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DUALITY OF UNIFORM APPROXIMATION PROPERTY IN
OPERATOR SPACES

YANQI QIU

Abstract. The duality of uniform approximation property for
Banach spaces is well known. In this note, we establish, under

the assumption of local reflexivity, the duality of uniform approx-
imation property in the category of operator spaces.

1. Introduction

In this note, we will assume that the reader is familiar with the definitions
of operator spaces and various classical properties of operator spaces.

We say that an operator space E has the operator space uniform approxi-
mation property (in short OUAP), if there is a constant K ≥ 1 and a function
k(n) such that, for any n-dimensional subspace M of E, there exists a finite
rank operator T ∈CB(E), such that

‖T‖cb ≤K, rankT ≤ k(n) and T |M = idM .

In the above situation, to emphasize the constant K and the function k(n),
we will say that E has the (K,k(n))-OUAP.

The main purpose of this note is to show that OUAP passes to the dual
under the an assumption of local reflexivity.

Theorem 1. If E (resp. E∗) has the (K,k(n))-OUAP, and E∗ (resp. E)
is a locally reflexive operator space, then E∗ (resp. E) has the(
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-OUAP,

for all ε > 0 and all integers m> 1.
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For simplicity, the locally reflexive in this note always means locally re-
flexive with constant 1. However, after a suitable modification of constants,
Theorem 1 still holds if we use locally reflexive with constant λ > 1.

It is not known whether we can drop the assumption on the local reflexivity
in Theorem 1. Here, a related problem seems to be open, we formulate it as
Open Problem 1.

2. The main result

The notion of operator ideal norm in the category of Banach spaces can
be generalized in an obvious way to the category of operator spaces (cf. e.g.,
[ER00]). Throughout the paper, all operator ideal norms are the operator
ideal norm in the category of operator space.

Given an operator ideal norm α, we say that an operator space E has α-
OUAP, if in the definition of OUAP, the condition rankT ≤ k(n) is replaced
by the condition α(T )≤ k(n). As before, if we need to emphasize the constant
K and the function k(n), we will say that E has the (K,k(n))-α-OUAP.

Let E be an operator space and let Y be a Banach space. Recall that an
operator u : E → Y is called (2, oh)-summing if there is a constant C such
that for all finite sequences (xi) in E, we have

∑
i

∥∥u(xi)
∥∥2 ≤C2

∥∥∥∥
∑
i

xi ⊗ x̄i

∥∥∥∥
E⊗minE

,

and we denote by π2,oh(u) the smallest such constant.
Given an operator ideal norm α, we define αd the dual ideal norm by

αd(T ) = α
(
T ∗).

The operator ideal norm α is said to be 1-injective, if for any operator T :
E → F and any completely isometric inclusion i : F ↪→G, we have

α(T ) = α(i ◦ T ).

For an operator T : E → F and any integer i≥ 1, define the ith complete
approximation number bi(T ) of T by

bi(T ) = inf
{
‖T − S‖cb : S ∈CB(E,F ), rankS < i

}
.

Remark 2. If E is a homogeneous operator space, that is, for all T :
E → E, we have ‖T‖cb = ‖T‖, then bi(T ) = ai(T ), where ai(T ) stands for
the usual ith approximation number of T . In particular, since the Piser’s
operator Hilbert space OH is homogeneous, we have bi(T ) = ai(T ) for any
T ∈CB(OH) =B(OH).

Let us recall the notion of locally reflexivity for operator spaces (see
[Pis03]). An operator space E is called locally reflexive, if for any finite-
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dimensional operator space L, the natural linear isomorphism

CB
(
L,E∗∗)→CB(L,E)∗∗

is isometric.
The following lemma is an immediate generalization of Lemma 1 in the

article [Mas91].

Lemma 3. Let α be a 1-injective operator ideal norm. If E is locally re-
flexive and E∗ has the (K,k(n))-αd-OUAP, then E has the(

K(1 + ε), k(n)(1 + ε)
)
-α-OUAP,

for all ε > 0.

Proof. Assume E∗ has the (K,k(n))-αd-OUAP. Let M ⊂ E be an n-
dimensional subspace. Fix (e1, . . . , en) an Auberbach basis of M , that is,
for all scalars λi ∈C, we have

max
i

|λi| ≤
∥∥∥∥
∑
i

λiei

∥∥∥∥≤
∑
i

|λi|.

With the dual basis, it is easy to see that

max
i

‖ai‖ ≤
∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

≤
∑
i

‖ai‖

for all elements ai in some operator space G. Fix ε > 0 and define

R =
{
T ∈CB(E) : ‖T‖cb ≤K(1 + ε)1/2,

α(T )≤ k(n)(1 + ε)1/2, rankT <∞
}

and
C =

{
(Tei, . . . , T en) : T ∈R

}
⊂ �n∞(E).

We claim first that (e1, . . . , en) ∈ C , the norm closure of C in �n∞(E). Other-
wise, since C is convex, and the dual space �n∞(E) is identified with �n1 (E

∗),
by Hahn–Banach separating theorem, there exist ξ1, . . . , ξn in E∗, such that

Re

(∑
i

(ξi, T ei)

)
<Re

(∑
i

(ξi, ei)

)
, ∀T ∈ R.

Since E∗ has the (K,k(n))-αd-OUAP, we can find a finite rank operator S ∈
CB(E∗), such that

‖S‖cb ≤K, αd(S)≤ k(n) and Sξi = ξi for all i= 1, . . . , n.

Since E is locally reflexive, the range of S∗ is a finite dimensional subspace
R(S∗) of E∗∗, and we can find an operator ϕ :R(S∗)→E, such that

‖ϕ‖cb ≤ (1 + ε)1/2

and (
ϕ(x), ξi

)
= (x, ξi) for all i= 1, . . . , n and x ∈R

(
S∗).
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Let us denote by S∗ when S∗ is considered as an operator E∗∗ →R(S∗). Since
α is 1-injective,

α
(
S∗

)
= α

(
S∗)= αd(S)≤ k(n).

Let T0 be the composition of the following applications:

T0 :E
iE−−−−→ E∗∗ S∗

−−−−→ R(S∗)
ϕ−−−−→ E,

where iE is the canonical inclusion. We have

‖T0‖cb ≤ ‖iE‖cb
∥∥S∗

∥∥
cb
‖ϕ‖cb ≤K(1 + ε)1/2

and

α(T0)≤ ‖iE‖cbα
(
S∗

)
‖ϕ‖cb ≤ k(n)(1 + ε)1/2,

consequently T0 ∈ R. Moreover

(ξi, T0ei) =
(
ξi, ϕ

(
S∗(ei)

))
=
(
ξi, S

∗ei
)
= (Sξi, ei) = (ξi, ei),

and hence T0 satisfies ∑
i

(ξi, T0ei) =
∑
i

(ξi, ei),

we get a contradiction.
Now since (e1, . . . , en) ∈ C , for any μ > 0, we can find an application T ∈ R,

such that ‖Tei−ei‖ ≤ μ. When μ is small enough, the application T |M :M →
T (M) is invertible and admits an inverse V : T (M) →M . For any n-tuple
(ai) in the operator space K = K (�2), we have∥∥∥∥

∑
i

ai ⊗ T (ei)

∥∥∥∥
min

≥
∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

−
∥∥∥∥
∑
i

ai ⊗
(
T (ei)− ei

)∥∥∥∥
min

≥
∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

− μ
∑
i

‖ai‖

≥
∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

− nμ sup
i

‖ai‖

≥ (1− nμ)

∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

,

which implies that the mapping

idK ⊗ V : K ⊗min T (M)→ K ⊗min M

has norm less than 1
1−nμ , hence

‖V ‖cb ≤
1

1− nμ
.

Let P be a projection from E onto T (M), such that ‖P‖cb ≤ n, for example,
let us denote by (x1, . . . , xn) an Auerbach basis for T (M), and (x∗

1, . . . , x
∗
n) its
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dual basis in T (M)∗, we can norm preservingly extend x∗
i , so that x∗

i can be
viewed as an element in E∗, then the projection P defined by

Pe=
∑
i

x∗
i (e)xi, for all e ∈E

has c.b. norm less than n. Consider the following diagram (the right half is
not commutative):

E
T−−−−→ E = T (M)⊕E1

Q−−−−→ E�⏐⏐inclusion

⏐⏐�P

�⏐⏐inclusion

M
T−−−−→ T (M)

V−−−−→ M,

where E1 = kerP and T (M)⊕E1 is an algebraic direct sum, Q is defined by

Q= 1− P + V P.

Hence, we have Q|T (M) = V and Q|E1 is the inclusion of E1 into E. Now let
F =QT , then

F |M = idM , rankF ≤ rankT <∞.

Let J : T (M)→E be the inclusion map and let V P − P be the composition
of the following maps:

E
P−−−−→ T (M)

V−J−−−−→ E.

We have

‖Q‖cb ≤ 1 + ‖V P − P‖cb.
Consider the map

idK ⊗ (V − J) : K ⊗min T (M)→ K ⊗min E.

We have ∥∥∥∥
∑
i

ai ⊗ (ei − Tei)

∥∥∥∥
min

≤ μ
∑
i

‖ai‖ ≤ nμ sup
i

‖ai‖

≤ nμ

∥∥∥∥
∑
i

ai ⊗ ei

∥∥∥∥
min

≤ nμ‖V ‖cb
∥∥∥∥
∑
i

ai ⊗ Tei

∥∥∥∥
min

≤ nμ

1− nμ

∥∥∥∥
∑
i

ai ⊗ Tei

∥∥∥∥
min

,

which implies that ‖V − J‖cb ≤ nμ
1−nμ . Hence

‖Q‖cb ≤ 1 +
n2μ

1− nμ
,
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when μ is small enough, we have ‖Q‖cb ≤ (1 + ε)1/2, consequently we have

‖F‖cb ≤K(1 + ε) and α(F )≤ k(n)(1 + ε). �

We now list some properties about (2, oh)-summing norm (see [Pis96, pp.
88–89] for details).

(i) For any operator u :OH →E we have

π2,oh(u) = π2(u),

where π2(u) is the 2-summing norm of the operator u.
(ii) Any operator u : E → OH which is (2, oh)-summing is necessarily com-

pletely bounded and we have

‖u‖cb ≤ π2,oh(u).

(iii) LetM be any n-dimensional operator space, then there is an isomorphism
u :M →OHn, such that

π2,oh(u) = n1/2,
∥∥u−1

∥∥
cb
= 1.

Let E,F be two operator spaces. For any linear map T :E → F , we define
a number δ(T ) ∈ [0,∞] as:

δ(T ) = inf
{
‖v‖cbπ2,oh(w)

}
,

where the infimum runs over all possible factorizations of T through some
operator Hilbert space OH(I) as following:

OH(I)

v

E

w

T
F.

(1)

Proposition 4. δ is a 1-injective operator ideal norm.

Proof. If T :E → F has a factorization T = vw as in (1) with

‖v‖cbπ2,oh(w)<∞,

then

‖T‖cb ≤ ‖v‖cb‖w‖cb ≤ ‖v‖cbπ2,oh(w),

and by definition of δ(T ), we have

‖T‖cb ≤ δ(T ).

It is easy to verify that if

S : L
α

E
T

F
β

G,

then we have

δ(S) = δ(βTα)≤ ‖β‖cbδ(T )‖α‖cb.
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Assume that i : F →G is a completely isometry, such that we have

OH(I)

v

E

w

T
F

i
G.

Let R(w) be the closure of the range of w in OH(I), then there is some index
set J such that we have an identification

R(w) =OH(J)

completely isometrically. Now we define

w̃ :E →R(w) =OH(J)

given by

w̃(e) =w(e), for any e ∈E.

Since the range of the operator v|OH(J) is contained in F , we may denote by
ṽ :OH(J)→ F the mapping given by

ṽ(x) = v(x), for any x ∈OH(J).

Since i ◦ T = v ◦w, and by definitions of ṽ, w̃, we obtain T = ṽ ◦ w̃. It follows
that

δ(T )≤ ‖ṽ‖cbπ2,oh(w̃)≤ ‖v‖cbπ2,oh(w),

and thus δ(T )≤ δ(i◦T ). The inverse inequality has already been shown, thus
δ is 1-injective.

We show now that δ satisfies the triangle inequality. Let T1, T2 :E → F be
two operators with δ(T1), δ(T2) finite. For any ε > 0, we can factorize Ti as

Ti : E
wi

OH(Ii)
vi

F,

such that

‖vi‖cb = π2,oh(wi)≤
√

δ(Ti) + ε, for i= 1,2,

where I1 and I2 two disjoint index sets. We imbed OH(Ii) canonically into
OH(I1 ∪ I2) =OH(I1)⊕OH(I2), and denote the inclusions by

Ji :OH(Ii)→OH(I1 ∪ I2).

Let Pi denote the orthogonal projection from OH(I1 ∪ I2) onto OH(Ii) re-
spectively. Then

T1 + T2 = v1w1 + v2w2 =AB,

where B :E →OH(I1 ∪ I2) is defined by

B(x) = J1w1(x) + J2w2(x)

and A :OH(I1 ∪ I2)→ F is defined by

A(y) = v1J
−1
1 P1(y) + v2J

−1
2 P2(y).
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For all finite sequences (xi) in E, we have∑∥∥B(xi)
∥∥2 =∑∥∥J1w1(xi) + J2w2(xi)

∥∥2
=
∑∥∥w1(xi)

∥∥2 + ∥∥w2(xi)
∥∥2

≤
(
π2,oh(w1)

2 + π2,oh(w2)
2
)∥∥∥∑xi ⊗ xi

∥∥∥
E⊗minE

≤
(
δ(T1) + δ(T2) + 2ε

)∥∥∥∥
∑
i

xi ⊗ xi

∥∥∥∥
E⊗minE

.

So we have

π2,oh(B)≤
√

δ(T1) + δ(T2) + 2ε.

For the c.b. norm of A, we will use the following description from [Pis96,
Prop. 1.4]: assume that (Ti1)i1∈I1 and (Ti2)i2∈I2 are normalised orthogonal
bases for OH(I1) and OH(I2) respectively, then

‖A‖2cb = sup

{∥∥∥∥
∑
i1∈J1

A(Ti1)⊗A(Ti1) +
∑
i2∈J2

A(Ti2)⊗A(Ti2)

∥∥∥∥
F⊗minF

:

J1 ⊂ I1, |J1|<∞;J2 ⊂ I2, |J2|<∞
}

≤ sup
J1⊂I1,|J1|<∞

∥∥∥∥
∑
i1∈J1

v1(Ti1)⊗ v1(Ti1)

∥∥∥∥
F⊗minF

+ sup
J2⊂I2,|J2|<∞

∥∥∥∥
∑
i2∈J2

v2(Ti2)⊗ v2(Ti2)

∥∥∥∥
F⊗minF

= ‖v1‖2cb + ‖v2‖2cb ≤ δ(T1) + δ(T2) + 2ε.

By the definition of δ, we have

δ(T1 + T2)≤ δ(T1) + δ(T2) + 2ε

for any ε, hence we get

δ(T1 + T2)≤ δ(T1) + δ(T2),

as desired. �

Proposition 5. For any finite rank operator T :E → F , we have

δ(T )≤ ‖T‖cb
√
rankT .

Proof. We can factorize T as following

E
T

R(T )
idR(T )

R(T ) F.

The property (iii) of the (2, oh)-summing norm gives that

δ(idR(T ))≤
√
rankT .
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So we have

δ(T )≤ ‖T‖cb
√
rankT . �

Remark 6. If E has the (K,k(n))-OUAP, then E has the(
K,Kk(n)1/2

)
-δ-OUAP

and also the (K,Kk(n)1/2)-δd-OUAP. The following lemma shows that in fact
the OUAP and the δ-OUAP are equivalent.

Lemma 7. If E has (K,k(n))-δ-OUAP, then E has(
1

1− 1/m

(
1/m+Km+1

)
,m2/mk(n)2+2/m

)
-OUAP,

for all integers m> 1.

Remark 8. For simplification, here we replace the inequality δ(T )≤ k(n)
in the definition of (K,k(n))-δ-OUAP by the strict inequality δ(T ) < k(n),
which of course is not an essential change.

Proof of Lemma 7. Assume E has (K,k(n))-δ-OUAP. Fix an integerm> 1
and an n-dimensional subspace M of E. Then we can find a finite rank
operator T :E →E, such that

T |M = idM , ‖T‖cb ≤K and δ(T )< k(n).

By the definition of δ(T ), we can factorize T as:

OH

A

E

B

T
E

such that π2,oh(B)< k(n) and ‖A‖cb ≤ 1. Since

Tm+1 = (AB)m+1 =A(BA)mB,

and BA is an operator OH →OH , we have

bi
(
Tm+1

)
≤ ‖A‖cb‖B‖cbbi

(
(BA)m

)
= ‖A‖cb‖B‖cbai

(
(BA)m

)
≤ π2,oh(B)ai

(
(BA)m

)
.

The sequence (bi(T ))i≥1 is nonincreasing, so we have:

sup
i

im/2bi
(
Tm+1

)
≤

(∑
i

bi
(
Tm+1

)2/m)m/2

≤ π2,oh(B)

(∑
i

ai
(
(BA)m

)2/m)m/2
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= π2,oh(B)
∥∥(BA)m

∥∥
S2/m

≤ π2,oh(B)‖BA‖mS2

= π2,oh(B)π2(BA)m

= π2,oh(B)π2,oh(BA)m

≤ π2,oh(B)m+1

< k(n)m+1,

where we have used the following facts:

• Horn’s inequality (cf. e.g., [Gar07, Cor. 15.8.1]) for the operator BA, that
is, ‖(BA)m‖S2/m

≤ ‖BA‖mS2
;

• the 2-summing norm and the Hilbert–Schmidt norm coincide for operators
between two Hilbert spaces: π2(BA) = ‖BA‖S2 ;

• the (2, oh)-summing norm and the 2-summing norm for operators from a
Piser’s operator Hilbert space OH to some other Banach space coincide:
π2(BA) = π2,oh(BA).

Let i0 be the smallest integer strictly greater than m2/mk(n)2+2/m, then

i
m/2
0 >mk(n)m+1, so we have bi0(T

m+1)< 1/m. By the definition of bi(T ),
there exists S :E →E, such that

rankS < i0 and
∥∥Tm+1 − S

∥∥
cb
< 1/m.

This implies that

rankS ≤m2/mk(n)2+2/m

and that idE − Tm+1 + S is invertible with an inverse V , whose c.b. norm
satisfies

‖V ‖cb <
1

1− 1/m
.

Consequently, if we define

T0 = V S :E →E,

then

T0|M = idM and rankT0 ≤ rankS ≤m2/mk(n)2+2/m.

For the c.b. norm of T0, we have

‖T0‖cb ≤
1

1− 1/m

(∥∥S − Tm+1
∥∥
cb
+
∥∥Tm+1

∥∥
cb

)

≤ 1

1− 1/m

(
1/m+Km+1

)
,

and this is exactly what we want. �

We will use the following proposition (cf. [GH01]).
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Proposition 9. For an operator space E, there are an infinite set I and
a nontrivial ultrafilter U on I , a completely isometric embedding j : E∗∗ →
EI/U , and j(E∗∗) is completely complemented in EI/U (i.e., there is a
completely contractive surjective projection P : EI/U → j(E∗∗)), such that
we have the following commutative diagram:

E
i

iE

EI/U

E∗∗,

j

where i and iE are canonical inclusions.

Proposition 10. The property for (operator spaces) of having the
(K,k(n))-OUAP is stable under ultraproducts. In particular, if E has the
(K,k(n))-OUAP, then so does E∗∗.

Proof. Let (Ei)i∈I be a family of operator spaces having the (K,k(n))-
OUAP, U an ultrafilter on I . We want to show that

∏
i∈I Ei/U has the

(K,k(n))-OUAP. For any n-dimensional subspace

M ⊂
∏
i∈I

Ei/U ,

choose an algebraic basis x1, . . . , xn of M , with xk = (xk
i )U . Let Mi be the

linear span of xk
i for k = 1, . . . , n. Obviously, we have

M =
∏
i∈I

Mi/U .

Since each Ei has the (K,k(n))-OUAP, we can find Ti :Ei →Ei such that

‖Ti‖cb ≤K, rankTi ≤ k(n) and Ti|Mi = idMi .

Let
T = (Ti)U :

∏
i∈I

Ei/U →Πi∈IEi/U ,

then

‖T‖cb ≤ lim
U

‖Ti‖cb ≤K, rankT ≤ k(n), T |M = idM .

According to Proposition 9, since E∗∗ is completely complemented in some
ultrapower of E, it is easy to show E∗∗ has the (K,k(n))-OUAP when E has
it. �

Proof of Theorem 1. Assume that E has the (K,k(n))-OUAP, then so does
E∗∗. As in Remark 6, E∗∗ has the (K,Kk(n)1/2)-δd-OUAP. If E∗ is locally
reflexive, and since δ is 1-injective, then we can apply Lemma 3 to show that
E∗ has (

K(1 + ε),Kk(n)1/2(1 + ε)
)
-δ-OUAP,
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for all ε > 0. Now by applying Lemma 7, we get the desired result. The case
from E∗ to E is more direct without the argument of ultraproducts. �

It seems to be interesting to ask whether we can drop the assumption on
local reflexivity in Theorem 1. The following question seems to be open.

Open Problem 1. Does the OUAP property of E (resp. E∗) imply that
E∗ (resp. E) is locally reflexive?

The above open problem is related to the following result of Ozawa, see
Section 4 of [Oza01].

Proposition 11 (Ozawa). The CBAP property does not imply locally re-
flexivity.

Remark 12. After writing this note, the author was told by Pisier that in
fact the ideal norm δ defined here coincides with the completely 2-summing
norm π◦

2 (cf. [Pis98], p. 62).
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