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SHARP MAXIMAL Lp-ESTIMATES FOR MARTINGALES

RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI

Abstract. Let X be a supermartingale starting from 0 which
has only nonnegative jumps. For each 0 < p < 1 we determine

the best constants cp, Cp and cp such that

sup
t≥0

∥∥Xt

∥∥
p
≤ Cp

∥∥− inf
t≥0

Xt

∥∥
p
,∥∥∥sup

t≥0
Xt

∥∥∥
p
≤ cp

∥∥∥− inf
t≥0

Xt

∥∥∥
p

and ∥∥∥sup
t≥0

∣∣Xt

∣∣∥∥∥
p
≤ cp

∥∥∥− inf
t≥0

Xt

∥∥∥
p
.

The estimates are shown to be sharp if X is assumed to be a
stopped one-dimensional Brownian motion. The inequalities are

deduced from the existence of special functions, enjoying certain

majorization and convexity-type properties. Some applications

concerning harmonic functions on Euclidean domains are indi-
cated.

1. Introduction

Suppose that (Ω,F ,P) is a complete probability space, filtered by (Ft)t≥0,
a nondecreasing family of sub-σ-algebras of F , such that F0 contains all the
events of probability 0. Assume further that X = (Xt)t≥0 is a martingale on
this filtration with right-continuous trajectories that have limits from the left.
Define the associated supremum, infimum and two-sided supremum processes
M+ = (M+

t )t≥0, M
− = (M−

t )t≥0 and M = (Mt)t≥0 by the formulas

M+
t = sup

0≤s≤t
Xs ∨ 0, M−

t = inf
0≤s≤t

Xs ∧ 0
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A. Osȩkowski is supported in part by NCN grant DEC-2012/05/B/ST1/00412.

2010 Mathematics Subject Classification. 60G40, 60G44, 31B05.

149

c©2015 University of Illinois

http://www.ams.org/msc/
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and

Mt = sup
0≤s≤t

|Xt|=M−
t ∨M+

t ,

where, as usual, a∨ b=max{a, b} and a∧ b=min{a, b}. We will also use the
notation ΔXt for Xt−Xt−, the jump of X at time t (we assume that X0− = 0
almost surely).

The inequalities involving various sizes of X , M+, M− and M have played
an important role in probability, especially in the theory of stochastic pro-
cesses and stochastic integration. For instance, recall the classical result of
Doob [3]: we have

‖M‖p ≤
p

p− 1
‖X‖p, 1< p<∞,

and the constant p/(p− 1) is the best possible, even in the weaker estimates∥∥M+
∥∥
p
≤ p

p− 1
‖X‖p,

∥∥M−∥∥
p
≤ p

p− 1
‖X‖p.

Here and below, we will use the convention ‖Y ‖p = supt≥0(E|Yt|p)1/p for any
semimartingale Y = (Yt)t≥0. For p = 1, the above Lp bound does not hold
with any finite constant, but we have the following sharp L logL estimate (see
Gilat [5] and Peskir [6]): for any K > 1,

‖M‖1 ≤K sup
t≥0

E|Xt| log+ |Xt|+L(K),

where L(K) = 1+(eK(K−1))−1 is the best possible. There are many versions
of these results, and we refer the interested reader to the monograph [7] by
Peskir and Shiryaev for an overview, presenting the subject from the viewpoint
of optimal stopping theory.

We will be particularly interested in sharp Lp bounds involving X , M+,
M− and M in the case 0< p < 1. It is well known that in general such esti-
mates do not hold with any finite constants unless we assume some additional
regularity of the trajectories or the distribution such as continuity, conditional
symmetry or nonnegativity. For instance, we have the following result, proved
by Shao in [10].

Theorem 1.1. Suppose that X is a nonnegative martingale. Then for any
0< p< 1 we have the sharp bound

‖M‖p ≤
1

(1− p)1/p
‖X‖p.

We will be interested in a slightly different class of estimates. Motivated by
the study Hardy’s Hp spaces for harmonic functions on the upper half-space
R

n+1
+ , Burkholder obtained the following result.



MARTINGALE INEQUALITIES 151

Theorem 1.2 (Burkholder [1]). Suppose that X is a martingale with con-
tinuous sample paths with X0 = 0. If Φ is a nondecreasing continuous function
on [0,∞) such that Φ(0) = 0 and Φ(βλ)≤ γΦ(λ), for some β > γ > 1 and all
λ > 0, then

(1.1) sup
t≥0

EΦ(Mt)≤C sup
t≥0

EΦ
(
−M−

t

)
,

where C depends only on β and γ. In particular, if 0< p< 1, then

(1.2) ‖M‖p ≤Cp

∥∥M−∥∥
p
.

As Burkholder points out (see his Example 6.3 in [1]), by stopping Brownian
motion at the first time it hits −1, it follows that (1.2) does not hold for p≥ 1.

Burkholder’s proof of (1.1) uses good-λ inequalities. Over the years other
proofs of (1.2) have been given, including the recent one in [9] which is writ-
ten in terms of the functions M+ and M−. The inequality in [9] is applied
to prove a stochastic Gronwall lemma. The goal of this paper is to obtain
the best constant in (1.2) and its variant proved in [9]. Actually, we will
go much further and study a wider class of processes: our reasoning will en-
able us to obtain sharp estimates for supermartingales which do not have
negative jumps. In the formulation of our main results, we will need some
additional constants. A straightforward analysis of a derivative shows that
there is unique p0 ∈ (0,1) for which

(1.3) p−1
0 − 1 =

(
p−1
0 − 1

)1−p0
+ 1.

Computer simulations show that p0 	 0.1945 . . . . Now, if p ∈ (0, p0], let

(1.4) αp =

(
1− p

p

)1−p

and Cp =
1− p

p
.

On the other hand, if p ∈ (p0,1), let αp be the unique solution to the equation

(1.5) (1− p)
(
α1/(1−p)
p + 1

)
= αp + 1

and set Cp = (1+ α−1
p )1/p. Next, for any p ∈ (0,1), let

cp =

((
1

p
− 1

)p

+

∫ ∞

p−1−1

sp−1

s+ 1
ds

)1/p

.

Finally, introduce the constant cp by

cp =

{
(( 1p − 1)p +

∫ ∞
p−1−1

sp−1

s+1 ds)1/p if 0< p≤ 1/2,

(1 +
∫ ∞
1

sp−1

s+1 ds)1/p if 1/2< p< 1.

Observe that cp = cp for 0 < p ≤ 1/2; on the other hand, when p ∈ (1/2,1),
the constant cp is easily seen to be larger (which will also be clear from the
reasoning below).

We are ready to state the results. The first theorem gives a sharp compar-
ison of Lp norms of a supermartingale and its infimum process.
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Theorem 1.3. Suppose that X is a supermartingale with only nonnegative
jumps, satisfying X0 = 0 almost surely. Then for any 0< p< 1 we have

(1.6) ‖X‖p ≤Cp

∥∥M−∥∥
p

and the constant Cp is the best possible. It is already the best possible if X is
assumed to be a stopped Brownian motion.

The second result compares the sizes of the supremum and the infimum
processes.

Theorem 1.4. Suppose that X is a supermartingale with only nonnegative
jumps, satisfying X0 = 0 almost surely. Then for any 0< p< 1 we have

(1.7)
∥∥M+

∥∥
p
≤ cp

∥∥M−∥∥
p

and the constant cp is the best possible. It is already the best possible if X is
assumed to be a stopped Brownian motion.

Our final result is a sharp version of the bounds (1.6) and (1.7), with
two-sided maximal function on the left. This gives the best constant in
Burkholder’s estimate (1.2). Here is the precise statement.

Theorem 1.5. Suppose that X is a supermartingale with only nonnegative
jumps, satisfying X0 = 0 almost surely. Then for any 0< p< 1 we have

(1.8) ‖M‖p ≤ cp
∥∥M−∥∥

p

and the constant cp is the best possible. It is already the best possible if X is
assumed to be a stopped Brownian motion.

A few words about the approach and the organization of the paper are in
order. Our proofs of (1.6), (1.7) and (1.8) rest on the existence of a certain
special functions, and have their roots in the theory of optimal stopping. We
present them in the next section. In Section 3, we address the optimality of
the constants Cp, cp and cp. The final section is devoted to the discussion on
related results arising in harmonic analysis on Euclidean domains.

2. Proofs of (1.6), (1.7) and (1.8)

Throughout this section p is a fixed number belonging to (0,1). The con-
tents of this section is split naturally into three parts.

2.1. Proof of (1.6). As announced above, the argument depends heavily on
the existence of an appropriate special function. Consider U : R× (−∞,0]→
R defined by the formula

U(x, z) = α−1
p (−z)p−1

[
px− (p− 1)z

]
,

where αp is given by (1.4) or (1.5), depending upon the range of p.

Lemma 2.1. The function U has the following properties.

(i) It is of class C∞ on R× (−∞,0).
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(ii) For any z < 0 we have

(2.1) Ux(x, z)≥ 0 and Uz(z, z) = 0.

(iii) If x≥ z, then for any d≥ 0 we have

(2.2) U(x+ d, z) = U(x, z) +Ux(x, z).

(iv) If x≥ z, then

(2.3) U(x, z)≥ |x|p −Cp
p (−z)p.

Proof. The first three parts are evident. The only nontrivial statement is
the majorization (2.3). By homogeneity, it is enough to show it for z =−1.
Let ϕ(x) = U(x,−1) and ψ(x) = |x|p − Cp

p for x ≥ −1. The desired bound
follows at once from the following four observations:

ϕ is increasing,(2.4)

ψ is concave, decreasing on (z,0), and concave, increasing on (0,∞),(2.5)

ϕ
(
α1/(1−p)
p

)
= ψ

(
α1/(1−p)
p

)
and ϕ′(α1/(1−p)

p

)
= ψ′(α1/(1−p)

p

)
,(2.6)

ϕ(−1)≥ ψ(−1).(2.7)

The first three conditions are clear and follow from straightforward computa-
tions. The latter observation employs the definition of p0. Indeed, if p≤ p0,
then p−1−1≥ (p−1−1)1−p+1, which is equivalent (2.7). On the other hand,
if p > p0, then the definitions of αp and Cp guarantee that we actually have
equality in (2.7). This finishes the proof. �

Proof of (1.6). Let X = (Xt)t≥0 be a supermartingale starting from 0,
which admits only nonnegative jumps, and let ε > 0 be a fixed parameter. In
view of Lemma 2.1(i), we may apply Itô’s formula to U and the process Zε =
((Xt,M

−
t ∧ (−ε)))t≥0. (We refer the reader to Protter [8] for the general Itô

formula used here.) As the result of this application, we get that for each t≥ 0,

(2.8) U
(
Zε
t

)
= I0 + I1 + I2 +

I3
2

+ I4,

where

I0 = U
(
Zε
0

)
= U(0,−ε),

I1 =

∫ t

0+

Ux

(
Zε
s−

)
dXs,

I2 =

∫ t

0+

Uz

(
Zε
s−

)
d
(
M−

s− ∧ (−ε)
)
,

I3 =

∫ t

0+

Uxx

(
Zε
s−

)
d[X,X]cs,

I4 =
∑

0<s≤t

[
U

(
Zε
s

)
−U

(
Zε
s−

)
−Ux

(
Zε
s−

)
ΔXs

]
.
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Note that due to the assumption on the jumps of X , the process M− is contin-
uous; in particular, this explains why there is no summand Uz(Z

ε
s−)Δ(M−

s ∧
(−ε)) in I4.

Now, let us analyze the behavior of the terms I1 through I4 separately.
The first of them has nonpositive expectation, by the properties of stochastic
integrals. Indeed, if X =N +A is the Doob–Meyer decomposition for X (see,
e.g., Protter [8]), then we have

I1 =

∫ t

0+

Ux

(
Zε
s−

)
dNs +

∫ t

0+

Ux

(
Zε
s−

)
dAs.

Now the first term has mean zero, while the second integral is nonpositive,
because of the first inequality in (2.9) and the fact that A is a nonincreasing
process. To deal with I2, we make use of the second condition in (2.1). By
the aforementioned continuity of M−, we see that the process M−

s−∧ (−ε) de-
creases only when Xs =M−

s , that is, when the coordinates of the variable Zε
s−

are equal. Then, as we have proved in (2.1), we have Uz(Z
ε
s−) = 0 and hence

the integral I2 is zero. The term I3 also vanishes, since for a fixed z, the func-
tion x �→ U(x, z) is linear. Finally, each summand in I4 is zero: this is guaran-
teed by (2.2) and the assumption that X has only nonnegative jumps. Thus,
putting all the above facts together and plugging them into (2.8), we obtain

EU
(
Zε
t

)
≤ U(0,−ε),

or, in view of (2.3),

E|Xt|p ≤Cp
pE

(
−

(
M−

t ∧ (−ε)
))p

+ α−1
p (p− 1)εp.

Letting ε→ 0 gives E|Xt|p ≤Cp
pE(−M−

t )p, and it remains to take the supre-
mum over t to obtain (1.6). �

2.2. Proof of (1.7). Here the reasoning will be more involved. In particular,
due to the appearance of the supremum process in (1.7), we are forced to
consider special functions of three variables (corresponding to X , M+ and
M−). Introduce U : R× [0,∞)× (−∞,0]→R, given by

U(x, y, z) = yp − cpp(−z)p + p(x− z)(−z)p−1

∫ ∞

−y/z

rp−1

r+ 1
dr

if y >−( 1p − 1)z, and

U(x, y, z) =

((
1

p
− 1

)p

− cpp

)
(−z)p + p(x− z)(−z)p−1

∫ ∞

p−1−1

rp−1

r+ 1
dr

if y ≤−( 1p − 1)z. Let us prove some important facts concerning this object;

they are gathered in the following statement, which can be regarded as the
analogue of Lemma 2.1.

Lemma 2.2. The function U enjoys the following properties.
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(i) For all z < 0< y, the function U(·, y, z) : x �→ U(x, y, z) is of class C2

and the partial derivatives Uy(y, y, z), Uz(z, y, z) exist.
(ii) For all z < x < y we have

(2.9) Ux(x, y, z)≥ 0, Uy(y, y, z) = 0 and Uz(z, y, z)≥ 0.

(iii) If z ≤ x≤ y, then for any d≥ 0 we have the bound

(2.10) U
(
x+ d, (x+ d)∨ y, z

)
≤ U(x, y, z) +Ux(x, y, z)d.

(iv) If x≥ z and y ≥ 0, then

(2.11) U(x, y, z)≥ yp − cpp(−z)p.

Proof. (i) This is straightforward; we leave the verification to the reader.
(ii) The estimate for Ux is evident. The identity Uy(y, y, z) = 0 is also

immediate, both for y >−( 1p − 1)z and y ≤−( 1p − 1)z. To show the estimate

for Uz , note that if y ≤−( 1p − 1)z, then

Uz(z, y, z) =−p

((
1

p
− 1

)p

− cpp

)
(−z)p−1 − p(−z)p−1

∫ ∞

p−1−1

rp−1

r+ 1
dr = 0,

by the formula for cp. On the other hand, if y >−( 1p − 1)z, we easily derive

that

Uz(z, y, z) = pcpp(−z)p−1 − p(−z)p−1

∫ ∞

−y/z

rp−1

r+ 1
dr

> pcpp(−z)p−1 − p(−z)p−1

∫ ∞

p−1−1

rp−1

r+ 1
dr = 0,

where the latter equality is again due to the definition of cp.
(iii) If x + d ≤ y, then both sides are equal, because of the linearity of

x �→ U(x, y, z). Therefore, suppose that x+ d > y and consider the following
cases. If x+d≤−( 1p −1)z, then also y ≤−( 1p −1)z and again (2.10) becomes

an equality. If y <−( 1p − 1)z < x+ d, then (2.10) reads

(x+ d)p − cpp(−z)p + p(x+ d− z)(−z)p−1

∫ ∞

−(x+d)/z

rp−1

r+ 1
dr

≤
((

1

p
− 1

)p

− cpp

)
(−z)p + p(x+ d− z)(−z)p−1

∫ ∞

p−1−1

rp−1

r+ 1
dr,

or

F (s) :=
sp − ( 1p − 1)p

s+ 1
− p

∫ s

p−1−1

rp−1

r+ 1
dr ≤ 0,

with s = −(x + d)/z ≥ p−1 − 1. However, the function F vanishes for s =
p−1 − 1, and its derivative for s > p−1 − 1 is

F ′(s) =−sp − (p−1 − 1)p

(s+ 1)2
≤ 0,
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so F is indeed nonpositive and (2.10) holds true. The final case we need to
consider is when −( 1p − 1)z < y < x+ d. Then (2.10) takes the form

(x+ d)p − cpp(−z)p + p(x+ d− z)(−z)p−1

∫ ∞

−(x+d)/z

rp−1

r+ 1
dr

≤ yp − cpp(−z)p + p(x+ d− z)(−z)p−1

∫ ∞

−y/z

rp−1

r+ 1
dr,

which can be rewritten as

G(s) :=
sp − (−y/z)p

s+ 1
− p

∫ s

−y/z

rp−1

r+ 1
dr ≤ 0,

with s=−(x+ d)/z. To see that the latter estimate is valid, we observe that
G(−y/z) = 0 and

G′(s) =−sp − (−y/z)p

(s+ 1)2
≤ 0

provided s >−y/z. This proves the desired bound.
(iv) If x ≥ z, then the terms in U involving the appropriate integrals are

nonnegative. Therefore, we see that

(2.12) U(x, y, z)≥
(
max

{
y,−

(
1

p
− 1

)
z

})p

− cpp(−z)p ≥ yp − cpp(−z)p.

This yields the claim and completes the proof of the lemma. �

Proof of (1.7). Here the reasoning is similar to that appearing in the proof
of (1.6), so we will be brief. Pick an arbitrary supermartingale X = (Xt)t≥0

starting from 0, which has only nonnegative jumps, and let ε > 0. Consider
the process Zε = ((Xt,M

+
t ∨ ε,M−

t ∧ (−ε)))t≥0. By Lemma 2.2(i), we are
allowed to apply Itô’s formula to U and this process. As the result, we obtain
that for t≥ 0,

(2.13) U
(
Zε
t

)
= I0 + I1 + I2 +

I3
2

+ I4,

where

I0 = U
(
Zε
0

)
= U(0, ε,−ε),

I1 =

∫ t

0+

Ux

(
Zε
s−

)
dXs,

I2 =

∫ t

0+

Uy

(
Zε
s−

)
d
(
M+c

s− ∨ ε
)
+

∫ t

0+

Uz

(
Zε
s−

)
d
(
M−

s ∧ (−ε)
)
,

I3 =

∫ t

0+

Uxx

(
Zε
s−

)
d[X,X]cs,

I4 =
∑

0<s≤t

[
U

(
Zε
s

)
−U

(
Zε
s−

)
−Ux

(
Zε
s−

)
ΔXs

]
.
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Here (M+c
s ∨ ε)s≥0 denotes the continuous part of the process M+ ∨ ε. Note

that because of the appearance of this process in I2, there is no corresponding
term U(Zε

s−)Δ(M+
s ∨ ε) in I4. On the other hand, as in the proof of (1.6),

the process M− ∧ (−ε) is continuous due to the assumption on the sign of the
jumps of X .

Now, we see that EI1 ≤ 0, by the properties of stochastic integrals (see the
proof of (1.6) for a similar argument). Next, an application of (2.9) gives that
the first integral in I2 is zero and the second is nonpositive; again, see the
analogous reasoning in the proof of (1.6). The term I3 vanishes, since Uxx is
zero. Finally, each summand in I4 is nonpositive: this has been just proved
in (2.10) above. Therefore, combining all the above facts, we see that

EU
(
Zε
t

)
≤ U(0, ε,−ε),

or, by virtue of (2.11),

E
(
M+

t ∨ ε
)p ≤ cppE

((
−M−

t

)
∨ (−ε)

)p
+U(0, ε,−ε).

It remains to let ε→ 0 and then let t go to infinity. The proof is complete. �

2.3. Proof of (1.8). Finally, we turn our attention to the bound for the two-
sided maximal function. The idea is to proceed exactly in the same manner as
in the preceding subsection. What properties should the appropriate special
function have? A careful inspection of the above proof shows that it is enough
to find U enjoying the conditions of Lemma 2.2, with (2.11) replaced by

U(x, y, z)≥
(
max{y,−z}

)p − cpp(−z)p.

However, the function U introduced in Section 2.2 does have this property
when p ∈ (0,1/2]; see the first estimate in (2.12). Consequently, for these
values of p, the inequality (1.8) follows at once from the reasoning presented
previously (note that cp = cp provided 0 < p ≤ 1/2). Thus, it remains to
establish the desired bound in the range (1/2,1) only. Suppose that p lies in
this interval and consider a function U : R× [0,∞)× (−∞,0]→R defined by

U(x, y, z) =
(
1− cpp

)
(−z)p + p(−z)p−1(x− z)

∫ ∞

1

rp−1

r+ 1
dr

if y <−z, and

U(x, y, z) = yp − cpp(−z)p + p(−z)p−1(x− z)

∫ ∞

−y/z

rp−1

r+ 1
dr

for remaining (x, y, z). For the sake of completeness, let us list the key prop-
erties of this function in a lemma below. We omit the straightforward proof:
analogous argument has been already presented in the proof of Lemma 2.2.

Lemma 2.3. The function U enjoys the following properties.

(i) For all z < 0< y, the function U(·, y, z) is of class C2 and the partial
derivatives Uy(y, y, z), Uz(z, y, z) exist.
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(ii) For all z < x < y, we have

Ux(x, y, z)≥ 0, Uy(y, y, z) = 0 and Uz(z, y, z)≥ 0.

(iii) If z < x < y, then for any d≥ 0 we have

U
(
x+ d, (x+ d)∨ y, z

)
≤ U(x, y, z) +Ux(x, y, z)d.

(iv) If x≥ z, then we have

U(x, y, z)≥
(
y ∨ (−z)

)p − cpp(−z)p.

Equipped with this statement, we obtain the proof of (1.8) by a word-
by-word repetition of the reasoning from Section 2.2. Since no additional
arguments are needed, we omit the details, leaving them to the reader.

3. Sharpness

For the sake of clarity, we have decided to split this section into four parts.
Throughout, B = (Bt)t≥0 denotes a standard, one-dimensional Brownian mo-
tion starting from 0.

3.1. Optimality of Cp in (1.6), the case p ∈ (0, p0]. Let β be an arbitrary
positive number smaller than p−1 − 1 and let δ > 0. Let τ0 be defined by

τ0 = inf
{
t : Bt ∈ {−1, β}

}
.

Now, define the variable σ and the stopping times τ1, τ2, . . . by the following
inductive procedure. Suppose that n is a given nonnegative integer. If Bτn =
β(1 + δ)n, then put σ = n and τn+1 = τn+2 = · · ·= τn; on the other hand, if
Bτn =−(1 + δ)n, then let

τn+1 = inf
{
t > τn : Bt ∈

{
−(1 + δ)n+1, β(1 + δ)n+1

}}
.

To gain some intuition about these random variables, let us look at the be-
havior of the sequence (Bτn)n≥0. The first step is to wait until the Brownian
motion reaches −1 or β. If Bτ0 = β, we stop the evolution. If Bτ0 =−1, then
we start the second stage and continue until Bt reaches −(1 + δ) or β(1 + δ).
If the second case occurs we stop but if Bτ1 = −(1 + δ), then we start the
third stage and wait until B reaches −(1 + δ)2 or β(1 + δ)2. This pattern is
then repeated. We define the random variable σ to be the number of nontriv-
ial stages which occur before the Brownian motion stops. Using elementary
properties of Brownian motion, we see that

(3.1) P(σ = 0) =
1

β + 1

and, for any nonnegative integer n,

(3.2) P(σ > n) =
β

β + 1

(
β(1 + δ) + 1

(β + 1)(1 + δ)

)n

.
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Hence, in particular, for any n= 1,2, . . . we have

(3.3) P(σ = n) =
β

β + 1

(
β(1 + δ) + 1

(β + 1)(1 + δ)

)n−1
δ

(β + 1)(1 + δ)
.

Consequently, we see that η, the pointwise limit of the sequence (τn)n≥0, is
finite almost surely. Put X = (Bη∧t)t≥0 and let us derive the pth norms of
Xη and M−. By the very construction, Xη = β(1 + δ)n on the set {σ = n},
so by (3.1) and (3.3),

‖Xη‖pp = E|Xη|p

=
βp

β + 1
+

∞∑
n=1

(1 + δ)np · β

β + 1

(
β(1 + δ) + 1

(β + 1)(1 + δ)

)n−1
δ

(β + 1)(1 + δ)

=
βp

β + 1
+

β(1 + δ)p−1δ

(β + 1)2

∞∑
n=1

(
(β(1 + δ) + 1)(1 + δ)p−1

β + 1

)n−1

.

Now observe that

(β(1 + δ) + 1)(1 + δ)p−1

β + 1
= (1 + δ)p−1 +

βδ(1 + δ)p−1

β + 1

= 1+

(
p− 1 +

β

β + 1

)
δ+O

(
δ2

)
as δ → 0. Since β < p−1 − 1, the above expression is less than 1 for small δ.
Thus ‖Xη‖p is finite. On the other hand, it follows directly from the con-
struction that M− ≥ −(1 + δ)n on {σ = n}, that is, we have the point-
wise bound −βM− ≤ Xη . This gives ‖X‖p ≥ ‖Xη‖p ≥ β‖M−‖p, and since
β < p−1 − 1 was arbitrary, the optimal constant in (1.6) cannot be smaller
than p−1 − 1.

3.2. Optimality of Cp in (1.6), the case p ∈ (p0,1). Let β be an arbitrary

parameter smaller than α
1/(1−p)
p . Fix a large positive constant K, an even

larger integer N and set δ =K/N . Let τ0, τ1, τ2, . . . and σ be as in preceding
case. The main difference in comparison to the previous construction is that
we put X = (BτN∧t)t≥0. That is, we terminate the Brownian motion after
at most N stages. If n ≤ N , then −M− ≥ (1 + δ)n and Xη = β(1 + δ)n on
{σ = n}. Furthermore, −M− = |Xη|= (1+δ)N+1 on {σ >N}. Consequently,
using (3.1), (3.2) and (3.3), we derive that

∥∥M−∥∥p

p
≤ βδ(1 + δ)p−1

(β + 1)2

N∑
n=0

(
(β(1 + δ) + 1)(1 + δ)p−1

β + 1

)n−1

+
β(1 + δ)(N+1)p

β + 1

(
β(1 + δ) + 1

(β + 1)(δ+ 1)

)N
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=
βδ(1 + δ)p−1

β + 1
·

1− ( (β(1+δ)+1)(1+δ)p−1

β+1 )N

(β + 1)(1− (1 + δ)p−1)− βδ(1 + δ)p−1

+
β(1 + δ)p

β + 1

(
(β(1 + δ) + 1)(1 + δ)p−1

β + 1

)N

.

A similar computation shows that

‖Xη‖pp = βp · βδ(1 + δ)p−1

β + 1
·

1− ( (β(1+δ)+1)(1+δ)p−1

β+1 )N

(β + 1)(1− (1 + δ)p−1)− βδ(1 + δ)p−1

+
β(1 + δ)p

β + 1

(
(β(1 + δ) + 1)(1 + δ)p−1

β + 1

)N

.

Now let N go to infinity (then δ =K/N converges to 0). The upper bound
for ‖M−‖pp converges to

β

β + 1

1− epK−K/(β+1)

1− p− βp
+

β

β + 1
epK−K/(β+1),

while ‖Xη‖pp tends to

βp · β

β + 1

1− epK−K/(β+1)

1− p− βp
+

β

β + 1
epK−K/(β+1).

Consequently, the optimal constant in (1.6) cannot be smaller than

βp(1− epK−K/(β+1))/(1− p− βp) + epK−K/(β+1)

(1− epK−K/(β+1))/(1− p− βp) + epK−K/(β+1)
,

for any K. Letting K →∞, we easily see that the expression above converges
to

βp + βp+ p− 1

(β + 1)p
= 1+

βp − 1

(β + 1)p
.

However, recall that β was an arbitrary positive constant smaller than

α
1/(1−p)
p . Letting β → α

1/(1−p)
p and using the definitions of αp and Cp, we

see that the expression above converges to Cp
p . This proves the sharpness of

the estimate (1.6).

3.3. Optimality of cp in (1.7). Here the optimal stopping procedure will
be more complicated. Let β be a given positive number smaller than p−1 − 1
and let δ > 0. Define the stopping times τ0, τ1, τ2, . . . and the variable σ
with the use of the same formulas as in the preceding cases. We will also
need an additional stopping time η given as follows: if σ = n (and hence
Bτn = β(1 + δ)n), then put

η = inf
{
t : Bt =−(1 + δ)n

}
.

We easily check that η is a stopping time which is finite almost surely. PutX =
(Bη∧t)t≥0 and let us compute the norms ‖M+‖p and ‖M−‖p. By the above
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construction, we see that M−
η =−(1+ δ)n on {σ = n}, so E(−M−

η )p1{σ=n} =
(1+ δ)npP(σ = n). Therefore, by (3.1) and (3.3), we have

E
(
−M−

η

)p
=

∞∑
n=0

(1 + δ)npP(σ = n)

=
β

β + 1
+

∞∑
n=1

(1 + δ)np
β

β + 1

(
β(1 + δ) + 1

(β + 1)(δ+ 1)

)n−1
δ

(β + 1)(δ+ 1)

=
β

β + 1

{
1 +

δ

β(1 + δ) + 1

∞∑
n=1

[
(1 + δ)p−1(β(1 + δ) + 1)

β + 1

]n
}

=
β

β + 1

{
1 +

δ(1 + δ)p−1

(β + 1)(1− (1 + δ)p−1(1 + βδ
β+1 ))

}
.

Now, if we let δ go to 0, we see that

E
(
−M−

η

)p → β

β + 1

{
1 +

1

(β + 1)(1− p− β
β+1 )

}
=

β(2− p− βp)

(β + 1)(1− p− βp)
.(3.4)

The analysis of E(M+
η )p is slightly more complicated. Suppose that σ = n.

Then Bτn = β(1 + δ)n and, using elementary properties of Brownian motion,
we see that for each y > β(1 + δ)n,

P
(
M+

η ≥ y|σ = n
)
= P

(
B reaches y before it reaches −(1 + δ)n|σ = n

)
=

(β + 1)(1 + δ)n

y+ (1+ δ)n

and hence the density of M+
η , given that σ = n, is equal to

g(s) =
(β + 1)(1 + δ)n

(s+ (1+ δ)n)2
, s > β(1 + δ)n.

Consequently,

E
[(
M+

η

)p|σ = n
]
=

∫ ∞

β(1+δ)n

sp(β + 1)(1 + δ)n

(s+ (1+ δ)n)2
ds

= (β + 1)(1 + δ)pn
∫ ∞

β

sp

(s+ 1)2
ds

and hence by (3.3) we obtain, after some straightforward manipulations,

E
(
M+

η

)p ≥ β(1 + δ)p−1δ

β + 1

∫ ∞

β

sp

(s+ 1)2
ds ·

∞∑
n=1

(
(β(1 + δ) + 1)(1 + δ)p−1

β + 1

)n−1

=
β(1 + δ)p−1δ

β + 1

∫ ∞

β

sp

(s+ 1)2
ds · 1

1− (1 + δ)p−1(1 + β
β+1δ)

.
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When δ goes to 0, the latter expression converges to∫ ∞

β

sp

(s+ 1)2
ds · β

1− p− βp
.

Putting all the above facts together, we see that

lim inf
δ→0

E(M+
η )p

E(−M−
η )p

≥
(β + 1)

∫ ∞
β

sp

(s+1)2 ds

2− p− βp
.

However, β was an arbitrary positive number smaller than 1/p− 1. If we let
β go to 1/p− 1 in the above expression on the right, we see that the optimal
constant in (1.7) cannot be smaller than(

1

p

∫ ∞

p−1−1

sp

(s+ 1)2
ds

)1/p

.

This is precisely cp, which can be easily verified with the use of integration
by parts.

3.4. Optimality of cp in (1.8). If 0< p≤ 1/2, then the sharpness of (1.8)
follows at once from Section 3.3, since (1.8) is stronger than (1.7). Therefore it
is enough to study the case 1/2< p< 1 only. The calculations are very similar
to those in the preceding section; however, some small but nontrivial changes
are required, so we have decided to present the details. Let τ0, τ1, τ2, . . . , σ, η
be defined by the same formulas (for some fixed β < p−1 − 1) and put X =
(Bη∧t)t≥0. Now, for a given integer n and 0< y ≤ (1 + δ)n, we see that

P(Mη ≥ y|σ = n) = 1,

since M−
η = −(1 + δ)n on the set {σ = n}. For y > (1 + δ)n we have, as

previously,

P(Mη ≥ y|σ = n) =
(β + 1)(1 + δ)n

y+ (1+ δ)n
.

Consequently, we derive that the conditional pth moment of Mη is equal to

E
[
Mp

η |σ = n
]
= (1+ δ)np · (1 + δ)n(1− β)

2(1 + δ)n
+

∫ ∞

(1+δ)n

sp(β + 1)(1 + δ)n

(s+ (1+ δ)n)2
ds

=
1− β

2
(1 + δ)np + (β + 1)(1 + δ)np

∫ ∞

1

sp

(s+ 1)2
ds.

Therefore, by (3.3),

EMp
η ≥

∞∑
n=1

[
1− β

2
+ (β + 1)

∫ ∞

1

sp

(s+ 1)2
ds

]

× βδ(1 + δ)np−1

(β + 1)2

(
β(1 + δ) + 1

(β + 1)(1 + δ)

)n−1



MARTINGALE INEQUALITIES 163

=

[
1− β

2
+ (β + 1)

∫ ∞

1

sp

(s+ 1)2
ds

]

× β(1 + δ)1−p

(β + 1)((β + 1)(1 + δ)1−p − β(1 + δ)− 1)
,

where the geometric series converges due to the assumption β < p−1 − 1.
Letting δ→ 0, we see that the latter expression converges to

β

(β + 1)(1− p− βp)

[
1− β

2
+ (β + 1)

∫ ∞

1

sp

(s+ 1)2
ds

]
.

Thus, we infer from (3.4) that the upper bound for the ratio EMp
η /E(−M−

η )p

cannot be smaller than
β

(β+1)(1−p−βp) [
1−β
2 + (β + 1)

∫ ∞
1

sp

(s+1)2 ds]

β(2−p−βp)
(β+1)(1−p−βp)

=

1−β
2 + (β + 1)

∫ ∞
1

sp

(s+1)2 ds

2− p− βp
.

It suffices to note that the latter expression converges to cpp as β → p−1 − 1.
This establishes the desired sharpness.

4. Harmonic functions in domains of Rn

In [1], Burkholder proves an interesting version of inequalities (1.1) and
(1.2) for harmonic functions in the upper half-space R

n+1
+ = {(x, y) : x ∈

Rn, y > 0}. We briefly recall his result. If u is harmonic in R
n+1
+ , we let

Nα(u) be its non-tangential maximal function defined by

Nα(u)(x) = sup
{∣∣u(s, y)∣∣ : (s, y) ∈ Γα(x)

}
,

where Γα(x) = {(s, y) : |x−s|<αy} is the cone in R
n+1
+ of aperture α. Setting

u− = u∧ 0, we define the corresponding one-sided variant of the above object
by

N−
α (u)(x) = sup

{
−u−(s, y) : (s, y) ∈ Γα(x)

}
.

Theorem 4.1 (Burkholder [1]). Suppose u is harmonic in R
n+1
+ satisfying

u(0, y) = o(y−n), as y→∞. If Φ is as in Theorem 1.2 then

(4.1)

∫
Rn

Φ
(
Nα(u)(x)

)
dx≤C

∫
Rn

Φ
(
−N−

α (u)(x)
)
dx,

for some constant C depending on Φ, n and α. In particular,

(4.2)
∥∥Nα(u)

∥∥
p
≤Cp,α,n

∥∥N−
α (u)

∥∥
p
, 0< p< 1.

It is shown in [1, p. 451] that this inequality fails for p≥ 1.
A similar result holds for harmonic functions in the ball of Rn with the

normalization u(0) = 0. Using Theorem 1.5 and the classical fact that the
composition of a superharmonic function with a Brownian motion is a su-
permartingale (see Doob [3]), we obtain the following probabilistic version of
Burkholder’s result.
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Theorem 4.2. Let D ⊂ R
n be a domain (an open connected set). Fix a

point x0 ∈ D and let B = (Bt)t≥0 be Brownian motion starting at x0 and
killed upon leaving D. Denote by τD its exit time from D. Assume further
that u is a superharmonic function in D satisfying the normalization condition
u(x0) = 0. Define M(u) = supt≥0 |u(Bt∧τD )| and M−(u) = inft≥0 u

−(Bt∧τD ).
Then

(4.3)
∥∥M(u)

∥∥
p
≤ cp

∥∥M−(u)
∥∥
p
, 0< p< 1,

where cp is the constant in Theorem 1.5.

This inequality has an interesting application for harmonic functions in
the unit disc D = {z ∈ C : |z| < 1} in the plane. Suppose u is harmonic in
D and, as in the upper half-space, define Nα(u)(e

iθ) and N−
α (u)(eiθ) where

this time the supremum is taken over the Stoltz domain given by the interior
of the smallest convex set containing the disc {z ∈C : |z|< α} and the point
eiθ. (Here, we assume 0 < α < 1.) It is proved in Burkholder, Gundy and
Silverstein [2] that there exists a constant kα depending only on α such that

(4.4) m
{
θ : Nα(u)

(
eiθ

)
> λ

}
≤ kαP

(
M(u)> λ

)
,

for all λ > 0. Here m denotes the Lebesgue measure on the circle. While the
opposite inequality is stated in [2] for harmonic functions, it actually holds for
subharmonic functions (see also Durrett [4, p. 137]) and we have that there
exists a constant Kα (again depending only on α) such that

(4.5) P
(
−M−(u)> λ

)
≤Kαm

{
θ : N−

α u
(
eiθ

)
> λ

}
.

Combining (4.3), (4.4) and (4.5) we obtain the following corollary.

Corollary 4.1. Let u be a harmonic function in the unit disk D with
u(0) = 0. Then

(4.6)
∥∥Nα(u)

∥∥
p
≤ kαKαcp

∥∥N−
α (u)

∥∥
p
, 0< p< 1,

where the constants kα, Kα and cp are, respectively, those appearing in (4.4),
(4.5) and Theorem 1.5. In particular, the dependence on p in the harmonic
function inequality (4.6) is the same as in the martingale inequality (1.8).
A similar inequality holds for harmonic functions on the upper half-space R2

+

satisfying the hypothesis of Theorem 4.1.
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