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A HALF-SPACE THEOREM FOR GRAPHS OF CONSTANT
MEAN CURVATURE 0<H < 1

2 IN H2 ×R

L. MAZET AND G. A. WANDERLEY

Abstract. We study a half-space problem related to graphs in
H2 ×R, where H2 is the hyperbolic plane, having constant mean
curvature H defined over unbounded domains in H2.

1. Introduction

The half-space theorem by Hoffman and Meeks [10] states that if a properly
immersed minimal surface S in R3 lies on one side of some plane P , then S
is a plane parallel to P . As a consequence, they proved the strong half-space
theorem which says that two properly immersed minimal surfaces in R3 that
do not intersect must be parallel planes.

These theorems have been generalized to some other ambient simply con-
nected homogeneous manifolds with dimension 3. For example, we have half-
space theorems with respect to horospheres in H3 [19], vertical minimal planes
in Nil3 and Sol3 [3], [4] and entire minimal graph in Nil3 [4]. It is known that
there is no half-space theorem for horizontal slices in H2 ×R, since rotational
minimal surfaces (catenoids) are contained in a slab [15], [16], but one has
half-space theorems for constant mean curvature 1

2 surfaces in H2 ×R [8].
In [12], the first author proved a general half-space theorem for constant

mean curvature surfaces. Under certain hypothesis, he proved that in a Rie-
mannian 3-manifold of bounded geometry, a constant mean curvature H sur-
face on one side of a parabolic constant mean curvature H surface Σ is an
equidistant surface to Σ.

In Euclidian spaces of dimension higher than 4, there is no strong half-space
theorem, since there exist rotational proper minimal hypersurfaces contained
in a slab.
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In [14], Menezes proves a half-space theorem for some complete verti-
cal minimal graphs, more precisely, she looks at some particular graphs
Σ⊂M ×R over an unbounded domain D ⊂ M , where M is a Hadamard
surface with bounded curvature, these graphs are called ideal Scherk graphs
and their existence was proved by Collin and Rosenberg in [2] for H2 and by
Galvez and Rosenberg in [6] in the general case.

Theorem 1 (Menezes [14]). Let M denote a Hadamard surface with
bounded curvature and let Σ = Graph(u) be an ideal Scherk graph over an
admissible polygonal domain D ⊂M . If S is a properly immersed minimal
surface contained in D×R and disjoint from Σ, then S is a vertical translate
of Σ.

In this paper, we are interested in the case where the graph has constant
mean curvature. More precisely, we consider graphs over unbounded domains
of H2 with constant mean curvature 0<H < 1

2 (the domains are some “ideal
polygons” with edges of constant curvatrure). In that case, we prove a result
similar to the one of Menezes. We notice that the value H = 1

2 is critical in

this setting (see [13], [17] for the H = 1
2 case).

The graphs that we will work with are graphs of functions u defined in an
unbounded domain D ⊂H2 whose boundary ∂D is composed of complete arcs
{Ai} and {Bj} whose curvatures with respect to the domain are κ(Ai) = 2H
and κ(Bj) = −2H . These graphs will have constant mean curvature and u
will assume the value +∞ on each Ai and −∞ on each Bj . These domains D
will be called Scherk type domains and the functions u Scherk type solutions.
The existence of these graphs is assured by A. Folha and S. Melo in [5] (for
bounded domains see [9]). There, the authors give necessary and sufficient
conditions on the geometry of the domain D to prove the existence of such a
solution. In this context, we prove the following result.

Theorem 2. Let D ⊂H2 be a Scherk type domain and u be a Scherk type
solution over D (for some value 0<H < 1

2 ). Denote by Σ=Graph(u). If S
is a properly immersed CMC H surface contained in D×R and above Σ, then
S is a vertical translate of Σ.

The original idea of Hoffman and Meeks is to use the 1-parameter family
of catenoids as a priori barriers to control minimal surfaces on one side of a
plane (here a priori means that the choice of catenoids is independent of the
particular minimal surface you want to control). In more general situations, it
is not easy to construct such a continuous family of barriers so some authors
use a discrete family (see, for example, [4], [20]). Menezes works also with
such a discrete family. In our case, it does not seem possible to construct such
a family in an easy way. Our approach is based on the existence of only one
barrier whose construction depends on the particular surface S.
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This paper is organized as follows. In Section 2, we will give a brief presen-
tation of the Scherk type graphs and the result of Folha and Melo. Section 3
contains the proof of Theorem 2, so one of the main step is the existence of
the barriers which uses the Perron method. We also prove a uniqueness result
for the constant mean curvature equation.

2. Constant mean curvature Scherk type graphs

In this section, we present the theorem by A. Folha and S. Melo in [5]
that assures the existence of constant mean curvature graphs which take the
boundary value +∞ on certain arcs Ai and −∞ on arcs Bj . All along this
section H will be a real constant in (0, 12 ).

First, let us fix some notations. Let H2 be the hyperbolic plane, and H2×R
be endowed with the product metric. Let D be a simply connected domain
in H2 and u :D −→R a function. Denote by

Σ=Graph(u) =
{(

x,u(x)
)
, x ∈D

}
.

The upward unit normal to Σ is given by

(1) N =
1

W
(∂t −∇u),

where

(2) W =
√
1 + |∇u|2.

The graph Σ has mean curvature H if u satisfies the equation

(3) Lu := div
∇u

W
− 2H = 0,

where the divergence and the gradient are taken with respect to the metric
on H2. Let us now give some definitions.

Definition 1. The boundary of an unbounded domain D in H2 is a 2H-
polygon if its boundary is made of a finite number of complete arcs with
constant curvature 2H and the cluster points of D in ∂∞H2 are the end-
points of these arcs. The arcs are called the edges of D and the cluster points
are the vertices of D.

We notice that a complete curve in H2 with constant curvature 2H is
proper.

If Ω is a domain whose boundary is a 2H-polygon, we will denote by Ai

(resp. Bi) the arcs of the boundary whose curvature is 2H (resp. −2H) with
respect to the inward pointing unit normal.

Definition 2. We say that an unbounded domain D in H2 is a Scherk
type domain if its boundary is a 2H-polygon and if each vertex is the end
point of one arc Ai and one arc Bj .
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Figure 1. The Scherk type domain D and the balls By and B′
y .

Such a domain D is drawn in Figure 1.

Definition 3. Let Ω be a Scherk type domain. We say that P is an ad-
missible inscribed polygon if P ⊂Ω is an unbounded domain whose boundary
is a 2H-polygon and its vertices are among the ones of Ω.

Let D be a Scherk type domain, in [5], Folha and Melo study the following
Dirichlet problem

(4)

⎧⎪⎨
⎪⎩
L(u) = 0, in D,

u=+∞, on Ai,

u=−∞, on Bi.

In order to state the result of Folha and Melo, let us introduce some nota-
tions. Let P be an admissible inscribed polygon in D and let {di}i∈I denote
the vertices of P . Consider the set

Θ =
{
(Hi)i∈I |Hi is a horodisk at di and Hi ∩Hj = ∅ if i 	= j

}
.

We notice that, by choosing sufficiently small horodisks, Θ is not empty.
Let (Hi)i∈I be in Θ such that the following is true: each arc Ai and Bj

meets exactly two of these horodisks. Denote by Ãi the compact arc of Ai

which is the part of Ai outside these two horodisks. Let |Ai| denote the length
of Ãi. We introduce the same notations for the Bj . For each arc ηj ∈ ∂P , we
also define η̃j and |ηj | in the same way.
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We define

α(∂P ) =
∑

Ai∈∂P

|Ai|, β(∂P ) =
∑

Bi∈∂P

|Bi| and �(∂P ) =
∑
j

|ηj |,

where ∂P =
⋃

j ηj . We remark that a Scherk type domain has finite area. So
we can introduce A(D) the area of D and A(P ) the area of P .

With these definitions we can state the main theorem of [5].

Theorem 3. Let D be a Scherk type domain. Then there exists a solution
u for the Dirichlet problem (4) in D if and only if for some choice of the
horodisks (in Θ) at the vertices,

α(∂D) = β(∂D) + 2HA(D)

and for any admissible inscribed polygons P 	=D,

2α(∂P )< �(∂P ) + 2HA(Ω) and 2β(∂P )< �(∂P )− 2HA(Ω).

It could seem that the conditions depend on the choice of the horodisks
in Θ, actually they are independent of that choice if the horodisks are small
enough. The details and the proof of this theorem can be found in [5].

3. The main result

In this section, we will prove the following result.

Theorem 2. Let D ⊂H2 be a Scherk type domain and u be a Scherk type
solution over D (for some value 0<H < 1

2 ). Denote by Σ=Graph(u). If S
is a properly immersed CMC H surface contained in D×R and above Σ, then
S is a vertical translate of Σ.

The proof of the theorem consists in constructing barriers to control the
surface S. Before starting the proof, let us give some notations and prelimi-
nary results that we will use.

So we fix a value of H ∈ (0, 12 ), a Scherk type domain D and a Scherk type
solution u. Let y ∈D and By and B′

y be open balls centered in y such that

By � B′
y �D (see Figure 1). The following result consists in constructing a

first barrier to control S.

Lemma 1. There exists a constant ε > 0 such that for all t ∈ [0, ε) there

exists v ∈C2(B′
y \By) such that v solves (3) and v = u on ∂B′

y and v = u+ t
on ∂By .

Proof. Consider the operator F : C2,α(B′
y \By) × C2,α(∂(B′

y \ By)) −→
C0,α(B′

y \By)×C2,α(∂(B′
y \By)) given by

F (v,φ) = (Lv, v− φ).

Observe that
F (u,u) = 0.
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Moreover, consider the operator

T :=D1F (u,u) :C2,α
(
B′

y \By

)
−→ C0,α

(
B′

y \By

)
×C2,α

(
∂
(
B′

y \By

))
,

h 
−→ lim
t−→0

F (u+ th,u)− F (u,u)

t
.

We have that

T (h) =

(
Div

(
∇h−∇u/W 〈∇u/W,∇h〉

W

)
, h

)
.

Observe that T is a linear operator, of the form T = (T1, T2) where T1 is
an elliptic operator of the form

T1(v) = aij(x)Dijv+ bi(x)Div; aij = aji.

Moreover, since |∇u| ≤ C, we have that |∇u|
W ≤ C ′ < 1, this implies that

T1 is uniformly elliptic. We also have that the coefficients of T1 belong to
C0,α(B′

y \By). It follows by Theorem 6.14 in [7] that if g ∈ C0,α(B′
y \By)

and φ ∈C2,α(∂(B′
y \By)), then there exists a unique w ∈C2,α(B′

y \By) such
that T1(w) = g in B′

y \By and w = φ on ∂(B′
y \By).

We conclude that T is invertible. It follows by the implicit function theorem
that for all φ close to u there exists a solution of Lv = 0 in B′

y \By with v = φ
in ∂(B′

y \By). In other words, it exists ε > 0 such that for all t ∈ [0, ε) there
exists v such that v solves (3) and v = u over ∂B′

y and v = u+ t over ∂By . �

Let S be as in Theorem 2. Give p ∈D, define g(p) by

g(p) = inf
{
t ∈R; (p, t) ∈ S

}
∈R∪ {+∞}.

Observe that g is a lower semicontinuous functions and g ≥ u. From now
on, we will assume that g > u (the case where g(p) = u(p) for a point p ∈D
will be considered in the proof of the theorem). Then for ε′ > 0 sufficiently
small, we have that

(5) g > u+ ε′ on ∂By.

Now, let ε be as in Lemma 1, fix ε′ < ε where ε′ satisfies (5) and v given
by Lemma 1 associated to ε′. We will construct a second barrier to control
the surface S. More precisely, we will prove the existence of a function β ≤ g
that satisfies

Lβ = 0 in D \By,(6)

β = u+ ε′ in ∂By.(7)

Proposition 1. There is a solution β ∈C2(D \By) for the Dirichlet prob-
lem (6)–(7) such that max(u, v)≤ β ≤min(u+ ε′, g) (v is defined just above).
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Proof. To prove this proposition we will use the Perron method. Let us
recall the framework of this method (see, for example, Theorem 6.11 in [7]).
A function w ∈ C0(D \By) is called a subsolution for L if, for any compact
subdomain U ⊂D \By and any solution h of (3) with w ≤ h on the boundary
∂U , we have w ≤ h on U .

First, observe that u is a subsolution for (3). Moreover, if w′ and w are
subsolutions, the continuous function max(w′,w) is also a subsolution.

Let Δ⊂D \By be a geodesic disk of small radius such that κ(∂Δ)≥ 2H .
Theorem 3.2 in [9] implies that the Dirichlet problem for Equation (3) can
be solved in Δ. So, for any such disk Δ and subsolution w, we can define a
continuous function MΔ(w) as

MΔ(w)(x) =

{
w(x), if x ∈D \Δ,

ν(x), if x ∈Δ,

where ν is the solution of Lν = 0 in Δ, with ν =w in ∂Δ.
Also, define u+ =min(u+ ε′, g) and u− =max(u, v). Denote by Γ the set

of all subsolutions w such that w ≤ u+ on D \By ,

Claim 1. If w ∈ Γ and Δ ∈D \By is a geodesic disk, then MΔ(w) ∈ Γ.

Proof. First, we have to prove that MΔ(w) is a subsolution. So, take a
arbitrary compact subdomain U ⊂D \By , and let h be a solution of (3) in U
with MΔ(w)≤ h on ∂U . Since w =MΔ(w) in U \Δ, we have that MΔ(w)≤ h
in U \Δ.

Moreover, MΔ(w) is a solution of (3) in Δ. Then, by the maximum prin-
ciple, we have that MΔ(w) ≤ h in U ∩Δ. So, MΔ(w)≤ h in U . Since U is
arbitrary, it follows that MΔ(w) is a subsolution in D \By .

Now we have to prove that MΔ(w) ≤ u+. Observe that in (D \By) \Δ,
MΔ(w) =w, since w ∈ Γ, then w ≤ u+, and so, MΔ(w)≤ u+ in D \Δ.

On the other hand, MΔ(w) = ν in Δ, where ν is a solution of L(ν) = 0 in
Δ and ν = w on ∂Δ. Thus ν ≤ u+ =min(u+ ε′, g) on ∂Δ. It follows by the
maximum principle that ν ≤ u + ε′ in Δ. So, we have to prove that ν ≤ g
in Δ.

Suppose that there exists q ∈Δ such that (ν−g)(q)> 0. Then, there exists
p ∈Δ such that (ν − g)(p) =max(ν − g) =C > 0.

Now, observe that the graph of g in Δ is a piece of the surface S, let us
denote it by Sg . Since g ≥ ν−C, then the graph Σν−C of ν−C is a CMC 2H
surface which is bellow the surface Sg . Moreover, (p, g(p)) is a point of contact
of Σν−C and Sg , and by the maximum principle, Sg =Σν−C . It follows that
g = ν − C in Δ, since ν ≤ g on ∂Δ then C ≤ 0, and this contradicts C > 0.
Then ν ≤ g in Δ. �

For q ∈D \By , we define our solution by the following formula

β(q) = sup
w∈Γ

w(q).
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Observe that u− is a subsolution, since u and v are subsolutions. Also,
u≤ u+ =min(u+ε′, g). Moreover, in the proof of Claim 1 we see that v ≤ u+.
Then u− =max(u, v)≤ u+. We conclude that u− ∈ Γ, then Γ is non empty,
and u+ is an upper bound for any w in Γ, thus β is well defined. Besides
β = u+ = u− = u+ ε′ on ∂By .

The method of Perron claims that β is a solution of Equation (3).

Claim 2. The function β is a solution of (3) in D \By .

Proof. Let p ∈ D \ By and Δ ⊂ D \ By be a geodesic disk of small ra-
dius centered at p as above. By definition of β there exists a sequence of
subsolutions (wn) such that wn(p)−→ β(p). Then, consider the sequence of
subsolutions MΔ(wn), we have that MΔ(wn)(p)−→ β(p). Also, we have that
MΔ(wn) is a bounded sequence of solutions of (3) in Δ, so, by considering a
subsequence if necessary, we can assume that it converges to a solution w on
Δ with β ≥w and w(p) = β(p). Let us prove that β =w on Δ, then β will be
a solution of (3).

We have that β ≥w. Suppose that there is a point q ∈Δ where β(q)>w(q).
So, there is a subsolution s such that s(q)>w(q). Now consider the sequence
of subsolutions MΔ(max(s,wn)). We have that MΔ(max(s,wn)) is a sequence
of solutions of (3) in Δ. Thus, considering a subsequence, it converges to a
solution s≥w of (3) in Δ.

So, we have w and s solutions of (3) in Δ, with w(p) = β(p) = s(p), thus
by the maximum principle we have that w = s in Δ.

But, since MΔ(max(s,wn)) ≥ s, we have that s ≥ s. This implies that
s(q)≥ s(q)>w(q), which contradicts w = s in Δ. �

Until now, we know the function β is in C2(D \By) and is a solution of (3)

in D \By such that u≤ β ≤min(u+ε′, g). But we don’t have any information
about the regularity of β on the boundary ∂By . So, the next step is prove
that β is continuous up to ∂By .

Claim 3. The function β is continuous up to the boundary ∂By . It takes
the value u+ ε′ on ∂By .

Proof. We have that β(q) = supw∈Γw(q), then, β(q)≤ u+(q)≤ u+ ε′. On
the other hand, u−(q) =max(u, v) ∈ Γ, then u−(q)≤ β(q). Moreover, in ∂By

we have that u−(q) = u+ ε′. Thus, let p ∈ ∂By , and {xn} ∈D \By a sequence
such that xn −→ p. We have

u−(xn)≤ β(xn)≤ u+(xn),

since
lim

xn−→p
u−(xn) = lim

xn−→p
u+(xn) = u(p) + ε′,

we have that
lim

xn−→p
β(xn) = u(p) + ε′.
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Then β is continuous at p ∈D \By and β = u+ ε′ in ∂By . �

We have proved the existence of a function β defined on D \By such that

max(u, v) ≤ β ≤ min(u + ε′, g) and β ∈ C2(D \ By) ∩ C0(D \ By). The fact
that β is C2 up to the boundary will come from the following claim.

Claim 4. ∇β is bounded in a neighborhood of ∂By .

Proof. Theorem 1.1 in [21] says that there is a continuous function f of
two variables such that, for any positive solution w of (3) in a geodesic disk
of radius ρ centered at q, if |w| ≤M in the disk then |∇w(q)| ≤ f(M, Mρ ).

Take q ∈ D \ By with d(q,By) small and consider Δq the disk centered
at q and radius d(q,By). On Δq , v ≤ β ≤ u + ε′ and the three functions
coincide on ∂By . v and u have bounded gradient near ∂By , so 0≤ supΔq

β−
infΔq β ≤Cd(q,By) for some constant C that does not depend on q. Applying
Theorem 1.1 in [21] to β − infΔq β on Δq , we get |∇β(q)| ≤ f(Cd(q,By),C),
that is, ∇β is bounded near ∂By . �

The above claim allows us to apply Theorem 4.6.3 in [11] to obtain that
β ∈C2,α(D \By). This concludes the proof of Proposition 1. �

In the next result, we will prove a uniqueness result for CMC graphs in
H2 ×R defined over unbounded domain in H2 whose existence was proved by
A. Folha and S. Melo in [5].

Proposition 2. Let β ∈C2(D \By) be a solution of the Dirichlet problem
(6)–(7) such that u≤ β ≤ u+ ε′. Then, β = u+ ε′ on D \By .

Proof. Let us first analyze the boundary ∂D. As in Section 2, let
A1,B1, . . . ,Ak,Bk be the edges of the ∂D with u(Ai) = +∞ = β(Ai) and
u(Bi) =−∞= β(Bi).

For each i, let Hi(n) be a horodisk asymptotic to the vertex di of D such
that Hi(n+1)⊂Hi(n) and

⋂
nHi(n) = ∅. For each side Ai, let us denote by

An
i the compact subarc of Ai which is the part of Ai outside the two horodisks,

and by |An
i | the length of An

i . Analogously, we define Bn
i for each side Bi.

Denote by Cn
i the compact arc of ∂Hi(n) contained in the domain D and let

Pn be the subdomain of D bounded by the closed curve formed by the arcs
An

i , B
n
i and Cn

i and let us denote Γn = ∂(Pn \By).
We have by the theorem of Stokes that

0 =

∫
Pn\By

Div

(
∇u

Wu
− ∇β

Wβ

)

=

∫
Γn

(
∇u

Wu
− ∇β

Wβ

)
· η,

where W 2
u = 1+ |∇u|2, W 2

β = 1+ |∇β|2 and η is the outward unit normal.
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Thus

0 =
∑
i

∫
An

i

(
∇u

Wu
− ∇β

Wβ

)
· η+

∑
i

∫
Bn

i

(
∇u

Wu
− ∇β

Wβ

)
· η

+
∑
i

∫
Cn

i

(
∇u

Wu
− ∇β

Wβ

)
· η+

∫
∂By

(
∇u

Wu
− ∇β

Wβ

)
· η.

Using |∇u|
Wu

< 1, |∇β|
Wβ

< 1 on Cn
i and Theorem 5.1 in [5], these integrals can

be estimated. We have

0<
∑
i

(∣∣An
i

∣∣− ∣∣An
i

∣∣+ ∣∣Bn
i

∣∣− ∣∣Bn
i

∣∣+ 2
∣∣Cn

i

∣∣)+ ∫
∂By

(
∇u

Wu
− ∇β

Wβ

)
· η.

Then ∫
∂By

(
∇u

Wu
− ∇β

Wβ

)
· η >−2

∑
i

∣∣Cn
i

∣∣.
Since |Cn

i | −→ 0 when n−→∞, we get
∫
∂By

(∇u
Wu

− ∇β
Wβ

) · η ≥ 0. Now, we have

that β ≤ u+ ε′, this implies that the normal derivative ∂η(u+ ε′−β)≤ 0 and,

by Lemmas 1 and 2 in [1], (∇u
Wu

− ∇β
Wβ

) · η ≤ 0. As a consequence, the integral

of this quantity must vanish and ∂η(u + ε′ − β) = 0 on ∂By . u + ε − β is
non-negative and solves a linear elliptic equation so the boundary maximum
principle (Theorem 7 in [18]) implies u+ ε′ − β = 0. �

Now we are able to prove our main theorem.

Proof of Theorem 2. We know that S is a properly immersed CMC surface
contained in D ×R above Σ. Then, let y ∈D, By ⊂D and ε′ as above. We
have three cases to analyze

(1) Suppose that there exists p ∈ D such that g(p) = u(p) (is this the case
we had let aside before Proposition 1). In this case, by the maximum
principle, we conclude that u= g and S =Σ.

(2) Suppose that g > u and inf(g−u) = 0. In this case, by Proposition 1 there
exists β solution of (6)–(7) defined over D\By such that u≤ β ≤ g. More-
over, Proposition 2 assures that β = u+ ε′. This yields a contradiction,
since we assume that inf(g− u) = 0.

(3) Finally, suppose that g > u and inf(g − u) = α > 0. Then, pushing up
Σ by a vertical translations, that is, by considering u+ α instead of u,
we have now that g ≥ u + α and inf(g − α − u) = 0, this case reduces
to cases (1) and (2) and we conclude that g = u+ α, where α is a con-
stant. �
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