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HOPF ALGEBRAS AND QUADRATIC FORMS

P. CASSOU-NOGUÈS, T. CHINBURG, B. MORIN AND M. J. TAYLOR

Abstract. Following Serre’s initial work, a number of authors
have considered twists of quadratic forms on a scheme Y by tor-
sors of a finite group G, together with formulas for the Hasse–
Witt invariants of the twisted form. In this paper, we take the

base scheme Y to be affine and consider non-constant group

schemes G. Our main result describes these twists by a sim-
ple and explicit formula. There is a fundamental new feature in

this case—in that the torsor may now be ramified over Y . The

natural framework for handling the case of a non-constant group

scheme over the affine base is provided by the quadratic theory
of Hopf-algebras.

1. Introduction

Let Y denote a scheme in which 2 is invertible. Recall that a symmetric
bundle (V, q) on Y is an OY -vector bundle V endowed with a symmetric
morphism of OY -modules

q : V ⊗OY
V →OY

inducing an isomorphism between V and its dual V ∨. For any integer n, we
let (On

Y , tn = x2
1 + · · ·+ x2

n) denote the sum of squares form of rank n on Y .
An isometry of symmetric bundles u : (V, q)→ (W,r) on Y is an isomor-

phism of vector bundles u : V →W such that r(u(x), u(y)) = q(x, y) for any
open affine subscheme U of Y and any x and y in V (U). We denote by
Isom(q, r) this set. The functor

Isom(q, r) : T → Isom(qT , rT )
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is a sheaf of sets on Sch/Y , endowed with the fppf-topology. We let Yfl

denote the category of such sheaves. We define the orthogonal group of O(q)
as the group Isom(q, q) of Yfl. We set O(n) =O(tn). Suppose that q is of
rank n, then Isom(tn, q) supports a right O(n)-action which endows it with
the structure of anO(n)-torsor. Let Quadn(Y ) be the category whose objects
are symmetric bundles of rank n over Y and whose morphisms are isometries.
Then the canonical functor

Quadn(Y )→Tors
(
Yfl,O(n)

)op
,(1)

q → Isom(tn, q)

is an equivalence of categories.
For a group H of Yfl, we write BH for the topos of objects of Yfl endowed

with a left action of H . By a result due to Grothendieck and Giraud we know
that for any topos over Yfl, f : E → Yfl, there is a canonical equivalence

(2) HomtopYfl
(E ,BH)�Tors

(
E , f∗(H)

)op
,

where HomtopYfl
(E ,BH) denotes the category of morphisms of Yfl-topoi

from E to BH and where Tors(E , f∗(H)) is the category of f∗(H)-torsors of
E (see [CCMT], Theorem 2.2 for instance). It follows from (1) and (2), in
the particular case where E = Yfl and H =O(n), that we have a canonical
equivalence

Quadn(Y )→HomtopYfl
(Yfl,BO(n))

op,(3)

q → {q}.
Suppose now that we are additionally given a finite flat group scheme G

over Y together with a homomorphism of Yfl-group schemes ρ : G→O(q).
This then yields a map of topoi B(ρ) : BG →BO(q). If X → Y is a G-torsor
then by (2) applied to H =G and E = Yfl we obtain a morphism Yfl →BG.
Moreover, by observing that Isom(tn, q), endowed with the left action of
O(q), is an O(n)-torsor of BO(q), we once again obtain via (2) a morphism
Tq : BO(q) →BO(n). The new form which corresponds via (3) to the composite

Yfl →BG →BO(q) →BO(n)

is referred to as the twist of q by the torsor X and is denoted qX (see [CCMT]
for the precise definitions). Using the above theoretical approach, one can
attach to any symmetric bundle q Hasse–Witt invariants in the étale coho-
mology groups Hi

et(Y,Z/2Z). In [CCMT], Section 4, we describe a universal
formula relating the Hasse–Witt invariants of q to those of the twist qX .

The use of classifying topoi to study invariants of symmetric bundles pro-
vides us with tools to produce results at a high level of generality. In this pa-
per, we focus on the affine case, when Y = Spec(R) and G= Spec(A), where
A carries the natural structure of a finite and flat R-Hopf algebra. In this
case, a symmetric bundle is given by a locally free R-module V , of finite rank,
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endowed with a nondegenerate quadratic form q. The group scheme homo-
morphism ρ : G→O(q) may be viewed as providing (V, q) with the structure
of an A-equivariant quadratic module, where V is an A-comodule and q is an
A-equivariant form (Section 2.2). Our goal is to describe the twist (VX , qX),
constructed above, by a simple explicit formula in terms of quadratic Hopf
theory. We may write the G-torsor X = Spec(B), so that B may be viewed
as a principal homogeneous space for A. Under certain mild hypotheses on G
(see Section 3.2, hypothesis H), we will show in Section 3 and Theorem 4.1.

Theorem 1.1. Suppose that G= Spec(A) is a group scheme over Spec(R)
which satisfies H. Then:

(1) The inverse different D−1
B/R admits a square root, D

−1/2
B/R say, which, when

endowed with the trace form TrB/R, forms a quadratic module.

(2) The tensor product (D
−1/2
B/R ⊗ V,TrB/R ⊗ q) is an A-equivariant quadratic

module.
(3) There exists an isomorphism of quadratic modules

(VX , qX)∼=
(
D

−1/2
B/R ⊗ V,TrB/R ⊗ q

)A
,

where (D
−1/2
B/R ⊗ V,TrB/R ⊗ q)A is the submodule of fixed points by A.

Finally suppose that G is a constant group scheme and suppose initially
that R is a field; in this case our results yield the well-known twisting formulas
of Serre and Fröhlich, [Se1], [F]. Twisting formulas for more general base rings
R are given in [CNET] and again our work enables us to recoup these results
by appropriate specializations of the universal twisting formula of [CCMT].

The article then concludes by considering some examples. We begin by
extending some well-known results for fields with group action to our situation
where a group scheme acts on an affine scheme. In particular, we show that
for any principal homogeneous space B for the Hopf algebra A, the quadratic

module (D
−1/2
B/R ,TrB/R) is the twist by B of a standard A-equivariant form

of AD (referred to in the text as the unit form). In the last example, we
study in detail the twists of the underlying quadratic form of an orthogonal
representation of a non-constant group scheme which is generically of dihedral
type. We observe that the quadratic forms we obtain by this process are not
in general isometric to the form we start with.

2. Symmetric bundles and fixed points

The goal of this section is to describe how we can associate to any symmetric
bundle, equivariant under the action of a finite and flat Hopf algebra, a new
symmetric bundle by taking fixed points. Prior to describing this procedure in
Proposition 2.7 of Section 2.2, in the first subsection we have assembled the
main notation of the paper together with some elementary algebraic results
on Hopf algebras that we will use later on.
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2.1. Algebraic preliminaries. Let R be a commutative noetherian integral
domain in which 2 is invertible, with field of fractions K. We consider a finite,
locally free R-Hopf algebra A and we denote by AD the dual algebra. We set
AK =A⊗R K, AD

K =AD ⊗R K and we identify AD
K with the dual of AK . We

let Δ, ε and S (resp. ΔD, εD and SD) be respectively the comultiplication,
the counit and the antipode of A (resp. AD). We assume that S2 = IA,
which implies that (SD)2 = IAD . This last condition is fulfilled when A is
commutative or cocommutative ([C], Proposition 1.11). A right A-comodule
M is a finitely generated, locally free R-module, endowed with an R-module
homomorphism (the structure map),

αM : M →M ⊗R A,

m �→
∑

(m)

m(0) ⊗m(1),

such that (αM ⊗ 1)αM = (1 ⊗ Δ)αM (coassociativity) and (1 ⊗ ε)αM =
id : M →M ⊗A→M ⊗R R�M (counitary). Define the R-linear map

ψM : AD ⊗R M →M,

g⊗m �→
∑

m

〈g,m(1)〉m(0).

One can prove that ψM defines a left AD-module structure on M . Moreover,
by Proposition 1.3 in [CEPT], the association (M,αM ) → (M,ψM ) gives a
bijective correspondence between the A-comodule and the AD-module struc-
tures on a R-module M . For any A-comodule M we define the R-submodule

MA =
{
m ∈M | αM (m) =m⊗ 1

}
.

Lemma 2.1. For any A-comodule M , then

MA =
{
m ∈M | gm= g(1A)m ∀g ∈AD

}
.

Proof. Let M ′ denote the right-hand side of the above the equality. The
inclusion MA ⊂M ′ is immediate. We now use the fact that the map

ϕ : A⊗R AD →HomR(A,A),

with ϕ(h⊗ f)(a) = 〈f, a〉h is an isomorphism. Therefore, there exist elements
{h1, . . . , hn} of A and {f1, . . . , fn} of AD such that

Id =
∑

1≤i≤n

ϕ(hi ⊗ fi).

This implies that for any m ∈M we have

αM (m) =
∑

i

fim⊗ hi.

The inclusion M ′ ⊂MA follows easily. �
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Since any Hopf algebra is a left module over itself via the multiplication
map, it is a right comodule on its dual. Therefore it follows from the lemma
that we may define the left integrals of A and AD by the following equalities:

I(A) = AAD

=
{
x ∈A | ax= ε(a)x,∀a ∈A

}
,

I
(
AD

)
=

(
AD

)A
=

{
f ∈AD | uf = εD(u)f = u(1)f,∀u ∈AD

}
.

We note that I(A) is not only an R-submodule of A but also a two-sided
A-ideal. In a similar way we may define the module of right integrals. A Hopf
algebra is called unimodular if the modules of left and right integrals coincide.
A Hopf algebra is also endowed with a right comodule structure induced by its
comultiplication. Therefore it becomes a left module over the dual algebra as
explained previously. The description of a finite Hopf R-algebra as a module
over its dual holds in general. A theorem of Larson and Sweedler (see [P],
Section 3) states that for any finite Hopf R-algebra the action of AD on A
induces an isomorphism

A�AD ⊗R I(A).

This theorem implies that I(A) and I(AD) are rank one projective R-modules
([C], Corollary 3.4). In the particular case where I(A) is a free R-module with
θ as a basis, then A is a free AD-module on the left integral θ. This is always
the case when R is a principal ideal domain.

Lemma 2.2. The following properties are equivalent:

(i) The module of left integrals of A is a free rank one R-module.
(ii) The module of left integrals of AD is a free rank one R-module.
(iii) There exists θ ∈A and θD ∈AD such that θDθ = 1A.

Proof. We show that (i) implies (ii). The rest of the proof is left to the
reader. Let θ be a basis of I = I(A). Since A is a free AD-module on θ there
exists a unique θD in AD such that 1A = θDθ. For any u of AD we have the
equalities:

(
uθD

)
θ = u

(
θDθ

)
= u1A = εD(u)1A =

(
εD(u)θD

)
θ.

This implies that uθD = εD(u)θD and hence that θD is a left integral of AD.
Let u be a nonzero left integral of AD. Since AD is a projective R-module,
it follows that ID is contained in IDK = I(AD

K), which is a K-vector space of
dimension one. Therefore there exist nonzero elements m and n of R such
that mu= nθD . We set t= uθ. This is an element of A. We observe that

mt= (mu)θ = n
(
θDθ

)
= n.

It follows that n=mε(t), and so m divides n in R, and u is a multiple of θD .
We conclude that θD is a free generator of I(AD). �
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Proposition 2.3. Assume that A is commutative, I(A) is free over R
and AK is separable. Then AD is unimodular, I(AD) is free over R and the
restriction of SD (resp. S) to the module of integrals of AD (resp. A) is the
identity map.

Proof. We start by considering the restriction of S to I(AK). It follows
from [Sw], Theorem 5.1.8, that AK = I(AK)⊕Ker(ε) as a direct sum of AK -
ideals. Let x be a nonzero element of I(AK). Then S(x) can be decomposed
as a sum rx+ y with r ∈K and y ∈Ker(ε). Since ε ◦ S = ε we deduce that
r = 1. Therefore, S(x)x = x2 + yx. We observe that yx ∈ I(A) ∩ Ker(ε).
Thus yx= 0 and S(x)x= ε(x)x. Moreover, we note that S(S(x)x) = S(x)x=
ε(x)S(x). So we conclude that x = S(x). Since I(A) is contained in I(AK)
we deduce that, as required, the restriction of S to I(A) is the identity map.
We now consider AD. It follows from Lemma 2.2, that I(AD) is R-free.
Moreover, since AK is separable, there exists a finite extension K ′/K such
that AK′ = AK ⊗K K ′ is the algebra Map(Γ,K ′), where Γ is a finite group,
endowed with its natural structure of Hopf algebra. The map

αK′ : AD ⊗R K ′ � AD
K′ ,

f ⊗ λ→ fλ

is an isomorphism of K ′-vector spaces which respects the algebra and coalge-
bra structure of both sides. Thus we may identify the Hopf algebras AD⊗RK ′

and K ′[Γ] and therefore I(AD) with I(K ′[Γ])∩AD. The unimodularity of AD

follows from the unimodularity of K ′[Γ]. We now want to prove that the re-
striction of SD to I(AD) is the identity map. Let θD ∈ I(AD) and θ ∈ I(A) be
such that θDθ = 1A. Let Δ(θ) =

∑
θ(0)⊗θ(1). We deduce from the definitions

that

ε
(
θDθ

)
= 1R =

∑
ε(θ0)

〈
θD, θ(1)

〉
=

〈
θD, θ

〉

and

ε
(
SD

(
θD

)
θ
)
=

〈
θD, S(θ)

〉
=

〈
θD, θ

〉
.

Because AD is unimodular we know that θD and SD(θD) both belong
to I(AD). Since I(AD

K) is of dimension 1 there exists λ ∈ K such that
SD(θD) = λθD. Using that S2 = I , we deduce that λ ∈ {±1}. Since the
characteristic of K is different from 2 we deduce from the previous equalities
that SD(θD) = θD . This completes the proof of the proposition. �

Remark. When K is of characteristic 0 and AK is commutative, it follows
from a theorem of Cartier that AK is separable. Therefore any finite, commu-
tative and locally free R-Hopf algebra, where R is a principal ideal domain of
characteristic 0, satisfies the hypotheses of Proposition 2.3. Nevertheless it is
easy to construct Hopf algebras, which are not separable, but such that I(A)
is free and the restriction of S to I(A) is the identity. It suffices for instance to
consider A= k[Γ] where k is a field of characteristic p and Γ a finite group of
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order divisible by p, endowed with its usual Hopf algebra structure. We know
from Maschke’s theorem that A is not separable. However, we may easily
check that I(A) = kω where ω =

∑
γ∈Γ γ. Since S(ω) = ω, then S restricts to

the identity map on I(A). When AK is not separable we note that I(AK) is
contained in Ker(ε) and thus I(AK)2 = I(A)2 = {0}.

Let M be an A-comodule and let MA be the largest quotient of M on
which AD acts trivially, so that MA =M/ker(εD)M .

Lemma 2.4. Suppose that AD is unimodular and that I(AD) is free over
R with θD as a basis. Let M be a projective AD-module. Then

(i) MA = θDM ,
(ii) MA is a locally free R-module,
(iii) the map m �→ θDm induces an isomorphism of R-modules from MA

onto MA.

Proof. We first observe that we can reduce to the case where M is AD-
free and so is a direct sum of copies of AD . Therefore, in order to prove the
lemma, we may assume that M = AD. In this case it follows from the very
definition of the set of integrals that MA = (AD)A = I(AD) = θDAD = θDR
which proves (i) and (ii) of the lemma. Moreover, for g ∈ AD, the equality
θDg = 0 is equivalent to θDg(1) = 0 and thus to g(1) = 0 since AD is R-
torsion free. We then deduce that the kernel of the R-module homomorphism
m �→ θDm is the submodule Ker(εD)M . Therefore it induces, as required, an
isomorphism from MA onto MA. �

Let (M,αM ) and (N,αN ) be A-comodules. We shall define a comodule
structure on M ⊗N by considering

αM,N : M ⊗N
αM⊗αN−→ M ⊗A⊗N ⊗A�M ⊗N ⊗A⊗A

Id⊗mult−→ M ⊗N ⊗A.

The AD-module structure associated to this comodule structure is given by:

g(m⊗ n) =
∑

(g)

g(0)m⊗ g(1)n, ∀g ∈AD,m ∈M,n ∈N,

where ΔD(g) =
∑

(g) g(0) ⊗ g(1). We say that M ⊗ N is endowed with the

diagonal action of AD .
We conclude this subsection by recalling a result of Schneider, [S], Lem-

mas 2.1 and 2.2, which generalizes to a large family of Hopf algebras a theorem
well known when A=Map(Γ,R) and AD =R[Γ] ([Mc], Corollary 3.3, p. 145
and p. 196).

Proposition 2.5. Let A be a Hopf algebra over R. Let M and N be
AD-modules. Assume that M and N are both projective R-modules and that
either M or N is projective as an AD-module. Then M ⊗R N endowed with
the diagonal action of AD is a projective AD-module.
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Proof. For the sake of completeness, we briefly recall the proof. First, one
checks that the general case follows the “free case” where one of the modules is
AD itself while the other one is free over R. We assume that M =AD and that
N is free over R and we consider the AD-modules X = AD ⊗R N , endowed
with the diagonal action and Y =AD ⊗R N where AD acts by multiplication
on the left factor. It is clear that Y is a projective AD-module. Then one
proves that the R-linear map f : Y →X , defined by:

f : m⊗ n→
∑

(m)

m(0) ⊗m(1)n,

is an isomorphism of AD-modules with inverse g given by

g : m⊗ n→
∑

(m)

m(0) ⊗ SD(m(1))n.
�

2.2. Equivariant symmetric bundles. Let M be an R-module equipped
with a bilinear and symmetric form

q : M ×M →R.

The form q induces a homomorphism of R-modules

ϕq : M →MD.

We call q nondegenerate if ϕq is an isomorphism of R-modules. A symmetric
bundle over Spec(R) is associated to a pair (M,q) consisting of a finitely
generated and locally free R module M endowed with a nondegenerate form
q (see [Kne]). In this set up, for reason of simplicity, we will call symmetric
bundle over R the pair (M,q) itself. Let A be a finite and locally free Hopf
algebra over R and let (M,q) be a symmetric bundle over R. We shall say
that (M,q) is A-equivariant if M is an A-comodule and if the following is
true:

q(gm,n) = q
(
m,SD(g)n

)
, ∀m,n ∈M,∀g ∈AD.

If, moreover, M is a projective AD-module, we shall call (M,q) a projective A-
equivariant bundle. Note that when A=Map(Γ,R), with Γ a finite group and
AD is the group algebra R[Γ], an A-equivariant symmetric bundle is an R[Γ]-
module endowed with a non-degenerate, Γ-invariant, bilinear and symmetric
form.

We observe that any A-equivariant symmetric bundle (M,q) defines, after
scalar extension by a commutative R-algebra T , an AT -equivariant symmetric
bundle over T that we denote by (MT , qT ).

We can attach to any R-symmetric bundle (M,q) its orthogonal group
which we denote by O(q). This is a group scheme over R. This group scheme
is most easily defined in terms of its associated functor of points. Suppose
now that A is a commutative Hopf algebra. Then we can associate to A the
group scheme G= Spec(A). We will say that G is generically étale when AK
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is a separable K-algebra. In this case, the notion of A-equivariant symmetric
bundle has an interpretation in terms of orthogonal representations.

Proposition 2.6. Let A be a commutative Hopf R-algebra and let G be the
group scheme defined by A. We assume that G is generically étale. Let (M,q)
be an R-symmetric bundle. Then the following properties are equivalent:

(i) (M,q) is A-equivariant.
(ii) There exists a morphism of group schemes:

ρ : G→O(q).

Proof. For any R-algebras E and F , we denote by HomR,alg(E,F ) the set
of morphisms of R-algebras f : E → F . We recall that for any R-algebra T
we have the following isomorphism

G(T )�HomR,alg(A,T )�HomT,alg(AT , T ).

Moreover, since A is a finitely generated projective R-module, we know that

HomT (AT , T )�HomR(A,R)⊗R T.

With a slight abuse of notation we write

G(T ) = HomT,alg(AT , T )⊂HomR(A,R)⊗R T.

We assume (i). For any R-algebra T , after scalar extension, MT becomes an
AD

T -module. Therefore, for any g ∈G(T ), we may define

ρT (g) : MT →MT , m �→ gm.

One easily checks that ρT induces a group homomorphism from G(T ) to
O(qT ), which proves (ii). We now suppose that (ii) is satisfied. It follows
from the hypothesis that there exists a group homomorphism

ρA : G(A)→Aut(MA)

(here of course MA =M ⊗ A and not the coinvariant module as defined in
Lemma 2.4). For the element Id we obtain an A-linear map ρA(Id) : M ⊗R

A→M ⊗R A which determines by restriction α : M →M ⊗R A. The map
α endows M with a right A-comodule structure (see [W], Chapter 3) and
therefore with a left AD-module structure. Since there exists a finite ex-
tension K ′/K such that AD

K′ = K ′[Γ], any element g ∈ AD can be written
g =

∑
γ∈Γ rγγ with rγ ∈ K ′,∀γ ∈ Γ. Since every γ belongs to G(K ′), then

SD(γ) = γ−1. Since ρK′(γ) belongs to O(qK′) for any γ ∈ Γ we can write the
equalities:

q(gm,n) =
∑

γ∈Γ

rγq(γm,n) =
∑

γ∈Γ

rγq
(
m,γ−1n

)
= q

(
m,SD(g)n

)
,

for any m and n ∈M and g ∈ AD. Hence, we have proved as required that
(M,q) is A-equivariant. �
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We call any morphism of group schemes ρ : G→O(q) an orthogonal rep-
resentation of G. In this paper we shall frequently speak either of equivari-
ant symmetric bundles or equivalently orthogonal representations. Observe
that, when G is generically constant, an orthogonal representation, as defined
above, induces by restriction to the generic fiber an orthogonal representation
in the usual sense.

Let (M,q) be a projective A-equivariant symmetric bundle. We assume
that AD satisfies the properties of Proposition 2.3. We fix an R-basis θD of
I(AD). Under these assumptions, we use Lemma 2.4 to define a map

qA : MA ×MA →R

by setting
qA(x, y) = q(m,y) = q(x,n),

where m (resp. n) is any arbitrary element of M such that x= θDm (resp. y =
θDn). Observe that if θDm= θDm′, then m−m′ belongs to Ker(εD)M . Since

q
(
gu, θDn

)
= q

(
u,SD(g)θDn

)
= q

(
u, εD

(
SD(g)

)
θDn

)
= q

(
u, εD(g)θDn

)
= 0,

for any g ∈ Ker(εD), we deduce that qA is well defined. Moreover, we note
that

qA(x, y) = q(y,m) = q
(
θDn,m

)
= q

(
n,SD

(
θD

)
m

)
= q

(
n, θDm

)
= qA(y,x).

Hence qA is a symmetric bilinear form on MA.

Proposition 2.7. Let A be a Hopf algebra and let (M,q) be a projective
A-equivariant symmetric bundle. Suppose that AD is unimodular and that
I(AD) is a free R-module, then (MA, qA) is a symmetric R-bundle.

Proof. From Lemma 2.4, we know that MA is a locally free R-module. It
remains to prove that the adjoint map

ϕqA : MA →Hom
(
MA,R

)

is an R-module isomorphism. This result, when A =Map(Γ,R) and Γ is a
finite group, was proved in Proposition 2.2 of [CNET]. This proof can be used
mutatis mutandis in this more general situation if, as in the situation consid-
ered in [CNET], the quotientM/MA is torsion free. This is easily checked. We
note that it suffices to prove the result when M =AD. Let f ∈AD and d ∈R,
d ��= 0 such that df ∈ (AD)A. It follows from the definition of (AD)A that for
any g ∈AD then g(df) = εD(g)(df). Since AD is a projective R-module it is
torsion free and thus gf = εD(g)f , which proves that f ∈ (AD)A. �

Remarks.

1. For any x= θDm and y = θDn of MA it is easily verified that

q(x, y) = q
(
m,SD

(
θD

)
θDn

)
= q

(
m,εD

(
θD

)
y
)
= εD

(
θD

)
qA(x, y).

If AD
K is not separable, then we know that εD(x) = 0 for any x ∈ I(AD

K),
from Theorem 5.1.8 in [Sw]. Therefore, this situation makes clear that qA
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is not in general the restriction of q to MA, since qA is unimodular while
the restriction of q to MA is zero.

2. It is important to note that the form qA depends upon the choice of a
generator of I(AD). Taking θ′D = λθD with λ ∈ R× as a new generator
of I(AD) provides us with a new symmetric form q′A = λ−1qA on MA. If
λ is a square of a unit of R, then the symmetric bundles (MA, qA) and
(MA, q′A) are isometric. As we will see, at the end of Section 2, our future
constructions will not depend upon this choice.

3. Twists of symmetric bundles

Recall that R is an integral domain with field of fractions K and that A is a
Hopf R-order in the Hopf algebra AK . The aim of this section is to define the
algebraic twist of an A-equivariant symmetric bundle by a principal homoge-
neous space for A. As a first step we show, under certain assumptions on A,
how to associate to a principal homogeneous space for A an A-equivariant
projective symmetric bundle. The trace form is the key-tool of this construc-
tion.

We let A be a commutative Hopf algebra which is finite and flat over R.
Let B be a commutative finite flat R-algebra, endowed with the structure of
an A-comodule algebra

αB : B →B ⊗R A.

We suppose that BA = R. We shall say that B is a principal homogeneous
space for A over R, abbreviated to PHS, when

(Id⊗ 1, αB) : B ⊗R B �B ⊗R A

is an isomorphism of B-algebras and left AD-modules. We observe that A,
endowed with the comultiplication map, provides an example of such a space.

Lemma 3.1. Let AK be a separable commutative Hopf K-algebra and let
BK be a principal homogeneous space for AK . Let Tr denote the trace form
on BK . Then (BK ,Tr) is a projective AK -equivariant symmetric bundle.

Proof. Since BK is a principal homogeneous space for AK , we know that
BK is a projective AD

K -module. Using the fact that BK becomes isomorphic
to AK after a faithful base change, it follows by descent theory that BK is
separable and therefore that the trace is non-degenerate. Let q denote the
trace form on BK . We now want to show that q is an AK -equivariant form. As
in Proposition 2.3 we fix a finite extension K ′/K such that AD

K′ is isomorphic
to K ′[Γ], where Γ is a finite group. In this case AD

K′ , as a K ′-vector space,
has a basis {γ, γ ∈ Γ} consisting of group like elements. Since BK′ is an AD

K′ -
module algebra, one easily checks that every γ defines an automorphism of
K ′-algebras of BK′ whose inverse is SD(γ). Therefore the trace form qK′ of
BK′ is invariant under each γ ∈ Γ. Thus the AK -equivariance of q follows
from the A′

K -equivariance of qK′ . �
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We now wish to generalize the above construction when working with the
ring R in place of the field K. A key-role in this case is played by the codif-
ferent of B.

3.1. The square root of the codifferent. The codifferent of B/R is
defined by

D−1(B/R) =
{
x ∈BK |Tr(xb) ∈R ∀b ∈B

}
.

For reason of simplicity D−1(B/R) will be abbreviated by D−1(B). In the
case where R is a field then D−1(B) =B. It follows from the AK -invariance
of the trace form proved in Lemma 3.1 that D−1(B) is an AD-module. We
start by studying the codifferent of A.

Proposition 3.2. Let A be a commutative Hopf algebra and assume that
AK is separable. Let I be the set of integrals of A. Then:

(i) There exists a unique primitive idempotent e of AK and a fractional ideal
Λ of R such that

IK =Ke and I =Λe.

(ii) We have the equality:

D−1(A) = Λ−1A.

Proof. We know from [Sw], Corollary 5.1.6, that IK is a one dimensional
K-vector space. Moreover, since AK is a separable algebra, we deduce from
[Sw], Theorem 5.1.8, that AK = IK ⊕Ker(ε). Let u be a basis of IK . Since it
is an integral, it follows that u2 = ε(u)u. Therefore, replacing u by u/ε(u), we
obtain a new basis of IK which is a non-trivial idempotent. We denote this
idempotent by e. Since R is an integral domain, it follows that ε(f) = 1 for
any idempotent f of IK . We conclude that e is the unique idempotent of IK .
Let Λ be the fractional ideal of R consisting of elements x ∈K such that xe
belongs to A. Then we have

I = IK ∩A=Λe.

We consider the left AD
K -module structure on AD

K defined by

〈f ∗ g,x〉=
〈
g,SD(f)x

〉
∀x ∈AK .

Since AK is separable, the trace form is non-degenerate and induces an iso-
morphism of K-vector spaces

Ψ : AK →AD
K =Hom(AK ,K).

We note that
〈
Ψ(fa), x

〉
=Tr(fax) = Tr

(
aSD(f)x

)
=

〈
Ψ(a), SD(f)x

〉
=

〈
f ∗Ψ(a), x

〉

for all a,x ∈AK , f ∈AD
K . Therefore Ψ is an isomorphism of AD

K -modules. It
follows from the definition of the codifferent that D−1(A) = Ψ−1(AD). We
now consider Ψ(A). Since Ψ is an isomorphism of AD

K -modules and since
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A = ADI we obtain that Ψ(A) = Ψ(ADΛe) = ΛADΨ(e). Therefore we are
reduced to determining Ψ(e). Let x be an element of AK . From the direct
sum decomposition of AK , it follows that x can be written as a sum λe+ x′

with x′ ∈Ker(ε) and λ ∈K. Hence, we have
〈
Ψ(e), x

〉
=Tr(ex) = Tr

(
eλ+ ex′).

We note that ex′ = 0. Moreover, since e is a non-trivial idempotent whose
K-span has dimension one, its trace is 1. Therefore, we have proved that
〈Ψ(e), x〉= λ= ε(x) for all x ∈ AK . We conclude that Ψ(e) = ε which is the
unit element of AD

K . Therefore, we have proved that Ψ(A) = ΛAD and thus
D−1(A) = Λ−1A as required. �

Remark. Observe that Λ is the R-ideal defined by

Λ= ε(I).

Corollary 3.3. Assume that I(A) is a free R-module. Then:

(i) I(AD) = Λ−1t, where t is the unique element of AD
K such that te= 1AK

.
(ii) Tr(x) = tx for any x ∈BK .
(iii) D−1(B) = Λ−1B.

Proof. Let λ ∈ Λ be such that θ = λe is a basis of I(A). We note that λ−1t
is the unique element θD ∈AD

K such that θDθ = 1. Since there exists such an
element in AD, we may conclude that θD ∈ AD . It follows from Lemma 2.2
that θD is an R-basis of I(AD) and thus (i) is proved. We now fix an extension
K ′/K as in Proposition 2.3 and we identify on the one hand the algebras AK′

and Map(Γ,K ′) and on the other hand the algebras AD
K′ and K ′[Γ]. Since AK

is contained in AK′ we observe that e is the unique idempotent in Map(Γ,K ′)
such that IK′ =K ′e. Therefore, as an element of Map(Γ,K ′), e is defined by
e(γ) = 1 if γ = 1 and 0 otherwise. Let ωΓ =

∑
γ∈Γ γ. One can easily check

that ωΓ is the unique element in K ′[Γ] such that ωΓe= 1AK′ . Therefore, we
deduce that t= ωΓ. We now have

TrBK/K(x) = TrBK′/K′(x) = ωΓx= tx, ∀x ∈BK

as required.
Recall that we have the commutative diagram

B ⊗R B
ϕ

B ⊗R A

BK ⊗K BK
ϕK

BK ⊗K AK ,

where ϕ (resp. ϕK) is an isomorphism of B (resp. BK)-algebras and the
vertical arrows are injections. Because BK is finite and separable over K,
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the trace gives a non-degenerate form TrK : BK ×BK →K. This extends by
⊗KBK to a non-degenerate pairing

TrK : BK ⊗K BK ×BK ⊗K BK →BK .

The trace induces a pairing Tr : B⊗RB×B⊗RB →B and D−1((B⊗B)/B)
is defined in the usual way by

D−1
(
(B ⊗B)/B

)
=

{
x ∈BK ⊗K BK |TrK

(
x(B ⊗R B)

)
⊂B

}
.

By localization and choosing local self-dual bases, we get

D−1
(
(B ⊗B)/B

)
=B ⊗D−1(B/R).

Let λ be a generator of Λ. By proceeding as before, we obtain the equality

D−1
(
(B ⊗A)/B

)
=B ⊗D−1(A/R) =B ⊗ λ−1A.

Therefore

ϕK

(
B ⊗ λD−1(B/R)

)
= ϕK(B ⊗B) =B ⊗A

and so B ⊗ λD−1(B/R) = B ⊗ B. Since B/R is faithfuly flat, we conclude
that D−1(B/R) = λ−1B as required. �

We obtain as a corollary a result of Raynaud (see [R], Appendix, Proposi-
tion 9 and [T], Proposition 4.4).

Corollary 3.4. We assume that AK is separable of K-rank n and that
I(A) is R-free. Let θ (resp. θD) denote an integral of A (resp. AD) such that
θDθ = 1. Then ε(θ)εD(θD) = n. In particular if Λ = ε(I) and ΛD = εD(ID)
then ΛΛD = nR.

Proof. Let Tr denote the trace form on AK . First, observe that
Tr(θDθ) = n. Moreover, since the trace is equivariant, it follows that

n=Tr
(
θDθ

)
=Tr

(
θ.SD

(
θD

)
1A

)
= εD

(
θD

)
Tr(θ).

Under our hypothesis, it follows from Proposition 3.2 that there exists λ ∈R
such that

Λ = λR and θ = λe.

It follows from the direct sum decomposition of AK that Tr(e) = 1. Since
ε(e) = 1, we deduce from the previous equality that Tr(θ) = λ= ε(θ) and so
that εD(θD)ε(θ) = n and ΛDΛ= nR. �

Remark. It can be shown that D(A) is the Fitting ideal of the module
of differentials Ω1

A/R. It therefore follows from the lemma that, if n is a unit

of R, then the module Ω1
A/R is trivial. In this case the cover of schemes

(Spec(B)→ Spec(R)) is étale for any principal homogeneous space B.
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3.2. Twists of a form by a principal homogeneous space. The role
played by the trace form and by the set of integrals leads us to consider Hopf
algebras satisfying the following properties:

Definition 1. A finite and flat R-Hopf algebra A satisfies hypothesis H
when AK is a commutative separable K-algebra and the image under ε of the
set of integrals of A is the square of a principal ideal of R.

When A satisfies H we denote by Λ1/2 a principal ideal of R such that
(
Λ1/2

)2
=Λ= ε

(
I(A)

)
.

Then, for any principal homogeneous space B of A, it follows from Corol-
lary 3.3 that

D−1/2(B) = Λ−1/2B

is a square root of D−1(B) and that (D−1/2(B),Tr) is a projective and A-
equivariant symmetric bundle on R. Let us denote by λ1/2 a generator of
Λ1/2, let θ be the generator λe of I(A) and let θD be the unique element of
AD such that θDθ = 1A. If we consider an A-equivariant symmetric bundle
(M,q), it follows from Proposition 2.5 that (D−1/2(B) ⊗R M,Tr ⊗ q) is a
projective A-equivariant symmetric bundle. Then, following the construction
of Section 2.2, we can define the twist of (M,q) by B (associated to θD).

Definition 2. Let A be a Hopf R-algebra satisfying H, let (M,q) be an
A-equivariant symmetric bundle and let B be a principal homogeneous space
of A. Define the algebraic twist of (M,q) by B as the R-symmetric bundle

(M̃B , q̃B) =
(
D−1/2(B)⊗R M,Tr⊗ q

)A
.

Remarks.

1. We observe that, since θ is defined up to the square of a unit of R, the
same holds for θD . Therefore, as observed in Remark 2 of Section 2.2, the
definition of (M̃B , q̃B) is independent, up to isometry, of the choice of θ.

2. It follows from Proposition 2.7 that under hypothesis H we can attach to
(M,q) an orthogonal representation ρ : G = Spec(A) → O(q). Following
the general definition of [CCMT], Definition 6.4, we shall often refer to the
twist of (M,q) by B as the twist of (M,q) by ρ and X = Spec(B). We will
denote this twist as (Mρ,X , qρ,X).

3. Suppose that R = K is a field and that L/K is a Galois extension with
Galois group Γ. Let (M,q) be the underlying symmetric bundle of an
orthogonal representation ρ : Γ→O(q). This is a situation where we can
apply our previous construction. Let A=Map(Γ,K) be the Hopf algebra
defining the constant group scheme associated to Γ. Since L is a principal
homogeneous space for A, we can consider the twist of (M,q) by L

(M̃L, q̃L) = (L⊗K M,Tr⊗ q)A
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as introduced in Definition 2. It follows from [F], Theorem 1 and [CNET],
Proposition 2.5, that this new quadratic form coincides with the one intro-
duced by Fröhlich in [F], Section 2.

4. Twists of a form and flat cohomology

Let S be the scheme Spec(R) and let G be the S-group scheme defined by
the spectrum of an R-Hopf algebra A. To any R-linear map

αB : B →B ⊗R A,

which endows B with the structure of a comodule algebra over A, there cor-
responds a morphism of S-schemes

X ×S G→X.

In this correspondence the notion of PHS corresponds to the notion of a torsor
for G over S.

Following Milne ([M], Chapter III, Section 4), we may associate to any flat
covering U = (Ui → S)i∈I a set of cohomology classes Ȟ1(U ,G); this is a set
with a distinguished element. We define Ȟ1(S,G) to be the direct limit over
all coverings U of Ȟ1(U ,G). From Theorem 4.3 and Proposition 4.6 in [M],
it follows that there exists a one to one correspondence, [X]→ c(X), between
the isomorphism classes of G-torsors over S, that we denote by H1(S,G), and
elements of Ȟ1(S,G) under which the class of the trivial torsor (the class of
A) corresponds to the distinguished element of Ȟ1(S,G).

Let (M,q) denote an A-equivariant symmetric bundle and assume that A
satisfies hypothesis H. As per Proposition 2.7 we can associate to (M,q)
a morphism of group schemes ρ : G → O(q). It is routine to check that ρ
transforms 1-cocycles on G into 1-cocycles on O(q) and thereby induces a
map ρ∗ from Ȟ1(S,G) in Ȟ1(S,O(q)). The set Ȟ1(S,O(q)) classifies the set
of isomorphism classes of twisted forms of (M,q) ([D-G], III, Section 5, n. 2).
Therefore the class ρ∗(c(X)) defines, up to isometry, a unique symmetric
bundle which we denote by (Mρ(X), qρ(X)). We now have at our disposal on
the one hand the symmetric bundle (Mρ(X), qρ(X)), which has an abstract
definition in terms of class of a cocycle in a flat cohomology set, and on the
other hand the algebraic twist (Mρ,X , qρ,X) given by a simple explicit formula
(see Definition 2 in Section 3.2). The main goal of this section is to prove that
the two bundles coincide.

Theorem 4.1. There exists an isometry of symmetric bundles

(Mρ,X , qρ,X)� (Mρ(X), qρ(X)).

We keep the notation and the hypotheses of Section 3. We assume that A
satisfies hypothesis H, and in particular that the image under ε of the set of
integrals of A is the square of a principal ideal of R. We fix a generator λ1/2

of this ideal. Since AK is separable there exists a finite extension K ′/K and
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a finite group Γ such that AK′ =Map(Γ,K ′) and AD
K′ =K ′[Γ]. For the sake

of notational simplicity we shall assume that K ′ =K; the general case can
follow similarly. We let e be the element of AK defined by e(γ) = 1 if γ = 1
and 0 otherwise and we denote by ω the element

∑
γ∈Γ γ in K[Γ]. We have

seen that θ = λe (resp. θD = λ−1ω) is an R-basis of I(A) (resp. I(AD)) and
that we have the equalities

θDθ = 1A, θθD = 1AD , A=ADθ, AD =AθD.

4.1. Representative of a torsor. Let B be a PHS of A and again let
X = Spec(B) be the associated G-torsor. It follows from the definition that
the flat cover U = (X → S) trivializes X . More precisely the isomorphism

ϕ= (Id ⊗ 1, αB) : B ⊗R B →B ⊗R A,

induces an isomorphism of S-schemes with G-action

Φ = Spec(ϕ) : X ×S G→X ×X X.

Let p1 (resp. p2) denote the first (resp. second) projection map X×S X →X .
For 1≤ i≤ 2 the base change of Φ by pi defines an isomorphism of schemes
with G-action

Φi : (X ×S X)×S G→ (X ×S X)×S X.

We know from p. 134 in [M] that Φ−1
1 ◦Φ2 is a 1-cocycle representing c(X).

We wish to understand Φ−1
1 ◦Φ2 in terms of B ⊗R B-valued points of G.

Let q1 (resp. q2) denote the morphism of algebras B →B⊗RB, defined by
(q1 : x→ x⊗ 1) (resp. q2 : x→ 1⊗ x). Extending scalars by qi for 1≤ i≤ 2,
the map ϕ induces an isomorphism

ϕi : (B ⊗R B)⊗R B → (B ⊗R B)⊗R A

of B ⊗R B-algebras and AD-modules. It is clear that Φ−1
1 ◦ Φ2 = Spec(ϕ2 ◦

ϕ−1
1 ).
Let C be the algebra B ⊗R B. We recall the identifications of Section 2.2:

G(C) = Homalg,R(A,C) = Homalg,C(AC ,C).

We note that AC is of course a C-algebra and an AC -comodule. We
write Aut(AC) for the group of automorphisms of both C-algebras and AD-
comodules of AC . We observe that ϕ= ϕ2 ◦ ϕ−1

1 is an element of this group.
For any element ψ of Aut(AC) and f ∈G(C), we obtain a element of G(C)
by considering f ◦ψ.

Lemma 4.2. The map

θ : Aut(AC)→ G(C),

ψ → ε ◦ψ
is a group isomorphism.
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Proof. Since any ψ ∈Aut(AC) is a morphism of comodules, it satisfies the
equality

(ψ⊗ Id) ◦Δ=Δ ◦ ψ.
This implies that for all x ∈AC ,

Δ
(
ψ(x)

)
=

∑

(x)

ψ(x(0))⊗ x(1),

where Δ(x) =
∑

(x) x(0) ⊗ x(1) and so ψ(x) =
∑

(x) θ(ψ)(x(0))x(1). Using this

last equality, it is easily verified that θ is a group homomorphism and is
injective. Let us now consider an element α ∈G(C). The C-endomorphism
of AC defined by

ψ(x) =
∑

(x)

α(x(0))x(1)

is a morphism of C-algebras and AC -comodules such that θ(ψ) = α. This
shows that θ is onto and completes the proof of the lemma. �

We deduce from this lemma that the map Ψ= Spec(ψ)→ ε◦ψ is an isomor-
phism of groups from Aut(Spec(C)⊗SG) onto G(C). We identify these groups
via this isomorphism. Under this identification, we conclude that g = ε ◦ ϕ,
where ϕ = ϕ2 ◦ ϕ−1

1 is the element of Aut(AC) introduced previously, is a
1-cocycle representative of c(X) in G(C).

Remark. As we have seen previously, for any x ∈ AC , with Δ(x) =∑
(x) x(0) ⊗ x(1) we have the equality:

ϕ(x) =
∑

(ε ◦ϕ)(x(0))x(1).

In the case where Δ(x) is invariant under the twist map (which is the map
induced by c⊗ d→ d⊗ c), this last equality can be written

ϕ(x) = (ε ◦ϕ)x,
where AC is endowed with its structure of left AD

C -module and where ε ◦ϕ is
considered as an element of AD

C via the inclusion G(C)⊂AD
C .

4.2. Proof of Theorem 4.1. Let (M,q) be an A-equivariant symmetric
bundle and let B be a PHS of A. We consider the twist of (M,q) by B
defined by

(Mρ,X , qρ,X) = (M̃B , q̃B) =
(
λ−1/2B ⊗R M,Tr⊗ q

)A
.

The strategy for the proof of the theorem is to show that the flat covering
U = (X → S), which trivializes X as a G-torsor, likewise trivializes the sym-
metric bundle (Mρ,X , qρ,X). With this in view we now construct an isometry
of symmetric bundles

(4) (MB , qB)� (B ⊗R M̃B , q̃B,B),
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where (q̃B,B) denotes the form q̃B extended to B ⊗R M̃B . This construction
will be achieved via the next two lemmas. The results of Section 4.1 provide
us with a representative of X in Ȟ1(U ,G). We will use the previous isometry
to show that the image under ρ∗ of this cocycle is a representative of the class
of (Mρ,X , qρ,X).

Lemma 4.3. Let T be a finite flat R-algebra. Then:

(i) For any f ∈AD
T and m ∈MT one has

θD(fθ⊗m) = θD
(
θ⊗ SD(f)m

)
.

(ii) The map m �→ θD(λ−1/2θ ⊗ m) induces an isometry νT of symmetric

bundles from (T ⊗R M,qT ) onto (T ⊗R M̃A, q̃A,T ) where (M̃A, q̃A) is the

symmetric bundle (λ−1/2A⊗R M,Tr⊗ q)A.

Proof. We first observe that it suffices to prove the lemma when T = R.
The general case will follow by extension of scalars. Let f be an element
of AD. Since AD is contained in AD

K = K[Γ] we write f =
∑

γ∈Γ xγγ with

xγ ∈ K. Since AD acts diagonally over A ⊗R M and since θDγ = θD, we
obtain that for any m ∈M and γ ∈ Γ

θD(fθ⊗m) =
∑

γ∈Γ

θD(xγγθ⊗m) =
∑

γ∈Γ

θDγ
(
θ⊗xγγ

−1m
)
= θD

(
θ⊗SD(f)m

)
,

as required.
Let ν : M → M̃A be the R-linear map defined by m �→ θD(λ−1/2θ ⊗m).

We start by proving that ν is surjective. Let y be an element of M̃A. We
deduce from Lemma 2.4 the existence of a finite set of elements xi of A and
mi of M such that y =

∑
i θ

D(λ−1/2xi⊗mi). Since θ is an AD-basis of A, for
an integer i, there exists an element fi of AD such that xi = fiθ. Using (i)
we deduce that

y =
∑

i

θD
(
fiλ

−1/2θ⊗mi

)
=

∑

i

θD
(
λ−1/2θ⊗ SD(fi)mi

)
= θD

(
λ−1/2θ⊗ x

)
,

with x=
∑

i S
D(fi)mi. So we have found x ∈M such that y = ν(x).

Let us now consider ε̃ : AK ⊗K MK → MK defined by a ⊗m �→ 〈ε, a〉m.
Since the action of AD

K is diagonal, for any m ∈AK we have

ε̃
(
θD(θ⊗m)

)
= (α)m,

where ΔD(θD) =
∑

θD(0) ⊗ θD(1) and α=
∑

〈ε, θD(0)θ)〉θD(1). We first observe that

〈ε, θD(0)θ)〉= 〈θD(0), θ〉. Moreover, since A is commutative, we know that AD is

cocommutative. It follows from these facts that

α=
∑〈

θD(0), θ
〉
θD(1) =

∑〈
θD(1), θ

〉
θD(0) = θθD.
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Since, as recalled at the beginning of this section, we know that θθD = 1AD ,
then we have proved that

ε̃
(
θD(θ⊗m)

)
=m, ∀m ∈MK .

We conclude that ν is an isomorphism whose inverse is given by μ : x �→
λ1/2ε̃(x). In order to complete the proof of the lemma, we must show that ν
is an isometry. The proof consists of a verification by hand of the equality:

q̃A
(
θD

(
λ−1/2θ⊗m

)
, θD

(
λ−1/2θ⊗m′)) = q(m,m′), ∀m,m′ ∈M. �

Remark. As a consequence of the lemma, we observe that there is an
isometry

(M,q)� (M̃A, q̃A)

which proves Theorem 4.1 in the case when X is the trivial torsor.

We now return to the isomorphism ϕ : B ⊗R B → B ⊗R A introduced at
the beginning of this section. This morphism induces an isomorphism

ϕ̃= (ϕ⊗ Id) : B ⊗R

(
λ−1/2B ⊗R M

)
→B ⊗R

(
λ−1/2A⊗R M

)

of B and AD-modules. Recall that AD acts on the left-hand side (resp. the
right-hand side) via its diagonal action on (λ−1/2B⊗RM) (resp. (λ−1/2A⊗R

M)). Therefore, taking fixed points by AD, we see that ϕ̃ induces an isomor-
phism of B-modules

ϕ̃ : B ⊗R M̃B →B ⊗R M̃A.

Lemma 4.4. The isomorphism ϕ̃ induces an isometry of symmetric bundles

(B ⊗R M̃B , q̃B,B)� (B ⊗R M̃A, q̃A,B).

Proof. This is an easy verification that we leave to the reader. �
We can now complete the proof of the theorem. It follows from Lemmas 4.3

and 4.4 that

ϕ̃−1 ◦ νB : (B ⊗R M,qB)→ (B ⊗R M̃B , q̃B,B)

is an isometry. Let C =B⊗RB and let qi : B →C,1≤ i≤ 2 be the morphisms
as considered prior to Lemma 4.2 at the beginning of this section. For 1≤ i≤ 2
the map ϕ̃−1 ◦ νB induces, by scalar extension, an isometry:

ϕ̃−1
i ◦ νC : (C ⊗R M,qC)→ (C ⊗R M̃B , q̃B,C).

This implies that σ = (ϕ̃−1
1 ◦ νC)−1 ◦ (ϕ̃−1

2 ◦ νC) = ν−1
C ◦ (ϕ̃1 ◦ ϕ̃−1

2 )ν̃C is a 1-
cocycle representative of (Mρ,X , qρ,X). Our goal is now to describe this map.

Let c (resp. m) be an element of C (resp. M ). Since ϕ̃1 ◦ ϕ̃−1
2 commutes

with action of AD, it follows from the definitions that
(
ϕ̃1 ◦ ϕ̃−1

2

)
◦ νC(c⊗m) = θD

((
ϕ1 ◦ϕ−1

2

)(
λ−1/2θ

)
⊗ (c⊗m)

)
.

It is easily checked that Δ(θ) = λΔ(e) is invariant under the twist map. We
then deduce from Remark, Section 4.2, that (ϕ1◦ϕ−1

2 )(λ−1/2θ) = λ−1/2(g−1θ),
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where g is the representative of c(X) we constructed previously in Section 4.1.
It now follows from Lemma 4.3 that

θD
((
ϕ1 ◦ϕ−1

2

)(
λ−1/2θ

)
⊗ (c⊗m)

)
= θD

(
λ−1/2

(
g−1θ

)
⊗ (c⊗m)

)

= θD
(
λ−1/2θ⊗ g(c⊗m)

)
.

This implies that σ(c⊗m) = ν−1
C (θD(λ−1/2θ ⊗ g(c⊗m))) = g(c⊗m). This

tells us that ρ(g) is a representative of (Mρ,X , qρ,X) and so completes the
proof of the theorem.

5. Examples

5.1. The unit form. Let A be a commutative, finite and flat Hopf algebra
over a principal ideal domain R. Let θ denote a generator of the module of
integrals of A. We define the form κ on AD ×AD by the equality:

κ(u, v) =
〈
SD(u)v, θ

〉

for all u, v ∈AD.

Proposition 5.1. The following properties hold.

(i) The pair (AD, κ) is an A-equivariant symmetric bundle.
(ii) If A satifies hypothesis H, then, for any principal homogeneous space

B of A, the twist of (AD, κ) by B coincides with the symmetric bundle
(D−1/2(B),Tr).

Proof. The form κ is non-degenerate ([C], Corollary 3.5). Moreover, since
we know from Proposition 2.3 that S(θ) = θ, we note that for all u, v ∈AD

κ(u, v) =
〈
SD(u)v, θ

〉
=

〈
SD(u)v,S(θ)

〉
=

〈
SD(v)u, θ

〉
= κ(v,u)

so that the form is indeed symmetric. Finally, we observe that

κ(tu, v) =
〈
SD(tu)v, θ

〉
=

〈
SD(u)SD(t)v, θ

〉
= κ

(
u,SD(t)v

)
.

We therefore conclude that the form is A-equivariant.
In order to prove (ii) we shall now assume that A satisfies H. In this

case, we can provide a new description of (AD, κ). From now on we use the
notation of Section 3 and Corollary 3.3. We let θ (resp. θD) be the generator
λe (resp. λ−1t) of I(A) (resp. ID(A)), where λ is an R-basis of ε(I(A)). We
consider the map ϕ : u �→ λ−1/2uθ from AD onto D−1/2(A). We wish to show
that this isomorphism of AD-modules induces an isometry from (AD, κ) into
(D−1/2(A),Tr). Hence, we need to show that for all u, v ∈AD

κ(u, v) = Tr
((
λ−1/2uθ

)(
λ−1/2vθ

))
.

It follows from the definitions that
〈
SD(u)v, θ

〉
= λ

〈
SD(u)v, e

〉
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while Tr((λ−1/2uθ)(λ−1/2vθ)) = λt((ue)(ve)). Writing u=
∑

γ∈Γ uγγ and v =∑
δ∈Γ vδδ, we easily check that

〈
SD(u)v, e

〉
= t

(
(ue)(ve)

)
=

∑

γ∈Γ

uγvγ ,

which is the required equality. Let B be a PHS for A. We wish to describe
the twist of (AD, κ) by B. From the very definition of the twist and from our
previous observations, we obtain that

(
ÃD

B , κ̃B

)
�

(
D−1/2(B)⊗AD,Tr⊗ κ

)A

�
(
D−1/2(B)⊗R D−1/2(A),Tr⊗RTr

)A
.

We now deduce from Lemma 4.3(ii) that

(
D−1/2(B)⊗R D−1/2(A),Tr⊗RTr

)A �
(
D−1/2(B),Tr

)
.

This proves that (D−1/2(B),Tr) is the twist of (AD, κ) by B. �

Remarks.

1. If A satisfies H, then the integral θ used in the proof of the proposition
has been chosen according to the stipulations of Section 3. It follows that
(AD, κ) is independent of this choice, up to isometry. We refer to (AD, κ)
as the unit form of AD.

2. The Hopf algebra A=Map(Γ,R), with Γ a finite group, obviously satisfies
H. In this situation, we choose for θ the integral of A defined by θ(g) = 1 if
g is the identity and 0 otherwise. We observe that AD is the group algebra
R[Γ] and that the form κ is given on elements of Γ by

κ
(
γ, γ′) =

〈
γ−1γ′, θ

〉
= δγ,γ′ .

It follows from these equalities that {γ ∈ Γ} is an orthonormal basis for κ.
Therefore, the symmetric bundle (AD, κ) is the usual unit form of Γ.

3. When G is generically constant, of odd order (AK =Map(Γ,K), with Γ
of odd order), we know from [BL], that after scalar extension to K, the
forms become Γ-isometric. Therefore, we have the following isometries of
equivariant symmetric bundles:

(
D−1/2(B),Tr

)
⊗R K �

(
K[Γ], κK

)
�

(
AD, κ

)
K
.

This result leads us naturally to compare (D−1/2(B),Tr) and (AD, κ) both
as R-symmetric bundles and also as A-equivariant symmetric bundles in
the general situation.
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5.2. An orthogonal representation of μn. Consider the R-algebra
A = (R[T ]/(Tn − 1)) = R[t] with the following additional structure: a co-
multiplication Δ : A→ A⊗R A induced by t �→ t⊗ t, a counit ε induced by
t �→ 1 and an antipode S : A→A induced by t �→ t−1 = tn−1. This is then a
Hopf R-algebra which represents the Spec(R)-group scheme μn of nth roots
of unity. Its dual AD =HomR(R[t],R) represents the constant group scheme
Z/nZ over Spec(R).

We consider the symmetric bundle (V, q) consisting of the R-free module V ,
of rank 2, with basis {ε1, ε2} and the symmetric bilinear form q defined by

q(εk, εk) = 0 for 1≤ k ≤ 2 and q(ε1, ε2) = 1/2.

We note that when R contains a square root of −1, then (V, q), is isometric
to (R2, x2 + y2).

It is easy to check that the R-linear map defined by

α(ε1) = ε1 ⊗ t, α(ε2) = ε2 ⊗ tn−1

induces an A-comodule structure on V and that (V, q) is an A-equivariant
symmetric bundle. Note that the morphism of group schemes, ρ : μn →O(q)
associated to this form is defined for any R-algebra C by the group homomor-
phism ρC : μn(C)→O(qC) where, for ξ ∈ μn(C), ρC(ξ) is given on the basis
{ε1, ε2} by

ρC(ξ)(ε1) = ξε1, ρC(ξ)(ε2) = ξ−1ε2.

When R contains a square root of −1, this is a representation of μn into O(2).
Our goal is now to study the twists of this form by torsors. We now

assume that R is a discrete valuation ring of characteristic 0 and of residual
characteristic p different from 2. We take A= ((R[T ]/(T p − 1)) =R[t]). For
any unit y ∈R×, we let By be the R-algebra R[X]/(Xp − y) =R[x]. The R-
linear map α : By →By ⊗A defined by α(xk) = xk ⊗ tk,0≤ k ≤ p− 1, endows
By with a structure of a A-comodule algebra. Let z be a pth root of y in an
algebraic closure of the fraction field of R and let C be the algebra R[z]. The
map T → zX induces an isomorphism of C-A comodule algebras from C ⊗A
onto C ⊗ By . This proves that By is a PHS for A. Checking by hand we
verify that

Λ = ε
(
I(A)

)
= pR.

We now assume that R contains a square root of p, denoted by p1/2 so that
A satisfies hypothesis H. For any unit y of R the twist of (V, q) by By is the
R-symmetric bundle

(Vy, qy) =
((
p−1/2R[x]⊗ V

)A
, (Tr⊗ q)A

)
.

Proposition 5.2. For any unit y ∈ R there exists an isometry of R-
symmetric bundles:

(V, q)� (Vy, qy).
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Proof. It suffices to check that the set
{
ε′1,y = p−1/2xp−1 ⊗ ε1, ε

′
2,y = p−1/2x⊗ ε2

}

is a R-basis of Vy and that the R-linear map given by (ε1 �→ ε′1,y) and (ε2 �→
y−1ε′2,y) induces an isometry from (V, q) onto (Vy, qy). �

5.3. A dihedral representation. We construct an example of an orthog-
onal representation of a non-commutative group scheme which induces, by
restriction to the generic fiber, a dihedral representation as defined in [F].

5.3.1. The Hopf algebra. Let D denote a dihedral group of order 2n with
n > 2 and with generators and relations:

D =
〈
σ, τ | σn = 1= τ2, τστ = σ−1

〉
.

R denotes an integral domain in which 2 is invertible. We let K denote
the field of fractions of R and we suppose that μn ⊂ R. We let HK de-
note the group algebra K[D], endowed with its structure of non-commutative
Hopf algebra. For any character φ of 〈σ〉 we let eφ be the idempotent
n−1

∑
ς∈〈σ〉 φ(ς)ς

−1 of K〈σ〉. We consider the split maximal R-order M in

the group algebra K〈σ〉

M=
⊕

φ

Reφ ⊃R〈σ〉,

where φ ranges over the abelian K-valued characters of the cyclic group 〈σ〉.
Recall that M is an R-Hopf order in the group algebra K〈σ〉 with

Δ(eφ) =
∑

α,β|αβ=φ

eα ⊗ eβ .

We then let H denote the R-order in K[D] given by the twisted group ring
M◦ 〈τ〉; so that we may write

M◦ 〈τ〉=R〈τ〉 ⊕′
φ R ◦φ 〈τ〉 if n is odd

and

M◦ 〈τ〉=R〈τ〉 ⊕Reθ〈τ〉 ⊕′
φ R ◦φ 〈τ〉 if n is even,

where θ is the unique quadratic character of 〈σ〉 if n is even, where ⊕′
φ denotes

the sum over the orbits of abelian characters φ of order greater than 2, modulo
the action of the involution σ→ σ−1 and where we have set

R ◦φ 〈τ〉= (Reφ +Reφ) ◦ 〈τ〉 with τeφ = eφτ.

Lemma 5.3. H is an R-Hopf order in HK .
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Proof. Basically we need to show that Δ(H)⊂H⊗H . SinceH is generated
overR by τ and the various eφ, it will suffice to show that

Δ(τ) ∈H ⊗H and Δ(eφ) ∈H ⊗H.

The first follows from the definition of Δ and the second from our previous
equalities. �

Henceforth we identifyHD
K =Map(D,K); so that Spec(HD

K ) is the constant
group scheme over Spec(K) associated to D. We then define A to be the R-
dual

A=HD =HomR(H,R);

then Spec(A) is a non-constant (but generically constant) group scheme over
Spec(R). We note that, since H is a finitely generated projective R-module,
it follows that AD = (HD)D is naturally isomorphic to H . We will identify
these Hopf algebras.

Lemma 5.4. Since 2 is invertible in R, the modules of integrals for the
Hopf orders H and A are:

(i) I(H) = 2R.eD = n−1R.
∑

d∈D d;
(ii) I(A) =Rn.l0 where for d ∈D, l0(d) = 1 if d= 1D and 0 otherwise.

Moreover, for any principal homogeneous space B for A, we have the equality:

DB = nB.

Proof. It follows from Corollary 3.4 that (i) and (ii) are equivalent. We shall
prove (i). Let φ0 be the trivial character of 〈σ〉. We observe that ε(eφ0) = 1
while ε(eφ) = 0 ∀φ ��= φ0. Therefore, x ∈ I(H) if and only if

eφx= 0 ∀φ ��= φ0, eφ0x= x and τx= x.

We deduce immediately from these equalities that x ∈ 2ReD as required. Let
B be a PHS for A. It follows from (ii) and Corollary 3.3 that DB = nB. �

5.3.2. The equivariant symmetric bundle. We fix an abelian character χ of
the cyclic group 〈σ〉 with order greater than 2, and we consider the quadratic
R-module (M,q):

M =R〈σ〉 ◦ 〈τ〉.eχ =R.eχ +R.τeχ =R.eχ +R.eχτ

endowed with the quadratic form

q(x, y) =
1

2
tr(x.τ.y),

where tr : K[D]→K denotes the usual trace map where for d ∈D

tr(d) = 2n if d= 1D and 0 otherwise.

Lemma 5.5. (M,q) is an A-equivariant symmetric bundle.
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Proof. It is immediate from the definition that M is an H =AD-projective
module. Note that

q(dx, dy) =
1

2
tr

(
dx.τ.yd−1

)
=

1

2
tr(x.τ.y) = q(x, y)

so that q is indeed D-invariant. Of course we also have

q(eχ, eχ.τ) =
1

2
tr

(
eχτ

2eχ
)
=

1

2
tr(eχ) = 1,

q(eχ, eχ) = 0 = q(eχ.τ, eχ.τ);

and so q is an R-perfect pairing on M , and in fact is seen to have discrimi-
nant −1. �

5.3.3. Twists of the form. Let B be a PHS for A over R. The structure map

αB : B →B ⊗A

induces an isomorphism of B-algebras and H-modules

id ⊗ αB : B ⊗R B �B ⊗R A

(recall that H acts on each side via the right-hand factors). We put C = 〈σ〉
and set E =BC .

Proposition 5.6. E is a PHS for AC and DAC/R =AC .

Proof. Because B and A are R-flat we have the isomorphism induced by
taking the C-fixed points:

β : B ⊗R E �B ⊗R AC .

We know that B is finite and flat and hence faithfully flat over R. Moreover
it follows from the definitions that AC is a finite and free R-module. This
implies that B ⊗R AC and thus B ⊗R E is flat over B and so that E is flat
over R ([W], Chapter 13, Section 13.3). We have therefore shown that E is a
commutative, finite and flat R-algebra.

Let q : D→ 〈τ〉 be the quotient group homomorphism with kernel C. Be-
cause 2 is invertible in R, we know that R〈τ〉 is the unique maximal R-order
in K〈τ〉; and so in particular we see that Spec(R〈τ〉) is a closed subgroup
scheme of Spec(H). We recall the inclusions

AC ⊂A=HomR(H,R)⊂AK =HomK

(
K[D],K

)
.

The group D acts on AK via the rule that for all f ∈AK , and for all γ ∈D

γf : α �→ f
(
γ−1α

)
.

It therefore follows that for any f ∈A and for any character φ of C we have:

σf(eφ) = f
(
σ−1eφ

)
= φ(σ)−1f(eφ) and

σf(eφτ) = f
(
σ−1eφτ

)
= φ(σ)−1f(eφτ).
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Therefore, by using the description of H above, we deduce that dually
Map(〈τ〉,R) identifies as AC and so Spec(AC) identifies as a quotient group
scheme of Spec(A).

We now observe that β induces an action map

γ : E ⊗R E →E ⊗R AC .

In order to show that γ is an isomorphism it suffices to prove that B is
faithfully flat over E. One checks easily that A is free over AC . Therefore,
B⊗RA is free over B⊗RAC and similarly B⊗RB is free over B⊗RE. Using
once again that B is faithfully flat over R, we deduce that B is flat over E.
Since B is finite over E we conclude that it is faithfully flat over E and thus
that γ is an isomorphism. We have proved that E is a PHS for AC . Since by
definition AC is étale over R, then DAC/R =AC . �

We recall that M denotes the split maximal R-order in K[C]. If we let L
denote the ring of fractions of E, then ME = E ⊗R M is the split maximal
order in L[C]. We consider the duals N =HomR(M,R) and NE =N ⊗RE =
HomE(ME ,E); by duality these are the minimal Hopf orders in Map(C,K)
and Map(C,L), respectively. Then we have

DN/R = nN and DNE/E = nNE .

Proposition 5.7. B is a PHS for NE over E.

Proof. The inclusion map C ↪→D induces dual maps

M ↪→ H
↓ ↓

KC ↪→KD

A → N
↓ ↓

Map(D,K)→Map(C,K)

and the isomorphism Id ⊗ αB induces a map

B ⊗R B →B ⊗R A→B ⊗R N ∼=B ⊗E E ⊗R N ∼=B ⊗E NE ;

as M acts trivially on E, this map actually factors through B ⊗E B, and so
in summary we have produced the action map

B ⊗E B →B ⊗E NE .

In order to show that this injective map is in fact an isomorphism, we shall
show that their discriminants coincide. By the tower formula, we know that

DB/E =DB/RD−1
E/R =DB/R = nB;

here the second equality comes from Proposition 5.6 and the third equality
comes from Lemma 5.4. Since we know that DNE/E = nNE we conclude that
the map is indeed an isomorphism. �
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Next, we consider the ring E over the maximal order R〈τ〉. By the above,
we may write E as a direct sum of two rank one free R-modules E =E+⊕E−
where τ acts on E+ = R trivially and on E− by −1. Choosing a generator
δ for E− over R, we have an element of E with the property that δ2 ∈ R;
moreover, as E is a 〈τ〉-torsor, we know that in fact δ2 ∈R×.

We now apply a somewhat similar analysis to B viewed initially as an ME-
module. We assume R to be a local ring. We may then write B =

⊕
Bχ with

χ ranging over the abelian characters of 〈σ〉, and with each Bχ a free rank one
R-module, with generator tχ and with tχtφ divisible by tχφ (see Section 2.e
in [CEPT]); since B/E is an NE -torsor by Proposition 5.7 we can write:

B =E[X]mod
(
Xn − αn

)

for some αn ∈E×, with a= α.τα ∈R×.
We now assume that A satisfies H which reduces to requiring that nR is

the square of a principal ideal. For the sake of simplicity, we shall assume
that n is a square of R when it is not a unit. We denote by n1/2 a square root
of n. Moreover, we choose χ as 〈σ〉-character of α. These preparations being
in place, we can now determine the twist of (M,q) by B which is defined,
according to Definition 2, by:

(M̃B , q̃B) = (cB ⊗R M,Tr⊗ q)A,

where c= 1 (resp. n−1/2) if n is a unit (resp. otherwise).

Proposition 5.8. We have the following equalities:

(i) M̃B =Rε1 ⊕Rε2, where we set

ε1 = cατ ⊗ eχ + cα⊗ eχ̄τ and ε2 = cδατ ⊗ eχ − cδ⊗ eχ̄τ.

(ii)

q̃B(ε1, ε1) = 2a, q̃B(ε2, ε2) =−2aδ2, q̃B(ε1, ε2) = 0.

Proof. We recall from the definition that

M̃B = (cB ⊗R M)A =
{
z ∈ cB ⊗R M | uz = εD(u)z ∀u ∈AD

}
.

One easily checks from the definition of AD =H that

(cB ⊗R M)A = (cB ⊗R M)D.

We now observe that Propositions 5.6 and 5.7 provide us with a free R-basis
of B. Moreover, we know the action of D on the elements of this basis. Hence,
by a straightforward computation we obtain the equality:

(cB ⊗R M)C =R
(
cατ ⊗ eχ

)
+R

(
cδατ ⊗ eχ

)
+R(cα⊗ eχ̄τ) +R(cδα⊗ eχ̄τ).

It now suffices to take the C-fixed points of the right-hand side of the equality
above to obtain (i). In order to prove (ii) we shall assume that n is not a unit;
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the easier case where n is a unit is left to the reader. From the definitions,
we obtain that

(Tr⊗ q)(ε1, ε1) = 2Tr
(
n−1αατ

)
q(eχ, eχ̄τ) = 4a, (Tr⊗ q)(ε1, ε2) = 0

and

(Tr⊗ q)(ε2, ε2) =−2Tr
(
n−1δ2αατ

)
q(eχ, eχ̄τ) =−4aδ2.

Finally, we have to compare the forms Tr⊗ q and (Tr ⊗ q)A on M̃B . Using

Lemmas 2.4 and 5.4, we note that M̃B = θDMB , with θD = n−1
∑

u∈D u.
Then, for any element m and n in MB , we have:

(Tr⊗ q)
(
θDm,θDn

)
= n−1

∑

u∈D

(Tr⊗ q)
(
um,θDn

)

= 2(Tr⊗ q)
(
m,θDn

)
= 2(Tr⊗ q)A

(
θDm,θDn

)
.

We conclude that q̃B = 1
2 (Tr⊗ q) and so (ii) follows from the previous equal-

ities. �

Remark. We observe that the discriminant of the form q̃B is equal to −δ2,
up to a square. Therefore, if −1 is a square of R, since we know that δ2 is
not a square of R, we deduce that the discriminant of q̃B is not a square and
thus that the forms q and q̃B are not isometric.

Acknowledgment. We would like to thank the referee for valuable com-
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