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THE GLUING FORMULA OF THE ZETA-DETERMINANTS
OF DIRAC LAPLACIANS FOR CERTAIN

BOUNDARY CONDITIONS

RUNG-TZUNG HUANG AND YOONWEON LEE

Abstract. The odd signature operator is a Dirac operator which
acts on the space of differential forms of all degrees and whose

square is the usual Laplacian. We extend the result see (J. Geom.

Phys. 57 (2007) 1951–1976) to prove the gluing formula of the

zeta-determinants of Laplacians acting on differential forms of all

degrees with respect to the boundary conditions P−,L0 , P+,L1 .

We next consider a double of de Rham complexes consisting of

differential forms of all degrees with the absolute and relative

boundary conditions. Using a similar method, we prove the glu-
ing formula of the zeta-determinants of Laplacians acting on dif-
ferential forms of all degrees with respect to the absolute and
relative boundary conditions.

1. Introduction

The zeta-determinants of Laplacians are global spectral invariants on com-
pact Riemannian manifolds with or without boundary, which play central
roles in the theory of the analytic torsions and other related fields. For a
global invariant, the gluing formula is very useful in various kinds of com-
putations. The gluing formula of the zeta-determinants of Laplacians was
proved by D. Burghelea, L. Friedlander and T. Kappeler in [5] by using the
Dirichlet boundary condition and the Dirichlet-to-Neumann operator, which
we call the BFK-gluing formula. Because of relations to topology, the relative
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and absolute boundary conditions are commonly used for Hodge Laplacians.
However, the gluing formula for the zeta-determinants of Hodge Laplacians
with respect to these boundary conditions is not known yet. In this paper,
we discuss this problem in a weak sense. More precisely, we prove the gluing
formula for the zeta-determinants of Hodge Laplacians acting on the space of
differential forms of all degrees, not a single space of q-forms, with respect to
the relative and absolute boundary conditions (Theorem 4.2).

K. Wojciechowski and S. Scott studied the zeta-determinants of Dirac
Laplacians on compact Riemannian manifolds with boundary, acting on Clif-
ford module bundles with respect to boundary conditions belonging to the
smooth self-adjoint Grassmannian including the Atiyah–Patodi–Singer (APS)
boundary condition and the Calderón projector ([18], [19], [20], [26]). Using
their results and the BFK-gluing formula, P. Loya, J. Park ([16], [17]) and the
second author ([15]) studied independently the gluing formula of Dirac Lapla-
cians with respect to boundary conditions belonging to the smooth self-adjoint
Grassmannian on compact Riemannian manifolds.

M. Braverman and T. Kappeler studied the refined analytic torsion on
a closed odd dimensional Riemannian manifold by using the odd signature
operator ([3], [4]), as an analytic analogue of the refined combinatorial torsion
developed by M. Farber and V. Turaev ([6], [7], [22], [23]). The boundary
problem of the refined analytic torsion was studied by B. Vertman ([24], [25])
and the authors ([9], [10], [11]) in different ways. Vertman used a double of de
Rham complexes consisting of differential forms satisfying the absolute and
relative boundary conditions. The authors introduced well-posed boundary
conditions P−,L0 , P+,L1 for the odd signature operator to define the refined
analytic torsion on compact Riemannian manifolds with boundary. In [11],
the authors compared these two constructions.

We note that the odd signature operator is a Dirac operator which acts
on the space of differential forms of all degrees and whose square is the usual
Laplacian. In this paper, we extend the result of [15] to other class of bound-
ary conditions and discuss the gluing formula of the zeta-determinants of
Laplacians acting on the space of differential forms of all degrees with respect
to P−,L0/P+,L1 (Theorem 3.3) and the absolute/relative boundary conditions
(Theorem 4.2). In case of the absolute/relative boundary conditions, we are
going to use the double of De Rham complexes which was used by B. Vertman
in [24].

2. Review of the gluing formula of the zeta-determinants
of Dirac Laplacians

In this section, we review and extend the results in [15]. Let (M,g) be an
m-dimensional compact oriented Riemannian manifold with boundary Y and
E →M be a Hermitian vector bundle. Choose a collar neighborhood N of Y
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which is diffeomorphic to [0,1)×Y . We assume that the metric g is a product
one on N and the bundle E has the product structure on N , which means
that E|N = p∗(E|Y ), where p : [0,1)×Y → Y is the canonical projection. Let
DM be a Dirac type operator acting on smooth sections of E and satisfying
the following conditions: (1) On the collar neighborhood N of Y DM has the
following form

DM = G(∂u +A),(2.1)

where G : E|Y → E|Y is a bundle automorphism with G2 = −Id, ∂u is the
inward normal derivative to Y and A is the tangential Dirac operator. (2) G
and A are independent of the normal coordinate u and satisfy

G∗ =−G, G2 =−Id, A∗ =A, GA=−AG
(2.2)

dim
(
ker(G− i)∩ kerA

)
= dim

(
ker(G+ i)∩ kerA

)
.

Then, on N , the Dirac Laplacian D2
M has the following form

D2
M = −∂2

u +A2.(2.3)

We next introduce boundary conditions on Y . The Dirichlet boundary
condition on Y is defined by the restriction map γ0 : C

∞(M) → C∞(Y ),
γ0(φ) = φ|Y and the realization D2

M,γ0
is defined to be the operator D2

M with
the following domain

Dom
(
D2

M,γ0

)
=

{
φ ∈C∞(M) | φ|Y = 0

}
.(2.4)

Then D2
M,γ0

is an invertible operator by the unique continuation property

of DM ([12], [1]).
The APS boundary condition Π> (or Π<) is defined to be the orthogonal

projection onto the space spanned by the positive (or negative) eigensections
of A. If kerA �= {0}, kerA is an even dimensional vector space by (2.2). We
choose a unitary operator σ : kerA→ kerA satisfying

σG = −Gσ, σ2 = IdkerA.(2.5)

We put σ± := I±σ
2 and define Π<,σ− , Π>,σ+ by

(2.6) Π<,σ− := Π< +
1

2
(I − σ)

∣∣∣∣
kerA

, Π>,σ+ := Π> +
1

2
(I + σ)

∣∣∣∣
kerA

.

The realizations DM,Π<,σ− and D2
M,Π<,σ−

are defined to be DM and D2
M with

the following domains.

Dom(DM,Π<,σ− ) =
{
φ ∈C∞(M) |Π<,σ−(φ|Y ) = 0

}
,

Dom
(
D2

M,Π<,σ−

)
=
{
φ ∈C∞(M) |Π<,σ−(φ|Y ) = 0,

Π<,σ−
(
(DMφ)|Y

)
= 0

}
.

(2.7)
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DM,Π>,σ+ and D2
M,Π>,σ+

are defined similarly. The Calderón projector C is

defined to be the orthogonal projection from L2(E|Y ) onto the closure of
{φ|Y | φ ∈C∞(M),DMφ= 0} called the Cauchy data space.

As a generalization of the APS boundary condition, K. Wojciekowski and
B. Booss introduced the smooth self-adjoint Grassmannian Gr∗∞(DM ) ([2],
[20], [26]), which is the set of all orthogonal pseudodifferential projections P
such that

−GPG= I − P,(2.8)

P −Π> is a classical pseudodifferential operator of order −∞.

Clearly, Π>,σ+ belongs to Gr∗∞(DM ). It was known by S. Scott ([18]) and G.
Grubb ([8]) that C belongs to Gr∗∞(DM ). The realizations DM,P and D2

M,P

are similarly defined as (2.7) by simply replacing Π<,σ− with P .
Since G is a bundle automorphism on E|Y with G2 =−Id, E|Y splits onto

±i-eigenspaces E±
Y , say, E|Y =E+

Y ⊕E−
Y and the Dirac operator DM can be

written, near the boundary Y , by

DM =

(
i 0
0 −i

)(
∂u +

(
0 A−

A+ 0

))
,(2.9)

where A± := A|C∞(E±
Y ) : C

∞(E±
Y ) → C∞(E∓

Y ) and (A±)∗ = A∓. For P ∈
Gr∗∞(DM ), there exists a unitary operator UP : L2(E+

Y )→ L2(E−
Y ) such that

graph(UP ) = ImP . For simplicity, we write UC =K. By (2.8), we have

UP =K + a smoothing operator.(2.10)

We introduce the Neumann jump operator Q(t) : C∞(Y ) → C∞(Y ) for
t ≥ 0 as follows. For f ∈ C∞(Y ), there exists a unique section φ ∈ C∞(E)
satisfying (D2

M + t)φ= 0, φ|Y = f . Then we define

Q(t)(f) = −(∂uφ)|Y .(2.11)

The Green formula shows that Q(t) − A is a non-negative operator and
ker(Q−A) = ImC, the Cauchy data space (Lemma 2.5 in [15]), where Q :=
Q(0). Moreover, Q− |A| (Theorem 2.1 in [14]) and P − Π> are smoothing
operators, which implies that (I−P )(Q−A)(I−P ) differs from 2Π<|A| by a
smoothing operators. Hence, the zeta determinant of (I−P )(Q−A)(I−P ) is
well defined even though (I −P )(Q−A)(I −P ) is not an elliptic operator. It
is not difficult to show that ker(I −P )(Q−A)(I −P ) = {ψ|Y | ψ ∈ kerDM,P }
(Lemma 2.5 in [15]). Let {h1, . . . , hq} be an orthonormal basis for ker(I −
P )(Q − A)(I − P ), where q = dimkerD2

M,P . Then there exist ψ1, . . . , ψq ∈
kerD2

M,P with ψi|Y = hi. We define a q× q positive definite Hermitian matrix
VM,P by

VM,P := (vij), vij = 〈ψi, ψj〉M .(2.12)
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We next define the zeta- and modified zeta-determinants of elliptic opera-
tors. Let X be a compact oriented manifold with boundary ∂X , where ∂X
may be empty. If ∂X �= ∅, we need to choose a proper boundary condition.
If P is an elliptic operator of order > 0 on X which has discrete spectrum
{λj | j = 1,2,3, . . .} and kerP= {0} on a proper domain satisfying the chosen
boundary condition, we define the zeta function by ζP(s) =

∑∞
j=1 λ

−s
j and the

zeta-determinant DetP by e−ζ′
P(0). If P has a non-trivial kernel, we define

the modified zeta-determinant Det∗P by

Det∗P := Det(P+prkerP).(2.13)

Similarly, if α is a trace class operator on X , we define the modified Fred-
holm determinant by

det∗Fr(I + α) := det(I + α+prker(I+α)).(2.14)

Equivalently, Det∗P and det∗Fr(I + α) are the determinants of P and I +
α when restricted to the orthogonal complements of kerP and ker(I + α),
respectively.

The following results are due to S. Scott and K. Wojciechowski ([19], [20],
[26]), P. Loya and J. Park ([16], [17]) and the second author ([15]).

Theorem 2.1. Let (M,g) be a compact oriented Riemannian manifold with
boundary Y having the product structure near Y . We denote by DM a Dirac
type operator which has the form (2.1) and satisfies (2.2) near Y . Let P be a
pseudodifferential projection belonging to Gr∗∞(DM ). Then:

logDet∗D2
M,P − logDetD2

M,γ0
(2.15)

= logdetVM,P + logDet∗
(
(I −P)(Q−A)(I −P)

)
,

logDet∗D2
M,P − logDetD2

M,C(2.16)

= 2 logdetVM,P + 2 log

∣∣∣∣det∗Fr(1

2

(
I +U−1

P K
))∣∣∣∣,

where (I − P)(Q − A)(I − P) is considered to be an operator defined on
Im(I −P).

Next, we extend Theorem 2.1 to a certain pseudodifferential projection P
satisfying the following conditions.

Condition A. (1) P : L2(Y,E|Y ) → L2(Y,E|Y ) is a pseudodifferential
projection which gives a well-posed boundary condition with respect to DM in
the sense of Seeley ([8], [21]). (2) ImP = graph(UP), where UP : L2(E+

Y )→
L2(E−

Y ) is a unitary operator. (3) U∗
PUΠ>,σ+ + U∗

Π>,σ+
UP is a trace class

operator and a ΨDO of order at most −1. (4) The zeta-determinants of
(I − P)(Q(t)−A)(I − P) and P(Q(t)−A)P for t ≥ 0 are well defined and
have asymptotic expansions for t→∞ with zero constant term.
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Remark. A pseudodifferential projection belonging to Gr∗∞(DM ) satisfies
the items (1), (2) and (4) but not (3) in the Condition A above.

The following lemma is straightforward by (2.10).

Lemma 2.2. If P satisfies the Condition A, then U−1
P K + K−1UP is a

trace class operator on L2(E+
Y ).

The proof of the following result is a verbatim repetition of the proof of
Theorem 1.1 in [15], which is an analogue of (2.15).

Theorem 2.3. Let (M,g) be a compact oriented Riemannian manifold with
boundary Y having the product structure near Y . We denote by DM a Dirac
type operator which has the form (2.1) and satisfies (2.2) near Y . Let P be a
well-posed boundary condition with respect to DM satisfying the Condition A.
Then the following equality holds.

logDet∗D2
M,P − logDetD2

M,γ0

= logdetVM,P + logDet∗
(
(I −P)(Q−A)(I −P)

)
= logdetVM,P + logDet∗

(
2(I −P)(Q−A)(I −P)

)
− log 2 · ζ(I−P)(Q−A)(I−P)(0),

where (I − P)(Q − A)(I − P) is considered to be an operator defined on
Im(I −P).

Theorem 2.3 and (2.15) in Theorem 2.1 lead to the following result, which
is an analogue of (2.16).

Theorem 2.4. We assume the same assumptions and notations as in The-
orem 2.3. Then:

Det∗D2
M,P

DetD2
M,C

= (detVM,P)
2 · det∗Fr

(
I +

1

2

(
U−1
P K +K−1UP

))
· 2−ζ(I−P)(Q−A)(I−P)(0).

Proof. The proof is almost verbatim repetition of the proof of Theorem 1.2
in [15]. We here present the proof very briefly and refer to [15] for details.
We first define U , L by

U = Im(I −P)∩ ImC
= ker(I −P)(Q−A)(I −P) =

{
φ|Y | DMφ= 0, φ|Y ∈ Im(I −P)

}
,

L = (I −UP)
−1(U) = (I +K)−1(U) =

{
x ∈ L2

(
E+

Y

)
| UPx=−Kx

}
.

We denote by Im(I −P)∗ and L2(E+
Y )∗ the orthogonal complements of U ,

L so that

Im(I −P) = Im(I −P)∗ ⊕U, L2
(
E+

Y

)
= L2

(
E+

Y

)∗ ⊕L.
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The item (3) in the Condition A implies that (I + K−1UP)|L2(E+
Y )∗ :

L2(E+
Y )∗ → L2(E+

Y )∗ is an invertible operator. For simplicity, we write
((I + K−1UP)|L2(E+

Y )∗)
−1 by (I + K−1UP)

−1. We proceed as (3.5) in the

proof of Theorem 1.2 in [15]. Then:

logDet∗
(
2(I −P)(Q−A)(I −P)

)
= logDet

(
2(I −P)(Q−A)(I −P) + prU

)
= logdetFr

(
1

2

(
I +K−1UP

)(
I +U−1

P K
)

+prL(I −K)−1(Q−A)−1(I −K)prL

)
+ logDet

(
(I −K)−1(Q−A)(I −K)

)
= logdet∗Fr

(
I +

1

2

(
K−1UP +U−1

P K
))

+ logdet
(
prL(I −K)−1(Q−A)−1(I −K)prL

)
+ logDet

(
(I −C)(Q−A)(I −C)

)
.

Lemma 3.1 in [15] shows that det(prL(I −K)−1(Q−A)−1(I −K)prL) =
detVM,P , from which together with Theorem 2.3 the result follows. �

Remark. The kernel of (I + 1
2 (K

−1UP +U−1
P K)) is L and hence we may

write

det∗Fr

(
I +

1

2

(
K−1UP +U−1

P K
))

= detFr

(
I +

1

2

(
K−1UP +U−1

P K
))∣∣∣

L2(E+
Y )∗

.

We next discuss the gluing formula of the zeta-determinants of Dirac Lapla-

cians. Let (M̂, ĝ) be a closed Riemannian manifold and Y be a hypersurface

of M̂ such that M̂−Y has two components. We denote by M1, M2 the closure

of each component, that is, M̂ =M1 ∪Y M2. We assume that ĝ is a product
metric on a collar neighborhood N of Y and N is isometric to (−1,1)× Y .

Let Ê → M̂ be a Hermitian vector bundle having the product structure on N

and D
M̂

be a Dirac type operator acting on smooth sections of Ê which has
the form, on N , D

M̂
=G(∂u +A) and satisfies (2.2) as before. Without loss

of generality, we assume that ∂u points outward on the boundary of M1 and
points inward on the boundary of M2. We denote by DM1 , DM2 the restric-
tion of D

M̂
to M1, M2 and denote by γ0 the restriction map to Y . Suppose

that {h1, . . . , hq} is an orthonormal basis for (kerD2
M̂
)|Y := {Φ|Y | D2

M̂
Φ= 0},

where q = dimkerD
M̂
. Then there exist Φ1, . . . ,Φq in kerD2

M̂
with Φi|Y = hi.
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We define a positive definite Hermitian matrix A0 by

A0 = (aij), where aij = 〈Φi,Φj〉M̂ .(2.17)

Let C1, C2 be Calderón projectors for DM1 , DM2 and K1, K2 : C
∞(E+

Y )→
C∞(E−

Y ) be unitary operators such that graph(Ki) = ImCi, i = 1,2. The
following result is due to P. Loya, J. Park ([16], [17]) and the second author
([15]), independently.

logDet∗D2
M̂

− logDetD2
M1,C1

− logDetD2
M2,C2

(2.18)

=− log 2 ·
(
ζA2(0) + l

)
+ 2 logdetA0

+ 2 log

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣,
where l= dimkerA.

Remark. We note that D
M̂

= G(∂u + A) = −G(−∂u − A) near Y . We
use the form G(∂u +A) on M2 so that K2 = UΠ> + F2 for some smoothing
operator F2 by (2.10). Similarly, We use the form −G(−∂u −A) on M1 so
that K1 = UΠ< + F1 for some smoothing operator F1. Since UΠ< = −UΠ> ,

K2 = −K1 + F for some smoothing operator F and hence 1
2 (I −K−1

1 K2) is
of the form I + α for some trace class operator α. Moreover, The kernel of
I −K−1

1 K2 consists of x ∈ L2(E+
Y ) such that x +K1x (= x +K2x) can be

extended to a harmonic section of D̂ on M̂ .

Theorem 2.4 and (2.18) lead to the following result, which is an analogue
of Theorem 1.3 in [15].

Theorem 2.5. Let P1, P2 be orthogonal pseudodifferential projections sat-
isfying the Condition A with respect to M1 and M2, respectively. Suppose
that for i = 1,2, UPi : C

∞(E+
Y ) → C∞(E−

Y ) is a unitary operator such that
graph(UPi) = ImPi. We also denote by Ai the tangential Dirac operator of
DMi and by Qi the Neumann jump operator with respect to D2

Mi
on Mi. Then

the following equality holds.

logDet∗D2
M̂

− logDet∗D2
M1,P1

− logDet∗D2
M2,P2

=− log 2 ·
(
ζA2(0) + l

)
+ 2 logdetA0

− 2

2∑
i=1

log detVMi,Pi
+ 2 log

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣
−

2∑
i=1

log det∗Fr

(
I +

1

2

(
U−1
Pi

Ki +K−1
i UPi

))

+ log 2
2∑

i=1

ζ(I−Pi)(Qi−Ai)(I−Pi)(0).
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In the next two sections, we are going to apply Theorem 2.5 to some bound-
ary conditions satisfying the Condition A.

3. Gluing formula of Dirac Laplacians with respect to
P−,L0 and P+,L1

Let (M,g) be an m-dimensional compact oriented Riemannian manifold
with boundary Y and E →M be a Hermitian flat vector bundle with a flat
connection∇ which is compatible to the Hermitian structure on E. We extend
∇ to the de Rham operator acting on E-valued differential forms Ω∗(M,E),
which we denote by ∇ again. We assume that near Y g is a product metric
and E has a product structure. Using the Hodge star operator ∗M , we define
an involution Γ : Ωq(M,E)→Ωm−q(M,E) by

Γω := i[
m+1

2 ](−1)
q(q+1)

2 ∗M ω, ω ∈Ωq(M,E),(3.1)

where [m+1
2 ] = m

2 for m even and m+1
2 for m odd. Then Γ2 = Id. The odd

signature operator B acting on Ω•(M,E) is defined by

B =∇Γ+Γ∇ : Ω•(M,E)→Ω•(M,E).(3.2)

Let u be the normal coordinate to Y . A differential form ω is expressed
near Y by ω = ωtan + du∧ωnor, where ωtan and ωnor are called the tangential
and normal parts of ω, respectively. Using the product structure, we can in-
duce a flat connection ∇Y : Ω•(Y,E|Y )→Ω•+1(Y,E|Y ) from ∇ and a Hodge
star operator ∗Y : Ω•(Y,E|Y ) → Ωm−1−•(Y,E|Y ) from ∗M . We define two
involutions β and ΓY by

β : Ωq(Y,E|Y )→Ωq(Y,E|Y ), β(ω) = (−1)qω

ΓY : Ωq(Y,E|Y )→Ωm−1−q(Y,E|Y ), ΓY (ω) = i[
m
2 ](−1)

q(q+1)
2 ∗Y ω.

(3.3)

Then β2 = (ΓY )2 = Id. If we write φtan + du ∧ φnor by (φtan

φnor
) near the

boundary Y , B is written by

B =
1√

(−1)m
βΓY

(
1 0
0 1

){
∂u

(
1 0
0 1

)
(3.4)

+
(
−∇Y − ΓY ∇Y ΓY

)(0 1
1 0

)}
.

Comparing (3.4) with (2.1), we have

G=
1√

(−1)m
βΓY

(
1 0
0 1

)
, A=−

(
∇Y +ΓY ∇Y ΓY

)(0 1
1 0

)
,(3.5)

which satisfy the relations (2.2).
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We next describe the boundary conditions P−,L0 and P+,L1 . We put BY :=
ΓY ∇Y + ∇Y ΓY . Then H•(Y,E|Y ) := kerB2

Y is a finite dimensional vector
space and we can decompose

Ω•(Y,E|Y ) = Im∇Y ⊕ ImΓY ∇Y ΓY ⊕H•(Y,E|Y ).
If ∇φ= Γ∇Γφ= 0 for φ ∈ Ω•(M,E), simple computation shows that φ is

expressed on Y by

φ|Y =∇Y ϕ1 +ϕ2 + du∧
(
ΓY ∇Y ΓY ψ1 +ψ2

)
,(3.6)

ϕ1, ψ1 ∈Ω•(Y,E|Y ), ϕ2, ψ2 ∈H•(Y,E|Y ).

Here ϕ2 and ψ2 are harmonic parts of ι∗φ and ∗Y ι∗(∗Mφ) up to sign, where
ι : Y →M is the natural inclusion. We define K by

(3.7) K :=
{
ϕ2 ∈H•(Y,E|Y ) | ∇φ=Γ∇Γφ= 0

}
,

where φ has the form (3.6). If φ satisfies ∇φ=Γ∇Γφ= 0, so is Γφ and hence

(3.8) ΓY K=
{
ψ2 ∈H•(Y,E|Y ) | ∇φ=Γ∇Γφ= 0

}
,

where φ has the form (3.6). Green formula (Corollary 2.3 in [9]) shows that
K is perpendicular to ΓY K. We then have the following decomposition (cf.
Corollary 8.4 in [13], Lemma 2.4 in [9]).

(3.9) K⊕ ΓY K=H•(Y,E|Y ),
which shows that (H•(Y,E|Y ), 〈, 〉Y , 1√

(−1)m
βΓY ) is a symplectic vector space

with Lagrangian subspaces K and ΓY K. We denote by

(3.10) L0 =

(
K
K

)
, L1 =

(
ΓY K
ΓY K

)
.

We next define the orthogonal projections P−,L0 , P+,L1 :
(Ω•(Y,E|Y )

⊕
Ω•(Y,E|Y )

)
→(Ω•(Y,E|Y )

⊕
Ω•(Y,E|Y )

)
by

ImP−,L0 =

(⊕m−1
q=0 Ωq,−(Y,E|Y )⊕m−1
q=0 Ωq,−(Y,E|Y )

)
⊕L0,

ImP+,L1 =

(⊕m−1
q=0 Ωq,+(Y,E|Y )⊕m−1
q=0 Ωq,+(Y,E|Y )

)
⊕L1,

(3.11)

where Ω•,−(Y,E|Y ) := Im∇Y and Ω•,+(Y,E|Y ) := ImΓY ∇Y ΓY . Then P−,L0

and P+,L1 are pseudodifferential operators and give well-posed boundary con-
ditions for B and the refined analytic torsion (Lemma 2.15 in [9]). The authors
discussed the boundary problem of the refined analytic torsion on compact
manifolds with boundary with these boundary conditions in [9], [10], [11]. We
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denote by BP−,L0
and B2

q,P−,L0
the realizations of B and B2

q with respect to

P−,L0 , i.e.

Dom(BP−,L0
) =

{
ψ ∈Ω•(M,E) | P−,L0(ψ|Y ) = 0

}
,

Dom
(
B2
q,P−,L0

)
=
{
ψ ∈Ωq(M,E) | P−,L0(ψ|Y ) = 0,

P−,L0

(
(Bψ)|Y

)
= 0

}
.

(3.12)

We define BP+,L1
, B2

q,P+,L1
in the same way. For ψ = ψtan + du ∧ ψnor ∈

Ωq(M,E), we define B2
q,rel and B2

q,abs by

Dom
(
B2
q,rel

)
=
{
ψ ∈Ωq(M,E) | ψtan|Y = 0, (∂uψnor)|Y = 0

}
,

Dom
(
B2
q,abs

)
=
{
ψ ∈Ωq(M,E) | (∂uψtan)|Y = 0, ψnor|Y = 0

}
.

(3.13)

The following result is straightforward (Lemma 2.11 in [9]).

Lemma 3.1.

kerB2
q,P−,L0

= kerB2
q,rel =Hq(M,Y ;E),

kerB2
q,P+,L1

= kerB2
q,abs =Hq(M ;E).

We denote by (Ω•(M,E)|Y )∗ the orthogonal complement of
(H•(Y,E|Y )
H•(Y,E|Y )

)
in

(Ω•(M,E)|Y ). Then the action of the unitary operator G splits according to
the following decomposition.

G :
(
Ω•(M,E)|Y

)∗ ⊕(
H•(Y,E|Y )
H•(Y,E|Y )

)
(3.14)

→
(
Ω•(M,E)|Y

)∗ ⊕(
H•(Y,E|Y )
H•(Y,E|Y )

)
.

We define unitary maps UP− , UΠ> : (Ω•(M,E)|Y )∗ → (Ω•(M,E)|Y )∗ by

UP− =
(
B2
Y

)−1((B2
Y

)− −
(
B2
Y

)+)(1 0
0 1

)
,

UΠ> =
(
B2
Y

)− 1
2
(
∇Y +ΓY ∇Y ΓY

)( 0 −1
−1 0

)
,

(3.15)

where (B2
Y )

− :=∇Y ΓY ∇Y ΓY , (B2
Y )

+ := ΓY ∇Y ΓY ∇Y and B2
Y is understood

to be defined on (Ω•(M,E)|Y )∗. We denote the ±i-eigenspace of G in

(Ω•(M,E)|Y )∗,
(H•(Y,E|Y )
H•(Y,E|Y )

)
and Ω•(M,E)|Y by(

Ω•(M,E)|Y
)∗
±i

:=
1

2
(I ∓ iG)

(
Ω•(M,E)|Y

)∗
,

(kerA)±i :=
1

2
(I ∓ iG)

(
H•(Y,E|Y )
H•(Y,E|Y )

)
,(3.16) (

Ω•(M,E)|Y
)
±i

:=
(
Ω•(M,E)

)∗
±i

⊕ (kerA)±i.
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The following lemma is straightforward (cf. (3.2)–(3.5) and Lemma 3.1 in
[10]).

Lemma 3.2. (1) UP− and UΠ> map (Ω•(M,E)|Y )∗±i onto (Ω•(M,E)|Y )∗∓i.
(2) UP−UP− = UΠ>UΠ> = Id. Hence, U∗

P−
= UP− and U∗

Π>
= UΠ> .

(3) U∗
Π>

UP− +U∗
P−

UΠ> = 0.

(4) ImP− = {ω + UP−ω | ω ∈ (Ω•(M,E)|Y )∗+i}, ImΠ> = {ω + UΠ>ω | ω ∈
(Ω•(M,E)|Y )∗+i}.

We next choose a unitary map UL0 : (kerA)+i → (kerA)−i so that
graph(UL0) = ImL0 and define UP−,L0

, UΠ>,L0
: (Ω•(M,E)|Y )+i → (Ω•(M,

E)|Y )−i by

UP−,L0
= UP− |(Ω•(M,E)|Y )∗+i

+UL0 ,

UΠ>,L0
= UΠ> |(Ω•(M,E)|Y )∗+i

+UL0 .
(3.17)

Then graph(UP−,L0
) = ImP−,L0 and graph(UΠ>,L0

) = ImΠ>,L0 . By (3.5)
we have

P−,L0AP−,L0 = P+,L1AP+,L1 = 0.(3.18)

Moreover, Theorem 2.1 in [14] shows that for t≥ 0,

Q(t) =
√

A2 + t+ a smoothing operator,(3.19)

which together with (3.18) shows that

P−,L0

(
Q(t)−A

)
P−,L0 = P−,L0Q(t)P−,L0

= P−,L0

√
A2 + tP−,L0 + a smoothing operator.

The same equality holds for P+,L1 . This shows that P−,L0 and P+,L1

satisfy the item (4) in the Condition A. Since P−,L0 and P+,L1 are orthog-
onal pseudodifferential projections and UP+,L1

= −UP−,L0
, the assertion (3)

in Lemma 3.2 shows that P−,L0 and P+,L1 satisfy the item (2), (3) in the
Condition A and hence satisfy the Condition A.

Let (M̂, ĝ) be a closed Riemannian manifold and Y be a hypersurface of

M̂ such that M̂ −Y has two components, whose closures are denoted by M1,

M2, i.e. M̂ =M1 ∪Y M2. We assume that ĝ is a product metric near Y . We

denote the odd signature operator on M̂ by B
M̂

and its restriction to M1

and M2 by BM1 and BM2 . We now apply Theorem 2.5 with P1 = P−,L0 and
P2 = I −P−,L0 = P+,L1 . Then we have the following equality.

logDet∗B2
M̂

− logDet∗B2
M1,P−,L0

− logDet∗B2
M2,P+,L1

(3.20)

=− log 2 ·
(
ζA2(0) + l

)
+ 2 logdetA0

− 2(logdetVM1,P−,L0
+ logdetVM2,P+,L1

)
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+ 2 log

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣
−
{
log det∗Fr

(
I +

1

2

(
U−1
P−,L0

K1 +K−1
1 UP−,L0

))
+ logdet∗Fr

(
I − 1

2

(
U−1
P−,L0

K2 +K−1
2 UP−,L0

))}
+ log2

(
ζ(P−,L0

(Q1−A1)P−,L0
)(0) + ζ(P+,L1

(Q2−A2)P+,L1
)(0)

)
,

where Ki : (Ω
•(Mi,E)|Y )+i → (Ω•(Mi,E)|Y )−i is a unitary operator such

that graph(Ki) = ImCi, the Cauchy data space with respect to BMi . By
Lemma 3.1, we have

logdetA0 =

m∑
q=0

log detA0,q,

log detVM1,P−,L0
=

m∑
q=0

log detVM1,q,rel,(3.21)

logdetVM2,P+,L1
=

m∑
q=0

log detVM2,q,abs,

where A0,q is the Hermitian matrix obtained by simply replacing D2
M̂

in

(2.17) with B2
M̂,q

acting on Ωq(M̂, Ê). Similarly, VMi,q,rel/abs is the Hermit-

ian matrix obtained by replacing D2
M,P in (2.12) with B2

Mi,q,rel/abs
acting on

Ωq(Mi,E) satisfying the relative/absolute boundary conditions. Lemma 2.5
in [15] and Lemma 3.1 show that

dimker
(
P−,L0(Q1 −A1)P−,L0

)
=

m∑
q=0

βq(M1) =

m∑
q=0

βq(M1, Y ),

dimker
(
P+,L1(Q2 −A2)P+,L1

)
=

m∑
q=0

βq(M2, Y ) =

m∑
q=0

βq(M2),

(3.22)

where βq(Mi, Y ) := dimHq(Mi, Y ;E) and βq(Mi) := dimHq(Mi;E). By
(3.18) and (3.22), we have

ζ(P−,L0
Q1P−,L0

)(0) + dimker(P−,L0Q1P−,L0)(3.23)

= ζP−,L0

√
A2

1P−,L0

(0) + dimkerP−,L0

√
A2

1P−,L0

=

m−1∑
q=0

(
ζB2

Y,q
(0) + βq(Y )

)
,
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where βq(Y ) := dimkerHq(Y ;E|Y ). Similarly, we have

ζ(P+,L1
Q2P+,L1

)(0) + dimker(P+,L1Q2P+,L1)(3.24)

=

m−1∑
q=0

(
ζB2

Y,q
(0) + βq(Y )

)
.

On the other hand,

ζA2(0) + l = 2

m−1∑
q=0

(
ζB2

Y,q
(0) + βq(Y )

)
.(3.25)

Summarizing the above argument, we have the following result, which is
the main result of this section.

Theorem 3.3. Let (M̂, ĝ) be a closed Riemannian manifold and Y be a

hypersurface of M̂ with M̂ =M1∪Y M2. We assume that ĝ is a product metric
near Y . Then:

m∑
q=0

(
logDet∗B2

M̂,q
− logDet∗B2

M1,q,P−,L0
− logDet∗B2

M2,q,P+,L1

)
=− log 2 ·

m∑
q=0

(
βq(M1) + βq(M2)

)
+ 2

m∑
q=0

log detA0,q

− 2

m∑
q=0

(log detVM1,q,rel
+ logdetVM2,q,abs

)

+ 2 log

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣
− log det∗Fr

(
I +

1

2

(
U−1
P−,L0

K1 +K−1
1 UP−,L0

))
− log det∗Fr

(
I − 1

2

(
U−1
P−,L0

K2 +K−1
2 UP−,L0

))
.

Remark. The kernel of (I + 1
2 (U

−1
P−,L0

K1 +K−1
1 UP−,L0

)) consists of ω ∈
(Ω•(M1,E)|Y )+i such that ω−UP−,L0

ω(= ω+K1ω) can be extended to a solu-

tion of BM1,P−,L0
. The same result holds for (I− 1

2 (U
−1
P−,L0

K2+K−1
2 UP−,L0

)).

4. Gluing formula of Dirac Laplacians with respect to
the absolute and relative boundary conditions

We continue to use the same notations as in the previous section. In
this section, we consider a double of de Rham complexes Ω•(M,E ⊕ E) :=
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Ω•(M,E)⊕ Ω•(M,E), which was used in [24]. We define the odd signature

operator B̃ and a boundary condition P̃ in this context as follows.

B̃ =

(
0 B
B 0

)
=

(
0 Γ∇+∇Γ

Γ∇+∇Γ 0

)
: Ω•(M,E ⊕E)→Ω•(M,E ⊕E)

P̃ =

(
Prel 0
0 Pabs

)
: Ω•(M,E ⊕E)|Y →Ω•(M,E ⊕E)|Y ,

(4.1)

where Prel and Pabs are orthogonal projections defined by

Prel(ωtan|Y + du∧ ωnor|Y ) = ωtan|Y ,
Pabs(ωtan|Y + du∧ ωnor|Y ) = ωnor|Y .

(4.2)

Then the realization B̃2
P̃ with respect to the boundary condition P̃ is given

as follows.

Dom
(
B̃2
P̃
)
=

{(
φ
ψ

)
∈Ω•(M,E ⊕E)

∣∣∣ P̃ (
φ|Y
ψ|Y

)
= 0,(4.3)

P̃
(
B̃
(
φ
ψ

)∣∣∣∣
Y

)
= 0

}
=

{(
φ1 + du∧ φ2

ψ1 + du∧ ψ2

) ∣∣∣ φ1|Y = 0,

(∂uφ2)|Y = 0, (∂uψ1)|Y = 0, ψ2|Y = 0

}
.

By (3.13) and the Poincaré duality, we have

B̃2
P̃ =

(
B2
M,rel 0

0 B2
M,abs

)
,

logDet∗ B̃2
P̃ =

m∑
q=0

(
logDet∗B2

M,q,rel + logDet∗B2
M,q,abs

)
(4.4)

= 2

m∑
q=0

logDet∗B2
M,q,rel.

We put

I =

(
1 0
0 1

)
, L=

(
0 1
1 0

)
, S =

(
1 0
0 −1

)
.(4.5)
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If we write ( φ1+du∧φ2

ψ1+du∧ψ2
) by

( φ1

φ2

ψ1

ψ2

)
, B̃ is written, near the boundary Y , by

B̃ =
1√

(−1)m
βΓY

(
0 I
I 0

){
∂u −

(
∇Y +ΓY ∇Y ΓY

)(L 0
0 L

)}
(4.6)

= G̃(∂u + Ã).

Comparing (4.6) with (2.1), we have

G̃=
1√

(−1)m
βΓY

(
0 I
I 0

)
, Ã=−

(
∇Y +ΓY ∇Y ΓY

)(L 0
0 L

)
,(4.7)

which satisfy the relations in (2.2). We denote by Π̃> := Π> ⊕ Π> the or-

thogonal projection onto the space spanned by positive eigenforms of Ã. We

denote the ±i-eigenspace of G̃ by(
Ω•(M,E ⊕E)|Y

)
±i

:=
1

2
(I ∓ iG̃)

(
Ω•(M,E)|Y ⊕Ω•(M,E)|Y

)
.(4.8)

For instance, if m is odd, simple computation shows that

(
Ω•(M,E ⊕E)|Y

)
+i

= span

⎛⎜⎜⎝
ω1

ω2

−βΓY ω1

−βΓY ω2

⎞⎟⎟⎠ ,

(
Ω•(M,E ⊕E)|Y

)
−i

= span

⎛⎜⎜⎝
ω1

ω2

βΓY ω1

βΓY ω2

⎞⎟⎟⎠ ,

(4.9)

where ω1, ω2 ∈Ω•(Y,E|Y ). This fact will be used in (4.23) below. Like (3.14),
we write

Ω•(M,E ⊕E)|Y =
(
Ω•(M,E ⊕E)|Y

)∗ ⊕ ker Ã,
(
Ω•(M,E ⊕E)|Y

)∗
(4.10)

=: (ker Ã)⊥.

We define unitary maps UP̃ , UΠ̃>
: (Ω•(M,E ⊕ E)|Y )∗ → (Ω•(M,E ⊕

E)|Y )∗ by [(3.15)]

UP̃ =
√
(−1)m+1βΓY

(
0 −S
S 0

)
,

UΠ̃>
=
(
B2
Y

)− 1
2
(
∇Y +ΓY ∇Y ΓY

)(−L 0
0 −L

)
.

(4.11)

Here the domain of UP̃ can be naturally extended to Ω•(M,E ⊕ E)|Y .
The following lemma is an analogue of Lemma 3.2, whose proof is straight-
forward.
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Lemma 4.1. (1) UP̃ and UΠ̃>
map (Ω•(M,E ⊕E)|Y )∗±i onto (Ω•(M,E ⊕

E)|Y )∗∓i.
(2) UP̃UP̃ = −Id, UΠ̃>

UΠ̃>
= Id and UΠ̃>

UP̃ = UP̃UΠ̃>
. Hence, U∗

P̃ = −UP̃
and U∗

Π̃>
= UΠ̃>

.

(3) U∗
Π̃>

UP̃ +U∗
P̃UΠ̃>

= 0.

(4) Im P̃ = {ω + UP̃ω | ω ∈ (Ω•(M,E ⊕ E)|Y )+i}, ImΠ̃> = {ω + UΠ̃>
ω | ω ∈

(Ω•(M,E ⊕E)|Y )∗+i}.

Remark. It is not difficult to see that there is no unitary map from
(Ω•(M,E)|Y )+i to (Ω•(M,E)|Y )−i whose graph is ImPrel or ImPabs. Hence,
we cannot apply Theorem 2.5 to this case. This is the reason why we consider
the double of de Rham complexes as above.

It is straightforward that

P̃ÃP̃ = (I − P̃)Ã(I − P̃) = 0,(4.12)

and by Theorem 2.1 in [14] (cf. (3.19)) we have

Q̃(t) =

(
Q(t) 0
0 Q(t)

)
(4.13)

=

(√
A2 + t 0

0
√
A2 + t

)
+ a smoothing operator,

which shows that P̃ and I − P̃ satisfy the item (4) in the Condition A. This

fact and the assertion (3) in Lemma 4.1 show that P̃ and I − P̃ satisfy the
Condition A, as in the previous section,

We next consider a partitioned manifold M̂ = M1 ∪Y M2 as before. We

assume the same assumptions as in Theorem 2.5. Let K̃i : (Ω
•(Mi,E ⊕

E)|Y )+i → (Ω•(Mi,E⊕E)|Y )−i be a unitary operator such that graph(K̃i) =

Im C̃i, the Cauchy data space with respect to B̃Mi . We denote by Q̃i the Neu-

mann jump operator for B̃2
Mi

on Mi and by Ãi the tangential Dirac operator

of B̃Mi . We now apply Theorem 2.5 with P1 = P̃ and P2 = I − P̃ . Since
UI−P̃ =−UP̃ , we have the following equality.

logDet∗ B̃2
M̂

− logDet∗ B̃2
M1,P̃

− logDet∗ B̃M2,I−P̃(4.14)

=− log 2 ·
(
ζÃ2(0) + l̃

)
+ 2 logdet Ã0 − 2(logdet ṼM1,P̃ + logdet ṼM2,I−P̃)

+ 2 log

∣∣∣∣det∗Fr(1

2

(
I − K̃−1

1 K̃2

))∣∣∣∣
−
{
log det∗Fr

(
I +

1

2

(
U−1

P̃ K̃1 + K̃−1
1 UP̃

))
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+ logdet∗Fr

(
I − 1

2

(
U−1

P̃ K̃2 + K̃−1
2 UP̃

))}
+ log 2 ·

(
ζ((I−P̃)(Q̃1−Ã1)(I−P̃))(0) + ζ(P̃(Q̃2−Ã2)P̃)(0)

)
.

With the same notations in (3.21), we note that

logdet Ã0 = 2

m∑
q=0

log detA0,q,

log det ṼMi,P̃ = logdet ṼMi,I−P̃

=

m∑
q=0

(log detVMi,q,rel + logdetVMi,q,abs)

= 2
m∑
q=0

log detVMi,q,rel = 2

m∑
q=0

log detVMi,q,abs.

(4.15)

Lemma 2.5 in [15] shows that

dimker
(
P̃(Q̃i − Ãi)P̃

)
= dimker

(
(I − P̃)(Q̃i − Ãi)(I − P̃)

)
(4.16)

=

m∑
q=0

(
βq(Mi) + βq(Mi, Y )

)
.

Since Im P̃ = Im(I − P̃) =
⊕m−1

q=0 (Ωq(Y,E|Y )⊕Ωq(Y,E|Y )), the equalities

(4.12) and (4.13) lead to

ζ(P̃Q̃iP̃)(0) + dimker(P̃Q̃iP̃)(4.17)

= ζ((I−P̃)Q̃i(I−P̃))(0) + dimker
(
(I − P̃)Q̃i(I − P̃)

)
= 2

(
ζ√B2

Y
(0) + dimker

√
B2
Y

)
= 2

m−1∑
q=0

(
ζB2

Y,q
(0) + dimkerB2

Y,q

)
.

Hence, by (4.16) and (4.17) we have

ζ(P̃(Q̃1−Ã1)P̃))(0) + ζ((I−P̃)(Q̃2−Ã2)(I−P̃))(0)(4.18)

= 4

m−1∑
q=0

(
ζB2

Y,q
(0) + dimkerB2

Y,q

)
− 2

m∑
q=0

(
βq(M1) + βq(M2)

)
.

Similarly, by (4.7) we have

Ã2 = B2
Y

(
I 0
0 I

)
, and

ζÃ2(0) + l̃= 4

m−1∑
q=0

(
ζB2

Y,q
(0) + dimkerB2

Y,q

)
.

(4.19)
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Hence, (4.14) can be rewritten as follows.

m∑
q=0

(
logDet∗B2

M̂,q
− logDet∗B2

M1,q,rel − logDet∗B2
M2,q,abs

)
(4.20)

=− log 2
m∑
q=0

(
βq(M1) + βq(M2)

)
+ 2

m∑
q=0

log detA0,q − 2

m∑
q=0

(log detVM1,q,rel

+ logdetVM2,q,abs
) + log

∣∣∣∣det∗Fr(1

2

(
I − K̃−1

1 K̃2

))∣∣∣∣
− 1

2

{
log det∗Fr

(
I +

1

2

(
U−1

P̃ K̃1 + K̃−1
1 UP̃

))
+ logdet∗Fr

(
I − 1

2

(
U−1

P̃ K̃2 + K̃−1
2 UP̃

))}
.

Finally, we analyze the last three terms in (4.20). We discuss only the case

when the dimension of M̂ is odd. The same method can be used for an even
dimensional case. From now on, we assume that M̂ is odd dimensional. From
(3.5) and (3.16), we have(

Ω•(M,E)|Y
)
±i

=

{
1

2

(
I ∓ βΓY

)(ω1

ω2

) ∣∣∣ ω1, ω2 ∈Ω•(Y,E|Y )
}
.(4.21)

We recall the Calderón projector C1 : Ω•(M,E)|Y → Ω•(M,E)|Y for BM1

and the corresponding unitary operator K1 : (Ω
•(M,E)|Y )+i → (Ω•(M,

E)|Y )−i so that graph(K1) = ImC1. Let C̃1 : Ω•(M,E ⊕ E)|Y → Ω•(M,E ⊕
E)|Y be the Calderón projector for B̃M1 . From the definition of B̃ [(4.1)], we
have

Im C̃1 = ImC1 ⊕ ImC1.(4.22)

Now consider the unitary operator K̃1 : (Ω
•(M,E⊕E)|Y )+i → (Ω•(M,E⊕

E)|Y )−i for C̃1. Then, (4.22) implies that for x ∈ (Ω•(M,E⊕E)|Y )+i, x+K̃1x

is expressed by
(
y+K1y
z+K1z

)
for some y, z ∈ (Ω•(M,E)|Y )+i. Hence, using (4.9),

K̃1 is described explicitly as follows.

K̃1

⎛⎜⎜⎝
ω1

ω2

−βΓY ω1

−βΓY ω2

⎞⎟⎟⎠ = K̃1

(
I−βΓY

2 (ω1
ω2 ) +

I+βΓY

2 (ω1
ω2 )

I−βΓY

2 (ω1
ω2 )− I+βΓY

2 (ω1
ω2 )

)
(4.23)

=

(
K1

I−βΓY

2 (ω1
ω2 ) +K−1

1
I+βΓY

2 (ω1
ω2 )

K1
I−βΓY

2 (ω1
ω2 )−K−1

1
I+βΓY

2 (ω1
ω2 )

)
.
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Since K1
I−βΓY

2 (ω1
ω2

) ∈ (Ω•(M,E)|Y )−i and K−1
1

I+βΓY

2 (ω1
ω2

) ∈ (Ω•(M,
E)|Y )+i, by (4.21) we have

βΓY K1
I − βΓY

2

(
ω1

ω2

)
=K1

I − βΓY

2

(
ω1

ω2

)
,

βΓY K−1
1

I + βΓY

2

(
ω1

ω2

)
=−K−1

1

I + βΓY

2

(
ω1

ω2

)
,

which leads to

U−1

P̃ K̃1

⎛⎜⎜⎝
ω1

ω2

−βΓY ω1

−βΓY ω2

⎞⎟⎟⎠(4.24)

=

(
SK1

I−βΓY

2 (ω1
ω2 ) + SK−1

1
I+βΓY

2 (ω1
ω2 )

−SK1
I−βΓY

2 (ω1
ω2 ) + SK−1

1
I+βΓY

2 (ω1
ω2 )

)

=

(
SK1

I−βΓY

2 (ω1
ω2 ) + SK−1

1
I+βΓY

2 (ω1
ω2 )

−βΓY {SK1
I−βΓY

2 (ω1
ω2 ) + SK−1

1
I+βΓY

2 (ω1
ω2 )}

)
.

We define an isomorphism

(4.25) Ψ : Ω•(M,E)|Y →
(
Ω•(M,E ⊕E)|Y

)
+i

by Ψ

(
ω1

ω2

)
=

⎛⎜⎜⎝
ω1

ω2

−βΓY ω1

−βΓY ω2

⎞⎟⎟⎠ ,

which leads to

Ψ−1U−1

P̃ K̃1Ψ

(
ω1

ω2

)
(4.26)

= SK1
I − βΓY

2

(
ω1

ω2

)
+ SK−1

1

I + βΓY

2

(
ω1

ω2

)
.

By the same way, we have

Ψ−1K̃−1
1 UP̃Ψ

(
ω1

ω2

)
(4.27)

=K1S
I − βΓY

2

(
ω1

ω2

)
+K−1

1 S
I + βΓY

2

(
ω1

ω2

)
.

Since Ω•(M,E)|Y = (Ω•(Y,E)|Y )+i ⊕ (Ω•(Y,E)|Y )−i, we use this decom-
position to write

Ψ−1
(
U−1

P̃ K̃1 + K̃−1
1 UP̃

)
Ψ =

(
0 SK−1

1 +K−1
1 S

SK1 +K1S 0

)
(4.28)

=

(
0 (SK1 +K1S)

∗

SK1 +K1S 0

)
.
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Hence, we have

det∗Fr

(
I +

1

2

(
U−1

P̃ K̃1 + K̃−1
1 UP̃

))
(4.29)

= det∗Fr

(
I 1

2 (SK1 +K1S)
∗

1
2 (SK1 +K1S) I

)
= det∗Fr

(
I − 1

4
(SK1 +K1S)

∗(SK1 +K1S)

)
.

To analyze (4.29), we note that

(
Ω•(Y,E)|Y

)
±i

=

⎛⎝Ω•(Y,E|Y )±
⊕

Ω•(Y,E|Y )±

⎞⎠ ,(4.30)

where Ω•(Y,E|Y )± :=
I ∓ βΓY

2
Ω•(Y,E|Y ).

According to this decomposition, we may write K1 :
(Ω•(Y,E|Y )+

⊕
Ω•(Y,E|Y )+

)
→(Ω•(Y,E|Y )−

⊕
Ω•(Y,E|Y )−

)
by

K1 =

(
A1 B1

C1 D1

)
,(4.31)

where A1,B1,C1,D1 : Ω
•(Y,E|Y )+ →Ω•(Y,E|Y )−.

We note that Γ = iβΓY ( 0 −1
1 0 ) preserves the decomposition (Ω•(Y,E)|Y )±i

and commutes with BM1 , which implies that K1 commutes with Γ. Since
Ω•(Y,E|Y )± are (∓1)-eigenspaces of βΓY , we have ( 0 −1

1 0 )K1 = K1(
0 1
−1 0 ),

which shows that

B1 =C1, A1 =−D1.(4.32)

Hence, we have

SK1 +K1S =

(
2A1 0
0 2A1

)
.(4.33)

Since K1−UΠ> is a trace class operator ((2.10)) and UΠ> = (B2
Y )

−1(∇Y +

ΓY ∇Y ΓY )( 0 −1
−1 0 ) ((3.15)), A1 is a trace class operator. Hence, we have

det∗Fr

(
I +

1

2

(
U−1

P̃ K̃1 + K̃−1
1 UP̃

))
(4.34)

= det∗Fr

(
I − 1

4
(SK1 +K1S)

∗(SK1 +K1S)

)
= det∗Fr

(
I −A∗

1A1 0
0 I −A∗

1A1

)
=
(
det∗Fr

(
I −A∗

1A1

))2
.
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Putting K2 = (A2 B2

C2 D2
), the same method shows that

det∗Fr

(
I − 1

2

(
U−1

P̃ K̃2 + K̃−1
2 UP̃

))
=

(
det∗Fr

(
I −A∗

2A2

))2
.(4.35)

In view of (4.20), we note that

K̃−1
1 K̃2

⎛⎜⎜⎝
ω1

ω2

−βΓY ω1

−βΓY ω2

⎞⎟⎟⎠(4.36)

=

(
K−1

1 K2
I−βΓY

2 (ω1
ω2

) +K1K
−1
2

I+βΓY

2 (ω1
ω2

)

K−1
1 K2

I−βΓY

2 (ω1
ω2 )−K1K

−1
2

I+βΓY

2 (ω1
ω2 )

)

=

(
K−1

1 K2
I−βΓY

2 (ω1
ω2 ) +K1K

−1
2

I+βΓY

2 (ω1
ω2 )

−βΓY {K−1
1 K2

I−βΓY

2 (ω1
ω2

) +K1K
−1
2

I+βΓY

2 (ω1
ω2

)}

)
,

which shows that

Ψ−1K̃−1
1 K̃2Ψ =K−1

1 K2
I − βΓY

2
+K1K

−1
2

I + βΓY

2
(4.37)

=

(
K−1

1 K2 0
0 K1K

−1
2

)
.

Hence, we have

det∗Fr

(
1

2

(
I − K̃−1

1 K̃2

))
=

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣2.(4.38)

The same computation for an even dimensional case leads to the same
result. Summarizing the above argument, we have the following result, which
is the main result of this section.

Theorem 4.2. Let (M̂, ĝ) be a closed Riemannian manifold and Y be a

hypersurface of M̂ with M̂ =M1∪Y M2. We assume that ĝ is a product metric

near Y . We denote the odd signature operator on M̂ by B
M̂

and its restriction
to M1 and M2 by BM1 and BM2 . Then:

m∑
q=0

(
logDet∗B2

M̂,q
− logDet∗B2

M1,q,rel − logDet∗B2
M2,q,abs

)
=− log 2

m∑
q=0

(
βq(M1) + βq(M2)

)
+ 2

m∑
q=0

log detA0,q − 2

m∑
q=0

(log detVM1,q,rel
+ logdetVM2,q,abs

)
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+ 2 log

∣∣∣∣det∗Fr(1

2

(
I −K−1

1 K2

))∣∣∣∣
−
{
log det∗Fr

(
I −A∗

1A1

)
+ logdet∗Fr

(
I −A∗

2A2

)}
,

where A1,A2 : Ω
•(Y,E|Y )+ → Ω•(Y,E|Y )− are first components of K1 and

K2, respectively.

Remark. (1) If all cohomologies vanish, that is, H∗(M ;E) =
H∗(Mi;E) = H∗(Mi, Y ;E) = 0, then the first three terms in Theo-
rem 3.3 and Theorem 4.2 do not appear. (2) So far we do not know how
to describe (logDet∗B2

M̂,q
− logDet∗B2

M1,q,P−,L0
− logDet∗B2

M2,q,P+,L1
) and

(logDet∗B2
M̂,q

− logDet∗B2
M1,q,rel

− logDet∗B2
M2,q,abs

) for each single q.
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