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ASYMPTOTIC STABILITY FOR KDV SOLITONS IN
WEIGHTED SPACES VIA ITERATION

BRIAN PIGOTT AND SARAH RAYNOR

Abstract. In this paper, we reconsider the well-known result
of Pego–Weinstein (Comm. Math. Phys. 2 (1994) 305–349) that

soliton solutions to the Korteweg–de Vries equation are asymp-
totically stable in exponentially weighted spaces. In this work, we

recreate this result in the setting of modern well-posedness func-
tion spaces. We obtain asymptotic stability in the exponentially

weighted space via an iteration argument. Our purpose here is

to lay the groundwork to use the I-method to obtain asymptotic

stability below H1, which will be done in a second, forthcom-
ing paper (Asymptotic stability for KdV solitons in weighted Hs

spaces. Preprint). This will be possible because the exponential

approach rate obtained here will defeat the polynomial loss in

traditional applications of the I-method (Commun. Pure Appl.

Anal. 2 (2003) 277–296, Discrete Contin. Dyn. Syst. 9 (2003)
31–54, Commun. Pure Appl. Anal. 13 (2014) 389–418).

1. Introduction

We consider solutions to the Korteweg–de Vries equation:

(1) ut + uxxx + ∂x
(
u2

)
= 0,

which is a well-known nonlinear dispersive partial differential equation mod-
elling the behavior of water waves in a long, narrow, shallow canal. Of partic-
ular interest are soliton solutions to this equation, which are special traveling
wave solutions of the form

(2) Qc,x0(x, t) = ψc(x− ct− x0) =
3c

2
sech2

(√
c

2
(x− ct− x0)

)
.
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The stability of these solitons has been an area of intense study for many
years. One might first be interested in the orbital stability of the soliton.
That is, if, at t = 0, u(x,0) − ψc(x) is small in an appropriate norm, then,
for all time there is some x0(t) so that u(x, t)− ψc(x− x0(t)) remains small.
The study of orbital stability in the energy space H1 began with Benjamin
[1] and Bona [2], continuing with Weinstein [21]. Merle and Vega established
the orbital and asymptotic stability of KdV solitons in L2 [13]. One can also
study the possibility of orbital stability of solitons in Hs for s not an integer,
and in [20], [18] it was shown that, for 0< s< 1, the possible orbital instability
of the solitons is at most polynomial in time.

Also of interest is the concept of asymptotic stability, meaning that there
exist c+ and x+ so that, in some appropriate sense, u(x, t)−ψc+(x−c+t−x+)
goes to zero as time goes to positive infinity. Asymptotic stability for the
Korteweg–de Vries equation was first studied by Pego and Weinstein in [17].
In that paper, the authors considered the behavior of solutions to KdV in the
weighted space H1

a = {f | ‖eaxf(x)‖H1 < +∞}, for appropriate choice of a.
In that setting, they were able to conclude that solitons are asymptotically
stable and, in fact, converge exponentially to the limiting soliton. Asymptotic
stability in the space H1 was established by Martel and Merle in [12], [11], and
in L2 by Merle and Vega via the Miura transform [13]. Recently, Mizumachi
and Tzvetkov [14] have used the Miura transform together with the work of
Pego and Weinstein to prove that solitons for KdV are asymptotically stable in
L2, providing an alternate proof of the result of Merle and Vega. Buckmaster
and Koch [5] have shown that KdV solitons are asymptotically stable in Hk

for any integer k ≥−1.
In this paper, we reconsider the result of Pego and Weinstein. We establish

local well-posedness for the exponentially weighted soliton perturbation in a
space X1,1/2,1 which embeds into the Bourgain space X1,b, partially follow-
ing the local well-posedness work of Molinet and Ribaud [15] on dispersive-
dissipative equations; see also [16], [7]. We then run an iteration scheme
to establish global control of the perturbation in H1 and the exponentially
weighted space H1

a , concluding that the soliton is exponentially asymptoti-
cally stable in H1

a . The purpose of this work is to modernize the techniques
used in Pego–Weinstein so that the result can be used in concert with other
modern techniques. In particular, in a forthcoming work [19] we will combine
this argument with the I-method to obtain asymptotic stability of solitons in
the space Hs

a .
In previous work of Colliander et al. [6], Raynor and Staffilani [20], and

Pigott [18], the question of orbital stability of solitons in Hs for 0< s< 1 has
been considered, for the nonlinear Schrödinger, KdV, and generalized KdV
equations respectively. In each case, it was found that there was at most
a polynomial instability in the orbit. That is, if ‖u0 − ψc‖Hs is sufficiently
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small, then for some long time interval and some power p depending only
on s, infx0∈R ‖u(t, ·) − ψc(· − x0)‖Hs � Ctp. This possibility of polynomial
growth in the Hs error is believed to be an artifact of the technique; whenever
estimates are done with the I-method, there is some small error on each time
step which grows polynomially when iterated. Our purpose in these papers is
to obviate that error. When working in the Pego–Weinstein weighted spaces,
one gains an exponential decay in the error as the solution evolves. Therefore,
one can hope to defeat the polynomial error and obtain a true stability result
in Hs for s < 1, which will be a substantial improvement in the current state
of the art. However, working with both the dissipative spectral structure
of the weighted spaces and the delicate harmonic analysis required for the
I-method turns out to be rather technical. For that reason, we have split
the work in two. In this paper, we update the well-posedness technology
necessary to use both methods, and then demonstrate how this can be utilized
by reproducing the well-known H1 stability result of Pego and Weinstein.
The asymptotic stability of solitons in Hs with 7

8 < s < 1 will appear in a
subsequent paper [19]. There we employ the I-method together with some
new multilinear estimates to show that solitons for the KdV equation (1) are
asymptotically stable in Hs

a for 7/8< s< 1 and that the perturbation decays
exponentially over arbitrarily long time intervals. The results appearing in
[19] are inspired by the estimates and the iteration argument developed in
this paper.

The paper is organized as follows: In Section 2, we will set up our notation
and establish basic results. In Section 3, we will establish the necessary local
well-posedness. In Section 4, we will run the iteration scheme and establish
the main result of the paper.

2. Notation and basic results

Consider a solution u(x, t) to the Cauchy problem:

(3)

{
ut + uxxx + ∂x(u

2) = 0, x ∈R, t > 0,

u(x,0) = u0(x).

Let c > 0 and consider the function ψc which is the unique even, exponentially
decaying solution to the soliton equation

−cψ′
c +ψ′′′

c +
(
ψ2

)′
= 0.

The function ψc takes the form given in (2). In this work, we will consider
initial conditions u(x,0) = ψc0(x) + v0(x), where ‖v0‖H1 is sufficiently small.

We will make the ansatz that u(x, t) = ψc(t)(x −
∫ t

0
c(s)ds − γ(t)) + v(x −∫ t

0
c(s)ds− γ(t), t) where c(t) and γ(t) will be chosen later. From now on, we

denote by y the quantity x−
∫ t

0
c(s)ds− γ(t).
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We are also interested in controlling v in the space H1
a , which has the

norm ‖f‖H1
a
= ‖eayf‖H1 . This is equivalent to controlling w(y, t) := eayv(y, t)

in H1. We will choose the parameters c(t) and γ(t) so that ‖w(·, t)‖L2 is
minimized at each t. In order to do so, we first need to consider the difference
equations satisfied by v and w, and consider their linearizations about the
soliton.

Lemma 2.1. The perturbation v satisfies the difference equation

(4) vt = ∂y
(
−∂2

y + c0 − 2ψc

)
v+ ∂y

(
v2

)
+ (γ̇∂y + ċ∂c)ψc + (γ̇ + c− c0)∂yv.

Moreover, the perturbation w satisfies the difference equation

wt = eay∂y
(
−∂2

y + c0 − 2ψc

)
e−ayw+ (c− c0)(∂y − a)w(5)

+
[
eay(ċ∂c + γ̇∂y)ψc + γ̇(∂y − a)w+ eay∂y

(
c− c0 + v2

)
e−ayw

]
.

Proof. For these calculations, see [17]. �

For fixed c > 0, define the operator Aa = eay∂y(−∂2
y + c− 2ψc)e

−ay . We
have the following from [17]:

Proposition 1. For 0< a<
√

c
3 , the spectrum of Aa in L2 consists of the

following:

(1) An eigenvalue of algebraic multiplicity 2 at λ = 0. A generator of the
kernel of Aa is ζ1 = eay∂yψc, and the second generator of the generalized
kernel of Aa is ζ2 = eay∂cψc.

(2) A continuous spectrum Sa parametrized by τ → iτ3−3aτ2+(c−3a2)iτ −
a(c− a2). For any element λ of this continuous spectrum, the real part of
λ is at most −a(c− a2)< 0.

The spectrum contains no other elements.

We also need to consider the elements of the spectrum to A∗
a, which are

η1 = e−ay[θ1∂
−1
y ∂cψc + θ2ψc] and η2 = e−ay(θ3ψc), where ∂−1

y f is defined to

be
∫ y

−∞ f(t)dt and θ1, θ2 and θ3 are appropriate constants to obtain the

biorthogonality relationship 〈ζj , ηk〉 = δjk. We will define the L2 spectral

projections Pw =
∑2

i=1〈w,ηi〉ζi and Qw =w−Pw onto the discrete and con-
tinuous spectrums of Aa respectively, with respect to the fixed initial value of
c, c0. Finally, note that the spectrum is the same in H1:

Proposition 2. For 0< a <
√

c
3 , the spectrum of Aa in H1 is the same

as its spectrum in L2.

Proof. First, note that the kernel elements listed above are also elements
of H1. Therefore the discrete spectrum is the same in H1. (Since H1 ⊂ L2.)
Second, note that

Aa = eay∂y
(
−∂2

y + c− 2ψc

)
e−ay = (∂y − a)

(
−(∂y − a)2 + c0

)
− 2(∂y − a)ψc.



ASYMPTOTIC STABILITY FOR KDV SOLITONS 447

Because ψc is an exponentially decaying C∞ function, the operator −2(∂y −
a)ψc is a compact perturbation of A0

a := (∂y − a)(−(∂y − a)2 + c0), whose
continuous spectrum in H1 is exactly as in L2. �

Returning to the difference equation (5), for each fixed t we select c(t) and
γ(t) so that Pw = 0, and Qw = w. Defining F = [eay(ċ∂c + γ̇∂y]ψc + γ̇(∂y −
a)w+ eay∂y(c− c0 + v2)e−ayw], we have that

wt =Aaw+QF ,

and

(6) A
[
γ̇
ċ

]
=

[
〈eay∂y(c− c0 + v2)e−ayw,η1〉
〈eay∂y(c− c0 + v2)e−ayw,η2〉

]
,

where

A=

[
1 + 〈eay(∂yψc − ∂yψc0), η1〉 − 〈w,∂yη1〉 〈eay(∂cψc − ∂cψc0), η1〉
〈eay(∂yψc − ∂yψc0), η2〉 − 〈w,∂yη2〉 1 + 〈eay(∂cψc − ∂cψc0), η2〉

]
.

3. Local-in-time theory

The modulation equation for w can be written out as:

(7)

⎧⎪⎨⎪⎩
∂tw+ ∂3

xw− 3a∂2
xw+ (c0 − 3a2)∂xw+ a(c0 − a2)w− 2(∂x − a)(ψcw)

−Q[eax(ċ∂c + γ̇∂x)ψc + γ̇(∂x − a)w+ eax∂x(c− c0 + v)e−axw] = 0,

w(0, x) =w0(x).

To implement our iteration argument, we need to establish control of the
perturbations v and w as follows: suppose that v0,w0 ∈H1(R) and let v(t, x),
w(t, x) satisfy (4) and (7), respectively. There is a δ > 0 such that

(8) ‖v‖X1
δ
� ‖v0‖H1 and ‖w‖X1

δ
� ‖w0‖H1

in some space X1
δ of space–time functions localized to the time interval [0, δ];

see Proposition 4 below.
It turns out that the selection of the space X1

δ is a rather delicate matter,
owing in large part to the requirement that it must accommodate solutions of
both (4) and (5). A natural candidate is the space X1,b with b > 1/2 defined
by

‖f‖X1,b :=
∥∥〈

τ − ξ3
〉b〈ξ〉f̃∥∥

L2
τ,ξ

,

where f(t, x) is a space–time function and f̃(τ, ξ) is its (space–time) Fourier
transform. These spaces were successfully implemented in the study of the
KdV equation (see [4], [8]) and would be sufficient to establish (8) for v.
A theory applicable to the weighted perturbation w is also available in X1

b

(see [15]), however, Molinet and Ribaud prove that

‖w‖X1,b � ‖w0‖H1+(2b−1) .
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Since we require b > 1/2 to obtain the embedding Xs,b ↪→CtH
s
x, this estimate

is insufficient for our purposes. Alternatively, one could try to accommodate
the presence of the dissipative term in the definition of the X1,b space; for
instance one could consider the space Y 1,b with norm

‖f‖Y 1,b :=
∥∥〈

i
(
τ − ξ3

)
+ ξ2

〉b〈ξ〉f̃∥∥
L2

τ,ξ
.

In this case, there is an adequate theory to handle the equation for the
weighted perturbation w (see [16]); however this space is no longer suitable
for the unweighted perturbation v.

Following this reasoning, we are lead to consider a Besov refinement of the
space X1,b, which enables us to choose b= 1/2 while still having an embedding
into C0

t H
1
x . We begin with some notation. Define the sets Aj and Bk by

Aj :=
{
(τ, ξ) ∈R2 | 2j ≤ 〈ξ〉 ≤ 2j+1

}
, j ≥ 0,

Bk :=
{
(τ, ξ) ∈R2 | 2k ≤

〈
τ − ξ3

〉
≤ 2k+1

}
, k ≥ 0.

Here we regard τ , ξ as being the frequency variables associated to the time
and space variables t, x, respectively. We define the space Xs,b,1 to be the
completion of the Schwarz class functions in the norm

(9) ‖f‖Xs,b,1 :=

(∑
j≥0

22sj
(∑

k≥0

2bk‖f̃‖L2(Aj∩Bk)

)2)1/2

.

A slightly modified version of this space was used by Kishimoto [9] in the case
where s = −3/4 to establish global well-posedness of the KdV equation in
H−3/4(R). Here we are interested mostly in the spaces Xs,1/2,1 and Xs,−1/2,1.
We recall the following two embeddings valid for b > 1/2,

Xs,b ↪→Xs,1/2,1 ↪→C0
t H

s
x,

both of which are easily verified using the Cauchy–Schwarz inequality.
Following standard arguments in the Xs,b spaces [3], [4], [8], we define the

time-localized space X
s,1/2,1
δ to be the space with norm

‖u‖
X

s,1/2,1
δ

:= inf
{
‖w‖Xs,1/2,1 |w ≡ u on [0, δ]

}
.

Since we work primarily in frequency space, we define the space X̃s,1/2,1

corresponding to the norm

(10) ‖f‖
X̃s,1/2,1 :=

(∑
j≥0

22sj
(∑

k≥0

2bk‖f‖L2(Aj∩Bk)

)2)1/2

,

where f = f(τ, ξ).
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3.1. Linear estimates. We introduce notation for the linear evolutions
corresponding to (4) and (5). Let W1(t) denote the standard Airy evolution,

Fx

(
W1(t)f

)
(ξ) = e−itξ3 f̂(ξ).

We also introduce W2(t), which we define for t≥ 0 by

Fx

(
W2(t)f

)
(ξ) = e−itξ3−pa(ξ)tf̂(ξ),

where pa(ξ) = 3aξ2 + a(c20 − a). We extend this to all of t ∈R by

Fx

(
W2(t)f

)
(ξ) = e−itξ3−pa(ξ)|t|f̂(ξ).

In what follows, we let ρ be a time cut off function such that

ρ ∈C∞
0 (R), suppρ⊂ [−2,2], ρ≡ 1 on [−1,1].

Set ρT (·) = ρ(·/T ).
Lemma 3.1. With W1(t) defined as above we have the following two linear

estimates: ∥∥ρ(t)W1(t)f
∥∥
Xs,1/2,1 � ‖f‖Hs ,(11) ∥∥∥∥ρ(t)∫ t

0

W1(t− s)F (s)ds

∥∥∥∥
Xs,1/2,1

� ‖F‖Xs,−1/2,1 .(12)

Proof. Recall that ‖W1(t)f‖Xs,1/2+ � ‖f‖Hs . By a similar argument, using
the construction of the space and Hölder’s inequality, we obtain (11). The
estimate (12) is established in Lemma 4.1 of [9]. �

Lemma 3.2. Let 0 < a ≤min(1, c0), and let s ∈R. For W2(t) defined as
above we have the following two linear estimates:∥∥ρ(t)W2(t)f

∥∥
Xs,1/2,1 � ‖f‖Hs ,(13) ∥∥∥∥χR+(t)ρ(t)

∫ t

0

W2(t− s)F (s)ds

∥∥∥∥
Xs,1/2,1

� ‖F‖Xs,−1/2,1 .(14)

Proof. Our proof of (13) mimics the argument given in [7], Proposition 4.3.
Observe that it suffices to prove that for each j ≥ 0,∥∥ρ(t)W2(t)f̂

∥∥
L2(Aj)

� ‖f̂‖L2(Aj).

If j = 0, then |pa(ξ)| ≤ 3a+ a(c20 − a), and∥∥ρ(t)W2(t)f̂0
∥∥
L2 �

∑
k≥0

2k/2
∥∥Ft

(
ρ(t)e−pa(ξ)|t|)f̂0∥∥L2(Bk)

(15)

�
∑
n≥0

(3a+ a(c20 − a))n

n!
‖f̂0‖L2

∥∥ρ(t)|t|n∥∥
H1

t
� ‖f0‖L2 .

Let Pk be the projection operator defined by

F(Pkψ)(τ, ξ) = χBk
(τ, ξ)F(ψ)(τ, ξ).
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Notice that if ξ ∼ 2j , then for any k ≥ 0 we have∥∥Pk

(
exp

(
−pa(ξ)|t|

))
(t)

∥∥
L2

t
�

∥∥Pk

(
exp

(
−pa

(
2j

)
|t|

))
(t)

∥∥
L2

t
.

This follows from Plancherel and the fact that

Ft

(
e−|t|)(τ) =C

1

1 + |τ |2 .

In the case when j ≥ 1, we have∥∥ρ(t)W2(t)f̂j
∥∥
L2

ξ
�

∑
k≥0

2k/2
∥∥f̂j(ξ)Ft

(
ρ(t)e−pa(ξ)|t|)∥∥

L2(Bk)

�
∑
k≥0

2k/2‖f̂j‖L2
ξ

∥∥χAj (ξ)Pk

(
ρ(t) exp

(
−pa(ξ)|t|

))
(t)

∥∥
L∞

ξ L2
t
.

It suffices to show that for each j ≥ 1 the sum

(16)
∑
k≥0

2k/2
∥∥χAj (ξ)Pk

(
ρ(t) exp

(
−pa(ξ)|t|

))
(t)

∥∥
L∞

ξ L2
t
,

is bounded. We may assume that k ≥ 50 in the summation. We first decom-
pose the product ρ(t) exp(−pa(ξ)|t|) using the following para-product decom-
position:

ρφ=
∑
i≥0

(
(Pi+1ρ)(P≤i+1φ) + (P≤iρ)(Pi+1φ)

)
,

where ρ= ρ(t) and φ= exp(−pa(ξ)|t|). We have adopted the notation P≤k :=∑k
�=0P�. Therefore

Pk(ρφ) = Pk

( ∑
i≥k−10

(
(Pi+1ρ)(P≤i+1φ) + (P≤iρ)(Pi+1φ)

))
.

We are thus reduced to showing that the following two sums are bounded:

I :=
∑
k≥50

2k/2
∑

i≥k−10

∥∥χAjPk

(
(Pi+1ρ)(P≤i+1φ)

)∥∥
L∞

ξ L2
t
,

II :=
∑
k≥50

2k/2
∑

i≥k−10

∥∥χAjPk

(
(P≤iρ)(Pi+1φ)

)∥∥
L∞

ξ L2
t
.

We estimate II as follows:

II ≤
∑
k≥50

2k/2
∑

i≥k−10

‖χAjPi+1φ‖L∞
ξ L2

t
‖P≤iρ‖L∞

t

�
∑
k≥50

∑
i≥k−10

2(k−i)/22i/2‖Pi+1φ‖L∞
ξ L2

t

�
∑
i≥0

2i/2
∥∥Pi+1

(
exp

(
−pa

(
2j

)
|t|

))∥∥
L2

t
=

∥∥exp(
−pa

(
2j

)
|t|

)∥∥
Ḃ

1/2
2,1

.
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We recall that the Besov space Ḃ
1/2
2,1 has the following scaling structure:∥∥f(

2j ·
)∥∥

Ḃ
1/2
2,1

∼ ‖f‖
Ḃ

1/2
2,1

.

Since e−|t| ∈ Ḃ
1/2
2,1 , the desired result follows. One can estimate I in a similar

way.
The proof of (14) proceeds as in the proof of Proposition 4.4 from [7]. Let

L(F )(t, x) := χR+(t)ρ(t)

∫ t

0

W2(t− s)F (s)ds,

and define w(t, x) :=W1(−t)F (t, x). Observe that

L(F )(t, x) = χR+(t)ρ(t)

∫
R

eixξ
∫ t

0

ei(t−s)ξ3−pa(ξ)(t−s)F̂ (s, ξ)dsdξ

= χR+(t)ρ(t)

∫
R

eixξeitξ
3−pa(ξ)t

∫
R

w̃(τ, ξ)

∫ t

0

epa(ξ)s+isτ dsdτ

=W1(t)χR+(t)ρ(t)

∫
R2

eixξw̃(τ, ξ)

(
eitτ − e−pa(ξ)t

iτ + pa(ξ)

)
dτ dξ.

Define

h(t, ξ) := ρ(t)

∫
R

eitτ − epa(ξ)t

iτ + pa(ξ)
w̃(τ, ξ)dτ.

From the definition of the space Xs,1/2,1 it suffices to prove

(17)
∑
k≥0

2k/2
∥∥Ft(h)(τ, ξ)

∥∥
L2(Aj∩Bk)

�
∑
k≥0

2−k/2
∥∥w̃(τ, ξ)∥∥

L2(Aj∩Bk)
.

We begin by decomposing h= h1 + h2 + h3 − h4, where

h1(t, ξ) := ρ(t)

∫
|τ |≤1

eitτ − 1

iτ + pa(ξ)
w̃(τ, ξ)dτ,

h2(t, ξ) := ρ(t)

∫
|τ |≤1

1− e−pa(ξ)t

iτ + pa(ξ)
w̃(τ, ξ)dτ,

h3(t, ξ) := ρ(t)

∫
|τ |≥1

eitτ

iτ + pa(ξ)
w̃(τ, ξ)dτ,

h4(t, ξ) := ρ(t)

∫
|τ |≥1

e−pa(ξ)t

iτ + pa(ξ)
w̃(τ, ξ)dτ.

Estimate for h1. Use a Taylor expansion to see that∑
k≥0

2k/2
∥∥χAjPk(h1)

∥∥
L2

ξ,t

�
∑
k≥0

2k/2
∑
n≥1

∥∥∥∥χAjPk

(
ρ(t)tn

n!

)∫
|τ |≤1

τn

iτ + pa(ξ)
w̃(τ, ξ)dτ

∥∥∥∥
L2

ξ,t
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�
∑
n≥1

∥∥∥∥ρ(t)tnn!

∥∥∥∥
B

1/2
2,1

∥∥∥∥∫
|τ |≤1

|τ |
|iτ + pa(ξ)|

χAj (ξ)w̃(τ, ξ)dτ

∥∥∥∥
L2

ξ

�
∥∥∥∥∫

|τ |≤1

|τ |
|iτ + pa(ξ)|

χAj (ξ)w̃(τ, ξ)dτ

∥∥∥∥
L2

ξ

.

Now we apply Hölder’s inequality in τ to see that∥∥∥∥∫
|τ |≤1

1

|iτ + pa(ξ)|
χAj w̃(τ, ξ)dτ

∥∥∥∥
L2

ξ

≤
∑
k≥0

∥∥∥∥∫
|τ |≤1

|τ |
|iτ + pa(ξ)|

χAjχBk
w̃(τ, ξ)dτ

∥∥∥∥
L2

ξ

≤
∑
k≥0

∥∥∥∥ χAjχBk

|iτ + pa(ξ)|

∥∥∥∥
L2

ξ,τ

∥∥χAjχBk
w̃(τ, ξ)

∥∥
L2

ξ,τ

≤
∑
k≥0

2−k/2‖χAjχBk
w̃‖L2

ξ,τ
.

Estimate for h2. If pa(ξ)≤ 1, then we use a Taylor expansion to see that∑
k≥0

2k/2
∥∥χAjPk(h2)

∥∥
L2

ξ,t

�
∑
n≥1

∑
k≥0

2k/2
∥∥∥∥χAj

|pa(ξ)|
n!

Pk

(
ρ(t)|t|n

)∫
|τ |≤1

w̃(τ, ξ)

iτ + pa(ξ)
dτ

∥∥∥∥
L2

ξ,t

�
∥∥∥∥∫

|τ |≤1

χAj w̃(τ, ξ)

|iτ + pa(ξ)|
dτ

∥∥∥∥
L2

ξ

�
∑
k≥0

∥∥∥∥ χAjχBk

iτ + pa(ξ)

∥∥∥∥
L∞

ξ L2
τ

‖χAjχBk
w̃‖L2

τ,ξ

�
∑
k≥0

2−k/2
∥∥χAjχBk

w̃(τ, ξ)
∥∥
L2

ξ,τ
.

On the other hand, if pa(ξ)≥ 1, then we proceed as in (16) to find that∑
k≥0

2k/2
∥∥χAjPk(h2)

∥∥
L2

ξ,t

�
∑
k≥0

2k/2 sup
ξ∈Aj

∥∥χAjPk

(
η(t)

(
1− e−pa(ξ)t

))∥∥
L2

t

∫
|τ |≤1

‖χAj w̃(τ, ξ)‖L2
ξ

〈τ〉 dτ

�
∑
k≥0

2−k/2
∥∥χAjχBk

w̃(τ, ξ)
∥∥
L2

ξ,τ
.
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Estimate for h3. Let

g(τ, ξ) =
χ|τ |≥1w̃(τ, ξ)

iτ + pa(ξ)
.

Observe that

2k/2
∥∥χAjPk(h3)

∥∥
L2

ξ,t
� 2k/2

∥∥χAjχBk

(
ρ̂(τ) ∗τ g(τ, ξ)

)∥∥
L2

τ,ξ

� 2k/2
∥∥∥∥∥∥χAj w̃(τ, ξ)

∥∥
L2

ξ

χBk

〈τ〉 χ|τ |≥1

∥∥∥∥
L2

τ

� 2−k/2‖χAjχBk
w̃‖L2

ξ,τ
,

from which the desired estimate follows.
Estimate for h4. Consider∥∥χAjPk(h4)

∥∥
L2

ξ,t
=

∥∥∥∥Pk

(
ρ(t)

∫
|τ |≥1

e−pa(ξ)t

iτ + pa(ξ)
χAj w̃(τ, ξ)dτ

)∥∥∥∥
L2

ξ,t

≤ sup
ξ∈Aj

∥∥Pk

(
ρ(t)e−pa(ξ)t

)∥∥
L2

t

∥∥∥∥∫
|τ |≥1

χAj w̃(τ, ξ)

iτ + pa(ξ)
dτ

∥∥∥∥
L2

ξ

≤ sup
ξ∈Aj

∥∥Pk

(
ρ(t)e−pa(ξ)t

)∥∥
L2

t

∫
|τ |≥1

‖χAj w̃(τ, ξ)‖L2
ξ

|τ | dτ.

Using a Taylor expansion in the case when j = 0 as in (15), and (16) in the
case when j ≥ 1, we have∑

k≥0

2k/2
∥∥χAjPk(h4)

∥∥
L2

ξ,t
�

∫
|τ |≥1

‖χAj w̃(τ, ξ)‖L2
ξ

|τ | dτ.

Note that∫
|τ |≥1

‖χAj w̃(τ, ξ)‖L2
ξ

|τ | dτ ≤
∑
k≥0

(∫
|τ |≥1

χBk

|τ |2 dτ

)1/2

‖χAjχBk
w̃‖L2

ξ,τ

�
∑
k≥0

2−k/2‖χAjχBk
w̃‖L2

ξ,τ
,

from which the desired estimate follows. �
3.2. Bilinear estimate. To prove (8), we will require the bilinear estimate

‖uxv‖X1,−1/2,1 � ‖u‖X1,1/2,1‖v‖X1,1/2,1 .

We will prove a more general result:

(18) ‖uxv‖Xs,−1/2,1 � ‖u‖Xs,1/2,1‖v‖Xs,1/2,1 ,

provided s ≥ 0. Rewriting this in frequency variables we see that (18) is
equivalent to

(19)
∥∥(

|ξ1|f
)
∗ g

∥∥
X̃s,−1/2,1 � ‖f‖

X̃s,1/2,1‖g‖X̃s,1/2,1 ,
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where the space X̃s,1/2,1 is as in (10). In this direction, we first have the
following basic bilinear estimates, the proofs of which are given in [9].

Lemma 3.3. Suppose that suppf, supp g ⊆Aj . Then

(20)
∥∥|ξ|1/4f ∗ g

∥∥
L2

τ,ξ
� ‖f‖

X̃0,1/2,1‖g‖X̃0,1/2,1 .

If

K := inf
{
|ξ1 − ξ2| | ∃τ1, τ2 such that (τ1, ξ1) ∈ suppf, (τ2, ξ2) ∈ suppg

}
> 0,

then

(21)
∥∥|ξ|1/2f ∗ g

∥∥
L2

τ,ξ
�K−1/2‖f‖

X̃0,1/2,1‖g‖X̃0,1/2,1 .

Lemma 3.4. Suppose that suppf ⊆Aj and let g be an arbitrary test func-
tion. For k ≥ 0 we have

(22) ‖f ∗ g‖L2(Bk) � 2k/4‖f‖
X̃0,1/2,1

∥∥|ξ|−1/4g
∥∥
L2

τ,ξ
.

If Ω⊆R2 satisfies

K := inf
{
|ξ + ξ1| | ∃τ, τ1 such that (τ, ξ) ∈Ω, (τ1, ξ1) ∈ suppf

}
> 0,

then

(23) ‖f ∗ g‖L2(Ω∩Bk) � 2k/2K−1/2‖f‖
X̃0,1/2,1

∥∥|ξ|−1/2g
∥∥
L2

τ,ξ
.

We are now prepared to establish our bilinear estimate.

Proposition 3. Suppose that f, g ∈ X̃s,1/2,1 with s≥ 0. Then

(24)
∥∥(

|ξ1|f
)
∗ g

∥∥
X̃s,−1/2,1 � ‖f‖

X̃s,1/2,1‖g‖X̃s,1/2,1 .

Proof. We may divide f and g into components as follows: Define fj1,k1 :=
χAj1

χBk1
f and gj2,k2 := χAj2

χBk2
g. We thus have

f =
∑
j1≥0

∑
k1≥0

fj1,k1 and g =
∑
j2≥0

∑
k2≥0

gj2,k2 .

Our goal is to estimate

(25)
∑
j≥0

22sj
(∑

k≥0

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−k/22j1‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk)

)2

;

indeed we aim to establish an estimate of the form

(25)� ‖f‖2
X̃s,1/2,1‖g‖2X̃s,1/2,1 .

It suffices to prove (25) in the following cases:

(1) At least two of j, j1, j2 are less than 20.
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(2) j1, j2 ≥ 20 and j < j1 − 10.
(3) j, j1 ≥ 20, |j − j1| ≤ 10.

To simplify our notation below, we let

Fj1,k1 := 2j1s2k1/2‖fj1,k1‖L2 and Gj2,k2 := 2j2s2k2/2‖gj2,k2‖L2(R2).

Case (1). We may assume that j, j1, j2 ≤ 30. We apply Young’s inequality
followed by Hölder’s inequality to see that

‖fj1,k1 ∗ gj2,k2‖L2
τ,ξ

≤ ‖fj1,k1‖L2
ξ1

L
4/3
τ1

‖gj2,k2‖L1
ξ2

L
4/3
τ2

�
(
215k1/32‖fj1,k1‖L2

ξ1,τ1

)(
2j2/2215k2/32‖gj2,k2‖L2

ξ2,τ2

)
.

After summing in k and summing over j (a finite sum), we find that (25) is
controlled by(

30∑
j1=0

∑
k1≥0

2j1215k1/32‖fj1,k1‖L2
ξ1,τ1

)2( 30∑
j2=0

∑
k2≥0

2j2/2215k2/32‖gj2,k2‖L2
ξ2,τ2

)2

.

Observe that since the sum in j2 is finite, we have

30∑
j2=0

∑
k2≥0

2j2/2215k2/32‖gj2,k2‖L2
τ2,ξ2

=

30∑
j2=0

∑
k2≥0

2sj22(1/2−s)j2215k2/32‖gj2,k2‖L2
τ2,ξ2

≤
(

30∑
j2=0

22(1/2−s)j2

)1/2( 30∑
j2=0

( ∑
k2≥0

2sj2215k2/32‖gj2,k2‖L2
τ2,ξ2

)2
)1/2

� ‖g‖
X̃s,1/2,1 .

A similar argument can be used to show that

30∑
j1=0

∑
k1≥0

2j1215k1/32‖fj1,k1‖L2
ξ1,τ1

� ‖f‖
X̃s,1/2,1 ,

thereby yielding the desired estimate.
Case (2). Here we may assume that |j1− j2| ≤ 1, for otherwise fj1 ∗ gj2 = 0

in Aj . For (τ1, ξ1) ∈Aj1 ∩Bk1 and (τ2, ξ2) ∈Aj2 ∩Bk2 we have

(26) (τ1 + τ2)− (ξ1 + ξ2)
3 −

(
τ1 − ξ31

)
−

(
τ2 − ξ32

)
=−3ξξ1ξ2.

It follows that fj1,k1 ∗ gj2,k2 = 0 on Aj ∩Bk unless

2kmax � 2j2j12j2 ∼ 2j+2j1 ,

where kmax =max{k, k1, k2}.
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Suppose that k = kmax, meaning that 2−k/2 � 2−j/2−j1 . Notice that in
order for fj1 ∗gj2 to have low frequency support we require that ξ1 and ξ2 must
have opposite signs for ξ1 ∈ suppfj1 , ξ2 ∈ suppgj2 . It follows that suppfj1
and suppgj2 are separated by K ∼ 2j1 . In light of (21), we have

2j/2‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2−j1/22−j1s2−j2sFj1,k1Gj2,k2 .

Thus

(25) �
∑
j≥0

( ∑
j1≥j+11

∑
k1≥0

j1+1∑
j2=j1−1

∑
k2≥0

2sj−j2−j1/2−j1s2−j2sFj1,k1Gj2,k2

)2

�
∑
j≥0

2−2sj−3j

(∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

Fj1,k1Gj2,k2

)2

� ‖f‖2Xs,1/2,1‖g‖2Xs,1/2,1 .

Next, we suppose that k1 = kmax, so 2
k1 � 2j+2j1 . We use (23) withK ∼ 2j1

to get that

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2k/22−j12k2/2‖fj1,k1‖L2‖gj2,k2‖L2

� 2k/22−j12−j1s2−j2s2−k1/2Fj1,k1Gj2,k2 .

Therefore,

(25)�
∑
j≥0

(
k1∑
k=0

∑
j1≥j+11

∑
k1≥j+2j1

j1+1∑
j2=j1−1

k1∑
k2=0

2js−k1/2−j1s−j2Fj1,k1Gj2,k2

)2

.

Now we estimate

2js−k1/2−j1s−j2s � 2−js2−k/162−7(j+2j1)/16 � 2−js−21j/162−k/16.

It follows that

(25)�
∑
j≥0

2−js−21j/16

(∑
k≥0

∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−k/16Fj1,k1Gj2,k2

)2

,

and the desired estimate follows.
Finally, we suppose that k2 = kmax. Since |j1 − j2| ≤ 1, we may proceed in

the same way as the case when k1 = kmax to obtain the desired estimate.
Case (3). We may assume that j2 ≤ j + 11. Returning to (26), we require

2kmax � 22j+j2 . We first suppose that k = kmax. In this case, we use (20) to
see that

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2−j/42k1/22k2/2‖fj1,k1‖L2‖gj2,k2‖L2

� 2−j/42−j1s2−j2sFj1,k1Gj2,k2 .
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Therefore, (25) is bounded by∑
j≥0

( ∑
k≥2j+j2

j+10∑
j1=j−10

k∑
k1=0

∑
j2=0

k∑
k2=0

2j(s−1/4)2j1(1−s)2−k/22−j2sFj1,k1Gj2,k2

)2

�
∑
j≥0

(
j+10∑

j1=j−10

k∑
k1=0

j+11∑
j2=0

k∑
k2=0

2js2j12−j−j2/22−j/42−j1s2−j2sFj1,k1Gj2,k2

)2

�
∑
j≥0

2−j/2

(∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−j2s−j2/2Fj1,k1Gj2,k2

)2

,

which is sufficient.
Suppose that kmax = k1, so that 2k1 � 22j+j2 . We use (22) to estimate

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2k/42−j1/42k2/2‖fj1,k1‖L2‖gj2,k2‖L2

� 2k/42−j1/42−j1s2−j2s2−k1/2Fj1,k1Gj2,k2 .

It follows that (25) is controlled by∑
j≥0

(
k1∑
k=0

j+10∑
j1=j−10

∑
k1≥2j+j2

j+11∑
j2=0

k1∑
k2=0

2js2−k/42j1(3/4−s)2−k1/22−j2sFj1,k1Gj2,k2

)2

�
∑
j≥0

2−j/4

(∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

2−j2/22−j2sFj1,k1Gj2,k2

)2

,

which is sufficient.
Finally, suppose that kmax = k2. Here we divide our analysis into the

following two cases:

(i) |j2 − j| ≤ 5;
(ii) |j2 − j|> 5.

In Case (i) we use (22) as above to see that

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2k/42−j2/42−j1s2−j2s2−k2/2Fj1,k1Gj2,k2 .

After summing in k, we thereby find that (25) is bounded by∑
j≥0

(
j+10∑

j1=j−10

k2∑
k1=0

∑
j2≥0

|j−j2|≤5

∑
k2≥2j+j2

2js2j1(1−s)2−j2(s+1/4)2−k2/2Fj1,k1Gj2,k2

)2

�
∑
j≥0

(
j+10∑

j1=j−10

∑
k1≥0

∑
j2≥0

|j−j2|≤5

∑
k2≥0

2−j2/42j12−j2−j2/2Fj1,k1Gj2,k2

)2

�
∑
j≥0

2−3j/4

(∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

Fj1,k1Gj2,k2

)2

,
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which is sufficient for our purposes. In Case (ii), we can use (23) with K ∼ 2j

to estimate

‖fj1,k1 ∗ gj2,k2‖L2(Aj∩Bk) � 2k/22−j/22−j2/22−j1s2−j2s2−k2/2Fj1,k1Gj2,k2 .

We use
2−k2/2 � 2−k/162−7k2/16 � 2−k/162−7j/82−7j2/17

to see that, after summing in k, (25) is controlled by∑
j≥0

(
j+10∑

j1=j−10

k2∑
k1=0

∑
j2≥0

|j2<j−5

∑
k2≥0

2j(s−11/8)2j1(2−s)2−j2(s+7/16)2−j2sFj1,k1Gj2,k2

)2

�
∑
j≥0

2−3j/4

(∑
j1≥0

∑
k1≥0

∑
j2≥0

∑
k2≥0

Fj1,k1Gj2,k2

)2

.

This completes the proof of the proposition. �

3.3. Local-in-time control of the perturbations. The purpose of this
subsection is to establish estimates of the form (8). Before stating a proposi-
tion to this effect, we note that from the modulation equations (6) we have

(27) |ċ|, |γ̇|� ‖w‖L∞
t H1

x
� ‖w‖X1,1/2,1 .

We also require control over |c(t)− c0|, which is obtained by integrating the
control on ċ(t):∣∣c(t)− c0

∣∣ ≤ ∫ t

0

∣∣ċ(τ)∣∣dτ �
∫ t

0

∥∥w(τ)∥∥
H1

x
dτ � ‖w‖L1

tH
1
x
.

Since we have restricted t ∈ [0, δ], Hölder’s inequality gives

(28)
∣∣c(t)− c0

∣∣≤ δ1/2‖w‖L2
tH

1
x
� δ1/2‖w‖

X
1,1/2,1
δ

.

Proposition 4. Let 0 < a <
√

c0/3. There is an r > 0 such that the
following statement holds: If v0 ∈H1(R) satisfies ‖v0‖H1 < r and ‖w0‖H1 < r
where w0(x) = eaxv0(x), then there is a δ > 0 so that the equations (4) and
(7) admit solutions v(t, x), w(t, x), respectively, on [0, δ]. Moreover, these
solutions satisfy

(29) ‖v‖
X

1,1/2,1
δ

� ‖v0‖H1 and ‖w‖
X

1,1/2,1
δ

� ‖w0‖H1 .

Proof. We begin with the equation for v, given by (4). Changing variables

x �→ x− (γ − 2c0t+
∫ t

0
c(s)ds) leaves us with

(30) ∂t + ∂3
xv+ (γ̇∂x + ċ∂c)ψc(t) + 2∂x(ψc0v)− ∂x

(
v2

)
= 0.

This can be rewritten as an integral equation using Duhamel’s formula:

v(t, x) =W1(t)v0(x)+

∫ t

0

W1(t−s)
(
(γ̇∂x+ ċ∂c)ψc(t)+2∂x(ψc0v)−∂x

(
v2

))
ds.
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We will show that the operator Φ given by

Φv = ρ(t)W1(t)v0 + ρ(t)

∫ t

0

W1(t− s)
(
(γ̇∂x + ċ∂c)ρ(s)ψc(s)(31)

+ 2∂x
(
ρ2(s)ψc0v

)
− ∂x

(
ρ2(s)v2

))
ds,

is a contraction on a ball that is to be chosen momentarily, and where η is a
smooth cutoff adapted to the time interval [0, δ]. We now estimate

‖Φv‖
X

1,1/2,1
δ

� ‖v0‖H1 +

∥∥∥∥∫ t

0

W1(t− s)
(
(γ̇∂x + ċ∂c)ρψc ds

)∥∥∥∥
X

1,1/2,1
δ

+

∥∥∥∥∫ t

0

W1(t− s)∂x
(
ρ2ψc0v

)
ds

∥∥∥∥
X

1,1/2,1
δ

+

∥∥∥∥∫ t

0

W1(t− s)∂x
(
ρ2v2

)
ds

∥∥∥∥
X

1,1/2,1
δ

=: ‖v0‖H1
x
+ (I) + (II) + (III).

Before proceeding further, observe that as a consequence of the embedding
X1, 12+ε ↪→ X1,1/2,1 for any ε > 0 and the standard inequality (see [10], for
instance)

‖u‖
X

s, 1
2
+ε

δ

� δε‖u‖
X

s, 1
2
+2ε

δ

,

we have that

‖ψ‖
X

1,1/2,1
δ

� δε,

provided δ > 0 and ε > 0 chosen sufficiently small. We estimate (I), (II), and
(III) using Proposition 3 along with Lemmas 3.1 and 3.2:

(I) �
(
|γ̇|+ |ċ|

)
‖ψ‖

X
1,1/2,1
δ

� δε‖w‖
X

1,1/2,1
δ

;

(II) �
∥∥∂x(ψc0v)

∥∥
X

1,−1/2,1
δ

� δε‖v‖
X

1,1/2,1
δ

;

(III) �
∥∥∂x(

v2
)∥∥

X
1,−1/2,1
δ

� ‖v‖2
X

1,1/2,1
δ

.

It follows that

(32) ‖Φv‖
X

1,1/2,1
δ

� ‖v0‖H1 + ‖w‖
X

1,1/2,1
δ

+ ‖v‖
X

1,1/2,1
δ

+ ‖v‖2
X

1,1/2,1
δ

.

Turning to the w-equation (7), we again change variables with an eye to-

ward removing the first-order term: let x �→ x− (c0 − 3a2 + a)t+
∫ t

0
ċ(s)ds−

γ(t). The equation then reads

∂tw+ ∂3
xw− 3a∂2

xw+ a
(
c0 − a2

)
w+ aγ̇w− eax(ċ∂c + γ̇∂x)ψc − eax∂x

(
v2

)
− a(c− c0)w+

〈
F(t), η1

〉
ζ1 +

〈
F(t), η2

〉
ζ2 = 0,

where

F(t) = eax(γ̇∂x + ċ∂c)e
−axψc − aγ̇w+ eax∂x

(
v2

)
− a(c− c0)w.
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We will show that, along with Φ defined above, the map Ψ defined by

Ψw = ρ(t)W2(t)w0 + ρ(t)

∫ t

0

W2(t− s)N (s)ds,

where

N = 2(∂x − a)
(
ρ2ψcw

)
+ aργ̇weax(ċ∂c + γ̇∂x)ρψc − eax∂x

(
ρ2v2

)
− a(c− c0)ρw+ ρ〈F , η1〉ξ1 + ρ〈F , η2〉ξ2

is a contraction on an appropriately chosen ball in X
1,1/2,1
δ . We begin by

estimating

‖Ψw‖
X

1,1/2,1
δ

� ‖w0‖H1 +
∥∥(∂x − a)

(
ρ2ψcw

)∥∥
X

1,−1/2,1
δ

+ ‖ργ̇w‖
X

1,−1/2,1
δ

+
∥∥eax(ċ∂c + γ̇∂x)ρψc

∥∥
X

1,−1/2,1
δ

+
∥∥eax∂x(ρ2v2)∥∥X

1,−1/2,1
δ

+
∥∥(c− c0)ρw

∥∥
X

1,−1/2,1
δ

+
∥∥ρ〈F , η1〉ζ1

∥∥
X

1,−1/2,1
δ

+
∥∥ρ〈F , η2〉ζ2

∥∥
X

1,−1/2,1
δ

=: ‖w0‖Hs + (I) + (II) + (III) + (IV) + (V) + (VI) + (VII).

To estimate (I) we use the fact that eax∂xe
−ax = ∂x − a to see that

(I) =
∥∥eax∂xe−axρψcw

∥∥
X

1,−1/2,1
δ

�
∥∥(∂xψc)w

∥∥
X

1,−1/2,1
δ

+
∥∥(

eaxψc

)
vx

∥∥
X

1,−1/2,1
δ

� δε‖w‖
X

1,1/2,1
δ

+ δε‖v‖
X

1,1/2,1
δ

.

Term (II) is estimated easily using (27):

(II)� ‖γ̇‖L∞
t
‖w‖

X
1,−1/2,1
δ

� ‖w‖2
X

1,1/2,1
δ

.

Similarly, we see that

(III)�
(
‖ċ‖L∞

t
+ ‖γ̇‖L∞

t

)
‖ψ‖

X
1,1/2,1
δ

� δε‖w‖
X

1,1/2,1
δ

.

Recalling that w = eaxv, we have

(IV) = 2‖wvx‖X1,−1/2,1
δ

� ‖w‖
X

1,1/2,1
δ

‖v‖
X

1,1/2,1
δ

.

To estimate (V), we use (28) to see that

(V)≤ ‖c− c0‖L∞
t
‖w‖

X
1,−1/2,1
δ

� ‖w‖2
X

1,1/2,1
δ

.

To estimate (VI) and (VII), we require the following lemma.

Lemma 3.5. Let f be a space–time function and let s≥ 0. Then∥∥〈f, ηi〉ζi∥∥X
s,−1/2,1
δ

� ‖f‖
X

s,−1/2,1
δ

, i= 1,2.
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Proof. Let f̃j = χAj f̃ , as before, so that f =
∑

j≥0 fj . Then∥∥〈f, ηi〉ξi∥∥X
s,−1/2,1
δ

≤
∑
j≥0

∥∥〈fj , ηi〉ξi∥∥X
s,−1/2,1
δ

=
∑
j≥0

(∑
n≥0

22ns
(∑

k≥0

2−k/2
∥∥〈f̃j , η̂i〉ξ̂i∥∥L2(An∩Bk)

)2)1/2

.

Note that 〈f̃j , η̂i〉= 〈f̃j , χAj η̂i〉, which is a function of τ only. Here we denote

the Fourier transform of ηi, ζi by η̂i, ζ̂i, respectively, to emphasize that these
are functions of the frequency variable ξ only. It follows that∥∥〈f̃j , η̂i〉ζ̂i∥∥L2(An∩Bk)

=
∥∥〈f̃j , χAj η̂i〉

∥∥
L2

τ (Bk)
‖ζ̂i‖L2

ξ(An)

≤ ‖χBk
f̃j‖L2

τ,ξ
‖η̂i‖L2(Aj)‖ζ̂i‖L2

ξ(An).

It remains to estimate

(33)
∑
j≥0

(∑
n≥0

22ns
(∑

k≥0

2−k/2‖f̃‖L2(Aj∩Bk)‖η̂i‖L2(Aj)‖ζ̂i‖L2(An)

)2)1/2

.

In the case when n≤ j, we have 22ns ≤ 22js so that

(33)≤
∑
j≥0

‖η̂i‖L2(Aj)

(
j∑

n=0

22js‖ζ̂i‖2L2(An)

(∑
k≥0

2−k/2‖f̃‖L2(Aj∩Bk)

)2
)1/2

,

so that after carrying out the sum in n we have that (33) is bounded by∑
j≥0

‖η̂i‖L2(Aj)

(∑
k≥0

2js2−k/2‖f̃‖L2(Aj∩Bk)

)

�
(∑

j≥0

(∑
k≥0

2js2−k/2‖f̃‖L2(Aj∩Bk)

)2)1/2

,

where in the last line we’ve used Cauchy–Schwarz and the fact that ηi is
smooth. If n ≥ j, then 22ns = 22ns2−2js22js and we find that (33) can be
rewritten as∑

j≥0

2−js‖η̂i‖L2(Aj)

(∑
n≥j

22ns‖ζ̂i‖L2(An)

(∑
k≥0

2−k/2‖f̃‖L2(Aj∩Bk)

)2)1/2

,

and after summing in n (using that ξi is smooth),

(33) �
∑
j≥0

(2−js‖η̂i‖L2(Aj)

(∑
k≥0

2js2−k/2‖f̃‖L2(Aj∩Bk)

)

�
(∑

j≥0

(∑
k≥0

2js2−k/2‖f̃‖L2(Aj∩Bk)

)2)1/2

.
�
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Returning to our estimates, we now have that

(VI), (VII) � ‖F‖
X

1,−1/2,1
δ

� ‖w‖2
X

1,1/2,1
δ

+ δε‖w‖
X

1,1/2,1
δ

+ ‖w‖
X

1,1/2,1
δ

‖v‖
X

1,1/2,1
δ

,

following the estimates of (II) through (V). Taken together, these estimates
now give

‖Ψw‖
X

1,1/2,1
δ

� ‖w0‖H1 + δε‖w‖
X

1,1/2,1
δ

+ δε‖v‖
X

1,1/2,1
δ

+ ‖w‖2
X

1,1/2,1
δ

(34)

+ ‖w‖
X

1,1/2,1
δ

‖v‖
X

1,1/2,1
δ

.

Suppose that ‖v0‖Hs ,‖w0‖Hs < r� 1, and consider

B =
{
v,w ∈X

1,1/2,1
δ | ‖v‖

X
1,1/2,1
δ

≤ 2cr,‖w‖
X

1,1/2,1
δ

≤ 2cr
}
.

According to our estimates, we have

‖Φv‖
X

s,1/2,1
δ

≤ cr+ 4cδεr+ 4c2r2,

‖Ψw‖
X

s,1/2,1
δ

≤ cr+ 4cδεr+ 4c2r2.

It follows that if δ and r are chosen sufficiently small, then the maps Φ,Ψ :
B→B.

To see that Φ, Ψ are contractions on B we let v1, v2 ∈ B with w1 = eaxv1 ∈
B, w2 = eaxv2 ∈ B. Associated with these functions are modulation param-
eters (γ1, c1) and (γ2, c2) corresponding to v1, v2, respectively. From the
modulation equations, we find that

‖ċ1 − ċ2‖L∞
t
+ ‖γ̇1 + γ̇2‖L∞

t

≤ ‖v1 − v2‖L∞
t H1

x
‖w1 +w2‖L∞

t H1
x

+ ‖v1 + v2‖L∞
t H1

x
‖w1 −w2‖L∞

t H1
x
,

where we use the notation L∞
t as shorthand for the space L∞

t∈[0,δ]. Thus, we

have

‖ċ1 − ċ2‖L∞
t
+ ‖γ̇1 + γ̇2‖L∞

t

≤ c‖v1 − v2‖X1,1/2,1
δ

‖w1 +w2‖X1,1/2,1
δ

+ c‖v1 + v2‖X1,1/2,1
δ

‖w1 −w2‖X1,1/2,1
δ

≤ 4c2r‖v1 − v2‖X1,1/2,1
δ

+ 4c2r‖w1 −w2‖X1,1/2,1
δ

.

Also,

|ċ1 − ċ2| ≤
∫ t

0

∣∣ċ1(s)− ċ2(s)
∣∣ds

≤
∫ t

0

(
‖v1 − v2‖H1

x
‖w1 +w2‖H1

x
+ ‖v1 + v2‖H1

x
‖w1 −w2‖H1

x

)
ds
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≤ δ1/2
(
‖v1 − v2‖X1,1/2,1

δ
‖w1 +w2‖X1,1/2,1

+ ‖v1 + v2‖X1,1/2,1
δ

‖w1 −w2‖X1,1/2,1
δ

)
≤ 4crδ1/2

(
‖v1 − v2‖X1,1/2,1

δ
+ ‖w1 −w2‖X1,1/2,1

δ

)
.

We thus have∥∥Φ(v1)−Φ(v2)
∥∥
X

s,1/2,1
δ

≤
∥∥∥∥ρ(t)∫ t

0

W1(t− s)
(
(γ̇1∂x + ċ1∂c1)ρψc1 − (γ̇2∂x + ċ2∂c2)ρψc2

)∥∥∥∥
X

s,1/2,1
δ

+

∥∥∥∥ρ(t)∫ t

0

W1(t− s)∂x
(
ρ2(ψc0v1 −ψc0v2)

)
ds

∥∥∥∥
X

s,1/2,1
δ

+

∥∥∥∥ρ(t)∫ t

0

W1(t− s)∂x
(
ρ2

(
v21 − v22

))
ds

∥∥∥∥
X

s,1/2,1
δ

≤ cδε
(
4c2r‖v1 − v2‖X1,1/2,1

δ
+ 4c2r‖w1 −w2‖X1,1/2,1

δ

)
+ cδε‖v1 − v2‖Xs,1/2,1

δ

+ c‖v1 + v2‖Xs,1/2,1
δ

‖v1 − v2‖Xs,1/2,1
δ

≤ δε
(
4c3r+ c

)
‖v1 − v2‖Xs,1/2,1

δ
+ 4c2r‖v1 − v2‖Xs,1/2,1

δ

+ 4c3rδε‖w1 −w2‖Xs,1/2,1
δ

.

It follows that if δ, r are chosen sufficiently small, then∥∥Φ(v1)−Φ(v2)
∥∥
X

s,1/2,1
δ

≤ 1

2

(
‖v1 − v2‖Xs,1/2,1

δ
+ ‖w1 −w2‖Xs,1/2,1

δ

)
,

so that Φ is a contraction on B.
Turning to estimates for Ψ, we find similarly that∥∥Ψ(w1)−Ψ(w2)

∥∥
X

1,1/2,1
δ

≤
(
δε + 8c3r2 + 8c2r+ 4cr

)(
‖w1 −w2‖X1,1/2,1

δ
+ ‖v1 − v2‖X1,1/2,1

δ

)
+2cr‖w1 −w2‖X1,1/2,1

δ
.

We conclude that if δ, r are sufficiently small, the Ψ is a contraction on B.
This establishes the local well-posedness for the weighted and unweighted
perturbations. �

4. Iteration

In this section, we wish to gain long-term control on the behavior of the
perturbation by iterating the short-term control gained in Section 3, along
with some energy and spectral estimates. Our goal is to show that v remains
bounded in H1 for all time, while w enjoys exponential decay in H1 as time
grows. To do this, we will iterate along local well-posedness time intervals
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and prove the desired bound by induction. Specifically, we wish to show that,
for all t > 0 there exist c(t) and γ(t) so that

(1) c(t) and γ(t) are smooth functions of time,
(2) ċ and γ̇ are uniformly small, and decay exponentially as t→∞,
(3) c(t)− c0 is uniformly small,
(4) ‖v(t)‖H1 is uniformly small, and
(5) ‖w(t)‖H1 decays exponentially as t→∞.

To reach these conclusions, we rely on the modulation equations described
above, (4) and (5). The first is a result of a now-standard implicit function
theorem argument.

We will prove the rest together via the theorem below, which provides an
explicit expression for the decay of ‖w‖H1 as a function of time, thereby con-
cluding the exponential decay of the perturbation and the asymptotic stability
of the weighted perturbation which are our main result.

Theorem 1. There is an ε > 0 so that if ‖w(0)‖H1 + ‖v(0)‖H1 + |c(0)−
c0| < ε and v, w, c, and γ are as defined above, then there exist κ with 0 <
κ< 1 and C1 > 0 so that, for any n ∈N,∥∥w(nδ)∥∥

H1 < κnε,∥∥v(nδ)∥∥
H1 < C1ε,∣∣ċ(nδ)∣∣ < κnε,(35) ∣∣γ̇(nδ)∣∣ < κnε,∣∣c(nδ)− c0

∣∣ < (
2− κn−1

)
ε.

Here, δ is the local well-posedness time interval found in Proposition 4 corre-
sponding to an initial condition of size up to (2 +C1)ε, and C1 depends only
on c0.

Proof. First, let ε be sufficiently small so that, whenever∥∥w(t0)∥∥H1 +
∥∥v(t0)∥∥H1 +

∣∣c(t0)− c0
∣∣ < (2 +C1)ε,

it follows that v(t) exists on [t0, t0 + δ], and

‖w‖
X

1,1/2,1
[t0,t0+δ]

+ ‖v‖
X

1,1/2,1
[t0,t0+δ]

<C0(4 + 2C1)ε,

where C0 is the implicit constant in the conclusion of Proposition 4.
We wish to prove the claim by induction. First, note that ċ and γ̇ satisfy

the following modulation equations:[
γ̇

ċ

]
=A

[
〈eay∂y(c− c0 + v)e−ayw,η1〉L2

eay∂y(c− c0 + v)e−ayw,η2〉L2

]
,
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where

A=

[
1 + 〈eay(∂yψc − ∂yψc0), η1〉 − 〈w,∂yη1〉 〈eay(∂cψc − ∂cψc0), η1〉
〈eay(∂yψc − ∂yψc0), η2〉 − 〈w,∂yη2〉 1 + 〈eay(∂cψc − ∂cψc0), η2〉

]−1

.

At any time when |c − c0| and ‖w‖H1 are sufficiently small, it follows that
‖A‖ ≤ 2, so that∣∣∣∣[γ̇ċ

]∣∣∣∣ ≤ 2

∣∣∣∣∣
[
〈eay∂y(c− c0 + v)e−ayw,η1〉L2

〈eay∂y(c− c0 + v)e−ayw,η2〉L2

]∣∣∣∣∣
≤ 2

(
max
i=1,2

‖ηi‖H1

)(
|c− c0|+ ‖v‖H1

)
‖w‖H1 .

Therefore, (35) is satisfied at t= 0 because of our assumptions on the initial
data, so long as 4(maxi=1,2 ‖ηi‖H1)ε≤ 1.

Now, assume that (35) is satisfied at t= (n− 1)δ. We need to control all 5
quantities going forward to t= nδ. Without loss of generality, assume δ ≤ 1.

Let η be a sufficiently small constant satisfying

(36) 0< (20 + 4C1)ε < η� 1.

For convenience, define

L(t) =
∥∥w(t)∥∥

H1 +
∥∥v(t)∥∥

H1 +
∣∣ċ(t)∣∣+ ∣∣γ̇(t)∣∣+ ∣∣c(t)− c0

∣∣.
Note that by the inductive hypothesis (35), L((n− 1)δ)< (5 +C1)ε < η. By
continuity, then, there exists δ0 > 0 so that L(t)≤ η on [(n−1)δ, (n−1)δ+δ0].
Let δ1 be the largest such δ0 which is at most δ. We will first show that δ1 = δ.

Let us first estimate ċ and γ̇ on I := [(n− 1)δ, (n− 1)δ+ δ1]. As above, we
have that for each t ∈ I , |ċ|+ |γ̇| ≤ C(|c(t)− c0|+ ‖v(t)‖H1)‖w(t)‖H1 ≤ Cη2,
which is less than 1

10η so long as η is sufficiently small. Then∣∣c(t)− c0
∣∣≤ ∣∣c((n− 1)δ

)
− c(0)

∣∣+ ∫
I

∣∣ċ(t)∣∣dt≤ (
2− κn−2

)
ε+

1

10
ηδ1 ≤

1

5
η.

Next, we estimate ‖v(t)‖H1 . This can be done using the Lyapunov functional
E [u] =

∫ ∞
−∞

1
2 (∂xu)

2− 1
3u

3+ 1
2c0u

2 and considering E [u(t)]−E [uc0 ], which is a

constant of the evolution. Exactly as in [17], this leads to the conclusion that,
for η sufficiently small, ‖v(t)‖H1 <C1ε <

1
4η on I for some C1 depending only

on c0.
Finally, we estimate ‖w(t)‖H1 . Define M = ‖w((n − 1)δ)‖2H1 , and N =

‖w((n− 1)δ+ δ1)‖2H1 . Then we have that

N −M =

∫
I

d

dt

∥∥w(t)∥∥2

H1 dt

= 2

∫
I

〈w,wt〉H1 dt
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= 2

∫
I

〈w,Aaw+QF〉H1 dt

= 2

∫
I

〈w,Aaw〉H1 dt+ 2

∫
I

〈
w,Q

[
eay(ċ∂c + γ̇∂y)

]
ψc

〉
H1 dt

− 2a
(
γ̇ + (c− c0)

)∫
I

〈w,Qw〉H1 dt+ 2

∫
I

〈
w,Qeay∂y

(
v2

)〉
H1 dt

= 2

∫
I

〈w,AaQw〉H1 dt+ 2

∫
I

〈
w,Q

[
eay(ċ∂c + γ̇∂y)

]
ψc

〉
H1 dt

− 2a

∫
I

(
γ̇ + (c− c0)

)〈
w,Q(∂y − a)w

〉
H1 dt

+ 2

∫
I

〈
w,Qeay∂y

(
v2

)〉
H1 dt

= (I) + (II) + (III) + (IV).

We may conclude by Proposition 2 that (I) is less than or equal to
−2b

∫
I
‖w(t)‖2H1 dt.

For (II), we have (II) =
∫
I
〈w,Q[eay(ċ∂c + γ̇∂y)](ψc − uc0 + uc0)]〉H1 . Since

Q(eay∂cuc0) =Q(eay∂y(uc0)) = 0, it follows that

(II) =

∫
I

〈
w,Q

[
eay(ċ∂c + γ̇∂y)

]
(ψc − uc0)

〉
H1 �

∫
I

[
|ċ+ γ̇||c− c0|

∥∥w(t)∥∥
H1

]
.

For (III), consider〈
w,Q(∂y − a)w

〉
H1 = 〈w,Q∂yw〉H1 − a〈w,Qw〉H1

= 〈w,∂yw〉H1 − 〈w,P∂yw〉H1 − a〈w,Qw〉H1

= 0−
〈
w, 〈∂yw,ηi〉L2ζi

〉
H1 − a〈w,Qw〉H1

≤ ‖∂yw‖L2‖ηi‖L2‖w‖H1‖ξi‖H1 + a‖w‖2H1

� ‖w‖2H1 .

Therefore, (III)�
∫
I
(|c− c0|+ |γ̇|)‖w(t)‖2H1 dt.

Finally, we need to estimate (IV). To do so, we write〈
w,Qeay∂y

(
v2

)〉
H1 =

〈
w,eay∂y

(
v2

)〉
H1 −

〈
w,Peay∂y

(
v2

)〉
H1 .

Note that

P
(
eay∂

)
y
(
v2

)
=

2∑
i=1

〈
eay∂y

(
v2

)
, ηi

〉
L2ξi,

so ∫
I

〈
w,P

(
eay∂y

(
v2

))〉
H1 dt

=

2∑
i=1

∫
I

〈w, ξi〉H1〈wvy, ηi〉L2 dt



ASYMPTOTIC STABILITY FOR KDV SOLITONS 467

�
2∑

i=1

∫
I

[
‖w‖H1

x
‖ξi‖H1

x
‖w‖L2

x
‖vy‖L2

x
‖ηi‖L∞

x

]
dt

�
∫
I

(∥∥w(t)∥∥2

H1 dt
)
‖v‖L∞

t H1
x
.

Then we need to estimate ∫
I

〈
w,eay∂y

(
v2

)〉
H1 dt.

This has two terms:∫
I

∫
R

wy∂y(wvy)dxdt+

∫
I

∫
R

w2vy dxdt.

We estimate the first term as follows:∫
I

∫
R

wy∂y(wvy)dxdt � ‖wy‖
X0, 1

2

∥∥∂y(wvy)∥∥
X0,− 1

2

� ‖wy‖X0,1/2,1

∥∥∂y(wvy)∥∥X0,1/2,1

� ‖w‖2
X1, 1

2
,1
‖v‖

X1, 1
2
,1

�M‖v‖
X1, 1

2
,1 ,

using (18). For the second term, we get:∣∣∣∣∫ n+1

n

∫
R

w2vy dxdt

∣∣∣∣ � ‖w‖L6
tL

∞
x
‖wvy‖

L
6
5
t L1

x

� ‖w‖L6
tL

∞
x
‖w‖

L
12
5

t L2
x

‖vy‖
L

12
5

t L2
x

� ‖w‖L∞
t L∞

x
‖w‖L∞

t L2
x
‖vy‖L∞

t L2
x

� ‖w‖2
X1, 1

2
,1
‖vy‖

X1, 1
2
,1

�M‖v‖
X1, 1

2
,1

via Strichartz estimates.
In total, we obtain the following estimate for the increment of w:

N −M ≤
∫
I

[
−2b+C|γ̇ + c− c0|+C‖v‖L∞

t H1
x

]∥∥w(t)∥∥2

H1
x
dt

+

∫
I

C
[
|ċ+ γ̇||c− c0|

∥∥w(t)∥∥
H1

]
dt+M‖v‖X1,1/2,1 .

Using our controls above, this yields

N −M ≤ (−2b+Cη)η2δ+Cη2ηδ+C1Mη.

Hence, we may conclude that

N ≤M(1 +C1η) +Cη3.

Therefore, it follows that N ≤ ε2(1 +C1η) +Cη3, so, for η sufficiently small,
‖w((n− 1)δ+ δ1)‖H1 ≤ 1

4η.
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Finally, we conclude that L((n− 1)δ+ δ1)≤ ( 1
10 +

1
5 +

1
4 +

1
4 )η < η. Hence,

we may continue past δ1 with (36) remaining valid. Hence, δ1 = δ. Therefore,
we have that L(t)≤ η on [(n− 1)δ,nδ]. Now, let us verify (35) at t= nδ. Set
J := [(n− 1)δ,nδ].

As above, we have that for each t ∈ I ,

|ċ|+ |γ̇| ≤C
(∣∣c(t)− c0

∣∣+ ∥∥v(t)∥∥
bH1

)∥∥w(t)∥∥
H1 ≤C(1 +C1)η

∥∥w(t)∥∥
H1 ,

which is less than ‖w(t)‖H1 so long as η is sufficiently small. Hence, the
control on ċ and γ̇ is valid whenever the control on w holds. When it holds,
then,∣∣c(t)− c0

∣∣ ≤ ∣∣c((n− 1)δ
)
− c(0)

∣∣+ ∫
J

∣∣ċ(t)∣∣dt≤ (
2− κn−2

)
ε+ κn−1

≤
(
2− κn−1

)
ε.

The estimate on v is the same as above, with the same result.
Finally, we estimate ‖w(t)‖H1 . Define m(n) = infJ ‖w(t)‖2H1 and N(n) =

‖w(nδ)‖2H1 . Then we have that

N(n)−N(n− 1) =

∫
J

d

dt

∥∥w(t)∥∥2

H1 dt,

which has the same four terms to be estimated as above. As above, we obtain
the following estimate for the increment of w:

N(n)−N(n− 1) ≤
∫
J

[
−2b+C|γ̇ + c− c0|+C‖v‖L∞

t H1
x

]∥∥w(t)∥∥2

H1
x
dt

+

∫
J

C
[
|ċ+ γ̇||c− c0|

∥∥w(t)∥∥
H1

]
dt+N(n− 1)‖v‖

X1, 1
2
,1 .

Using our controls above, this yields

N(n)−N(n− 1)≤
∫
I

[−2b+Cη]
∥∥w(t)∥∥2

H1
x
dt+ 2N(n− 1)C1ε.

So, for η sufficiently small, we have

N(n)−N(n− 1)≤−bm(n) +CεN(n− 1).

In order to close the loop, we need to relate m(n) and N(n− 1). There
are two possible cases. First, suppose that m ≥ 3

4N(n). Then in the above
argument we obtain

(37) N(n)−N(n− 1)≤−3

4
bN(n− 1) +CεN(n− 1).

On the other hand, if m(n) < 3
4N(n− 1), then |m(n)−N(n)|> 1

4N(n− 1).
Let t∗ be the time at which the minimum valuem(n) occurs. By the increment
calculation above, then, we have that

1

4
N(n− 1)<N(n− 1)−m(n) =

∣∣∣∣∫ t∗

(n−1)δ

〈w,Aaw+QF〉H1 dt

∣∣∣∣.
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Therefore,∣∣∣∣∫ t∗

(n−1)δ

〈w,Aaw〉H1 dt

∣∣∣∣ ≥ 1

4
N(n− 1)−

∣∣∣∣∫ t∗

(n−1)δ

〈w,QF〉H1 dt

∣∣∣∣.
By the increment calculation above, we then obtain∣∣∣∣∫ t∗

nδ

〈w,Aaw〉H1 dt

∣∣∣∣≥ 1

4
N(n− 1)−

(
CηN(n− 1) +CεN(n− 1)

)
.

Since 〈w,Aaw〉H1 ≤ 0 for all w by Proposition 2, that is, this quantity has a
definite sign, it follows that∣∣∣∣∫

J

〈w,Aaw〉H1 dt

∣∣∣∣≥ 1

4
N(n− 1)−

(
C(η+ ε)N(n− 1)

)
.

Hence in this case,

(38) N(n)−N(n− 1)≤−1

4
N(n− 1) + 2

(
C(η+ ε)N(n− 1)

)
.

Hence, in either case, it follows that, with β =min( 34b,
1
4 ),

(39) N(n)−N(n− 1)≤−βN(n− 1) +CηN(n− 1).

So, N(n) ≤ (1 + Cη − β)N(n − 1). For η sufficiently small, it follows that

with κ := 1− β
2 , κ < 1 and N(n)≤ κN(n− 1). So, since N(n− 1)≤ κn−1ε,

N(n) ≤ κnε. By the arguments above, the corresponding controls on ċ, γ̇,
c− c0, and ‖v(n)‖H1 immediately follow. Hence, by induction, the theorem
holds. �
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