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THE QUADRATIC COMPLETE INTERSECTIONS
ASSOCIATED WITH THE ACTION OF

THE SYMMETRIC GROUP

TADAHITO HARIMA, AKIHITO WACHI AND JUNZO WATANABE

Abstract. We prove that any quadratic complete intersection
with a certain action of the symmetric group has the strong Lef-
schetz property over a field of characteristic zero. Furthermore,

we discuss under what conditions its ring of invariants by a Young

subgroup is a homogeneous complete intersection with a standard
grading.

1. Introduction

It seems natural to conjecture that all (Artinian) complete intersections
with standard grading have the strong Lefschetz property over a field of char-
acteristic zero. If there is a group action on a complete intersection, it some-
times enables us to prove that the ring has the property (see [5, Chapter 4]).
For example, consider the monomial complete intersection:

A=K[x1, x2, . . . , xr]/
(
xn1+1
1 , xn2+1

2 , . . . , xnr+1
r

)
.

In spite of the simple nature of the assertion of the strong Lefschetz property,
the proof it has the strong Lefschetz property is complicated. If n1 = n2 =
· · ·= nr = 1, however, Ikeda’s lemma provides an easy proof ([6, Lemma 1.1],
[5, Proposition 3.67, Corollary 3.70]). It seems remarkable that any mono-
mial complete intersection appears as a subring of the quadratic monomial
complete intersection. In fact, the algebra A above is the invariant subring
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of the quadratic complete intersection K[x1, x2, . . . , xn]/(x
2
1, x

2
2, . . . , x

2
n) under

the group action of the Young subgroup

Sn1 × Sn2 × · · · × Snr ⊂ Sn,

where
n= n1 + n2 + · · ·+ nr.

Once we know the strong Lefschetz property in the quadratic case, the general
case then follows almost immediately.

The purpose of this paper is to generalize this argument. First, we con-
struct a flat family of quadratic complete intersections, with four param-
eters, on which the Young subgroup acts in the same way as it does on
the quadratic monomial complete intersection. It will be proved that any
member in this family has the strong Lefschetz property. It is important to
assume that the generators of the defining ideal are quadrics and the sym-
metric group acts on it. Then we prove that the ring of invariants of any
complete intersection in this family by the action of any Young subgroup in
Sn is again a complete intersection with the strong Lefschetz property. The
proof is easy, but the invariant subrings basically do not always have a stan-
dard grading. Rather surprisingly, however, it turns out that most of them
have the standard grading thanks to the assumption that the generators are
quadrics.

The main results of this paper are Theorem 8 and Theorem 9 which are
stated in Section 4 and Section 5, respectively. A theorem of Goto says
that the ring of invariants of a complete intersection is again a complete
intersection if the group is generated by pseudo-reflections and its order is
invertible in the ground field. We need to construct a set of uniform gener-
ators for all invariant subrings in the family. This is treated in the Appen-
dix.

For simplicity, we will be assuming, mostly, that the characteristic of the
ground field K is zero except in Section 2. This is necessary for Facts 6 and
Flat Extension Theorem used in the proof of Theorem 8. In the Appendix,
we continue to assume char(K) = 0, since it is necessary to use the equality
(R/I)G =RG/(I ∩RG).

2. Definitions

Definition 1. Let V =
⊕∞

i=0 Vi be a finite dimensional graded vector
space and let L ∈ Endgr(V ) be a graded endomorphism

L : V → V

of degree one. Namely a graded endomorphism of degree one is a collection of
homomorphisms {Li : Vi → Vi+1}. We call L a weak Lefschetz endomorphism
if the map L has piece-wise full rank, that is, the restricted map Li : Vi → Vi+1

is either injective or surjective for all i= 0,1,2, . . . .We will write Li : Vi → Vi+1
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simply as L : Vi → Vi+1. We say that L is a strong Lefschetz endomorphism
if there exists an integer c such that Vi = 0 for all i ≥ c + 1 and the map
Lc−2i restricted to the homogeneous part Lc−2i : Vi → Vc−i is bijective for
all i = 0,1,2, . . . , [c/2]. The map i �→ dimK Vi is called the Hilbert function
of V . Sometimes it is written as the power series

∑∞
i=0(dimK Vi)T

i. Since
V is a finite dimensional vector space, the Hilbert series of V is actually a
polynomial in T . If a graded homomorphism of L ∈ Endgr(V ) is a strong
Lefschetz endomorphism, it automatically implies that the Hilbert function
of V is symmetric about the half integer c/2, where c= a+ b, a is the initial
and b the end degrees of V =

⊕
i Vi.

Lemma 2. Suppose that V =
⊕

i Vi is a finite dimensional graded vector
space and that V has a constant Hilbert function. Suppose that L ∈ Endgr(V )
is a graded endomorphism of degree one. If L is a weak Lefschetz endomor-
phism, then L is a strong Lefschetz endomorphism.

Proof. Let a be the initial and b the end degrees of V , and let c= a+ b.
Then obviously the map Lc−2i : Vi → Vc−i is a bijection for any i≤ [c/2]. �

Definition 3. Let A =
⊕c

i=0Ai be a graded (not necessarily standard
graded) Artinian K-algebra over a field with A0 = K. We say that A has
the weak (resp. strong) Lefschetz property, if there exists a linear form l ∈A1

such that the multiplication map L=×l ∈ Endgr(A) is a weak (resp. strong)
Lefschetz endomorphism. Such a linear form l is called a weak (resp. strong)
Lefschetz element. Sometimes we use the abbreviation: WLP (resp. SLP) for
weak (resp. strong) Lefschetz property.

Definition 4. Let A =
⊕c

i=0Ai be a graded Artinian K-algebra over a
field with A0 =K. The Sperner number of A is defined by

SpernerA=Maxi{dimK Ai}.
Proposition 5 (Subring Theorem). Let A=

⊕c
i=0Ai be a graded Artinian

K-algebra with the strong Lefschetz property. Assume that Ac 	= 0. Suppose
that B is a graded K-subalgebra of A, that Bc =Ac, and B1 contains a strong
Lefschetz element for A. Then if B has a symmetric Hilbert function, B has
the strong Lefschetz property.

Proof. Let l ∈ B1 be a strong Lefschetz element for A. Consider the dia-
gram:

Ai → Ac−i

↪→ ↪→

Bi → Bc−i,

where the vertical arrows are natural injections and horizontal arrows are
the multiplication map by lc−2i. The strong Lefschetz property of A implies
that ×lc−2i : Bi → Bc−i is injective. Since dimK(Bi) = dimK(Bc−i), it is
bijective. �
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3. The polynomial ring and the action of the symmetric group

Let R=K[x1, x2, . . . , xn] be the polynomial ring over K, a field of charac-
teristic zero, and let Sn be the symmetric group. The homogeneous part of
R of degree d is denoted by Rd. We let the symmetric group Sn act on R
by permutation of the variables. An element σ ∈ Sn is a bijection of the set
{1,2, . . . , n}. Thus σ induces the automorphism of the K-algebra R by

fσ(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

We recall some basic facts on the representation of Sn and its action on R
and fix some notation.

Facts 6.

(i) The irreducible representations of Sn are parametrized by the Young
diagrams of n boxes. A Young diagram of n boxes is denoted by a
partition λ 
 n, which is a non-decreasing sequence of positive integers
λ= (λ1, λ2, . . . , λk) such that

∑
λi = n.

(ii) We will denote by V λ the irreducible module (uniquely determined up
to isomorphism) corresponding to λ. The dimension of V λ is determined
by the hook length formula. (See, e.g., [7], [9].) Mostly we are interested
in partitions of n with at most two rows. Such partitions will be denoted
as

(n,0), (n− 1,1), . . . ,
(
n− [n/2], [n/2]

)
.

Note that (n,0) denotes the partition with one row.
(iii) Let U be a finite dimensional Sn-module. The vector space U decomposes

as U =
⊕

λ�nUλ, where Uλ is a sum of copies of V λ. The number of times

the irreducible module V λ occurs in U is the multiplicity of V λ. Such a
decomposition of U is unique up to order of the factors. In other words
if U =

⊕
λ�nUλ =

⊕
λ�nU

′
λ, then Uλ = U ′

λ (as vector subspaces of U )
for all λ 
 n. Such a decomposition is called the isotypic decomposition
of U .

(iv) We denote by Y λ the Young symmetrizer corresponding to λ 
 n. For
the meaning of Young symmetrizers, we refer the reader to [7] or [9]. In
the sequel all we have to know about Y λ is that it gives the projection
onto the λ isotypical summand

Y λ : U → Uλ,

for any Sn-module U , where U =
⊕

λUλ is the isotypic decomposition.

For example, if λ = (n,0), then Y λ(R) coincides with the ring RSn of
invariants of R under the action of Sn and Y λ is the usual averaging
homomorphism. It is well known that RSn is, as a K-algebra, generated
by the elementary symmetric polynomials. The elementary symmetric
polynomial of degree d will be denoted by ed. Thus, we have

Y (n,0)(R) =RSn =K[e1, e2, . . . , en].
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(v) The degree one part R1 of R decomposes, as an Sn-module, as

R1
∼= V (n,0) ⊕ V (n−1,1).

Typical bases for these modules are:

〈x1 + x2 + · · ·+ xn〉 for V (n,0),

〈x1 − x2, x1 − x3, . . . , x1 − xn〉 for V (n−1,1).

(vi) The degree two part R2 of R decomposes, as an Sn-module, as

R2
∼= V (n,0) ⊕ V (n,0) ⊕ V (n−1,1) ⊕ V (n−1,1) ⊕ V (n−2,2).

For V (n,0) we can choose 〈e21〉 and 〈e2〉 as bases.
For V (n−1,1) we can choose 〈x2

1 − x2
2, x

2
1 − x2

3, . . . , x
2
1 − x2

n〉 and
〈(x1 − x2)e1, (x1 − x3)e1, . . . , (x1 − xn)e1〉 as bases.

A typical basis for V (n−2,2) is the set of Specht polynomials of shape
(n− 2,2):{
(x1 − xj)(x2 − xk) | 3≤ j < k ≤ n

}
∪
{
(x1 − x2)(x3 − xk) | 4≤ k ≤ n

}
.

Facts (v) and (vi) can be derived from Molien–Solomon’s theorem
(e.g., [10, Theorem 9.3.5]), but in this particular case for R1 and R2

these are easy to see once one knows that the set of Specht polynomials
is a basis for V λ for any λ 
 n. For the definition of Specht polynomials,
see [5, Section 9.3].

(vii) By the hook length formula, we have

dimV (n−i,i) =

(
n

i

)
−
(

n

i− 1

)
.

In particular,

dimV (n−2,2) =

(
n

2

)
−
(
n

1

)
=

n(n− 3)

2
,

and

dimR2 =

⎧⎪⎨
⎪⎩
2dimV (n,0) + 2dimV (n−1,1) +dimV (n−2,2), if n > 3,

2dimV (n,0) + 2dimV (n−1,1), if n= 3,

2dimV (n,0) +dimV (n−1,1), if n= 2.

Lemma 7. With the same notation as above, suppose that U ⊂ R1e1 is a
one dimensional Sn-module. If n≥ 3, then U is spanned by e21. If n= 2, then
U is spanned either by e21 = e1(x1 + x2) or e1(x1 − x2).

Proof. Note that R1
∼= R1e1 as an Sn-module. Since R1 = Y (n,0)(R1) ⊕

Y (n−1,1)(R1) is the isotypic decomposition, and dimY (n−1,1)(R1) = 1 if n= 2
and dimY (n−1,1)(R1)> 1 if n≥ 3. Thus, the assertion follows. �
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4. Main result

As in the previous section R = K[x1, x2, . . . , xn] denotes the polynomial
ring over a field K of characteristic zero. We are interested in the sequences
of homogeneous polynomials fi ∈R which satisfy the following conditions:

(1) f1, f2, . . . , fn are quadrics.
(2) f1, f2, . . . , fn form a regular sequence.
(3) For any σ ∈ Sn,

fi(xσ(1), xσ(2), . . . , xσ(n)) = fσ(i)(x1, x2, . . . , xn) for i= 1,2, . . . , n.

Remark 1. If (f1, f2, . . . , fn) is a sequence of quadrics in R with the third
property above, the stabilizer of f1 must be the subgroup Sn−1 of Sn which
fixes 1. Hence, the element f1 has the from

p0x
2
1 + p1(x2 + x3 + · · ·+ xn)x1 + p2

(
x2
2 + x2

3 + · · ·+ x2
n

)
+ p3

( ∑
2≤i<j≤n

xixj

)
,

with four parameters pk and the elements fi are obtained by cyclically per-
muting the variables. For such a sequence to be a regular sequence, it is
necessary and sufficient that the resultant does not vanish. We refer the in-
terested reader to [1] for details on the resultants of homogeneous forms.

Example 1. Put R =K[x, y, z], e = x+ y + z, f = (e− ax)(e− bx), g =
(e− ay)(e− by), h= (e− az)(e− bz). Assume that the resultant of f, g, h

a5b5(a− 3)(b− 3)(ab− a− 2b)3(ab− 2a− b)3 	= 0.

Then the sequence

f, g, h

satisfy the conditions (1), (2) and (3) of the first paragraph of this section.

Theorem 8. Assume that the characteristic of K is zero. Let I =
(f1, . . . , fn) be a complete intersection ideal in R which satisfies the condi-
tions (1), (2) and (3) above. Then A :=R/I has the strong Lefschetz property.
Moreover, let e1 =

∑
xi. If e

2
1 /∈ I , then e1 is a strong Lefschetz element for A.

Proof. If e21 ∈ I , we can choose e21 as a generator of the ideal I . Let B =
K[z]/(z2), with a new variable z, and define the map B →A by z �→ e1. It is
easy to see that B →A is a flat extension and the fiber, say C, is the algebra

C =K[x1, x2, . . . , xn]/(e1, f1, f2, . . . , fn).

For i≥ 2, let f ′
i be the polynomial obtained from fi by the substitution

x1 �→ −(x2 + x3 + · · ·+ xn).

It is easy to see that

C ∼=K[x2, x3, . . . , xn]/
(
f ′
2, f

′
3, . . . , f

′
n

)
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so if σ ∈ Sn fixes 1, then (f ′
i)

σ = f ′
σ(i). Hence, we may induct on n to con-

clude that the fiber has the SLP. By the Flat Extension Theorem ([5, Theo-
rem 4.10]), the ring A has the strong Lefschetz property.

For the rest of proof, we assume that I does not contain e21. We want to
show that (I ∩ e1R) ∩ R2 = 0 if n ≥ 3. Let h ∈ (I ∩ e1R) ∩ R2. Since I is
generated by a regular sequence, any two linearly independent elements in
I ∩R2 are not contained in a principal ideal. This implies that (I ∩ e1R)∩R2

is at most one dimensional. If σ ∈ Sn, it forces hσR = hR. In other words,
h is a semi-invariant. By Lemma 7, the element h is a scalar multiple of e21
if n≥ 3. Since we have assumed that I does not contain e21, we have h= 0.
If n= 2, then h 	= 0 can occur but the assumption e21 /∈ I implies that e1 is a
strong Lefschetz element for A.

From now on we assume that n ≥ 3. Then the sum R1e1 + (I ∩R2) is a
direct sum and it contains two copies of V (n,0) and two copies of V (n−1,1),
since both of R1e1 and (I ∩R2) are equivalent to V (n,0) ⊕ V (n−1,1). On the
other hand by Facts 6(v) and (vi), R1e1 + ((x2

1, . . . , x
2
n) ∩ R2) also contains

two copies of V (n,0) and two copies of V (n−1,1). By Facts 6(iii), we see that

R1e1 + (I ∩R2) =R1e1 +
((
x2
1, . . . , x

2
n

)
∩R2

)
,

and

I + e1R=
(
x2
1, x

2
2, . . . , x

2
n, e1

)
.

In particular, the ideal I+e1R contains all the second powers of the variables.
Put B =R/(x2

1, x
2
2, . . . , x

2
n). Generally, it is the case that dimK(A/e1A)≥

Sperner(A). (See the proof of [5, Proposition 3.5].) Thus, we have

dimK(B/e1B) = dimK(A/e1A)≥ Sperner(A) = Sperner(B),

and since B has the weak Lefschetz property ([5, Corollary 3.69]), this implies
that dimK(A/e1A) = Sperner(A). Hence, A has the weak Lefschetz property.

We have to prove that A has the strong Lefschetz property with e1 as an SL
element. Let J = (x2

1, x
2
2, . . . , x

2
n). Put λi = (n− i, i) for i = 0,1,2, . . . , [n/2].

Since the way Sn acts on R/J and R/I are the same, A and B are isomorphic
as Sn-modules. So we may apply [5, Theorem 9.9] to A. Since the Sn-module
A decomposes as

A=

[n/2]⊕
i=0

Y λi(A)

and since the multiplication map ×e1 :A→A decomposes as the sum of the
restricted maps

×e1 : Y
λi(A)→ Y λi(A), i= 0,1, . . . , [n/2],
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it suffices to prove that the endomorphism ×e1 : Y
λi(A)→ Y λi(A) is a strong

Lefschetz element for each i. Recall that Y λi(A) has a constant Hilbert func-
tion ([5, Lemma 9.8]), namely its Hilbert function is(

dimV (n−i,i)
)(
T i + T i+1 + · · ·+ Tn−i

)
.

Thus, A has the SLP by Lemma 2. �

5. Some consequences

Throughout this section, K denotes a field of characteristic zero as before.
Recall that a grading of a graded algebra A =

⊕
i≥0Ai is standard if the

algebra A is generated by elements of degree one over A0. So far we have
tacitly assumed that the grading for the algebras R and A are standard. In this
section, we consider graded subalgebras which are not necessarily standard
graded. We continue to assume that the polynomial ring R has the standard
grading, that is, the degrees of the variables are one, but the invariant subrings
RG and AG most likely do not have the standard grading. We are primarily
concerned however with the cases where the invariant subrings AG do have
the standard grading.

Theorem 9. Let A=K[x1, x2, . . . , xn]/(f1, f2, . . . , fn) be a quadratic com-
plete intersection with the action of Sn as in Theorem 8. As in Remark 1 we
use the notation

f1 = p0x
2
1 + p1(x2 + x3 + · · ·+ xn)x1 + p2

(
x2
2 + x2

3 + · · ·+ x2
n

)
+ p3

( ∑
2≤i<j≤n

xixj

)
.

Let X = {x1, x2, . . . , xn} be the set of variables and let X =
⊔r

i=1Xi be a
partition of the set of variables into r nonempty subsets. Put ni = |Xi| and
let

G= Sn1 × Sn2 × · · · × Snr

be the Young subgroup of Sn which acts on R in such a way that Snk
per-

mutes the variables in the block Xk and leaves fixed the variables in other
blocks. Assume that e21 /∈ I . Then RG/(I ∩ RG) is a complete intersection
with the strong Lefschetz property. Furthermore, let S =K[y1, y2, . . . , yr] be
the polynomial ring in r variables and let

φ : S →A

be the homomorphism defined by φ(yi) =
∑

x∈Xi
x. Then the image φ(S) coin-

cides with AG for any (p0, p1, p2, p3) in a nonempty open set in the projective
space P3 = {(p0, p1, p2, p3)}. In particular AG has the standard grading if pa-
rameters are general enough.
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Proof. The Young subgroup G⊂ Sn is generated by reflections. By a the-
orem of Goto [2], the ring of invariants AG = (R/I)G = RG/(I ∩ RG) is a
complete intersection. Note that e1 ∈ AG and e1 is an SL element for A.
Moreover, the image of the Jacobian determinant | ∂fi∂xj

| in A can be taken as

a socle generator for both A and AG. By Proposition 5, the ring AG has
the strong Lefschetz property if e1 ∈A is a strong Lefschetz element. This is
a proof for the first assertion of this theorem. For the second assertion, we
prove Lemma 10 first.

Lemma 10. Let Q be a Noetherian integral domain, which may contain
a field of positive characteristic. Suppose that R =

⊕
i≥0Ri is a graded Q-

algebra, finitely generated over R0 =Q. (We assume that the graded pieces Ri

are free Q-modules.) If for some maximal ideal m0 ⊂Q, the fiber R/m0R :=
R⊗QQ/m0 has a standard grading, then there exists an ideal a 	= 0 in Q such
that R/pR has the standard grading for all prime ideals p 	⊃ a.

Proof. Let Y = {Y1, Y2, . . . , Yr} be a set of homogeneous elements in R
such that Y generates the algebra: R = Q[Y1, Y2, . . . , Yr]. Let M ′,M ′′ be

the Q-submodules of R as follows: M ′ =
∑

i1+i2+···+ir≥1QY i1
1 Y i2

2 · · ·Y ir
r , and

M ′′ =
∑

i1+i2+···+ir≥2QY i1
1 Y i2

2 · · ·Y ir
r . Furthermore, put M =M ′/M ′′. Note

that M is a graded Q-module and M⊗QQ/m is the tangent space of R⊗QQm

for any maximal ideal m⊂Q. It is easy to see that the fiber R⊗Q Q/m has
the standard grading if and only if M⊗QQ/m is spanned by the homogeneous
elements of degree one. Let N be the Q-submodule of M generated by the
degree one elements and put a=AnnQ(M/N). Recall that p⊃ a⇔ (M/N)p 	=
0 for a prime ideal p in Q. (See [8] The paragraph preceding Theorem 4.4.)
Since there exists at least one maximal ideal such that M ⊗Q Q/m has the
standard grading, we have a 	= 0. Then it is straightforward that a has the
desired property. �

Proof of the second part of Theorem 9. Define the polynomials F and Fi

by

F = P0x
2
1 + P1

(
n∑

j=2

xj

)
x1 + P2

(
n∑

j=2

x2
j

)
+ P3

( ∑
2≤k<l≤n

xkxl

)
,

and Fi = F σi−1

, i = 1,2, . . . , n, where P0, . . . , P3 are indeterminates and σ =
(12 · · ·n) is the cycle of length n. These are considered as polynomials in
the variables x1, x2, . . . , xn with coefficients in K[P0, P1, P2, P3]. Let R be the
resultant of F1, F2, . . . , Fn. Put Q=K[P0, P1, P2, P3,R−1] and we consider the
algebra Q[x1, . . . , xn]/(F1, . . . , Fn). In the decomposition of the variables X =⊔r

i=1Xi we may assume that the blocks Xi consist of variables of consecutive
indices. So we assume that the ith block Xi is

Xi = {xn1+···+ni−1+1, . . . , xn1+···+ni}.
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The numbering of the variables may be illustrated as follows:

x1, . . . , xn1︸ ︷︷ ︸
n1

, xn1+1, . . . , xn1+n2︸ ︷︷ ︸
n2

, xn1+n2+1, . . . , xn−nr+1, . . . , xn︸ ︷︷ ︸
nr

.

For the sake of notation, we rename the variables as:

xij = xn1+n2+···+ni−1+j ,

so xij is the jth variable in the ith block. Suppose that X0 is a set of variables.
Then by ed(X0) we denoted the elementary symmetric polynomial of degree
d in the variables in X0.

Introduce a set of new variables Yij of degree one which are indexed as
follows:

(1) The first index i ranges i= 1,2, . . . , r.
(2) The second index j ranges, depending on i, over j = 1,2, . . . , ni.

Define the polynomials {Eij} with the same indices as the variables {Yij} as
follows:

Eid = ed
(
{Yi1, Yi2, . . . , Yini}

)
for i= 1,2, . . . , r, d= 1,2, . . . , ni.

Define the algebras Λ and Λ′ by

Λ = Q
[
{Yij}

]
/(F1, . . . , Fn),

Λ′ = Q
[
{Eij}

]
/((F1, . . . , Fn)∩Q

[
{Eij}

]
.

Note that Λ is mapped onto A by the specialization Pk �→ pk, Yij �→ xij . By
Corollary 12 in the Appendix, it is possible to write

(F1, . . . , Fn)∩Q
[
{Eij}

]
=
(
F ′
1, F

′
2, . . . , F

′
n

)
.

(Note that F ′
1, . . . , F

′
n are constructed from F1, . . . , Fn explicitly.) The algebra

Λ′ is a flat extension of Q = K[P0, P1, P2, P3,R−1] and each fiber coincides
with AG under the map Yij �→ xij .

On the other hand the image of φ : S → A is a subring of AG and they
coincide if and only if AG has the standard grading or equivalently AG is
generated by degree one elements. For P0 = 1, P1 = P2 = P3 = 0, it is easy to
see that the fiber has the standard grading (cf. [5, Lemma 3.70]). Thus, we
may apply Lemma 10. This completes the proof of Theorem 9. �

Remark 2. Let Λ be the algebra defined in the last paragraph of the
proof of the second part of Theorem 9. The fiber for p0 = 1, p1 = p2 = p3 = 0
is isomorphic to the monomial complete intersection

K[y1, y2, . . . , yr]/
(
yn1+1
1 , yn2+1

2 , . . . , ynr+1
r

)
.

This is proved if r = 2 in [5, Lemma 3.70]. The same proof in fact works for
all r.
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The following example shows that a member can fail to have the SLP in
a flat family of Artinian algebras whose general members have the SLP. It
also shows that the embedding dimension is not a constant in a flat family of
Artinian algebras.

Example 2. Let p,x, y be variables and consider K[p,x, y]/(y2, x3 − py).
We regard it as a family of Artinian algebras. Give the variables p,x, y degrees
0,1,3 respectively. For any p ∈K, the Hilbert function of R is

(1− T 3)(1− T 6)

(1− T )(1− T 3)
=

(1− T 3)

(1− T )

(
1 + T 3

)
=

1− T 6

1− T
= 1+ T + · · ·+ T 5.

If p= 0, the fiber is K[x, y]/(x3, y2) and if p 	= 0, then it is K[x]/(x6).

The following example illustrates Theorem 9.

Example 3. Consider the family of the Artinian algebras

K[p0, p1, p2, p3][v,w,x, y, z]/(f1, f2, f3, f4, f5),

on which S5 acts by the permutation of the variables {v,w,x, y, z} and fσ
i =

fσ(i) for σ ∈ S5. We will use the same notation as the first paragraph of
Section 4, and Remark 1 with n= 5, so

f1 = p0v
2 + p1(w+ x+ y+ z)v+ p2

(
w2 + x2 + y2 + z2

)
+ p3(wx+wy+wz + xy+ xz + yz).

Other generators f2, . . . , f5 are obtained by permuting the variables. Consider
the Young subgroup

G := S2 × S3,

which acts on A with the division of the variables:

{v,w,x, y, z}= {v,w} � {x, y, z}.
Then the ring AG of invariants has the Hilbert function

(1 2 3 3 2 1)

and most cases it is generated by degree one elements. But for p0 = 5, p1 = 2,
p2 = 0, p3 = 2, the algebra K[(AG)1]⊂AG has the Hilbert function

(1 2 2 2 2 1)

Some more such examples are:

(p0, p1, p2, p3) = (0,0,3,8),

(p0, p1, p2, p3) = (7,7,3,8),

(p0, p1, p2, p3) = (4,3,2,6),

(p0, p1, p2, p3) = (6,0,0,4),

(p0, p1, p2, p3) = (6,3,0,2),

(p0, p1, p2, p3) = (1,1,3,8).
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This example as well as Example 4 below were computed by the computer
algebra system Macaulay2 [3].

If A = R/I is not a quadratic complete intersection, then in the general
case the ring of invariants of A does not have the standard grading. In the
next example, we exhibit such a case.

Example 4. Let R = Q[x1, x2, . . . , x6], I = (f1, . . . , f6), where fi = x3
i for

i= 1, . . . ,6. Let X1 = {x1, x2, x3} and X2 = {x4, x5, x6} and let G= S3 × S3

act on A = R/I by permuting the variables within the blocks X1 and X2

in the way as described in Theorem 9. Then the ring of invariants AG is,
as a K-algebra, generated by the six elements of degrees {1,2,3,1,2,3} as
follows: r = x1+x2+x3, s= x1x2+x1x3+x2x3, t= x1x2x3, u= x4+x5+x6,
v = x4x5 + x4x6 + x5x6 and w = x4x5x6. They satisfy the relations

(1) u3 − 3uv+ 3w = 0,
(2) r3 − 3rs+ 3t= 0,
(3) u2v− 2v2 − uw = 0,
(4) r2s− 2s2 − rt= 0,
(5) u2w− 2vw = 0,
(6) r2t− 2st= 0.

Note that the ring AG has in fact embedding dimension 4 and t and w can
be eliminated but the grading is not standard. The Hilbert polynomial is

1 + 2T + 5T 2 + 8T 3 + 12T 4 + 14T 5 + 16T 6 + 14T 7 + 12T 8

+ 8T 9 + 5T 10 + 2T 11 + T 12

=
((
1 + T 2

)(
1 + T + T 2 + T 3 + T 4

))2
.

Appendix

Proposition 11. Let R=K[x1, . . . , xn] be the polynomial ring over a field
K of characteristic zero, on which the symmetric group Sn acts by permuting
the variables. Let f1, . . . , fn ∈ R be a set of homogeneous elements which
satisfies fσ

i = fσ(i) for any σ ∈ Sn for i = 1, . . . , n. Define the polynomials
g1, g2, . . . , gn by

⎛
⎜⎜⎝
g1
g2
...
gn

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xn−1
1 xn−1

2 · · · xn−1
n

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
f1
f2
...
fn

⎞
⎟⎟⎠ .

Then the ideal (f1, . . . , fn) is a complete intersection if and only if (g1, . . . , gn)
is a complete intersection.

Proof. The “if” part is obvious. Put I = (f1, . . . , fn) and assume that I is
an ideal of finite colength, that is, I is a complete intersection. We want to
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prove that g1, . . . , gn generate an ideal of finite colength. For simplicity, we put
G = Sn. It is possible to construct a minimal free resolution of (f1, . . . , fn)
which is compatible with the action of G. For this, the Koszul complex is
enough:

0→
n∧
F → · · · →

2∧
F →

1∧
F →

0∧
F.

We may think F is the free module generated by dx1, dx2, . . . , dxn, and then

extend the action of G to
∧k

F (for any k) in the obvious manner. If k = 1,
it is easy to determine a minimal set of generators for FG as an RG-module.
This can be done as follows. First, we note that FG is a free RG-module
of rank n. For any d, the ideal (xd

1, x
d
2, . . . , x

d
n) ∩ RG is generated by the

power sum symmetric polynomials of degrees d, d+ 1, . . . , d+ n− 1. (This is
discussed in the proof of [4, Lemma 7.6].) Hence, it follows that the invariant
subspace FG of F is a free RG-module of rank n generated by {

∑n
i=1 x

k
i dxi |

k = 0,1, . . . , n− 1}. In other words, a matrix M is determined to be the Van
der Monde matrix if it satisfies, for any d given, the following matrix identity:⎛

⎜⎜⎜⎜⎝
xd
1 + xd

2 + · · ·+ xd
n

xd+1
1 + xd+1

2 + · · ·+ xd+1
n

...

xd+n−1
1 + xd+n−1

2 + · · ·+ xd+n−1
n

⎞
⎟⎟⎟⎟⎠=M

⎛
⎜⎜⎜⎜⎝
xd
1

xd
2
...

xd
n

⎞
⎟⎟⎟⎟⎠ .

The first part of the minimal free resolution of R/I takes the form

2∧
F →

1∧
F

∂→R→R/I → 0.

To extract the invariant subspace is an exact functor, so we have the exact
sequence ( 2∧

F

)G

→ FG ∂→RG → (R/I)G → 0

of free RG-modules. The map ∂ : F →R is defined by

dxi �→ fi.

Thus, the image of the restricted map ∂ : FG →RG is the ideal

(g1, g2, . . . , gn)R
G.

This shows that I ∩ RG is an ideal of finite colength in RG or equivalently
they generate an ideal of finite colength in R. �

We will call the matrix in the statement of Proposition 11 the Van der
Monde matrix.
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Corollary 12. Let n= n1 + · · ·+ nr be a partition of the integer n and
let

x1, . . . , xn1︸ ︷︷ ︸
n1

, xn1+1, . . . , xn1+n2︸ ︷︷ ︸
n2

, xn1+n2+1, . . . , xn−nr+1, . . . , xn︸ ︷︷ ︸
nr

be a decomposition of the variables into r blocks. Let G= Sn1 × Sn2 × · · · ×
Snr ⊂ Sn be a Young subgroup and let G act on R by the block-wise permu-
tation of the variables. Suppose that f1, . . . , fn is a homogeneous complete
intersection which satisfies fσ

i = fσ(i), i= 1,2, . . . , n, for all σ ∈G. Let Vi be
the Van der Monde matrix in the variables in the ith block

{xn1+···+ni−1+j | j = 1, . . . , ni}.

Define the homogeneous elements g1, g2, . . . , gn by⎛
⎜⎜⎝
g1
g2
...
gn

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr

⎞
⎟⎟⎠
⎛
⎜⎜⎝
f1
f2
...
fn

⎞
⎟⎟⎠ .

(The matrix is a block diagonal matrix.) Then

(g1, g2, . . . , gn) = (f1, f2, . . . , fn)∩RG.

Proof. (g1, g2, . . . , gn)⊂ (f1, f2, . . . , fn)∩RG is obvious. Put

Ω =Rdx1 ⊕Rdx2 ⊕ · · · ⊕Rdxn, I = (f1, f2, . . . , fn).

Construct a minimal free resolution of R/I over R as:

0→
n∧
Ω→ · · · →

1∧
Ω

∂→R→R/I → 0,

so that the boundary maps are compatible with the action of the group G. By
taking the invariant subspaces for G, we may get the minimal free resolution
of (R/I)G. As in Proposition 11, the invariant subspace ΩG as an RG-module
can be generated by the elements which appear as the entries of the column
vector: ⎛

⎜⎜⎝
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr

⎞
⎟⎟⎠
⎛
⎜⎜⎝
dx1

dx2
...

dxn

⎞
⎟⎟⎠ .

The map Ω
∂→ R is defined as dxi �→ fi. Hence, we obtain the module RG/

(RG ∩ (f1, . . . , fn)) as represented by RG/(g1, . . . , gn)R
G. �
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Remark 3. We have been unable to determine a set of generators for

(
∧k

F )G for k > 1 except for k = n − 1, n. If k = n, then Fn is the free
RG-module of rank one with( ∏

1≤k<l≤n

(xl − xk)

)
dx1 ∧ dx2 ∧ · · · ∧ dxn

as a generator. If k = n− 1, a set of generators can be specified similarly.
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