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NONCOMMUTATIVE MARTINGALE CONCENTRATION
INEQUALITIES

GHADIR SADEGHI AND MOHAMMAD SAL MOSLEHIAN

Abstract. We establish an Azuma type inequality under a Lip-
shitz condition for martingales in the framework of noncommuta-
tive probability spaces and apply it to deduce a noncommutative

Heoffding inequality as well as a noncommutative McDiarmid

type inequality. We also provide a noncommutative Azuma in-
equality for noncommutative supermartingales in which instead

of a fixed upper bound for the variance we assume that the vari-
ance is bounded above by a linear function of variables. We then

employ it to deduce a noncommutative Bernstein inequality and

an inequality involving Lp-norm of the sum of a martingale dif-
ference.

1. Introduction and preliminaries

In probability theory, inequalities which give upper bounds on Prob(|X −
E(X)|), where X is a random variable and E(X) denotes its expectation are
of special interest, see [6], [14], [15]. Among such inequalities, the Azuma in-
equality, due to K. Azuma [1], provides a concentration result for the values of
martingales having bounded differences. It states that if (Xj) is a martingale
and |Xj −Xj − 1|< cj almost surely, then

Prob(Xn −X0 ≥ λ)≤ exp

(
−λ2

/(
2

n∑
j=1

c2j

))

for all positive integers n and all λ > 0. This inequality can be employed to
the study of random graphs, see [5]. In this paper, we establish an Azuma
type inequality under a Lipshitz condition for martingales in the framework of
noncommutative probability spaces and apply it to deduce a noncommutative
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Heoffding inequality as well as a noncommutative McDiarmid type bounded
difference inequality; see [9]. We also provide a noncommutative Azuma in-
equality for noncommutative supermartingales in which instead of a fixed
upper bound for the variance we assume that the variance is bounded above
by a linear function of variables. We then employ it to deduce a noncommu-
tative Bernstein inequality, which gives an upper bound on the probability
that the sum of independent random variables is more than a fixed amount,
and an inequality involving Lp-norm of the sum of a martingale difference,
see also [11]. To achieve our goal, we first fix our notation and terminology.

A von Neumann algebraM on a Hilbert space with unit element 1 equipped
with a normal faithful tracial state τ : M → C is called a noncommutative
probability space. We denote by ≤ the usual order on self-adjoint part Msa

ofM. For each self-adjoint operator x ∈M, there exists a unique spectral mea-
sure E as a σ-additive mapping with respect to the strong operator topology
from the Borel σ-algebra B(R) of R into the set of all orthogonal projections
such that for every Borel function f : σ(x)→ C the operator f(x) is defined
by f(x) =

∫
f(λ)dE(λ), in particular, χB(x) =

∫
B
dE(λ) =E(B). Of course,

the modules |x| of x ∈ M can be defined by |x| = (x∗x)1/2 by utilizing the
usual functional calculus. The inequality

Prob(x≥ t) := τ
(
χ[t,∞)(x)

)
≤ e−tτ

(
ex
)

(1.1)

is known as exponential Chebyshev inequality in the literature. The celebrated
Golden–Thompson inequality [12] (see also [4]) states that for any self-adjoint
elements y1, y2 in a noncommutative probability space M,

τ
(
ey1+y2

)
≤ τ

(
ey1/2ey2ey1/2

)
(1.2)

and

τ
(
ey1+y2

)
≤ τ

(
ey1ey2

)
.(1.3)

For p≥ 1, the noncommutative Lp-space Lp(M) is defined as the comple-

tion of M with respect to the Lp-norm ‖x‖p := (τ(|x|p))1/p. Further, for a
positive element x ∈M, it holds that

‖x‖pp =
∫ ∞

0

ptp−1τ
(
χ[t,∞)(x)

)
dt.(1.4)

The commutative cases of discussed spaces are usual Lp-spaces and the Schat-
ten p-classes Cp. For further information, we refer the reader to [3], [10] and
references therein.

Let N be a von Neumann subalgebra of M. Then there exists a normal
contraction positive mapping projecting EN : M→N satisfying the following
properties:

(i) EN(axb) = aEN(x)b for any x ∈M and a, b ∈N,
(ii) τ ◦ EN = τ .
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Moreover, EN is the unique mapping satisfying (i) and (ii). The mapping
EN is called the conditional expectation of M with respect to N.

Let N⊆ Aj (1≤ j ≤ n) be von Neumann subalgebras of M. We say that
the Aj are order independent over N if for every 2≤ j ≤ n, the equality

Ej−1(x) = EN(x)

holds for all x ∈ Aj , where Ej−1 is the conditional expectation of M with
respect to the von Neumann subalgebra generated by A1, . . . ,Aj−1; cf. [7].

A filtration of M is an increasing sequence (Mj ,Ej)0≤j≤n of von Neumann
subalgebras of M together with the conditional expectations Ej of M with
respect to Mj such that

⋃
j Mj is w

∗-dense in M. It follows from Mj ⊆Mj+1

that

Ei ◦ Ej = Ej ◦ Ei = Emin{i,j},(1.5)

for all i, j ≥ 0. A finite sequence (xj)0≤j≤n in L1(M) is called a martingale
(supermartingale, resp.) with respect to filtration (Mj)0≤j≤n if xj ∈Mj and
Ej(xj+1) = xj (Ej(xj+1)≤ xj , resp.) for every j ≥ 0. It follows from (1.5) that
Ej(xi) = xj for all i≥ j, in particular xj = Ej(xn) for all 0≤ j ≤ n, in other
words, each martingale can be adopted by an element. Put dxj = xj − xj−1

(j ≥ 0) with the convention that x−1 = 0. Then dx= (dxj)n≥0 is called the
martingale difference of (xj). The reader is referred to [16], [17] for more
information.

2. Noncommutative Azuma inequality subject to
a Lipschitz condition

In this section, we provide a noncommutative Azuma inequality under a
Lipschitz condition.

Theorem 2.1 (Noncommutative Azuma inequality). Let x= (xj)0≤j≤n be
a self-adjoint martingale with respect to a filtration (Mj ,Ej)0≤j≤n and dxj =
xj −xj−1 be its associated martingale difference. Assume that −cj ≤ dxj ≤ cj
for some constants cj > 0 (1≤ j ≤ n). Then

Prob

(∣∣∣∣∣
n∑

j=1

dxj

∣∣∣∣∣≥ λ

)
≤ 2exp

{
−λ2

2
∑n

j=1 c
2
j

}

for all λ > 0.

Proof. For a fixed number t > 0, we consider the convex function f(s) = ets.
It follows from the convexity of f that

ets ≤ 1

2c

(
etc − e−tc

)
s+

1

2

(
etc + e−tc

)
for any −c≤ s≤ c.
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Since −cj ≤ dxj ≤ cj , by the functional calculus, we have

etdxj ≤ 1

2cj

(
etcj − e−tcj

)
dxj +

1

2

(
etcj + e−tcj

)
.

Hence,

Ej−1

(
etdxj

)
≤ Ej−1

(
1

2cj

(
etcj − e−tcj

)
dxj +

1

2

(
etcj + e−tcj

))

=
1

2

(
etcj + e−tcj

) (
by Ej−1(dxj) = 0, j ≥ 2

)
=

∞∑
n=0

(tcj)
2n

(2n)!

≤
∞∑

n=0

(tcj)
2n

2nn!

= e
t2c2j

2 .

Now by inequality (1.1), for λ≥ 0, we have

Prob

(
n∑

j=1

dxj ≥ λ

)
≤ e−tλτ

(
et

∑n
j=1 dxj

)
≤ e−tλτ

(
et

∑n−1
j=1 dxjetdxn

)
= e−tλτ

(
En−1

(
et

∑n−1
j=1 dxjetdxn

))
= e−tλτ

(
et

∑n−1
j=1 dxjEn−1

(
etdxn

))
≤ e−tλet

2c2n/2τ
(
et

∑n−1
j=1 dxj

)
.

Iterating n− 2 times, we obtain

Prob

(
n∑

j=1

dxj ≥ λ

)
≤ exp

(
−tλ+

t2

2

n∑
j=1

c2j

)
.

It is easy to see that the minimizing value of exp(−tλ+ t2

2

∑n
j=1 c

2
j ) occurs at

t= λ∑n
j=1 c2j

. So

Prob

(
n∑

j=1

dxj ≥ λ

)
≤ exp

(
−λ2

2
∑n

j=1 cj

)
.(2.1)

Therefore symmetry and inequality (2.1) imply that

Prob

(∣∣∣∣∣
n∑

j=1

dxj

∣∣∣∣∣≥ λ

)
= 2Prob

(
n∑

j=1

dxj ≥ λ

)
≤ 2exp

(
−λ2

2
∑n

j=1 cj

)
.

�

The first consequence reads as follows.
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Corollary 2.2 (Noncommutative Hoeffding inequality). Let N ⊆ Aj

(⊆ M) be order independent over N. Let xj ∈ Aj be self-adjoint such that
EN(xj) = 0 and −cj ≤ xj ≤ cj for some constants cj > 0 (1≤ j ≤ n). Then

Prob
(
|Sn| ≥ t

)
≤ 2exp

{
−t2

2
∑n

j=1 c
2
j

}
(2.2)

for any t > 0, where Sn =
∑n

j=1 xj .

Proof. Let M0 =N and E0 = EN. For every 1≤ j ≤ n, let Mj be the von
Neumann subalgebra generated by A1, . . . ,Aj−1 and Ej be the corresponding

conditional expectation. Put S0 := 0 and Sj :=
∑j

k=1 xk for 1≤ j ≤ n. Then

Ej−1(Sj) =

j−1∑
k=1

xk + Ej−1(xk)

=

j−1∑
k=1

xk + EN(xk) = Sj−1.

So (Sj)0≤j≤n is a martingale with respect to filtration (Mj ,Ej)0≤j≤n. Since

dSj =

j∑
k=1

xk −
j−1∑
k=1

xk = xj

the required inequality follows from Theorem 2.1. �

The next results present some noncommutative McDiarmid type inequali-
ties.

Corollary 2.3 (Noncommutative McDiarmid inequality). Let (Mj ,
Ej)0≤j≤n be a filtration of M, xj ∈ Msa

j (1 ≤ j ≤ n) and there exist map-
pings gj : M

sa
1 × · · · ×Msa

j →Msa such that the sequence

g0(x1, . . . , xn), g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)

constitute a martingale satisfying

−cj ≤ gj(x1, . . . , xn)− gj−1(x1, . . . , xn)≤ cj

for any 1≤ j ≤ n. Then

Prob
(∣∣gn(x1, . . . , xn)− g0(x1, . . . , xn)

∣∣≥ t
)

≤ 2exp

{
−t2

2
∑n

j=1 c
2
j

}
.

Proof. The result can be deduced immediately from Theorem 2.1 due to the
martingale consisting of yj = gj(x1, . . . , xn), 0≤ j ≤ n satisfies the conditions
of the theorem. �
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Considering cj = 1 and gj(X1, . . . ,Xn) =
∑j

i=1Xi in the previous corollary,
we reach the following Chernoff type inequality for random variables:

Corollary 2.4. Suppose that X1, . . . ,Xn are independent random vari-
ables with E(Xj) = 0 and |Xj | ≤ 1 for all j. Then

Prob

(∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣≥ t

)
≤ 2e−t2/2n

for all t≥ 0.

The following is another version of the noncommutative McDiarmid in-
equality.

Corollary 2.5. Let N ⊆ M and (Mj ,Ej)0≤j≤n be a filtration of M,
M0 =N and there be a mapping g : Msa

1 × · · · ×Msa
n → Msa and elements

xj ∈Msa
j (1≤ j ≤ n) such that

−cj ≤ Ej
(
g(x1, . . . , xn)

)
−Ej−1

(
g(x1, . . . , xn)

)
≤ cj

for any 1≤ j ≤ n. Then

Prob
(∣∣g(x1, . . . , xn)−EN

(
g(x1, . . . , xn)

)∣∣≥ t
)

≤ 2exp

{
−t2

2
∑n

j=1 c
2
j

}
.

Proof. Let us put gn(x1, . . . , xn) = g(x1, . . . , xn). Then

gj(x1, . . . , xn) = Ej
(
g(x1, . . . , xn)

)
for 0≤ j ≤ n and we get the martingale (gj(x1, . . . , xn))0≤j≤n with respect to
the filtration (Mj ,Ej)0≤j≤n, which satisfies the conditions Corollary 2.3. �

Corollary 2.6. Let N ⊆ M and (Mj ,Ej)0≤j≤n be a filtration of M,
M0 =N and self-adjoint elements xj ∈Mj (0≤ j ≤ n) constitute a martingale
with respect to (Mj ,Ej)0≤j≤n and

−cj
n− j + 1

≤ xj − xj−1 ≤
cj

n− j + 1

for any 1≤ j ≤ n. Then

Prob

(∣∣∣∣∣
n∑

k=i

xk −
n∑

k=i

EN(xk−1)

∣∣∣∣∣≥ t

)
≤ 2e

−t2

2
∑n

j=1 c2j

for all 0≤ i≤ j − 2.
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Proof. Recall that if (xj)0≤j≤n is a martingale with respect to
(Mj ,Ej)0≤j≤n. Hence, xj = Ej(x) for some x ∈ M and all 0 ≤ j ≤ n. For
any 0≤ i≤ j− 2, define the function gi on M1×· · ·×Mn by gi(y1, . . . , yn) :=∑n

k=i yk. Then

Ej
(
gi(x1, . . . , xn)

)
= Ej

(
n∑

k=i

xk

)

=
n∑

k=i

Emin{j,k}(x).

Hence,

Ej
(
gi(x1, . . . , xn)

)
−Ej−1

(
gi(x1, . . . , xn)

)
= (n− j + 1)(xj − xj−1).

Now the requested inequality can be concluded from Corollary 2.5. �

3. Noncommutative Azuma inequality for supermartingales

Sometimes Lipschitz conditions seem to be too strong. So we may need
some more effective tools. In the sequel, we prove an extension of the Azuma
inequality under some mild conditions. Our first result is indeed a noncommu-
tative Azuma inequality involving supermartingales. Our approach is based
on standard arguments in probability theory [2].

Theorem 3.1. Let x = (xj)0≤j≤n be a self-adjoint supermartingale with
respect to a filtration (Mj ,Ej)0≤j≤n such that for some positive constants
aj , bj , σj and M satisfies

(i) Ej−1((xj − Ej−1(xj))
2)≤ σ2

j + bjxj−1,
(ii) xj −Ej−1(xj)≤ aj +M

for all 1≤ j ≤ n. Then

Prob(xn − x0 ≥ λ)(3.1)

≤ exp

{
−λ2

2(
∑n

j=1(σ
2
j +Dbj + a2j ) + (Mλ/3))

}

for all λ > 0, where D := max1≤j≤n−1Mj and Mj is the maximum of spectrum
of xj − x0.

Proof. Step (I). To prove the theorem in a special case.
We assume that x= (xj)0≤j≤n is a supermartingale with x0 = 0.
Step (II). To find an upper bound for τ(etxj ).
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Let t > 0. We have

τ
(
etxj

)
= τ

(
etEj−1(xj)+taj+t(xj−Ej−1(xj)−aj)

)
(3.2)

≤ τ
(
e

tEj−1(xj)+taj
2 et(xj−Ej−1(xj)−aj)e

tEj−1(xj)+taj
2

)
(by (1.2))

= τ
(
Ej−1

(
e

tEj−1(xj)+taj
2 et(xj−Ej−1(xj)−aj)e

tEj−1(xj)+taj
2

))
(
by property (ii) of conditional expectation

)
= τ

(
e

tEj−1(xj)+taj
2 Ej−1

(
et(xj−Ej−1(xj)−aj)

)
e

tEj−1(xj)+taj
2

)
(
by property (i) of conditional expectation

)
= τ

(
e

tEj−1(xj)+taj
2 Ej−1

( ∞∑
k=0

tk

k!

(
xj −Ej−1(xj)− aj

)k)

× e
tEj−1(xj)+taj

2

)

= τ

(
e

tEj−1(xj)+taj
2

∞∑
k=0

tk

k!
Ej−1

((
xj −Ej−1(xj)− aj

)k)

× e
tEj−1(xj)+taj

2

)

≤ τ
(
e

tEj−1(xj)+taj
2 e

∑∞
k=1

tk

k! Ej−1((xj−Ej−1(xj)−aj)
k)e

tEj−1(xj)+taj
2

)
(
by the validity of 1 + x≤ ex for any

self-adjoint element x ∈M
)

= τ
(
e

tEj−1(xj)+taj
2 e−taj+

∑∞
k=2

tk

k! Ej−1((xj−Ej−1(xj)−aj)
k)

× e
tEj−1(xj)+taj

2

)
(
by Ej−1

(
xj −Ej−1(xj)

)
= Ej−1(xj)−Ej−1(xj) = 0

)
.

Step (III). To give an upper bound for

∞∑
j=2

tk

k!
Ej−1

((
xj −Ej−1(xj)− aj

)k)
.

Put h(s) = 2
∑∞

k=2
sk−2

k! . The function h satisfies (i) h(s) ≤ 1 for s ≤ 0 and
(ii) h is monotone increasing on [0,∞). Hence if s <M , then

h(s)≤
{
h(M) when s≥ 0,

1 = h(0)≤ h(M) when s < 0.
(3.3)
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We have

∞∑
j=2

tk

k!
Ej−1

((
xj −Ej−1(xj)− aj

)k)
(3.4)

= Ej−1

( ∞∑
j=2

tk

k!

(
xj −Ej−1(xj)− aj

)k)

= Ej−1

(
t2

2

(
xj − Ej−1(xj)− aj

)2
h
(
t
(
xj −Ej−1(xj)− aj

)))

≤ Ej−1

(
t2

2

(
xj − Ej−1(xj)− aj

)2
h(tM)

)
(
using functional calculus to xj −Ej−1(xj)− aj (≤M) and (3.3)

)
=

h(tM)

2
t2Ej−1

((
xj −Ej−1(xj)− aj

)2)
=

h(tM)

2
t2
(
Ej−1

((
xj −Ej−1(xj)

)2)
+ 2ajEj−1

(
xj −Ej−1(xj)

)
+ a2j

)
=

h(tM)

2
t2
(
Ej−1

((
xj −Ej−1(xj)

)2)
+ a2j

)
≤ h(tM)

2
t2
(
σ2
j + bjxj−1 + a2j

) (
by hypothesis (i)

)
≤ h(tM)

2
t2
(
σ2
j + bjMj−1 + a2j

)
(by xj−1 ≤Mj−1).

Step (IV). To establish a recurrence relation.
We have

τ
(
etxj

)
≤ τ

(
e

tEj−1(xj)+taj
2 e−taj+

∑∞
k=2

tk

k! Ej−1((xj−Ej−1(xj)−aj)
k)e

tEj−1(xj)+taj
2

)
(
by (3.2)

)
≤ τ

(
e

tEj−1(xj)+taj
2 e−taj+

h(tM)
2 t2(σ2

j+bjMj−1+a2
j )e

tEj−1(xj)+taj
2

)
(
since by the functional calculus and (3.4) x≤ c⇒ ex ≤ ec, c ∈R

)
= τ

(
etEj−1(xj)+

h(tM)
2 t2(σ2

j+bjMj−1+a2
j )
)

= exp

{
h(tM)

2
t2
(
σ2
j + bjMj−1

)
+ a2j

}
τ
(
etEj−1(xj)

)
= exp

{
h(tM)

2
t2
(
σ2
j + bjMj−1

)
+ a2j

}
τ
(
etxj−1+tEj−1(xj)−txj−1

)
≤ exp

{
h(tM)

2
t2
(
σ2
j + bjMj−1

)
+ a2j

}
τ
(
e

txj−1
2 etEj−1(xj)−txj−1e

txj−1
2

)
(
by inequality (1.2)

)
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≤ exp

{
h(tM)

2
t2
(
σ2
j + bjMj−1

)
+ a2j

}
τ
(
etxj−1

)
(
since the inequality Ej−1(xj)≤ xj−1 yields etEj−1(xj)−txj−1 ≤ 1

)
.

Step (V). To find an upper bound for Prob(xn ≥ λ).
Assume that t < 3/M has been chosen and λ > 0. The Chebyshev inequal-

ity (1.1) yields that

Prob(xn ≥ λ) ≤ e−tλτ
(
etxn

)
= e−tλτ

(
En

(
etxn

))
≤ e−tλ exp

{
h(tM)

2
t2
(
σ2
n + bnMn−1 + a2n

)}
τ
(
etxn−1

)

≤ e−tλ exp

{
h(tM)

2
t2

n∑
j=1

(
σ2
j + bjMj−1 + a2j

)}
τ
(
etx0

)
(inductively)

= exp

{
−tλ+

h(tM)

2
t2

n∑
j=1

(
σ2
j + bjMj−1 + a2j

)}

(by x0 = 0)

≤ exp

{
−tλ+

t2

2(1− tM/3)

n∑
j=1

(
σ2
j + bjMj−1 + a2j

)}
(3.5)

(
since for α< 3, we have h(α)≤

∞∑
k=0

(
α

3

)k

=
1

1− α
3

(∗)
)

≤ exp

{
−tλ+

t2

2(1− tM/3)

n∑
j=1

(
σ2
j +Dbj + a2j

)}
,(3.6)

where D := max1≤j≤n−1Mj . Now set

t=
λ∑n

j=1(σ
2
j +Dbj + a2j ) + (Mλ/3)

∈ (0,3/M)

to get

Prob(xn ≥ λ)≤ exp

{
−λ2

2(
∑n

j=1(σ
2
j +Dbj + a2j ) + (Mλ/3))

}
.

Therefore, symmetry and the last inequality imply that

Prob
(
|xn| ≥ λ

)
≤ 2exp

{
−λ2

2(
∑n

j=1(σ
2
j +Dbj + a2j ) + (Mλ/3))

}
.

Step (VI). To prove the theorem in the general case.
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We assume now that x= (xj)0≤j≤n is an arbitrary supermartingale. Since
Ej−1(x0) = Ej−1(E0(x0)) = E0(x0) = x0, we infer that (xj − x0)0≤j≤n is a su-
permartingale, whose first term is 0. So we conclude (3.1). �

If we take martingales and put bj = 0 in Theorem 3.1, then we get the
following Azuma inequality for martingales.

Theorem 3.2. Suppose that x = (xj)0≤j≤n is a self-adjoint martingale
with respect to a filtration (Mj ,Ej)0≤j≤n and dxj = xj − xj−1 is its associ-
ated martingale difference such that for some positive constants aj , σj and M
satisfies

(i) Ej−1((dxj)
2)≤ σ2

j ,
(ii) dxj ≤ aj +M

for all 1≤ j ≤ n. Then

Prob

(∣∣∣∣∣
n∑

j=1

dxj

∣∣∣∣∣≥ λ

)

≤ 2exp

{
−λ2

2(
∑n

j=1(σ
2
j + a2j ) +Mλ/3)

}

for all λ > 0.

The next corollary reads as follows.

Corollary 3.3. Suppose that x= (xj)0≤j≤n is a self-adjoint martingale
with respect to a filtration (Mj ,Ej)0≤j≤n such that for some constants σj and
M satisfies

(i) Ej−1((dxj)
2)≤ σ2

j ,
(ii) dxj := xj − xj−1 ≤M

for 1≤ j ≤ n. Then

τ
(
eλ(xn−x0)

)
≤ exp

{
λ2K2

2(1− λM/3)

}
(3.7)

for all λ < 3
M , where K2 =

∑n
j=1 σ

2
j .

Proof. We have

Ej−1

(
et(xj−xj−1)

)
= 1+ Ej−1

( ∞∑
k=2

tk

k!
(xj − xj−1)

k

)
(3.8)

(
by Ej−1(xj) = xj−1

)
≤ exp

{
t2

2
h(tM)σ2

j

}
(
by (3.4) for aj = bj = 0,1≤ j ≤ n

)
.
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We deduce form Golden–Thompson inequality that

τ
(
eλ(xn−x0)

)
= τ

(
eλ

∑n
j=1(xj−xj−1)

)
≤ τ

(
En−1

(
eλ

∑n−1
j=1 (xj−xj−1)eλ(xn−xn−1)

))
= τ

(
eλ

∑n−1
j=1 (xj−xj−1)En−1

(
eλ(xn−xn−1)

))
≤ exp

{
λ2

2
h(λM)σ2

n

}
τ
(
eλ

∑n−1
j=1 (xj−xj−1)

) (
by (3.8)

)

≤ exp

{
λ2

2
h(λM)

n∑
j=1

σ2
j

}
(inductively)

≤ exp

{
λ2K2

2(1− λM/3)

} (
by (∗)

)
for all λ < 3

M . �

In the next result, we use a strategy of [8, Corollary 0.3] to get an estimation
of ‖

∑n
j−1 dxj‖p.

Corollary 3.4. Suppose that x= (xj)0≤j≤n is a self-adjoint martingale
with respect to a filtration (Mj ,Ej)0≤j≤n and dxj = xj −xj−1 is its associated
martingale difference such that for some positive constants σj and M satisfies

(i) Ej−1((dxj)
2)≤ σ2

j ,
(ii) dxj ≤M

for all 1≤ j ≤ n. Then

Prob

(∣∣∣∣∣
n∑

j=1

dxj

∣∣∣∣∣≥ t

)
≤ 2exp

{
−3t2

6
∑n

j=1 σ
2
j + 2tM

}

and ∥∥∥∥∥
n∑

j−1

dxj

∥∥∥∥∥
p

≤
√

3p

(
n∑

j−1

∥∥Ej−1

(
(dxj)

2
)∥∥)

1
2

+
√
8p max

1≤j≤n
‖dxj‖

for 2≤ p <∞.

Proof. The first inequality is an immediate consequence of Theorem 3.2.
Now we prove the inequality involving the Schatten norm.

Let K2 =
∑n

j=1 ‖Ej−1((dxj)
2)‖. Note that max1≤j≤n ‖dxj‖ ≤ M . It fol-
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lows form (1.4) that∥∥∥∥∥
n∑

j=1

dxj

∥∥∥∥∥
p

p

≤ 2p

∫ ∞

0

tp−1 exp

(
−3t2

6K2 + 2tM

)
dt

= 2p

(∫ 3K2

2M

0

tp−1 exp

(
−3t2

6K2 + 2tM

)
dt+

∫ ∞

3K2

2M

tp−1 exp

(
−3t2

6K2 + 2tM

)
dt

)

≤ 2p

(∫ 3K2

2M

0

tp−1 exp

(
−t2

3K2

)
dt+

∫ ∞

3K2

2M

tp−1 exp

(
−t

2M

)
dt

)
.

By the change of variable t2 = 3K2r and employing Γ(α) :=
∫∞
0

e−rrα−1 ≤
αα−1 (α≥ 1), we get∫ 3K2

2M

0

tp−1 exp

(
−t2

3K2

)
dt =

1

2

(
3K2

) p
2

∫ 3K2

4M2

0

e−rr
p
2−1 dr

≤ 1

2
3

p
2KpΓ

(
p

2

)

≤ 1

2
3

p
2Kp

(
p

2

) p
2−1

.

The change of variable t= 2Mr yields that∫ ∞

3K2

2M

tp−1 exp

(
−t

2M

)
dt= 2pMp

∫ ∞

3K2

4M2

rp−1e−r dr ≤ 2pMpΓ(p)≤ 2pMppp−1.

Thus, we obtain∥∥∥∥∥
n∑

j=1

dxj

∥∥∥∥∥
p

p

≤ 2p

(
1

2
3

p
2Kp

(
p

2

) p
2−1

+ 2pMppp−1

)
.

It follows from Minkowski inequality that∥∥∥∥∥
n∑

j=1

dxj

∥∥∥∥∥
p

≤ 2−1/2+1/pK
√
3p+ 21+1/pMp≤

√
3pK + 23/2pM.

�

As a consequence, we get a noncommutative Bernstein inequality; see [13,
Corollary 2.2] and [8, Corllary 0.2].

Theorem 3.5 (Noncommutative Bernstein inequality). Let N⊆Aj (⊆M)
be order independent over N. Let xj ∈Aj be self-adjoint such that

(i) EN(xj) = 0,
(ii) EN(x2

j )≤ b2j ,
(iii) ‖xj‖ ≤M
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for some M > 0 and all 1≤ j ≤ n. Then for each λ≥ 0,

Prob

(
n∑

j=1

xj ≥ λ

)
≤ exp

(
− λ2

2b2 + (2/3)λM

)
,

where b2 =
∑n

j=1 b
2
j .

Proof. Put S0 := 0 and Sj :=
∑j

k=1 xk (1 ≤ j ≤ n). As one can see from
the proof of the noncommutative Hoefdding inequality (2.2) that (Sj)0≤j≤n

is a martingale. Since N ⊆ Aj ⊆ M is order independent over N we have
Ej−1((dSj)

2) = EN(x2
j )≤ b2j . In addition, dSj ≤ ‖dSj‖ ≤M . Now the required

inequality is deduced from Corollary 3.4 with the Sn instead of xn. �

Corollary 3.6. Suppose that x= (xj)0≤j≤n is a self-adjoint martingale
with respect to a filtration (Mj ,Ej)0≤j≤n such that for some constants σj and
Mj satisfies

(i) Ej−1((dxj)
2)≤ σ2

j ,
(ii) dxj ≤Mj

for 1≤ j ≤ n. Then

Prob

(∣∣∣∣∣
n∑

j=1

dxj

∣∣∣∣∣≥ λ

)
≤ 2exp

{
−λ2

2
∑n

j=1 σ
2
j +

∑
Mj>M (Mj −M)2 +Mλ/3

}

for any M .

Proof. It follows from Theorem 3.2 by choosing

aj =

{
0 if Mj ≤M,

Mj −M if Mj ≥M. �
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