsilon', 0)$. Then \mathcal{F} splits as $\mathcal{F} \cong$ $\mathcal{F}' \oplus \sigma^* L_2$, where \mathcal{F}' is a rank 2 bundle given by an extension class ε' .

Suppose now that $L_1 \oplus L_2$ is a decomposable bundle with determinant $\sigma^*(L_1 \otimes L_2) \otimes \mathcal{O}_X(E)$. It then follows from $\sigma_*(\widetilde{L_1 \oplus L_2}) \cong L_1 \oplus L_2$ that $\widetilde{L_1 \oplus L_2} \cong (\sigma^*(L_1) \otimes \mathcal{O}_X(E_4)) \oplus \sigma^*L_2$ or $\sigma^*L_1 \oplus (\sigma^*(L_2) \otimes \mathcal{O}_X(E_4))$. In each case \mathcal{F} is given by an extension class of the form $(\varepsilon_1, 0)$ or $(0, \varepsilon_2)$, respectively. This contradicts the indecomposability of \mathcal{F} .

3. Frobenius summands of rank 2 and 3 on a four-point blowup of \mathbb{P}^2

We will apply Corollaries 2.3 and 2.4 to the case n = 4 in the notation of Section 1.2. Namely, $\pi: X \to \mathbb{P}^2$ is the blowup of \mathbb{P}^2 at four points P_1, P_2, P_3, P_4 in general position. We factorize π as

$$\pi \colon X \xrightarrow{\sigma} Y \xrightarrow{\tau} \mathbb{P}^2.$$

where τ is the blowup at the 3 points P_1, P_2, P_3 .

3.1. Rank 2 Frobenius summands on a four-point blowup. We will find out indecomposable rank 2 Frobenius summands on X with a non-trivial extension

(3.1)
$$0 \to \sigma^* L \to \mathcal{F} \to \sigma^*(M) \otimes \mathcal{O}_X(E_4) \to 0,$$

where L and M are non-trivial line bundles that are Frobenius summands on Y. In this case, Lemma 1.2 tells us that L and M are isomorphic to either $\mathcal{O}_Y(-\tau^*H)$, $\mathcal{O}_Y(E_i - \tau^*H)$ with i = 1, 2, 3, or $\mathcal{O}_Y(E' - 2\tau^*H)$, where H is a line on \mathbb{P}^2 and $E' = E_1 + E_2 + E_3$.

We give two candidates for rank 2 Frobenius summands in Examples 3.1 and 3.3, from which the latter one will be ruled out.

EXAMPLE 3.1. Let
$$L = \mathcal{O}_Y(-\tau^* H)$$
 and $M = \mathcal{O}_Y(E' - 2\tau^* H)$. Then

$$\dim \operatorname{Ext}^{1}(\sigma^{*}(M) \otimes \mathcal{O}_{X}(E_{4}), \sigma^{*}L) = h^{1}(\mathcal{O}_{X}(\pi^{*}H - E)) = 1$$

by Lemma 1.4, where $E = E_1 + E_2 + E_3 + E_4 = \sigma^* E' + E_4$. Hence we have a unique non-trivial extension as (3.1) above that gives a vector bundle \mathcal{G} of rank 2,

(3.2)
$$0 \to \mathcal{O}_X(-\pi^*H) \to \mathcal{G} \to \mathcal{O}_X(E-2\pi^*H) \to 0.$$

Since $\operatorname{Ext}^{1}(M,L) \cong H^{0}(Y, \mathcal{O}_{Y}(\tau^{*}H - E')) \cong H^{1}(X, \mathcal{O}_{X}(\pi^{*}H - E + E_{4})) = 0$ by Lemma 1.4, the natural map between the extension groups

$$\operatorname{Ext}^{1}(\sigma^{*}(M) \otimes \mathcal{O}_{X}(E_{4}), \sigma^{*}L) \to \operatorname{Ext}^{1}(M, L) = 0$$

is the zero map, and we do have $\sigma_*\mathcal{G} \cong L \oplus M$. To see that \mathcal{G} is indecomposable, let $\sigma_i \colon X \to Y_i$ be the blow-down of E_i for i = 1, 2, 3, 4. Then by symmetry we have

$$(\sigma_i)_*\mathcal{G}\cong \mathcal{O}_{Y_i}(-\pi_i^*H)\oplus \mathcal{O}_{Y_i}(E^{(i)}-2\pi_i^*H),$$

where $E^{(i)} = (\sigma_i)_* E$ is the sum of three exceptional curves of $\pi_i \colon Y_i \to \mathbb{P}^2$. Suppose that \mathcal{G} is decomposable. Then we can write $\mathcal{G} \cong \mathcal{O}_X(D_1 - \pi^* H) \oplus \mathcal{O}_X(D_2 - 2\pi^* H)$, where D_1 and D_2 are effective π -exceptional divisors with $D_1 + D_2 = E$. Pushing it out by σ_i and comparing with the splitting above, we see that $D_2 \ge E^{(i)}$ for all *i*. This implies that $D_1 = 0$ and $D_2 = E$, so that $\mathcal{G} \cong \mathcal{O}_X(-\pi^* H) \oplus \mathcal{O}_X(E - 2\pi^* H)$. However, this contradicts to the non-triviality of the extension (3.2).

Since \mathcal{G} is indecomposable with $\sigma_*\mathcal{G} \cong \mathcal{O}_Y(-\tau^*H) \oplus \mathcal{O}_Y(E'-2\tau^*H)$, we can replace L and M with each other to see that it sits in another unique non-trivial extension; cf. Lemma 1.4:

(3.3)
$$0 \to \mathcal{O}_X(E' - 2\pi^*H) \to \mathcal{G} \to \mathcal{O}_X(E_4 - \pi^*H) \to 0.$$

REMARK 3.2. We need the condition that the blown-up points P_1, P_2, P_3, P_4 are in general position for the symmetry used in Example 3.1, specifically for the vanishing $H^1(X, \mathcal{O}_X(\pi^*H - E + E_i)) = 0$ for i = 1, 2, 3, 4; cf. Lemma 1.4.

The condition of general position allows us to assume that $P_1 = (1:0:0)$, $P_2 = (0:1:0), P_3 = (0:0:1)$ and $P_4 = (1:1:1)$. It then turns out that exact sequence (3.3) is the pullback of (3.2) by an automorphism on X. Indeed, the canonical Cremona transformation $(x_0:x_1:x_2) \mapsto (x_1x_2:x_2x_0:x_0x_1)$ on \mathbb{P}^2 lifts to an involution φ on X, which transforms $\pi^*(2H) - E'$ to π^*H and fixes E_4 . Hence, (3.3) is the pullback of (3.2) by φ , so that $\varphi^*\mathcal{G} \cong \mathcal{G}$.

On the other hand, for $1 \leq i < j \leq 4$ one has a unique automorphism on \mathbb{P}^2 (i.e., an element of PGL(2, k)) that permutes P_i and P_j and fixes the other two blown up points. It is easy to see that it lifts to an involution ψ_{ij} of X such that $\psi_{ij}^* \mathcal{G} \cong \mathcal{G}$.

EXAMPLE 3.3. Let $L = \mathcal{O}_Y(E_1 - \tau^* H)$ and $M = \mathcal{O}_Y(E_2 - \tau^* H)$. In this case we also have a unique non-trivial extension

$$0 \to \mathcal{O}_X(E_1 - \pi^* H) \to \mathcal{F} \to \mathcal{O}_X(E_2 + E_4 - \pi^* H) \to 0,$$

since dim Ext¹($\mathcal{O}_X(E_2 + E_4), \mathcal{O}_X(E_1)$) = 1 by Lemma 1.4. This extension bundle \mathcal{F} is indecomposable of rank 2 with $\sigma_*\mathcal{F} \cong L \oplus M$. Indeed, if \mathcal{F} were decomposable, then the splitting type of $\mathcal{F}(\pi^*H)$ would be either $\mathcal{O}_X \oplus$ $\mathcal{O}_X(E_1 + E_2 + E_4)$ or $\mathcal{O}_X(E_i) \oplus \mathcal{O}_X(E_j + E_k)$ with $\{i, j, k\} = \{1, 2, 4\}$. However, it follows from the above exact sequence that $\operatorname{Hom}(\mathcal{O}_X(E_1 + E_2 + E_4))$ $\mathcal{F}(\pi^*H) = 0$, so that the former case cannot occur. In the latter case, we apply the functor $\operatorname{Ext}^{\bullet}(\mathcal{O}_X(E_j + E_k - \pi^*H), -)$ to the exact sequence above. If $i \neq 1$ then $\operatorname{Hom}(\mathcal{O}_X(E_j + E_k), \mathcal{F}(\pi^*H)) = 0$ and we get a contradiction. If i = 1 then we have the induced exact sequence

$$0 \to \operatorname{Hom}(\mathcal{O}_X(E_2 + E_4), \mathcal{F}(\pi^*H)) \to \operatorname{Hom}(\mathcal{O}_X(E_2 + E_4), \mathcal{O}_X(E_2 + E_4))$$

$$\stackrel{\delta}{\to} \operatorname{Ext}^1(\mathcal{O}_X(E_2 + E_4), \mathcal{O}_X(E_1))$$

with the non-zero connecting homomorphism δ . It follows that δ is injective and Hom $(\mathcal{O}_X(E_2 + E_4), \mathcal{F}(\pi^*H)) = 0$. We get a contradiction as well.

Replacing L and M, we see that the indecomposable bundle \mathcal{F} is given by another unique non-trivial extension

$$0 \to \mathcal{O}_X(E_2 - \pi^* H) \to \mathcal{F} \to \mathcal{O}_X(E_1 + E_4 - \pi^* H) \to 0.$$

Replacing the roles of E_4 by E_2 in the argument above we also have

$$0 \to \mathcal{O}_X(E_4 - \pi^* H) \to \mathcal{F} \to \mathcal{O}_X(E_1 + E_2 - \pi^* H) \to 0.$$

We denote this vector bundle \mathcal{F} by \mathcal{G}_3 . Similarly, we can define the indecomposable vector bundle \mathcal{G}_i of rank 2 for $1 \leq i \leq 4$ by a unique non-trivial extension

$$0 \to \mathcal{O}_X(E_j - \pi^* H) \to \mathcal{G}_i \to \mathcal{O}_X(E_k + E_l - \pi^* H) \to 0$$

with any choice of j, k, l such that $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Clearly the vector bundle \mathcal{G}_i is stable under the automorphisms $\psi_{jk}, \psi_{kl}, \psi_{lj}$ introduced in Remark 3.2.

PROPOSITION 3.4. Let X be the blowup of \mathbb{P}^2 at four points in general position, $\sigma: X \to Y$ the blow-down of an exceptional curve E_4 and let \mathcal{F} be an indecomposable vector bundle of rank 2 on X. If $\sigma_*\mathcal{F}$ is a Frobenius summand on Y, then \mathcal{F} is isomorphic either to the bundle \mathcal{G} given in Example 3.1, or one of $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ given in Example 3.3.

Proof. Since $\sigma_* \mathcal{F}$ is a Frobenius summand on a toric surface Y, it has a splitting $\sigma_* \mathcal{F} \cong L \oplus M$ by Lemma 1.2. We will examine the extension (3.1) with all possible types of such a splitting.

(i) Suppose first that $L \cong M$. Then

$$\operatorname{Ext}^{1}(\sigma^{*}(M) \otimes \mathcal{O}_{X}(E_{4}), \sigma^{*}L) \cong H^{1}(X, \mathcal{O}_{X}(-E_{4})) = 0$$

by Lemma 1.4. Thus \mathcal{F} splits into a direct sum of line bundles in this case.

(ii) Suppose $\sigma_* \mathcal{F}$ has a free summand, say, $L \cong \mathcal{O}_Y$. If \mathcal{F} were indecomposable, then it would be given by a non-trivial extension

$$0 \to \mathcal{O}_X \to \mathcal{F} \to \sigma^*(M) \otimes \mathcal{O}_X(E_4) \to 0$$

by Corollary 2.3. But this is impossible, since $\operatorname{Ext}^1(\sigma^*(M) \otimes \mathcal{O}_X(E_4), \mathcal{O}_X) \cong H^1(X, \sigma^*(M^{-1}) \otimes \mathcal{O}_X(-E_4)) = 0$ for all invertible Frobenius summands M on Y by Lemmas 1.2 and 1.4.

(iii) Suppose $\sigma_* \mathcal{F} \cong \mathcal{O}_Y(-\pi^* H) \oplus \mathcal{O}_Y(E_i - \tau^* H)$ with i = 1, 2, 3. If \mathcal{F} were indecomposable, then it would be given by a non-trivial extension

$$0 \to \mathcal{O}_X(E_i - \pi^* H) \to \mathcal{F} \to \mathcal{O}_X(E_4 - \pi^* H) \to 0$$

by Corollary 2.3. But this is impossible, since $\operatorname{Ext}^1(\mathcal{O}_X(E_4 - \pi^*H), \mathcal{O}_X(E_i - \pi^*H)) \cong H^1(X, \mathcal{O}_X(E_i - E_4)) = 0$ by Lemma 1.4.

(iv) Suppose $\sigma_* \mathcal{F} \cong \mathcal{O}_Y(E_i - \tau^* H) \oplus \mathcal{O}_Y(E' - 2\tau^* H)$ with i = 1, 2, 3. If \mathcal{F} were indecomposable, then there would exist a non-trivial extension

$$0 \to \mathcal{O}_X(E_i - \pi^* H) \to \mathcal{F} \to \mathcal{O}_X(E - 2\pi^* H) \to 0$$

by Corollary 2.3. But this is impossible, since $\operatorname{Ext}^1(\mathcal{O}_X(E - 2\pi^*H), \mathcal{O}_X(E_i - \pi^*H)) \cong H^1(X, \mathcal{O}_X(\pi^*H + E_i - E)) = 0$ by Lemma 1.4.

In cases (i)–(iv) we have seen so far, any Frobenius summand \mathcal{F} sitting in (3.1) splits into a direct sum of line bundles. In the remaining cases $\sigma_*\mathcal{F}$ is isomorphic either to $\mathcal{O}_Y(-\tau^*H) \oplus \mathcal{O}_Y(E'-2\tau^*H)$ or $\mathcal{O}_Y(E_i-\tau^*H) \oplus \mathcal{O}_Y(E_j-\tau^*H)$ with $1 \leq i < j \leq 3$. These are exactly the cases treated in Examples 3.1 and 3.3, from which the assertion follows.

REMARK 3.5. It is not a sufficient condition for \mathcal{F} to be a Frobenius summand on X that so is $\sigma_*\mathcal{F}$ on Y. Actually we will see that \mathcal{G} is the only indecomposable Frobenius summand of rank 2 on X. The reason why \mathcal{G}_i is not a Frobenius summand is as follows: Let $\rho = \sigma_i \colon X \to Y_i$ be the blowdown of E_i . Then \mathcal{G}_i descends to a vector bundle $\mathcal{G}'_i = \rho_*\mathcal{G}_i$ on Y_i such that $\mathcal{G}_i = \rho^*\mathcal{G}'_i$. Since \mathcal{G}_i is indecomposable, so is \mathcal{G}'_i , too. Thus, $\mathcal{G}'_i = \rho_*\mathcal{G}_i$ cannot be a Frobenius summand on the toric surface Y_i .

3.2. Rank 3 Frobenius summands on a 4-point blowup. We now apply Corollary 2.4 to give a candidate for an indecomposable Frobenius summands of rank 3.

EXAMPLE 3.6. We consider case (1) of Corollary 2.4 for $L_i = \mathcal{O}_Y(E_i - \tau^* H)$ with i = 1, 2, 3. Since $\text{Ext}^1(\mathcal{O}_X(E_3 + E_4), \mathcal{O}_X(E_i))$ is a one-dimensional vector space for i = 1, 2 by Lemma 1.4, we have an extension

(3.4)
$$0 \to \mathcal{O}_X(E_1 - \pi^* H) \oplus \mathcal{O}_X(E_2 - \pi^* H) \to \mathcal{B}$$
$$\to \mathcal{O}_X(E_3 + E_4 - \pi^* H) \to 0$$

given by an extension class $\varepsilon = (\varepsilon_1, \varepsilon_2)$ with $0 \neq \varepsilon_i \in \text{Ext}^1(\mathcal{O}_X(E_3 + E_4), \mathcal{O}_X(E_i)) \cong k$. It follows as in Example 3.1 that $\sigma_* \mathcal{B} \cong L_1 \oplus L_2 \oplus L_3$.

We claim that this vector bundle \mathcal{B} of rank 3 is indecomposable. Suppose on the contrary that \mathcal{B} is decomposable. Then it has a splitting $\mathcal{B} \cong \widetilde{L}_i \oplus \mathcal{B}'$ with $\widetilde{L}_i \cong \mathcal{O}_X(E_i - \pi^* H)$ or $\mathcal{O}_X(E_i + E_4 - \pi^* H)$ for some i = 1, 2, 3. The other summand \mathcal{B}' must be isomorphic to \mathcal{G}_i or $\mathcal{O}_X(D_1 - \pi^* H) \oplus \mathcal{O}_X(D_2 - \pi^* H)$, where D_1 and D_2 are effective π -exceptional divisors with $D_1 + D_2 \leq E - E_i$. In case i = 1 or 2, we consider the composition map

$$\alpha \colon \mathcal{O}_X(E_i - \pi^* H) \xrightarrow{\imath} \mathcal{B} \twoheadrightarrow \widetilde{L_i},$$

where i is the injective map induced by (3.4) and the second surjection is a splitting map. If $\alpha \in \text{Hom}(\mathcal{O}_X(E_i - \pi^*H), \widetilde{L_i}) \cong k$ is a non-zero map, then $\mathcal{O}_X(E_i - \pi^*H)$ is a direct summand of \mathcal{B} via the map i, contradicting to our assumption that $\varepsilon_i \neq 0$. If $\alpha = 0$, then there exists a non-zero map $\mathcal{O}_X(E_i - \pi^*H) \to \mathcal{B}'$ to the other summand \mathcal{B}' of \mathcal{B} , but this is impossible, since $\text{Hom}(\mathcal{O}_X(E_i - \pi^*H), \mathcal{B}') = 0$ in any case.

In the case where $\mathcal{B} \cong \widetilde{L_3} \oplus \mathcal{B}'$, we note that $\operatorname{Hom}(\mathcal{B}', \mathcal{O}_X(E_3 + E_4 - \pi^*H)) = 0$, so that a surjective map $\widetilde{L_3} \to \mathcal{O}_X(E_3 + E_4 - \pi^*H)$ is induced from exact sequence (3.4). Then $\widetilde{L_3} = \mathcal{O}_X(E_3 + E_4 - \pi^*H)$ and we consider the composition map

$$\beta \colon \widetilde{L_3} \hookrightarrow \mathcal{B} \twoheadrightarrow \mathcal{O}_X (E_3 + E_4 - \pi^* H)$$

instead of α , where the first injection is a splitting map and the second surjection is that in (3.4). Arguing as before, we obtain a contradiction as well. Thus, \mathcal{B} is indecomposable.

REMARK 3.7. A rank 3 indecomposable bundle \mathcal{B} given in Example 3.6 is uniquely determined up to isomorphism. Indeed, let $\varepsilon = (\varepsilon_1, \varepsilon_2)$ and $\varepsilon' = (\varepsilon'_1, \varepsilon'_2)$ be two extension classes with non-zero $\varepsilon_i, \varepsilon'_i \in \text{Ext}^1(\mathcal{O}_X(E_3 + E_4 - \pi^*H), L_i) \cong k$ for i = 1, 2. Since ε_i and ε'_i live in the same one-dimensional k-vector space, one can consider their ratio $\varepsilon'_i/\varepsilon_i \in k^* \cong \text{Aut}(L_i)$. Then the extension bundles corresponding to ε and ε' are identified via the automorphism $\varepsilon'_1/\varepsilon_1 \oplus \varepsilon'_2/\varepsilon_2 \in \text{Aut}(L_1 \oplus L_2)$. On the other hand, if $\varepsilon_i = 0$ for i = 1or 2, then the extension bundle has a direct summand σ^*L_i and so decomposable. It follows from the symmetry with Corollary 2.4 that \mathcal{B} is a unique indecomposable bundle sitting in an exact sequence

 $0 \to \mathcal{O}_X(E_i - \pi^* H) \oplus \mathcal{O}_X(E_j - \pi^* H) \to \mathcal{B} \to \mathcal{O}_X(E_k + E_l - \pi^* H) \to 0$ with any choice of indexes i, j, k, l with $\{i, j, k, l\} = \{1, 2, 3, 4\}.$

4. The global FFRT property of a four-point blowup of \mathbb{P}^2

We continue to work on the blowup $\pi: X \to \mathbb{P}^2$ at four points P_1, P_2, P_3, P_4 on \mathbb{P}^2 in general position. Let $E_i = \pi^{-1}(P_i)$ be the exceptional curve over P_i , let $E = E_1 + E_2 + E_3 + E_4$ and let H be a line on \mathbb{P}^2 .

This section is devoted to proving the following theorem.

THEOREM 4.1. Any indecomposable Frobenius summand on the surface X coincides with one of the following vector bundles of rank ≤ 3 .

(1) line bundles \mathcal{O}_X , $\mathcal{O}_X(E - 2\pi^*H)$ and $\mathcal{O}_X(E_i - \pi^*H)$ for i = 1, 2, 3, 4;

(2) an indecomposable rank 2 bundle \mathcal{G} given by a unique non-trivial extension

$$0 \to \mathcal{O}_X(-\pi^*H) \to \mathcal{G} \to \mathcal{O}_X(E-2\pi^*H) \to 0;$$

(3) an indecomposable rank 3 bundle \mathcal{B} given by a non-trivial extension

$$0 \to \mathcal{O}_X(E_1 - \pi^* H) \oplus \mathcal{O}_X(E_2 - \pi^* H) \to \mathcal{B} \to \mathcal{O}_X(E_3 + E_4 - \pi^* H) \to 0$$

In particular, X is GFFRT.

REMARK 4.2. The rank 2 bundle \mathcal{G} in (2) is the one given in Example 3.1, whereas the rank 3 bundle \mathcal{B} is the one given in Example 3.6. Theorem 4.1 is suggested by our empirical computation made in characteristic p = 2, 3.

Proof of Theorem 4.1. We begin with the following setup. Let $\sigma_i \colon X \to Y_i$ be the blow-down of E_i for i = 1, 2, 3, 4, among which we specify

$$\sigma = \sigma_4 \colon X \to Y = Y_4$$
: the blow-down of E_4

Let $\tau: Y \to \mathbb{P}^2$ be the blowup at P_1, P_2, P_3 and define the line bundles L_1, L_2, L_3 and M_1, M_2 on Y by

$$L_{i} = \mathcal{O}_{Y} (E_{i} - \tau^{*} H) \quad \text{for } i = 1, 2, 3;$$

$$M_{1} = \mathcal{O}_{Y} (-\tau^{*} H), \qquad M_{2} = \mathcal{O}_{Y} (E' - 2\tau^{*} H),$$

where $E' = E_1 + E_2 + E_3$. These are the non-trivial Frobenius summands on Y.

We first consider Frobenius summands of rank 1. We have the following line bundles that would be possibly non-trivial Frobenius summands on X; see Section 1.2 and Lemma 1.2:

$$\mathcal{O}_X(E'-2\pi^*H), \mathcal{O}_X(E-2\pi^*H), \mathcal{O}_X(-\pi^*H), \mathcal{O}_X(E_i-\pi^*H)$$

and $\mathcal{O}_X(E_j+E_4-\pi^*H),$

where i = 1, 2, 3, 4 and j = 1, 2, 3. We can rule out $\mathcal{O}_X(E' - 2\pi^*H)$ from these candidates, since its push-forward by σ_j (j = 1, 2, 3) is not a Frobenius summand on Y_j . We can exclude $\mathcal{O}_X(E_j + E_4 - \pi^*H)$ in a similar way. The line bundle $\mathcal{O}_X(-\pi^*H)$ is also ruled out from the candidates, because there is an automorphism of X via which $\mathcal{O}_X(-\pi^*H)$ and $\mathcal{O}_X(E' - 2\pi^*H)$ correspond with each other.

In order to determine Frobenius summands of rank ≥ 2 , we need the following results.

LEMMA 4.3. Let \widetilde{L} and \widetilde{M} be line bundles on X such that the pair $(\widetilde{L}, \widetilde{M})$ is one of $(\sigma^*L_i, \sigma^*M_j)$, $(\sigma^*L_i, \sigma^*(M_j) \otimes \mathcal{O}_X(E_4))$ or $(\sigma^*(L_i) \otimes \mathcal{O}_X(E_4), \sigma^*M_j)$ for $1 \leq i \leq 3$ and $1 \leq j \leq 2$. Then $\operatorname{Ext}^1(\widetilde{L}, \widetilde{M}) = 0$.

Proof. This is verified with one by one computation of dim $\text{Ext}^1(\widetilde{L}, \widetilde{M}) = h^1(\widetilde{L}^{-1} \otimes \widetilde{M})$ using Riemann–Roch; cf. Lemma 1.4.

PROPOSITION 4.4. Let \mathcal{F} be a vector bundle on X satisfying conditions (a), (b) and (c) as in Section 2.1 with $\sigma_* \mathcal{F} \cong \bigoplus_{i=1}^3 L_i^{\oplus a_i} \oplus \bigoplus_{j=1}^2 M_j^{\oplus b_j}$. Then one has a decomposition

$$\mathcal{F} \cong \mathcal{F}_L \oplus \mathcal{F}_M$$

with vector bundles \mathcal{F}_L and \mathcal{F}_M satisfying conditions (a), (b) and (c) such that $\sigma_* \mathcal{F}_L \cong \bigoplus_{i=1}^3 L_i^{\oplus a_i}$ and $\sigma_* \mathcal{F}_M \cong \bigoplus_{j=1}^2 M_j^{\oplus b_j}$, respectively.

Proof. By Corollary 2.2, one has an exact sequence

$$0 \to \mathcal{F}_L \to \mathcal{F} \to \mathcal{F}_M \to 0$$

with vector bundles \mathcal{F}_L and \mathcal{F}_M satisfying conditions (a), (b) and (c) such that $\sigma_*\mathcal{F}_L \cong \bigoplus_{i=1}^3 L_i^{\oplus a_i}$ and $\sigma_*\mathcal{F}_M \cong \bigoplus_{j=1}^2 M_j^{\oplus b_j}$, respectively. Since \mathcal{F}_L (resp. \mathcal{F}_M) is obtained by successive extensions with line bundles σ^*L_i and $\sigma^*(L_i) \otimes \mathcal{O}_X(E_4)$ (resp. σ^*M_j and $\sigma^*(M_j) \otimes \mathcal{O}_X(E_4)$) by Lemma 2.1, it follows inductively from Lemma 4.3 that $\operatorname{Ext}^1(\mathcal{F}_M, \mathcal{F}_L) = 0$, so that $\mathcal{F} \cong \mathcal{F}_L \oplus \mathcal{F}_M$.

It follows that any indecomposable Frobenius summand of rank ≥ 2 on X is either of type \mathcal{F}_L or \mathcal{F}_M in Proposition 4.4. We first determine the structure of the Frobenius summand \mathcal{F}_M .

PROPOSITION 4.5. Let \mathcal{F} be an indecomposable Frobenius summand of rank $r = r_1 + r_2 \geq 2$ such that $\sigma_* \mathcal{F} \cong M_1^{\oplus r_1} \oplus M_2^{\oplus r_2}$. Then $r_1 = r_2 = 1$ and $\mathcal{F} \cong \mathcal{G}$.

Proof. It is easy to see that $r_i > 0$ (i = 1, 2) if \mathcal{F} is indecomposable. Indeed, if $\sigma_* \mathcal{F} \cong M^{\oplus r}$ for a line bundle M, then \mathcal{F} would decompose into line bundles $\sigma^* M$ and $\sigma^*(M) \otimes \mathcal{O}_X(E_4)$. This follows inductively from Lemmas 2.1 and 1.4 as in case (i) in the proof of Proposition 3.4.

Let \mathcal{F}_{i_1,i_2} denote the saturation of $\sigma^* M_1^{\oplus i_1} \oplus \sigma^* M_2^{\oplus i_2}$ in \mathcal{F} . Then we have an exact sequence

(4.1)
$$0 \to \mathcal{F}_{r_1, r_2 - 1} \to \mathcal{F} \to \mathcal{O}_X \left(E - 2\pi^* H \right) \to 0$$

by Lemma 2.1. If $r_2 \ge 2$, then we also have

$$0 \to \mathcal{F}_{r_1, r_2 - 2} \to \mathcal{F}_{r_1, r_2 - 1} \to \overline{M_2} \to 0,$$

where $\overline{M_2} \cong \sigma^* M_2$ or $\sigma^*(M_2) \otimes \mathcal{O}_X(E_4) = \mathcal{O}_X(E - 2\pi^* H)$ with $E = E_1 + E_2 + E_3 + E_4$. If $\overline{M_2} \cong \sigma^* M_2$, then the above exact sequence splits, that is, $\mathcal{F}_{r_1,r_2-1} \cong \mathcal{F}_{r_1,r_2-2} \oplus \sigma^* M_2$. Thus exact sequence (4.1) turns out to be

$$0 \to \mathcal{F}_{r_1, r_2 - 2} \oplus \sigma^* M_2 \to \mathcal{F} \to \mathcal{O}_X (E - 2\pi^* H) \to 0.$$

However, since $\operatorname{Ext}^{1}(\mathcal{O}_{X}(E - 2\pi^{*}H), \sigma^{*}M_{2}) = H^{1}(X, \mathcal{O}_{X}(-E_{4})) = 0$ by Lemma 1.4, \mathcal{F} has a direct summand $\sigma^{*}M_{2}$ in this case, contradicting to the indecomposability of \mathcal{F} . Thus, $\overline{M_2} \cong \mathcal{O}_X(E - 2\pi^*H)$. Using a commutative diagram as in the proof of Corollary 2.2, we see that \mathcal{F} sits in another exact sequence

$$0 \to \mathcal{F}_{r_1, r_2 - 2} \to \mathcal{F} \to \mathcal{O}_X \left(E - 2\pi^* H \right)^{\oplus 2} \to 0.$$

Repeating this procedure inductively, we obtain an exact sequence

$$0 \to \mathcal{F}_{r_1,0} \to \mathcal{F} \to \mathcal{O}_X (E - 2\pi^* H)^{\oplus r_2} \to 0.$$

As we have seen in the beginning of the proof, $\mathcal{F}_{r_1,0}$ is a direct sum of copies of line bundles $\sigma^* M_1 = \mathcal{O}_X(-\pi^* H)$ and $\mathcal{O}_X(E_4 - \pi^* H)$, and if $\mathcal{F}_{r_1,0}$ has a direct summand $\mathcal{O}_X(E_4 - \pi^* H)$, then so does \mathcal{F} , since $\operatorname{Ext}^1(\mathcal{O}_X(E - 2\pi^* H))$, $\mathcal{O}_X(E_4 - \pi^* H)) = 0$ again by Lemma 1.4. Thus, we have an exact sequence

$$0 \to \mathcal{O}_X \left(-\pi^* H \right)^{\oplus r_1} \to \mathcal{F} \to \mathcal{O}_X \left(E - 2\pi^* H \right)^{\oplus r_2} \to 0.$$

Since $\operatorname{Ext}^1(\mathcal{O}_X(E-2\pi^*H), \mathcal{O}_X(-\pi^*H))$ is a 1-dimensional vector space, the above exact sequence is given by an "extension matrix" ε_M of size $r_2 \times r_1$, to which we can make row and column elementary transformations without changing the isomorphism class of the extension bundle \mathcal{F} . If $r_1 \neq r_2$ or rank $\varepsilon_M < r_1 = r_2$, then \mathcal{F} has a line bundle summand. If rank $\varepsilon_M = r_1 = r_2$, then ε_M is transformed to the identity matrix of size $r_1 = r_2 = r/2$ and $\mathcal{F} \cong \mathcal{G}^{\oplus r/2}$. It follows from the indecomposability of \mathcal{F} that r = 2 and $\mathcal{F} \cong \mathcal{G}$. \Box

We now consider the structure of the Frobenius summand \mathcal{F}_L in Proposition 4.4. We put $\mathcal{L} = \mathcal{O}_X(-\pi^*H) = \pi^*\mathcal{O}_{\mathbb{P}^2}(-1)$ and consider a vector bundle \mathcal{F} of rank $r = a_1 + a_2 + a_3$ on X satisfying the following condition:

(*)
$$\sigma_* \mathcal{F} \cong L_1^{\oplus a_1} \oplus L_2^{\oplus a_2} \oplus L_3^{\oplus a_3} \quad \text{and} \\ \det \mathcal{F} = \mathcal{L}^r (a_1 E_1 + a_2 E_2 + a_3 E_3 + a_4 E_4).$$

LEMMA 4.6. Suppose that \mathcal{F} is a Frobenius summand satisfying condition (*) as above.

(1) $(\sum_{i=1}^{4} a_i) - a_j \le r$ for all j = 1, 2, 3, 4.

(2) If
$$\mathcal{F}$$
 is indecomposable with $r \geq 2$, then $0 < a_4 \leq a_j$ for all $j = 1, 2, 3$.

Proof. (1) First note that condition (*) implies $\pi_* \mathcal{F} \cong \mathcal{O}_{\mathbb{P}^2}(-1)^{\oplus r}$, so that its push-forward $(\sigma_j)_* \mathcal{F}$ by σ_j , which is a Frobenius summand on a three-point blowup Y_j , is isomorphic to a direct sum of r copies of line bundles $\mathcal{O}_{Y_j}(-\tau_j^*H)$ and $\mathcal{O}_{Y_j}(E_i - \tau_j^*H)$ with $i \neq j$. Since $\det(\sigma_j)_* \mathcal{F} = \mathcal{O}_{Y_j}(\sum_{i\neq j} a_i E_i - r\tau_j^*H)$, we see that $\sum_{i\neq j} a_i \leq r$. Since this is an equality for j = 4, we have $a_j \geq a_4$ for j = 1, 2, 3.

(2) If $a_4 = 0$, then $\mathcal{F} = \sigma^* \sigma_* \mathcal{F} \cong \bigoplus_{i=1}^3 \mathcal{L}(E_i)^{\oplus a_i}$ splits into a direct sum of line bundles.

REMARK 4.7. In order to prove and apply Lemma 4.6, we need the condition that the points P_1, P_2, P_3, P_4 are in general position. Indeed, it guarantees that Y_j and especially Y are all isomorphic to the projective plane blown up at three points that are not collinear, to which Lemma 1.2 is applicable.

PROPOSITION 4.8. Suppose that \mathcal{F} is an indecomposable Frobenius summand of rank $r \geq 2$ satisfying condition (*). Then $\mathcal{F} \cong \mathcal{B}$.

Proof. First, note that $0 < a_4 \leq a_3$ by Lemma 4.6. We denote by $\mathcal{F}_{i_1,i_2,i_3}$ the saturation of $\sigma^*(L_1^{\oplus i_1} \oplus L_2^{\oplus i_2} \oplus L_3^{\oplus i_3})$ in \mathcal{F} , and argue as in the proof of Proposition 4.5. First, we have an exact sequence

$$(4.2) 0 \to \mathcal{F}_{a_1,a_2,a_3-1} \to \mathcal{F} \to \mathcal{L}(E_3 + E_4) \to 0$$

by Lemma 2.1. If $a_3 \ge 2$, then we also have

$$0 \to \mathcal{F}_{a_1, a_2, a_3 - 2} \to \mathcal{F}_{a_1, a_2, a_3 - 1} \to \overline{L_3} \to 0,$$

where $\overline{L_3} \cong \mathcal{L}(E_3)$ or $\mathcal{L}(E_3 + E_4)$. If $\overline{L_3} \cong \mathcal{L}(E_3)$, then the above exact sequence splits, i.e., $\mathcal{F}_{a_1,a_2,a_3-1} \cong \mathcal{F}_{a_1,a_2,a_3-2} \oplus \mathcal{L}(E_3)$. Thus exact sequence (4.2) turns out to be

$$0 \to \mathcal{F}_{a_1,a_2,a_3-2} \oplus \mathcal{L}(E_3) \to \mathcal{F} \to \mathcal{L}(E_3 + E_4) \to 0.$$

However, since $\operatorname{Ext}^1(\mathcal{L}(E_3 + E_4), \mathcal{L}(E_3)) = 0$ by Lemma 1.4, the extension bundle \mathcal{F} obtained as above has a direct summand $\mathcal{L}(E_3)$, contradicting to the indecomposability of \mathcal{F} . Thus $\overline{L_3} \cong \mathcal{L}(E_3 + E_4)$. Using a commutative diagram as in the proof of Corollary 2.2, we see that \mathcal{F} sits in another exact sequence

$$0 \to \mathcal{F}_{a_1,a_2,a_3-2} \to \mathcal{F} \to \mathcal{L}(E_3 + E_4)^{\oplus 2} \to 0.$$

Repeating this procedure inductively, we obtain an exact sequence

(4.3)
$$0 \to \mathcal{F}_{a_1, a_2, a_3 - a_4} \to \mathcal{F} \to \mathcal{L}(E_3 + E_4)^{\oplus a_4} \to 0.$$

Since $\mathcal{F}' = \mathcal{F}_{a_1,a_2,a_3-a_4}$ is the saturation of $L_1^{\oplus a_1} \oplus L_2^{\oplus a_2} \oplus L_3^{\oplus a_3-a_4}$ in $\mathcal{F}, \ \sigma_*\mathcal{F}' = L_1^{\oplus a_1} \oplus L_2^{\oplus a_2} \oplus L_3^{\oplus a_3-a_4}$ and $\det \mathcal{F}' = \mathcal{L}^{r-a_4}(a_1E_1 + a_2E_2 + (a_3 - a_4)E_3)$. It then follows that $\mathcal{F}' = \sigma^*\sigma_*\mathcal{F}' \cong \mathcal{L}(E_1)^{\oplus a_1} \oplus \mathcal{L}(E_2)^{\oplus a_2} \oplus \mathcal{L}(E_3)^{\oplus a_3-a_4}$. Namely, exact sequence (4.3) turns out to be

$$0 \to \mathcal{L}(E_1)^{\oplus a_1} \oplus \mathcal{L}(E_2)^{\oplus a_2} \oplus \mathcal{L}(E_3)^{\oplus a_3 - a_4} \to \mathcal{F} \to \mathcal{L}(E_3 + E_4)^{\oplus a_4} \to 0.$$

If $a_3 > a_4$, then \mathcal{F} must have a line bundle summand $\mathcal{L}(E_3)$ again by the vanishing $\operatorname{Ext}^1(\mathcal{L}(E_3 + E_4), \mathcal{L}(E_3)) = 0$. Hence $a_3 = a_4$, and by the same reason $a_1 = a_2 = a_4$. Thus, letting $a = a_1 = a_2 = a_3 = a_4$ we have come to an exact sequence

$$0 \to \mathcal{L}(E_1)^{\oplus a} \oplus \mathcal{L}(E_2)^{\oplus a} \to \mathcal{F} \to \mathcal{L}(E_3 + E_4)^{\oplus a} \to 0.$$

Since $\operatorname{Ext}^1(\mathcal{L}(E_3 + E_4), \mathcal{L}(E_i))$ is a 1-dimensional vector space for i = 1, 2, the above exact sequence is given by an "extension matrix"

$$\varepsilon_L = \left[\frac{\varepsilon_1}{\varepsilon_2}\right],$$

where ε_i is an $a \times a$ -matrix with entries in $\operatorname{Ext}^1(\mathcal{L}(E_3 + E_4), \mathcal{L}(E_i)) \cong k$. If either one of ε_i is of rank < a, then \mathcal{F} has a line bundle summand isomorphic to $\mathcal{L}(E_i)$, contradicting to the indecomposability of \mathcal{F} . Thus rank $\varepsilon_1 = \operatorname{rank} \varepsilon_2 = a$ and both ε_1 and ε_2 are transformed to the identity matrix. It then follows that $\mathcal{F} \cong \mathcal{B}^{\oplus a}$, and the indecomposability of \mathcal{F} implies that a = 1. \Box

In conclusion, any indecomposable Frobenius summand on X is either one of those listed in Theorem 4.1.

5. Determination of the Frobenius summands on the four-point blowup of \mathbb{P}^2

5.1. Observation. We again work on the blowup $\pi: X \to \mathbb{P}^2$ at four points in general position as in Section 4, but we will use the notation L_i in a different meaning in this section. Namely, let $L_0 = \mathcal{O}_X(E_1 + E_2 + E_3 + E_4 - 2\pi^*H)$ and $L_i = \mathcal{O}_X(E_i - \pi^*H)$ for i = 1, 2, 3, 4. We know that exactly one \mathcal{O}_X appears as a direct summand of $F_*^e \mathcal{O}_X$ by Proposition 1.1, but we have not yet proven in Section 4 that L_i , \mathcal{G} and \mathcal{B} are really Frobenius summands on X. In this section, we will verify this to be true.

Thanks to Theorem 4.1, we can write

$$F^e_*\mathcal{O}_X \cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L_i^{\oplus a_e} \oplus \mathcal{B}^{\oplus b_e} \oplus \mathcal{G}^{\oplus c_e},$$

where $0 \leq a_e, b_e, c_e \in \mathbb{Z}$. (Note that the numbers of copies of L_i 's are equal since they are transformed to each other via automorphisms of X.) Comparing the push-forwards by $\sigma = \sigma_4$ (or, ranks and the first Chern classes; note that the first Chern class of $F^e_*\mathcal{O}_X$ is $\frac{p^{2e}-p^e}{2}K_X$; see [KS]) of the both sides we deduce the following equalities.

$$a_e + b_e = p^e - 1$$
 and $a_e + c_e = \frac{(p^e - 1)(p^e - 2)}{2}$.

THEOREM 5.1. In the notation as above, one has

$$a_e = p^e - 2,$$
 $b_e = 1$ and $c_e = \frac{(p^e - 2)(p^e - 3)}{2}$

for all $e \geq 1$.

Proof. Let $q = p^e$ and let $L := L_1 = \mathcal{O}_X(E_1 - \pi^* H)$. Our goal is to show that $a_e = q - 2$, or equivalently that $F^e_* \mathcal{O}_X$ has exactly q - 2 copies of L as its direct summands. To this end, we will look at the natural pairing

(5.1)
$$\operatorname{Hom}(L, F^{e}_{*}\mathcal{O}_{X}) \times \operatorname{Hom}(F^{e}_{*}\mathcal{O}_{X}, L) \to \operatorname{Hom}(L, L) = k.$$

Let $x = x_1/x_0, y = x_2/x_0$ be the affine coordinates at $P_1 = (1:0:0) \in \mathbb{P}^2$. Then

$$\operatorname{Hom}(L, F_*^e \mathcal{O}_X) \cong H^0(X, F_*^e(L^{-q}))$$
$$= H^0(X, L^{-q}) = H^0(X, \mathcal{O}_X(q\pi^*H - qE_1))$$

is identified with the subspace of $H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(qH)) = \langle x^i y^j | 0 \leq i, j; i + j \leq q \rangle$ consisting of polynomials of order $\geq q$ at the point P_1 , which is exactly equal to

$$V = \langle x^q, x^{q-1}y, \dots, y^q \rangle.$$

On the other hand, it follows from the adjunction formula that

$$\mathcal{H}om(F^e_*\mathcal{O}_X, L) \cong \mathcal{H}om(F^e_*\mathcal{O}_X, \omega_X) \otimes \omega_X^{-1} \otimes L$$
$$\cong F^e_*(\omega_X) \otimes \omega_X^{-1} \otimes L \cong F^e_*(\omega_X^{1-q} \otimes L^q)$$
$$\cong F^e_*\mathcal{O}_X((2q-3)\pi^*H + E_1 - (q-1)(E_2 + E_3 + E_4)).$$

Thus, $\operatorname{Hom}(F^e_*\mathcal{O}_X, L) \cong H^0(X, \mathcal{O}_X((2q-3)\pi^*H - (q-1)(E_2 + E_3 + E_4)))$ and this is identified with

$$W = \left\langle (x-1)^{i} (y-1)^{j} | i, j \le q-2, i+j \ge q-1 \right\rangle$$

by a similar argument as above with respect to affine coordinates x - 1, y - 1at $P_4 = (1:1:1) \in \mathbb{P}^2$. The pairing (5.1) is identified with

$$H^{0}(X, F^{e}_{*}(L^{-q})) \times H^{0}(X, F^{e}_{*}(\omega^{1-q}_{X} \otimes L^{q})) \xrightarrow{\mu} H^{0}(X, F^{e}_{*}(\omega^{1-q}_{X}))$$
$$\xrightarrow{t_{e}} H^{0}(X, \mathcal{O}_{X}),$$

where μ is the multiplication map and t_e is the map induced by the trace map (or the Cartier operator) $\operatorname{Tr}_e : F^e_* \omega_X \to \omega_X$. Furthermore, it is identified with the pairing $\langle -, - \rangle : V \times W \to k$ given by

 $\langle \varphi, \psi \rangle =$ the coefficient of $\varphi \psi$ in $(xy)^{q-1}$

for $\varphi \in V$ and $\psi \in W$; see, for example, [Sch, Observation 3.5]. Hence, L is a direct summand of $F^e_* \mathcal{O}_X$ via $\varphi \in V$ if and only if there exists $\psi \in W$ such that $\langle \varphi, \psi \rangle = 1$. Now let

$$\operatorname{Ann}_{V}(W) = \left\{ \varphi \in V | \langle \varphi, \psi \rangle = 0 \text{ for all } \psi \in W \right\},\$$
$$\operatorname{Ann}_{W}(V) = \left\{ \psi \in W | \langle \varphi, \psi \rangle = 0 \text{ for all } \varphi \in V \right\}.$$

and let $\overline{V} = V/\operatorname{Ann}_V(W)$, $\overline{W} = W/\operatorname{Ann}_W(V)$. Then we have an induced perfect pairing $\overline{V} \times \overline{W} \to k$ and $\dim \overline{V} = \dim \overline{W}$ is equal to the rank of a $\frac{(q-1)(q-2)}{2} \times (q-1)$ -matrix

$$A^{(e)} = \left[\begin{pmatrix} i \\ l-1 \end{pmatrix} \begin{pmatrix} j \\ q-1-l \end{pmatrix} \right]_{(i,j) \in I, 1 \le l \le q-1}$$

whose rows are indexed by $(i, j) \in I = \{(i, j) \in \mathbb{Z}^2 | 1 \leq i, j \leq q-2, i+j \geq q-1\}$ and columns by $l = 1, 2, \ldots, q-1$. Each entry of $A^{(e)}$ is a product of binomial coefficients that is equal to $\langle x^{q-l}y^l, (x-1)^i(y-1)^j \rangle \in \mathbb{F}_p$.

Recall that $a_e \geq 0$ is the maximum integer such that $\hat{L}^{\oplus a_e}$ is isomorphic to a direct summand of $F^e_* \mathcal{O}_X$.

CLAIM 5.1. $a_e = \operatorname{rank} A^{(e)}$.

Proof. Let $r = \operatorname{rank} A^{(e)}$ and choose $\varphi_1, \ldots, \varphi_r \in V$ that reduce to a basis $\overline{\varphi}_1, \ldots, \overline{\varphi}_r$ of \overline{V} . Then $\varphi_1, \ldots, \varphi_r$ are linearly independent over $k(x^q, y^q)$, since \overline{V} is spanned by images of $x^{q-1}y, \ldots, xy^{q-1}$. Hence, $\varphi_1, \ldots, \varphi_r$ give an injective \mathcal{O}_X -module homomorphism $\varphi \colon L^{\oplus r} \hookrightarrow F^e_* \mathcal{O}_X$. Next, choose $\psi_1, \ldots, \psi_r \in W$ that reduce to the dual basis $\overline{\varphi}_1^*, \ldots, \overline{\varphi}_r^*$ of $\overline{W} = \overline{V}^*$ and let $\psi \colon F^e_* \mathcal{O}_X \to L^{\oplus r}$ be the \mathcal{O}_X -module homomorphism given by them. Then one has $\langle \varphi_i, \psi_j \rangle = \langle \overline{\varphi}_i, \overline{\varphi}_j^* \rangle = \delta_{ij}$ for $1 \leq i, j \leq r$, so that $\psi \circ \varphi$ is the identity on $L^{\oplus r}$. Thus, $r \leq a_e$.

To complete the proof of the claim, suppose to the contrary that $r < a := a_e$. Choose $\varphi_1, \ldots, \varphi_a \in V$ and $\psi_1, \ldots, \psi_a \in W$ so that the composition of the corresponding maps $\varphi : L^{\oplus a} \hookrightarrow F^e_* \mathcal{O}_X$ and $\psi : F^e_* \mathcal{O}_X \to L^{\oplus a}$ is the identity on $L^{\oplus a}$. Then one has that $\langle \overline{\varphi}_i, \overline{\psi}_j \rangle = \langle \varphi_i, \psi_j \rangle = \delta_{ij}$ for $1 \le i, j \le a$, that is, the $a \times a$ -matrix with (i, j)-entries $\langle \overline{\varphi}_i, \overline{\psi}_j \rangle$ is the identity matrix. But this is impossible since $\overline{\varphi}_1, \ldots, \overline{\varphi}_a$ are linearly dependent.

Thus, the theorem follows from the following lemma.

LEMMA 5.2. rank $A^{(e)} = p^e - 2$.

Proof (Induction on e). Let $q = p^e$ as before. For $(i, j) \in I$, we denote the (i, j)th row vector of $A^{(e)}$ by

$$v_{i,j}^{(e)} = \left[\begin{pmatrix} i \\ 0 \end{pmatrix} \begin{pmatrix} j \\ q-2 \end{pmatrix}, \begin{pmatrix} i \\ 1 \end{pmatrix} \begin{pmatrix} j \\ q-3 \end{pmatrix}, \dots, \\ \begin{pmatrix} i \\ l-1 \end{pmatrix} \begin{pmatrix} j \\ q-1-l \end{pmatrix}, \dots, \begin{pmatrix} i \\ q-2 \end{pmatrix} \begin{pmatrix} j \\ 0 \end{pmatrix} \right],$$

where we follow the convention on the binomial coefficients that $\binom{m}{n} = 0$ if m < n. We divide $A^{(e)}$ into q - 2 row-blocks according to the value of $i + j = q - 1, q, \ldots, 2q - 4$. Then we have the following relation between rows in (i + j)- and (i + j + 1)-blocks.

$$(i+1)v_{i,j}^{(e)} + jv_{i+1,j-1}^{(e)} = (i+j-q+3)v_{i+1,j}^{(e)} = (i+j+3)v_{i+1,j}^{(e)}.$$

Indeed, it is deduced from the following easy to check equality in \mathbb{Z} .

$$(i+1)\binom{i}{l-1}\binom{j}{q-1-l} + j\binom{i+1}{l-1}\binom{j-1}{q-1-l}$$
$$= (i+j-q+3)\binom{i+1}{l-1}\binom{j}{q-1-l}.$$

Since the coefficient of the right-hand side satisfies $2 \le i + j - q + 3 \le q - 1$, it is not zero in \mathbb{F}_p if q = p is prime. It follows that all the row vectors of $A^{(1)}$ are linear combinations (over \mathbb{F}_p) of p - 2 linearly independent vectors

$$\begin{split} v_{1,p-2}^{(1)} &= [1,p-2,0,\ldots,0], \\ v_{2,p-3}^{(1)} &= [0,2,p-3,0,\ldots,0], \\ v_{p-2,1}^{(1)} &= [0,\ldots,0,p-2,1]. \end{split}$$

Thus, the claim holds true if e = 1.

Now we consider the following subspaces of the k-vector space of all the row vectors of length $p^e - 1$ with entries in k.

 $V^{(e)}$: the subspace spanned by the row vectors of $A^{(e)}$.

 $W^{(e)}$: the subspace consisting of the row vectors whose lpth entry is zero for all $l = 1, \ldots, p^{e-1} - 1$.

(The notation $V^{(e)}$, $W^{(e)}$ here is independent of the notation V, W in the proof of Theorem 5.1.) Clearly, $\dim W^{(e)} = p^e - p^{e-1}$, and $\dim V^{(e-1)} = p^{e-1} - 2$ by induction. Therefore, the lemma follows immediately from the following

CLAIM 5.2. Let $q = p^e$ with $e \ge 2$. Then (1) $W^{(e)} = \langle v_{1,q-2}^{(e)}, v_{2,q-3}^{(e)}, \dots, v_{q-2,1}^{(e)} \rangle \subset V^{(e)}$. (2) $V^{(e)}/W^{(e)} \cong V^{(e-1)}$.

Assertion (1) of the claim follows from

$$\begin{split} v_{1,q-2}^{(e)} &= [1,q-2,0,\ldots,0], \\ v_{2,q-3}^{(e)} &= [0,2,q-3,0,\ldots,0], \\ v_{q-2,1}^{(e)} &= [0,\ldots,0,q-2,1]. \end{split}$$

,

To prove (2), we calculate the (n, m; lp)-entry

$$\binom{n}{lp-1}\binom{m}{p^e-1-lp} \mod p$$

of $A^{(e)}$ for $l = 1, ..., p^{e-1} - 1$. Looking at the rational expression of the binomial coefficient

$$\binom{n}{lp-1} = \frac{n(n-1)\cdots(n-lp+2)}{(lp-1)(lp-2)\cdots2\cdot1}$$

and comparing the numerator and the denominator with respect to the multiplicities of the prime divisor p and the factors prime to p, we see that

$$\binom{n}{lp-1} \equiv \begin{cases} \binom{i}{l-1} & \text{if } n = ip + p - 1 \equiv -1 \\ 0 & \text{otherwise} \end{cases} \pmod{p}.^{3}$$

Similarly,

$$\binom{m}{p^e - 1 - lp} \equiv \begin{cases} \binom{j}{p^{e-1} - 1 - l} & \text{if } m = jp + p - 1 \equiv -1 \\ 0 & \text{otherwise} \end{cases} \pmod{p}.$$

Hence, the (ip + p - 1, jp + p - 1; lp)-entry of $A^{(e)}$ is equal to the (i, j; l)-entry of $A^{(e-1)}$ and all the other entries in the lpth column are zero. Thus, assertion (2) is proved.

REMARK 5.3. The direct summand $L^{\oplus p^{e^{-1}-2}}$ of $F^e_*\mathcal{O}_X$ corresponding to $V^{(e)}/W^{(e)} \cong V^{(e-1)}$ comes from the composition of the splitting injective maps $L^{\oplus p^{e^{-1}-2}} \hookrightarrow F^{e^{-1}}_*\mathcal{O}_X$ and $F^{e^{-1}}_*\mathcal{O}_X \hookrightarrow F^e_*\mathcal{O}_X$.

COROLLARY 5.4. Let the notation be as in Theorem 4.1. Then for any power $q = p^e$ of the characteristic p with $e \ge 1$ one has

$$\begin{split} F^e_* \mathcal{O}_X &\cong \mathcal{O}_X \oplus \bigoplus_{i=0}^4 L_i^{\oplus(q-2)} \oplus \mathcal{B} \oplus \mathcal{G}^{\oplus \frac{(q-2)(q-3)}{2}}, \\ F^e_* L_i &\cong L_i^{\oplus q} \oplus \mathcal{G}^{\oplus \frac{q(q-1)}{2}} \quad for \ 0 \leq i \leq 4, \\ F^e_* \mathcal{B} &\cong \bigoplus_{i=0}^4 L_i^{\oplus q} \oplus \mathcal{G}^{\oplus \frac{q(3q-5)}{2}} \quad and \quad F^e_* \mathcal{G} \cong \mathcal{G}^{\oplus q^2} \end{split}$$

Proof. The formula for $F^e_* \mathcal{O}_X$ is an immediate consequence of Theorems 4.1 and 5.1.

In order to show the formula for $F_*^e L_i$ we may assume that i = 0 by symmetry; cf. Remark 3.2. Since \mathcal{O}_X and \mathcal{B} are not direct summands of $F_*^e L_0$ by Theorem 5.1, we can write $F_*^e L_0 \cong L_0^{\oplus a} \oplus \bigoplus_{i=1}^4 L_i^{\oplus b} \oplus \mathcal{G}^{\oplus c}$ again by symmetry. Pushing it out by the blow-down $\sigma \colon X \to Y$ of E_4 , one sees that

$$F^{e}_{*}\mathcal{O}_{Y}\left(E'-2\tau^{*}H\right)$$
$$\cong \mathcal{O}_{Y}\left(-\tau^{*}H\right)^{\oplus b+c} \oplus \bigoplus_{i=1}^{3} \mathcal{O}_{Y}\left(E_{i}-\tau^{*}H\right)^{\oplus b} \oplus \mathcal{O}_{Y}\left(E'-2\tau^{*}H\right)^{\oplus a+c}.$$

³ The referee pointed out that this and the next congruences of binomial coefficients follow from Lucas' theorem; see, e.g., [F].

Comparing this decomposition with that in Lemma 1.3, we obtain a = q, b = 0 and c = q(q-1)/2. The formulas for $F_*^e \mathcal{B}$ and $F_*^e \mathcal{G}$ follow similarly from Theorems 4.1, 5.1 and Lemma 1.3.

6. Concluding remarks and questions

We are now at the starting point of the following.

QUESTION 6.1. Let X be the blowup of \mathbb{P}^2 at n points in general position. Does there exist an upper bound of n for which X is GFFRT? If it does, what is the effective bound?

Here is a positive evidence for the existence of an upper bound.

PROPOSITION 6.2. Let C be an elliptic curve on \mathbb{P}^2 and let P_1, \ldots, P_{10} be distinct ten points on C. Assume that C and P_1, \ldots, P_{10} are defined over the algebraic closure $\overline{\mathbb{F}_p}$ of the prime field. Let X be the rational surface obtained by blowing up \mathbb{P}^2 at the points P_1, \ldots, P_{10} . Then X is not GFFRT.

Proof. Let $\pi: X \to \mathbb{P}^2$ be the blowup morphism and let \widetilde{C} be the strict transform of C with respect to π . Then X and \widetilde{C} are defined over $\overline{\mathbb{F}_p}$ and $\widetilde{C}^2 = -1 < 0$. We choose a very ample divisor A on X (also defined over $\overline{\mathbb{F}_p}$) and let $L = A + (A \cdot \widetilde{C})\widetilde{C}$. Then L is a nef and big line bundle such that $L\widetilde{C} = 0$ and LD > 0 for any reduced curve $D \neq \widetilde{C}$. Since everything involving is defined over $\overline{\mathbb{F}_p}$, it follows from [K, Corollary 0.3] that L is semi-ample. Thus, we can choose a positive integer m such that mL gives a morphism $\Phi_{|mL|}: X \to \mathbb{P}^{h^0(mL)-1}$ birational onto its image $X' = \Phi_{|mL|}(X)$. Denoting the normalization of X' by Y, we obtain a birational morphism $\varphi: X \to Y$ via which \widetilde{C} contracts to a simple elliptic singularity (Y, y).

In what follows, we will employ F-blowup introduced by Yasuda [Y] in order to avoid an argument involving completion of the local ring $\mathcal{O}_{Y,y}$; cf. [Y, Proposition 2.11]. It is easy to observe the following.

- (1) If X is GFFRT, then the singularity (Y, y) is FFRT as defined in [SVdB], that is, there exists a finite set of $\mathcal{O}_{Y,y}$ -modules such that for every $e \geq 0$, $F_*^e(\mathcal{O}_Y)_y \cong \mathcal{O}_{Y,y}^{1/p^e}$ is isomorphic to a direct sum of copies of those finitely many modules.
- (2) If (Y, y) is FFRT, then the *F*-blowup sequence $\{FB_e(Y)|e=1, 2, ...\}$ of (Y, y) stabilizes.

However, it follows from [HSY] that the *F*-blowup sequence of the simple elliptic singularity (Y, y) of type \tilde{E}_8 does not stabilize in general. Thus, *X* is not GFFRT.

REMARK 6.3. In the proposition above, if C is an ordinary elliptic curve, then X is F-split. On the other hand, there is a notion of global F-regularity [Sm], which is stronger than F-splitting, and we do not have an example of a globally F-regular surface that is not GFFRT.

6.1. Interpretation via derived category. We interpret the structure of the Frobenius push-forward $F^e_* \mathcal{O}_X$ from a viewpoint of derived category. For a smooth projective variety X, we denote by $D^b(X)$ the bounded derived category of coherent sheaves on X. A coherent sheaf \mathcal{F} on X is said to be *exceptional* if $\operatorname{Hom}(\mathcal{F},\mathcal{F}) = k$ and $\operatorname{Ext}^i(\mathcal{F},\mathcal{F}) = 0$ for all $i \neq 0$. An ordered collection of exceptional sheaves $\mathcal{F}_1, \ldots, \mathcal{F}_n$ is called an *exceptional collection* if $\operatorname{Ext}^i(\mathcal{F}_k,\mathcal{F}_j) = 0$ for all integers i and for $1 \leq j < k \leq n$. An exceptional collection $\mathcal{F}_1, \ldots, \mathcal{F}_n$ is said to be *strong* if $\operatorname{Ext}^i(\mathcal{F}_j,\mathcal{F}_k) = 0$ for i > 0 and $1 \leq j, k \leq n$. An exceptional collection is said to be *full* if it generates the derived category $D^b(X)$.

It turns out that if $p^e \geq 3$, then the *e*th Frobenius push-forward $F^e_*\mathcal{O}_X$ on the four-point blowup X of \mathbb{P}^2 generates the derived category $D^b(X)$ in the same sense as in Ohkawa–Uehara [OU], where results in the toric case are established.⁴

PROPOSITION 6.4. Let X be the blowup of \mathbb{P}^2 at four points in general position and let the notation be as in Section 5.1. Then Frobenius summands $\mathcal{G}, L_0, L_1, L_2, L_3, L_4, \mathcal{O}_X$ on X form a full strong exceptional collection.

Proof. First, we will show that $\mathcal{G}, L_0, L_1, L_2, L_3, L_4, \mathcal{O}_X$ is an exceptional collection. We know that any line bundle on X is exceptional, $\operatorname{Ext}^i(\mathcal{O}_X, \mathcal{F}) = 0$ for any $i \in \mathbb{Z}$ and any indecomposable Frobenius summand $\mathcal{F} \ncong \mathcal{O}_X$, and that $\operatorname{Ext}^i(L_j, L_k) = 0$ for any i and $0 \leq j, k \leq 4$ with $j \neq k$; cf. Proposition 3.4. Thus, it remains to show that \mathcal{G} is exceptional and $\operatorname{Ext}^i(L_j, \mathcal{G}) = 0$ for all i and $0 \leq j \leq 4$. To this end, we look at an Ext long exact sequence induced by the non-trivial extension (3.2):

$$0 \to \operatorname{Hom}(L_0, \mathcal{O}_X(-\pi^*H)) \to \operatorname{Hom}(L_0, \mathcal{G}) \to \operatorname{Hom}(L_0, L_0)$$

$$\stackrel{\delta}{\to} \operatorname{Ext}^1(L_0, \mathcal{O}_X(-\pi^*H)) \to \operatorname{Ext}^1(L_0, \mathcal{G}) \to \cdots.$$

Since $\operatorname{Hom}(L_0, \mathcal{O}_X(-\pi^*H)) = \operatorname{Ext}^2(L_0, \mathcal{O}_X(-\pi^*H)) = \operatorname{Ext}^i(L_0, L_0) = 0$ for $i \geq 1$ and δ is an isomorphism of 1-dimensional vector spaces, we see that $\operatorname{Ext}^i(L_0, \mathcal{G}) = 0$ for all $i \in \mathbb{Z}$. This vanishing, together with a suitable Cremona automorphism, implies that $\operatorname{Ext}^i(L_j, \mathcal{G}) = 0$ holds for all i and $0 \leq j \leq 4$; cf. Example 3.1. Next, we note that $\operatorname{Ext}^i(\mathcal{O}_X(-\pi^*H), L_0) = H^i(X, \mathcal{O}_X(E - \pi^*H)) = 0$ for all i by Riemann–Roch and look at the long exact sequence of $\operatorname{Ext}(\mathcal{O}_X(-\pi^*H), -)$ applied to (3.2). It then follows that $\operatorname{Hom}(\mathcal{O}_X(-\pi^*H), \mathcal{G}) \cong k$ and $\operatorname{Ext}^i(\mathcal{O}_X(-\pi^*H), \mathcal{G}) = 0$ for $i \geq 1$. Now looking

 $^{^4}$ Actually, the result on the generation of the derived category by the Frobenius pushforward is extended to the case of two-dimensional toric stacks as the title of the paper [OU] indicates.

at the long exact sequence of $\operatorname{Ext}(-,\mathcal{G})$ applied to (3.2) we conclude that $\operatorname{Hom}(\mathcal{G},\mathcal{G}) = k$ and $\operatorname{Ext}^{i}(\mathcal{G},\mathcal{G}) = 0$ for $i \geq 1$, i.e., \mathcal{G} is exceptional.

We can verify similarly as above that $\operatorname{Ext}^{i}(L, \mathcal{O}_{X}) = \operatorname{Ext}^{i}(\mathcal{G}, L) = 0$ for all i > 0 and $L = \mathcal{O}_{X}$ or L_{j} with $0 \leq j \leq 4$. Thus, the exceptional sequence is strong.

To prove that the exceptional collection is full, let $\mathcal{D} = \langle \mathcal{G}, L_i, \mathcal{O}_X | 0 \le i \le 4 \rangle$ be the subcategory of $D^b(X)$ generated by $\mathcal{G}, L_0 = \mathcal{O}_X(E - 2\pi^*H), L_i = \mathcal{O}_X(E_i - \pi^*H)$ (i = 1, 2, 3, 4) and \mathcal{O}_X . Since \mathcal{G} and L_0 are objects of \mathcal{D} , it follows from (3.2) that $\mathcal{O}_X(-\pi^*H)$ is an object of \mathcal{D} . It then follows from the exact sequence

$$0 \to \mathcal{O}_X(-\pi^*H) \to \mathcal{O}_X(E_i - \pi^*H) \to \mathcal{O}_{E_i}(-1) \to 0$$

that $\mathcal{O}_{E_i}(-1)$ is an object of \mathcal{D} for i = 1, 2, 3, 4. Finally, it follows from the exact sequence

$$0 \to \mathcal{O}_X(-2\pi^*H) \to \mathcal{O}_X(E-2\pi^*H) \to \bigoplus_{i=1}^4 \mathcal{O}_{E_i}(-1) \to 0$$

that $\mathcal{O}_X(-2\pi^*H)$ is an object of \mathcal{D} . Since $D^b(\mathbb{P}^2) = \langle \mathcal{O}_{\mathbb{P}^2}(-2), \mathcal{O}_{\mathbb{P}^2}(-1), \mathcal{O}_{\mathbb{P}^2} \rangle$ and $D^b(X) = \langle \pi^*D^b(\mathbb{P}^2), \mathcal{O}_{E_i}(-1) | 1 \leq i \leq 4 \rangle$ by [Hu, Proposition 11.18], we conclude that $\mathcal{D} = D^b(X)$, that is, the exceptional collection is full. \Box

Finally, we ask the following optimistic questions.

QUESTION 6.5. Let X be a smooth globally F-regular surface.

(1) Is X GFFRT?

(2) Is $D^b(X)$ generated by Frobenius summands on X?

Acknowledgments. I would like to thank Shigeru Mukai for pointing out an error in an earlier version of this note. I am grateful to Ryo Ohkawa, Masahiro Ohno and Akiyoshi Sannai for invaluable discussions and suggestive comments. I also thank the referee for careful reading and helpful comments.

References

- [A1] P. Achinger, Frobenius push-forwards on quadrics, Comm. Algebra 40 (2012), no. 8, 2732–2748. MR 2968908
- [A2] P. Achinger, A characterization of toric varieties in characteristic p, available at arXiv:1303.5905.
- [At] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3) 7 (1957), 414–452. MR 0131423
- [F] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), no. 10, 589–592. MR 0023257
- [H] N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), 981–996. MR 1646049
- [HSY] N. Hara, T. Sawada and T. Yasuda, F-blowups of normal surface singularities, Algebra Number Theory 7 (2013), 733–763. MR 3095225

N. HARA

- [Hu] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106
- [K] S. Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), 253–286. MR 1680559
- [KS] Y. Kitadai and H. Sumihiro, Canonical filtrations and stability of direct images by Frobenius morphisms, Tohoku Math. J. (2) 60 (2008), 287–301. MR 2428865
- [MP] V. B. Mehta and C. Pauly, Semistability of Frobenius direct images over curves, Bull. Soc. Math. France 135 (2007), 105–117. MR 2430201
- [OU] R. Ohkawa and H. Uehara, Frobenius morphisms and derived categories on twodimensional toric Deligne-Mumford stacks, Adv. Math. 244 (2013), 241–267. MR 3077872
- [ST] A. Sannai and H. Tanaka, A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf, preprint; available at arXiv:1411.5294.
- [Sch] K. Schwede, *F*-adjunction, Algebra Number Theory **3** (2009), 907–950. MR 2587408
- [Sm] K. E. Smith, Globally F-regular varieties: Applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572. MR 1786505
- [SVdB] K. E. Smith and M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. Lond. Math. Soc. (3) 75 (1997), 32–62. MR 1444312
- [Su] X. Sun, Direct images of bundles under Frobenius morphism, Invent. Math. 173 (2008), 427–447. MR 2415312
- J. F. Thomsen, Frobenius direct images of line bundles on toric varieties, J. Algebra 226 (2000), 865–874. MR 1752764
- [Y] T. Yasuda, Universal flattening of Frobenius, Amer. J. Math. 134 (2012), 349–378. MR 2905000

Nobuo Hara, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan

E-mail address: nhara@cc.tuat.ac.jp