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REALIZING DIMENSION GROUPS, GOOD MEASURES,
AND TOEPLITZ FACTORS

DAVID HANDELMAN

Abstract. Motivated by connections between dimension groups
and good measures or minimal actions on Cantor sets (especially

Töplitz), we find realizations of classes of dimension groups as

limits of primitive matrices all of which have equal column sums,
or equal row sums.

Introduction

There are very strong connections between ordered K0-groups (dimen-
sion groups, [E1] and [EHS]) and minimal Z-actions on Cantor sets ([GPS1],
[GPS2] and subsequent work). A basic question concerns explicit realizations
of the dimension groups, in order to obtain Vershik maps on the correspond-
ing Bratteli diagrams. Another question concerns good measures invariant
under minimal actions ([BeH]), and the connection with the realizing Bratteli
diagrams. A third problem deals with the presence of factors of the mini-
mal system that are Toeplitz, and how this relates to the dimension group
realization.

In this paper, we are mostly dealing with simple dimension groups with
unique trace; equivalently, up to strong orbit equivalence class, uniquely er-
godic minimal Z-actions on Cantor sets. As with every dimension group,
these can be realized as the direct limit, as partially ordered Abelian groups,
limAi : Z

n(i) → Zn(i+1), where Ai are nonnegative integer matrices, and Zm

is given the usual coordinatewise ordering [EHS]. This realization is of size d
if d= lim infi→∞ n(i) ∈N ∪ {∞}. Let D(G) be the minimum of the sizes at
which G can be realized.

Received June 25, 2013; received in final form February 16, 2014.
Supported in part by an NSERC Discovery Grant.
2010 Mathematics Subject Classification. 19K14, 06F20, 46L80, 15B36, 15B48, 37A55,

20K15, 20K20.

1057

c©2014 University of Illinois

http://www.ams.org/msc/


1058 D. HANDELMAN

Obviously, a lower bound for D(G) is the rank of G as an Abelian group,

rankG. Elliott [E2] has given an example of a rank 2 simple dimension group

with unique trace for which D(G) = 3 > rankG. In answer to a conjecture

of Effros [Ef], Riedel [R1], [R2] showed that if G were free (as an Abelian

group) and simple with unique trace, then D(G) = rankG, but that there

exist examples of simple dimension groups G with more than one trace that

are free, with D(G) > rankG. We show by direct construction and with

more requirements on the realization (to be discussed below), that Elliott’s

example is the worst possible, that is, for any simple dimension group with

unique trace, D(G) ∈ {rankG,1 + rankG}.
Now drop the assumption of unique trace (unique ergodicity in the dy-

namical setting). Good measures on Cantor sets were introduced by Akin

[Ak1], [Ak2]. In [BeH], this notion was translated, for invariant measures for

minimal actions, among other situations, to traces on the corresponding di-

mension group. Criteria for goodness were obtained, in terms of the affine

representation of the dimension group on its normalized trace space (a Cho-

quet simplex). If the trace (measure) has values in the rationals, it need not

be good, although it is close to being good. In terms of a realization of G

as above, if the column sums of Ai for each n(i) are constant, say equal to

ri, then there is a simple way to construct a trace τ on G by normalizing

the rows of the form (1,1, . . . ,1) ∈Z1×n(i). Such a trace is necessarily faithful

(the corresponding measure is faithful, that is, no clopen sets have measure

zero), good, and rational-valued. We show that the converse holds; that is, if

τ is a faithful, good, rational-valued trace, then there exists a realization of

G such that the transition matrices Ai each have equal column sum, and τ is

given by the obvious construction.

In the case that the trace is unique (and thus good) and rational-valued, we

do better: we find a realization with equal column sums of size (rankG) + 1,

giving the realizing matrices explicitly in terms of the group extension data.

This is in fact how we complete the proof that D(G) ∈ {rankG,1 + rankG}
in the unique trace case.

This construction gives us a pool of square matrices that whose column

sums are equal. If we transpose them, we obtain matrices whose row sums

are equal. Whenever we have a realization of G via matrices (not necessarily

square) whose row sums are equal, then there is an ordering on the path space

of the corresponding Bratteli diagram so that the minimal system has a factor

map onto an odometer, and conversely. So it becomes of interest to character-

ize the dimension groups which admit such a realization; this is already known

[GJ]. However, the contribution of this portion of the paper is to obtain sim-

ilar bounds (using the transposes) on the matrix sizes in the unique trace

situation, with relatively explicit constructions (based on extension data).
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We also deal with realizations for which both properties (equal row sum
and equal column sum) hold simultaneously. A surprise appears in terms of
the supernatural number of the range of the rational trace.

Definitions and outline

All groups are Abelian, free means free as an Abelian group, all partially
ordered groups are directed (that is, G = G+ − G+), unperforated (when-
ever n is a positive integer and g ∈ G, then ng ∈ G+ implies g ∈ G+), and
torsion-free. Equivalence classes representing elements of the direct limit,
limAn : Fn → Fn+1 are expressed as [v,n], where v belongs to the nth free
Abelian group. The rank1 of a torsion-free Abelian group G is the rational
vector space dimension of G⊗Q, equivalently, the size of a maximal linearly
independent subset over the rationals contained in G.

Suppose U is a noncyclic subgroup of the rationals, and let τ : G→ U ⊂R
be an onto group homomorphism from a torsion-free group G to U . We may
impose an ordered group structure on G simply by declaring g ∈G+ \ {0} iff
τ(g)> 0. This makes G into a simple dimension group with unique trace, and
the trace is rational-valued; all such simple dimension groups are constructed
in this manner. That is, G is an extension (in the category of Abelian groups)
of a torsion-free Abelian group ker τ by the subgroup U of the rationals.

As G is a countable dimension group, by [EHS], it has a representation as
ordered groups, G� limAn : Zf(n) →Zf(n+1) where f : N→N is a function,
we take the usual coordinatewise ordering on each Zf(n) and impose the usual
direct limit ordering. The An have only nonnegative entries (and, by telescop-
ing, can be made strictly positive when G is simple). However, [EHS] does not
give specific representations, that is, the matrices An cannot be constructed
from the argument, except by extremely complicated machinations. Here we
consider the case that G be of rank k + 1 (so ker τ is rank k), and provide
explicit realizations for G with the ECS property (equal column sums: each of
the nonnegative (or strictly positive) matrices An has all of its column sums
equal).

With an ECS realization, there is a canonical choice of trace, namely (up
to scalar multiple), the sequence of normalized multiples of constant rows; in
this case, we say the trace has an ECS realization. We show that for general
dimension groups with order unit, a trace admits an ECS realization iff it is
faithful, rational-valued, and good (in the sense of Akin, after translation to
dimension groups as in [BeH]). In this case, there is no control on the matrix
sizes, but we do not require simplicity.

1 Some authors have unfortunately defined the rank of a dimension group to be the

width of the minimal Bratteli diagram realizing it, that is, what we have defined in the
Introduction as D(G). As noted above, this can be strictly larger than the rank of the

underlying group.
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When we take the transposes of the matrices used for ECS realizations,
and thus obtain ERS—equal row sum—realizations, the resulting dimension
groups run over all possible simple dimension groups of finite rank with unique
trace (not generally rational-valued) which could admit an ERS realization.
These are very closely related to Töplitz systems (pairs (X,T ) consisting of a
Cantor set and a minimal self-homeomorphism, which is an almost everywhere
one-to-one extension of an odometer), as explained to me by Chris Skau, whose
question about ERS realizations motivated this paper.

An ERS realization of a simple dimension group G with respect to a (non-
cyclic rank one subgroup) H such that τ(H) 	= 0 and G/H is torsion-free is an
ordered group isomorphism φ : G→ limAn : Zf(n) →Zf(n+1) where f : N→
N is some function, An are nonnegative integer matrices each having equal row
sums, the direct limit ordering is imposed, such that φ(H) =

⋃
n[111f(n), n]Z,

with 111f(n) the column consisting of ones. If f(n) = s for all n, the realization
is of size s. A realization is co-rank one ultrasimplicial if for all n, the kernel
of the map Zf(n) →G (given by v 
→ [v,n]) has rank at most one.

If G and H are as in the previous paragraph, and there exists an ERS
realization of G with respect to H that is also ECS, then we refer to this as
an ECRS realization of G with respect to H .

We establish the following results on ECS, ERS, and ECRS realizations.
Let G be a dimension group.

(i) If G is simple, of rank k+1 with unique trace τ , and τ(G) is a subgroup
of the rationals, then there exists an ECS realization of G of size k + 2
(Theorem 4.1).

(ii) If G is simple and has unique trace, and can be written as a direct
limit of finite rank simple dimension groups, then G has a co-rank one
ultrasimplicial realization; in particular, if rankG=m, then it admits a
size m+ 1 realization (Theorem 5.1).

(iii) Let τ be a trace on G with τ(G)⊆Q. Then there exists an ECS real-
ization of G representing τ if and only if τ is good (in the sense of Akin,
as translated to the dimension group setting [BeH]) and faithful (i.e.,
ker τ ∩G+ = {0}) (Theorem 6.1(b)).

(iv) Suppose G is simple and has unique trace τ , and H is a noncyclic rank
one subgroup of G such that τ(H) 	= {0} and G/H is torsion-free.
(a) If rankG= k+1, then there exists a size k+2 ERS realization of G

with respect to H (Theorem 7.1(a)).
(b) There exists an ERS realization of G with respect to H that is co-

rank one ultrasimplicial (Theorem 7.1(b)).
(v) Suppose G is as in (iv), and in addition, τ(G)⊆Q.

(a) If τ(G) has no primes of infinite multiplicity (i.e., τ(G) is not p-
divisible for any prime p), then G admits an ECRS realization with
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respect to H if and only if λ := |τ(G)/τ(H)| ≥ rankG; when λ <∞,
there is an ECRS realization only of size λ (Theorem 11.9).

(b) If τ(G) has a prime of infinite multiplicity (i.e., τ(G) is p-divisible
for some prime p), then G admits an ECRS realization with respect
to H ; this can be constructed to be bounded if |τ(G)/τ(H)| < ∞
(Theorem 11.13).

Part (iii) above applies to all dimension groups (with order unit), but the
other parts require simplicity and unique trace.

Much of the time, we work in the category of Abelian groups with group
homomorphism to the reals: a torsion-free Abelian group G together with
a group homomorphism t : G→R such that t(G) is dense in R; we denote
this (G, t). Isomorphism in this category is the obvious one, (G, t)� (G′, t′) if
there exists a group isomorphism φ : G→G′ such that t′φ is a nonzero scalar
multiple of t. Automatically, this induces an isomorphism ker t� ker t′.

Suppose that G and G′ are noncyclic simple dimension groups with unique
trace, τ and τ ′, respectively. Then G � G′ as ordered groups if and only
if (G,τ)� (G′, τ ′) as Abelian groups with real-valued group homomorphism.
One way is trivial. Conversely, suppose φ : G→ G′ is a group isomorphism
such that τ ′φ= λτ for some nonzero real λ. By replacing φ by −φ if necessary,
we may assume λ > 0. Then φ is an isomorphism of ordered groups.

To see this, we note that g ∈ G+ \ {0} iff τ(g) > 0; this is equivalent to
τ ′(φ(g)) > 0, which is equivalent to φ(g) ∈ (G′)+ \ {0}. As φ is a group iso-
morphism, this says both φ and φ−1 are order preserving, hence φ is an order
isomorphism.

Hence, to decide if two simple dimension groups with unique trace are
order isomorphic, it is sufficient to find a group isomorphism between them
that scales the trace(s). This makes life simple, at least when the dimension
group has unique trace.

The dimension groups we will be considering for ECS realizations have
an additional property, that the range of their trace is (up to nonzero scalar
multiple) a subgroup of the rationals. So we consider them as groups with
real-valued group homomorphism, (G, t) such that t(G) is rank one and dense
in R (so up to scalar multiple, t(G) = U ⊆Q).

Although we will often be talking about extensions of Abelian groups,
0 → C → G → U → 0, it is too restrictive to deal with the classification as
extensions (i.e., within Ext1(C,U)); instead, we are dealing with the coarser
classification, isomorphism for maps G→ U , where we are allowed to multiply
by ±1 (and if U is p-divisible, by powers of p). There are still generically
uncountably many isomorphism classes of these, since Aut(C) and Aut(U)
are usually only countable.

As usual, if a group or ordered group is given as a direct limit,
limMn : Fn → Fn+1 (typically, Fn will be free Abelian groups, and if the
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ordered direct limit is required, the entries of Mn will be nonnegative), then
elements of the direct limit can be written as equivalence classes, [a,n] where
a ∈ Fn, and the equivalence relation is generated by [a,n] = [Mna,n+ 1].

1. Via subsemigroups

For this section, G need only be a partially ordered group with positive
cone G+. Let P denote the set of nonnegative integers. If {ai} ⊆ G+, we
denote by

∑
aiP , the set of sums {

∑
ain(i)|n(i) ∈ P}, the semigroup (or

subsemigroup) generated by {ai}.
Let {Sn}n∈N be a collection of subsemigroups of G+ with S1 ⊆ S2 ⊆

S3 ⊆ · · · such that G+ =
⋃
Sn. Suppose Sn is generated by {a(n)i }f(n)i=1 . Since

Sn ⊆ Sn+1, we can find an f(n + 1) × f(n) matrix An (called a transition
matrix) with entries from P such that for all i= 1,2, . . . , f(n),

(∗) a
(n)
i =

f(n+1)∑
j=1

(An)jia
(n+1)
j .

There is usually a great deal of choice available for the matrix entries, since
there is no assumption of any sort of unique decomposition. Note the subscript
ji, not ij.

Let Fn = Zf(n), the free Abelian group on f(n) generators (denoted e
(n)
i

(i = 1,2, . . . , f(n)), but when superscripted (n) is understood, it is deleted),
equipped with the usual coordinatewise ordering. Now form the direct limit
dimension group from the Ans, H = limAn : Fn → Fn+1. Define ψn : Fn →G

via ψn(ei) = a
(n)
i . This is a well-defined positive group homomorphism from

Fn to G. The condition in (∗) is precisely what we need in order that ψn+1 ◦
An = ψn. Hence, the family {ψn} induces a positive group homomorphism
Ψ : H →G (explicitly, Ψ[v,n] = ψn(v) where v ∈ Fn).

Since G+ =
⋃
Sn, Ψ(H+) =G+; since G is directed, that is, G=G+−G+,

it follows that Ψ is onto. If Ψ is one to one, then it is an isomorphism of ordered
groups (in particular, G is a dimension group), and we have a realization for
it using the matrices An. If rankH ≤ rankG<∞, then Ψ is automatically an
isomorphism (since an onto homomorphism from a torsion-free Abelian group
of finite rank to a torsion-free group of the same rank is automatically one to
one).

The construction of Ψ depends on the choice(s) of the generators for the
semigroups Sn, and then on the matrices An; different choices for the matrices
(even fixing the generators of all the Sn) can result in different Ψ functions,
some of which may be one to one while others need not be.

We summarize this in one gigantic statement.
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Lemma 1.1. Suppose that G is a partially ordered Abelian group with an
increasing set of subsemigroups, S1 ⊆ S2 ⊂ · · · such that G+ =

⋃
Sn, and sup-

pose that An is the transition matrix associated to a choice of generators for

Sn ⊂ Sn+1, with each Sn generated by {a(n)i }. Form the dimension group
H = limAn : Fn → Fn+1.

(a) There is a unique positive group homomorphism Ψ : H → G such that

[e
(n)
i , n] 
→ a

(n)
i ; moreover, Ψ(H+) =G+.

(b) If Ψ is one to one, then it is an isomorphism of ordered Abelian groups,
and thus G is a dimension group.

(c) If G is torsion-free, rankH ≤ rankG, and rankH < ∞, then Ψ is an
ordered group isomorphism.

2. Realizing G as ECS (free kernel that splits)

Over this and the next few sections, we deal with the simple dimension
group G of rank k+ 1 having unique trace τ , and in addition, τ(G) = U is a
rank one (necessarily noncyclic) subgroup of the reals. For expository reasons,
we proceed in three steps.

This section deals with a rather special case, that ker τ be free of rank k and
the extension splits. In the next section, we drop the splitting property (but
maintain freeness of the kernel); finally, we deal with the general case, wherein
ker τ is an arbitrary rank k torsion-free Abelian group, and the extension by
U is arbitrary. We could go straight to the general case, but this would have
resulted in a very complicated argument. Instead, as we proceed through the
cases, we find the extra complications can be dealt with in a relatively smooth
manner.

Here we deal with the easiest case, G= U⊕Zk whereG+\{0}= {(u,w)|u >
0}. Although we know that G= U ⊕Zk is a dimension group, and G+ \{0}=
{(u,w)|u ∈Q++ and w ∈Zk}, and thus is a limit of free Abelian groups with
their coordinatewise limit by [EHS], the latter does not give an explicit form.
Here, we obtain from a natural (but not the most natural) subsemigroup of
G+, an explicit realization with all the matrices being size k+ 2 and column
stochastic (all column sums equal for each matrix; this is abbreviated ECS).
The following is the result of this section.

Proposition 2.1. Let G= U ⊕Zk where U is a noncyclic subgroup of the
rationals, and G is the simple dimension group obtained from the map G→ U .
Then G can be realized as a direct limit (in the category of ordered Abelian
groups) limAn : Zk+2 →Zk+2 where An are primitive and ECS.

First, we find a suitable representation of Zk as a union of k + 1 sub-
semigroups. For 1 ≤ i ≤ k, let εi denote the standard basis vector of Zk,

and set εk+1 = −
∑

εi. Obviously
∑k+1

i=1 εi = 000 and it is easy to verify that∑k+1
i=1 εiP =Zk.
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Now let the supernatural number of U be given. We may block (telescope)
all the primes and their powers that appear, so that we have a sequence of
positive integers p1, p2, . . . , with pn > (k + 1)2 for all n and U � lim×pi :
Z→Z. Let qn =

∏n
i=1 pi. Now define the elements, for i= 0,1,2, . . . , k+ 1,

a
(n)
i =

{
( 1
qn
,000) if i= 0,

( 1
qn
, εi) if 1≤ i≤ k+ 1.

Set Sn =
∑k+1

i=0 a
(n)
i P , so that f(n) is constant in n with value k+2. Now we

can write (in lots of different ways) a
(n)
i as a nonnegative linear combination

of the a
(n+1)
i , for example, a

(n)
0 = pn+1a

(n+1)
0 and a

(n)
i =

∑
j /∈{0,i} a

(n+1)
j +

2a
(n+1)
i + (pn+1 − k − 1)a

(n+1)
0 (this exploits the facts that

∑k+1
i=1 εi =000 and

pn+1 > k+ 1; in fact, we assumed pn+1 > (k+ 1)2, which we will need later).
This yields that Sn ⊆ Sn+1; the matrices resulting from these representations
are not suitable for our purposes, as the resulting map Ψ is not one to one.

It is elementary that G+ =
⋃
Sn; an arbitrary element of G+ is of the form

x= (b/qn, v) where b is a positive integer and v ∈Zk. Let d be the maximum
absolute value of the coordinates of v (as an element of Zk, i.e., the usual
coordinates), and find l so that pn+1 · pn+2 · · · · · pn+l > (k+ 1)(b+ 1)d.

We can find nonnegative integers r(1), r(2), . . . , r(k+1) with
∑k+1

i=1 r(i)εi =
v such that

∑
r(i)< 2kd. To see this, let d0 =− inf{vi}, so that v − d0εk+1

has only nonnegative coefficients, vi+d0. Thus, v = d0εk+1+
∑k

i=1(vi+d0)εi.
If vi ≥ 0 for all i, there is nothing to do; otherwise, there exists j such that

vj = −d0 < 0. Hence the sum, d0 +
∑k

1(vi + d0), is bounded above by d0 +
0+ (k− 1)(d+ d0)≤ (2k− 1)d. Then(

b

qn
, v

)
=

k+1∑
i=1

r(i)

(
1

qn+l
, εi

)

+

(
(pn+1 · pn+2 · · · · · pn+l)b−

k∑
i=1

r(i)

)(
1

qn+l
,0

)
.

The coefficient of (1/qn+l,0) is positive, since (pn+1 · pn+2 · · · · · pn+l)b >
(k+1)(b2+b)d, and this exceeds 2kd. The displayed expression thus expresses
x as an element of Sn+l.

Now we make a very particular choice of the transition matrices, An; not
only do they have to satisfy (∗), but they have to be rank k+ 1 (or less, but
strictly less is not possible, except for finitely many n). Since the matrices
are all square of size k+2, the rank condition turns out to be not so onerous,
especially since imposing the obvious constraint on the trace will force the
rank condition to apply.

Temporarily drop the subscript n on some of the variables, so we will obtain
a matrix A whose large eigenvalue is p (corresponding to pn); we insist that
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p > (k+ 1)2. We write,

a
(n)
0 = (p− k− 1)a

(n+1)
0 +

k+1∑
i=1

a
(n+1)
i ,

a
(n)
i = (p− 1)a

(n+1)
0 + a

(n+1)
i for 1≤ i≤ k,

a
(n)
k+1 =

(
p− k2 − k− 1

)
a
(n+1)
0 +

k∑
i=1

ka
(n+1)
i + (k+ 1)a

(n+1)
k+1 .

These relations are trivially verified by using
∑k+1

i=1 εi =000. The corresponding
matrix (we act from the left, so each equation gives rise to a column), is rather
simple to describe (but really tedious to TEX). There is a k×k identity matrix
occupying most of the space.

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p− k− 1 p− 1 p− 1 p− 1 . . . p− 1 p− 1 p− k2 − k− 1
1 k
1 k
... Ik

...
1 k
1 k
1 0 0 0 . . . 0 0 k+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A consequence of the equations is that the column sums are all p. If we sum
all but the first column, the result is k+ 1 times the first column (as follows
from p− k2 − k − 1 + k(p− 1) = (k + 1)(p− k − 1)). Hence, rankA < k + 2,
that is, rankA≤ k+ 1.

Now restore the subscript n; we obtain square matrices An of size k+2 with
nonnegative entries, such that rankAn ≤ k+1, each with large eigenvalue pn
(this latter is not needed now). Then the rank of H = limAn : Zk+2 →Zk+2 is
at most lim inf rankAn ≤ k+1, and so the positive map Ψ : H →G obtained
from this sequence of relations is an isomorphism of ordered groups. This
yields an ECS realization of G.

3. Arbitrary extensions by free Abelian groups

Now we try to find explicit realizations of dimension groups G that are given
as arbitrary extensions of Zk by U a subgroup of the rationals. Explicitly,
we have a short exact sequence of Abelian groups 0 → Zk → G → U → 0;
regarding U as a subgroup of the reals, the quotient map τ : G→ U yields
the ordering: for nonzero g in G, g ∈ G+ iff τ(g) > 0. This describes all
dimension groups with unique trace, whose values lie in the rationals, and
whose kernel is free Abelian of finite rank. The previous constructions of
course dealt with the case wherein τ is split.
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Proposition 3.1. Let G be a noncyclic simple dimension group with
unique trace t such that t(G) := U is a subgroup of the rationals, and such
that ker t is free of rank k. Then G admits an ECS realization by primitive
matrices of size k+ 2.

Given the data (G,τ,U,ker τ) we can construct semigroups Sn ⊆ Sn+1 ⊂ · · ·
of G+ with the property that G+ =

⋃
Sn. To begin with, write U =

lim×pn : Z → Z; form qn =
∏n

i=1 pi, and make an initial selection, one for
each n, of gn ∈ τ−1(1/qn). Then gn − pn+1gn+1 ∈ ker τ , so we can write
gn = pn+1gn+1 + vn for unique vn ∈ ker τ = Zk (obviously, the sequence (vn)
depends on the selection of the sequence (gn)). The sequence (vn, pn+1)
determines the isomorphism class of G, but by itself, this is not that use-
ful.

The obvious candidate for the subsemigroup Sn is the semigroup generated
by {gn, gn + ε1, . . . , gn + εk;gn + εk+1}, where εi have their usual meaning:

standard basis elements if i < k + 1 and εk+1 = −
∑k

j=1 εj ; it is convenient

to define ε0 = 0, so we can write Sn =
∑k+1

i=0 (gn + εi)P . Unfortunately, there
is no guarantee that Sn ⊆ Sn+1 (in other words, that the matrix entries be
nonnegative), largely because at this stage, we have no control over vn.

The idea is to make a better choice of gn, and then a telescoping (amounting
to telescoping the pn), and if we are careful, we will obtain Sn ⊆ Sn+1 for all
n, and the corresponding transition matrices can be written down; in fact, we
will write down the transition matrices, verify the entries are all nonnegative,
from which it follows that the Sn are increasing.

Let us see what we need to obtain this; we will write down the relations
satisfied by the generators, and hope for the best. Fix n and order (gn + εi)
according to the subscript of the εi, with 0≤ i≤ k+1. The relations are given
by gn+εi =

∑
j Aji(gn+1+εj), where Aji are integers, hopefully nonnegative,

and this forces various equations to hold.
Since τ(gn + εi) are all equal to 1/qn = pn+1/qn+1 and τ(gn+1 + εi) =

1/qn+1, we deduce that for all j,
∑

iAji = pn+1, that is, the row sums of AT

are all pn+1, so that the column sums of A are all pn+1. (This is a useful way
of calibrating the matrix—I am always confused as to whether it should be A
or AT , and keeping in mind that the column sums must be equal determines
which it is.)

Now fix i; we have the equation, gn+εi = pn+1gn+1+
∑

j Ajiεj . Using gn =

pn+1gn+1 + vn, we have, for all i= 0,1, . . . , k+1 (suppressing the subscript n
on An, as otherwise it gets too crowded),

vn + εi =
k+1∑
j=0

Ajiεj .
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When i= 0 (so εi = 0), we obtain

Aj,0 −Ak+1,0 =
(
vn

)
j

if j > 0,

A00 = pn+1 −
∑
i>0

Ai,0 = pn+1 − (k+ 1)Ak+1,0 −
k∑

i=1

(
vn

)
i
.

Already we see a problem; the coefficients are suppose to be nonnegative, and

so we require pn+1 ≥ (k+1)Ak+1,0 +
∑k

i=1(v
n)i with Ak+1,0 ≥ 0 (we have no

control—yet—on the sum of the coefficients of vn). Anyway, we continue; for
1≤ i≤ k,

Ai,i = Ak+1,i +
(
vn

)
i
+ 1,

Aj,i = Ak+1,i +
(
vn

)
j

if j 	= i and 1≤ j ≤ k,

A0,i = pn+1 −
k+1∑
j=1

Aj,i = pn+1 − (k+ 1)Ak+1,i −
k∑

j=1

(
vn

)
j
− 1.

Finally, with i= k+ 1,

Aj,k+1 = Ak+1,k+1 +
(
vn

)
j
− 1 if k+ 1> j > 0,

A0,k+1 = pn+1 −
∑
i>0

Ai,k+1 − k = pn+1 − (k+ 1)Ak+1,k+1 −
k∑

i=1

(
vn

)
i
+ k.

Now set ai = Ak+1,i (obviously this depends on n, but for now we suppress
the sub/superscript); then all the entries are linear in the choice of ai. If the
entries do happen to be nonnegative, then the resulting matrix An = (Aij)
(order of the subscripts reversed) will implement the embedding Sn ⊆ Sn+1.
The resulting matrix is similar to the preceding ones, in that the interior k×k
matrix is v ·111T +111 ·(a1, . . . , ak)+Ik where 111 is the column of size k consisting of
ones, we regard v as a column, and · represents the usual product of matrices.
Notice that v · 111T is k × k but vT111 is just the sum of the coefficients of v,∑k

i=1(v
n)i. We sometimes suppress the sub/superscripts n or n+1 in vn and

pn+1, and the implicit superscripts in a
(n)
i .

An =

⎛⎝pn+1 − (vn)T111− (k+ 1)a0
vn + a0111

a0

(1)

(pn+1 − (vn)T111− 1)111T − (k+ 1)(a1, a2, . . . , ak) ∗
vn111T +111(a1, . . . , ak) + Ik vn + (ak+1 − 1)111

a1, a2, . . . , ak ak+1

⎞⎠ ,

where the (0, k + 1) entry (the upper right; left blank, because of overflow)
is pn+1 − vT111− (k + 1)ak+1 + k. The column sums are all pn+1, as follows
from the choice of generators of the subsemigroups. Without yet worrying
about positivity or rank, we can calculate the eigenvalues and their geometric
multiplicities, by explicitly computing the left eigenvectors.
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First, 111Tk+2 is the left eigenvector for p. Next, define ⊥v := {w ∈Z1×k|wv =
0} (we use Zm to mean Zm×1, i.e., the default is columns). For each u ∈ ⊥v,
the row of size k + 2, (0, u,−uT111), is a left eigenvector for the eigenvalue 1.
If v 	=000 (as we are assuming implicitly anyway), then ⊥v is rank k − 1, and
thus even the geometric multiplicity of 1 as an eigenvalue is at least k− 1.

This leaves two eigenvalues. We may find u0 ∈Q1×k such that u0v = 1−p+
vT111k; then (1, u0, k + 1− u0111k) is another left eigenvector for the eigenvalue
1 (we may multiply by an integer and so obtain an integer eigenvector if
desired), and since its first coordinate is not zero, it is not in the R-span of
the previous eigenvectors for 1; hence the multiplicity of 1 is at least k.

There is one remaining eigenvalue, in addition to p,1k, and it is easily

determined from the trace; the trace of the matrix is p + k +
∑k+1

i=1 ai −
(k + 1)a0, hence the last remaining eigenvalue is

∑k+1
i=1 ai − (k + 1)a0. Since

we want the rank of the matrix to be k+1, we are free to choose any selection

of integers ai such that
∑k+1

i=1 ai = (k + 1)a0 (i.e., a0 is the average of all the
others). When this is imposed, we see quickly that the corresponding relation
holds for the columns, that is, the sum of all but the first column is k + 1
times the first. In other words, if we set z = (k+ 1,−1,−1, . . . ,−1)T ∈ Zk+2,
then Az =000. Moreover, z is independent of the choice of n (i.e., Anz =000 for
all n).

A particular consequence is that W := ⊥z = {w ∈ Z1×(k+2)|wz = 0} is a
common An-invariant subgroup (on the left, of course, meaning WAn ⊆W
for all n); moreover, the eigenvalues of An restricted to this subgroup are
exactly p,1k (the zero eigenvector has conveniently been eliminated, since z
spans, as a real vector space, the right zero-eigenspace of all the An).

Now we modify the sequence (gn) and corresponding (vn) to permit a

selection of integers ai,n (and with
∑k+1

i=1 ai = (k + 1)a0) so that the matrix
An has only nonnegative entries.

Let G be given by the sequence (pn+1, v
n). Let E ∈GL(k,Z) and W ∈Zk;

then the group extension given by the sequence (pn+1,Evn+(pn+1− 1)W ) is

equivalent. To see this, form the square matrices of size k+1, Cn =
(
pn+1

vn
000
Ik

)
and F =

(
1
W

000
E

)
. Then F−1 =

(
1

−E−1W
000

E−1

)
, and

Dn := FCnF
−1 =

(
pn+1 000

Evn + (pn+1 − 1)W I

)
.

Now G � limCn : Zk+1 → Zk+1 as Abelian groups, and the map on
each copy of Zk+1 given by F induces a group isomorphism from G to
G′ := limDn : Zk+1 → Zk+1. The corresponding data for the sequence of
Dn’s is (pn+1,Evn + (pn+1 − 1)W ) and these maps preserve the map to U .
Of course the drawback with this equivalence relation is that it applies to all
the vn’s at once.
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Lemma 3.2. Suppose V ∈ (R+)k. There exist E ∈ GL(k,Z) and W ∈ Zk

such that the coefficients of EV −W are all nonnegative, and sum to less than
one.

Proof. Define W 0 ∈ Zk via (W 0)i = �Vi� (the floor function). Then V0 :=
V −W 0 has all its coefficients nonnegative and strictly less than one. If either
all or all but one of the entries of V0 is zero, we are done.

Otherwise, let s=max{Vi} and t=max{Vi \{s}} (the notation is not very
clear, but if there is a tie for maximum, then t= s). We apply the division
algorithm to s and t; there exists an integer m> 1 such that s=mt+s′ where
0≤ s′ < t; this is implemented by an elementary transformation, hence by an
element of GL(k,Z), and the new vector (replacing s in one of its positions by
the smaller s′) either has strictly smaller maximal entry, or the multiplicity
of its maximal entry has been reduced. If in the resulting vector, there is still
more than one entry, we can continue the process.

The process either terminates in a single nonzero entry (which occurs pre-
cisely when all the nonzero entries of V are rational multiples of each other),
or we can make the maximal entry as small as we like, say less than 1/k. Ei-
ther way, we have constructed E as a product of elementary transformations
(hence in GL(k,Z)) such that E(V −W 0) has only nonnegative entries and
whose entries sum to less than 1. Now set W =EW 0 ∈Zk. �

Lemma 3.3. Suppose that the extension G of Zk by U is implementable
by (pn+1, v

n) such that vn/pn+1 converges (in Rk) and pn+1 →∞. Then the
corresponding dimension group G with unique trace being the map to U is
realizable as a limit An : Zk+2 →Zk+2 with An of the form (1) primitive.

Proof. Set V = limvn/pn+1. By the preceding, there exists E ∈GL(k,Z)
and W ∈Zk such that EV −W has only nonnegative entries adding to λ < 1.
Now the extension corresponding to (pn+1, v

n) is equivalent to (pn+1, (v
n)′ :=

Evn − (pn+1 − 1)W ), so it suffices to show that (pn+1, (v
n)′) can be realized

by a sequence of primitive matrices of the form (1).
We observe that (vn)′/pn+1 = Evn/pn+1 − W (pn+1 − 1)/pn+1, and this

sequence converges to EV −W . Thus, given ε <min{(1−λ)/3(k+1), λ/3k},
for all sufficiently large n, we have −ε111 ≤ (vn)′/pn+1 and the sum of the
entries is less than λ+ ε. Thus,

−εpn+1 ≤
(
vn

)′
i

and
∑(

vn
)′
i
< (λ+ ε)pn+1.

Set a0 = a1 = · · · = ak+1 to be 1 if min(vn)′i ≥ 0 and equal to 1 −min(vn)′i
otherwise.

If min(vn)′i ≥ 0, then we note that from
∑

(vn)′i ≤ (λ+ ε)pn+1, we obtain
an upper bound on the sum, pn+1μ, where μ= 1− (1−λ)(1− 1/3k) (what is
important is that the coefficient is bounded above away from one, uniformly in
sufficiently large n). Then pn+1−

∑
(vn)′i− (k+1)−1≥ pn+1(1−μ)− (k+2).
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Since pn+1 →∞, for all further sufficiently large n, this expression is positive;
thus the matrix An in (1) has only nonnegative entries.

If min(vn)′i < 0, then for any j,

pn+1 −
∑(

vn
)′
i
− (k+ 1)aj − 1 ≥ pn+1 − pn+1(λ+ ε)− (k+ 1)

− (k+ 1)pn+1ε− 1

≥ pn+1

(
1− λ− (k+ 2)ε

)
− (k+ 1).

Now 1− λ− (k + 1)ε > 1− λ− (1− λ)/3 = 2(1− λ/3)> 0. Hence by further
increasing n, we have that for all sufficiently large n, the matrix entries of An

are nonnegative. We can always delete a finite number of the matrices at the

outset. Because (k + 1)a0 =
∑k+1

i=1 ai, the rank of each An is k + 1, so that
Lemma 1.1 applies. �

Lemma 3.4. Let G be a group extension of Zk by noncyclic U ⊆Q with
data (pn+1, v

n). Then there is an equivalent representation, (qn+1, (v
n)′), such

that qn+1 is increasing, qn+1 →∞, and (vn)′/qn+1 converges.

Proof. First, we may make an initial telescoping, and thus may assume that
pn+1 are increasing to infinity at the outset. Now we perform the following
substitution transform, to ensure that the resulting vn entries are all between
0 and pn+1 − 1. Suppose we have done this up to n =m− 1; that is, gi =
pi+1gi+1 + vi for 1 ≤ i ≤ m − 1. Now set g′m+1 = gm+1 + um, the um to
be determined. Then we have gm = pm+1g

′
m+1 + vm − pm+1u

m (and the
subsequent relations, for larger m, are also affected, but we come to them by
the induction argument). We can obviously choose um ∈ Zk so that all the
entries of vm − pm+1u

m lie in the set {0,1,2, . . . , pm+1 − 1}. This completes
the induction, and allows us to assume that the newly relabelled vn satisfy
000≤ vn ≤ (pn+1 − 1)111.

In particular, with the current notation, {vn/pn+1} is a bounded sequence
in [0,1]k. Hence there exists a subsequence indexed by n(i) ∈ N such that
{vn(i)/pn(i)+1} converges, say to V ∈ [0,1]k. The integers n(1) < n(2) <

n(3) < · · · → ∞ suggest a telescoping; set Mj =
(pj+1

vj
000
Ik

)
, discard the Mj

for j < n(1), and define

Mn(i) =Mn(i+1)−1 · · · · ·Mn(i)+1 ·Mn(i);

the upper left entry is qi =
∏n(i+1)−n(i)

j=1 pn(i)+j , and of course the lower right
k × k is the identity matrix. The column of size k to the left of the identity
is obtained by an easy induction argument. This yields (again by induction):

v(i)

qi
=

vn(i)

pn(i)+1
+

vn(i)+1

pn(i)+1pn(i)+2
+

vn(i)+2

pn(i)+1pn(i)+2pn(i)+3
+ · · · ,∥∥∥∥v(i)qi

− vn(i)

pn(i)+1

∥∥∥∥
∞

≤ sup

∥∥∥∥ vj

pj+1

∥∥∥∥( 1

pn(i)+2
+

1

pn(i)+2pn(i)+3
+ · · ·

)
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≤ δ

(
1

pn(i)+2

(
1 +

1

pn(i)+2
+

(
1

pn(i)+2

)2

+

(
1

pn(i)+2

)3

+ · · ·
))

=
δ

pn(i)+2 − 1
.

The δ was obtained from {vn/pn+1} being a bounded sequence. We have
used pn+2 ≥ pn+1 to convert the estimate into a geometric series. Finally,

since pn+1 →∞, the sequence {v(i)

qi
} converges. �

The previous two results yield Proposition 3.1.

4. Arbitrary extensions

In this section, we deal with arbitrary extensions of U by arbitrary finite
rank torsion-free Abelian groups, instead of Zk; that is, let C be a rank
k torsion-free Abelian group, U a noncyclic subgroup of the rationals, and
consider extensions 0→ C →G→ U → 0. We realize the dimension group G
with strict ordering induced by G→ U ⊂R as a limit of ECS matrices of size
k+2. The arguments are similar to those of the previous section, but involve
a couple of extra features.

Let C = ker t; this has rank k, so we can write C as a limit (as Abelian
groups) Bn : Zk → Zk for some choice of Bn with detBn 	= 0. We can incor-
porate the identity as many times as we wish, say B1, Ik, . . . , Ik,B2, Ik, . . . , Ik,
B3, . . . , and this gives the same Abelian group (the idea is that we will be
telescoping the k + 1 size matrices, and we want to ensure that the abso-
lute column sums of the Bn are o(pn+1)). Re-indexing, we can obtain G
(the extension) as the Abelian group direct limit arising from the square

matrices of size k + 1,
(
pn+1

vn
000
Bn

)
, and we can assume that ‖Bn‖∞,∞ =

o(
√
pn+1).

When we realize the corresponding semigroup coming from the relations,
we obtain rather similar matrices to those previously encountered. Let εni be
the standard basis elements for Zk at the nth level, and define εn0 = 000 and

εnk+1 =−
∑k

i=1 ε
n
i .

We can express G (as an Abelian group with real-valued homomorphism)

as the limit, G = limMn :=
(
pn+1

vn
000
Bn

)
: Zk+1 → Zk+1, where the common

left eigenvector x = (1,0,0, . . . ,0) induces the map to U . Call the nth copy
of Zk+1, Fn, so the elements of G are the equivalence classes [a,n] = [Mna,
n+1] where a ∈ Fn, and the map to U is given by t : [a,n] 
→ xa/p1 · · ·pn. In
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particular, the corresponding positive cone (of the dimension group, once we
put the strict ordering arising from t) will be

⋃
t−1(1/p1 · · ·pn)P .

Set gn = [xT := (1,0, . . . ,0)T , n]; so t(gn) = 1/p1 · · ·pn. Then gn −
pn+1gn+1 = [Mnx

T − xT , n + 1], and this is simply the column whose top

entry is 0 and the rest of which is vn, which we write as
∑k

i=1 v
n
i ε

n+1
i .

Take as our generators for the positive cone at the nth level, gn + εni (now
i= 0,1, . . . , k+ 1 to incorporate the two extra elements required); we rewrite

this as gn +
∑k

j=1(Bn)jiε
n+1
j (arising from the effect of Bn; note that the

coefficients are transposed). From the equation gn = pn+1gn+1+
∑k

i=1 v
n
i ε

n+1
i ,

we want to find a (k + 2)× (k + 2) matrix An := (An
ij) (0≤ i, j ≤ k + 1; this

is not supposed to represent the nth power of some matrix A, but is merely
superscripting the index—the previous notation was An; we frequently drop
the super/subscript n for simplicity) such that for all i,

gn +

k∑
j=1

(Bn)jiε
n+1
j =

k+1∑
j=0

(
An

)
ji

(
gn+1 + εn+1

j

)
.

We are free to choose the entries of An (subject of course to positivity con-
straints) so long as this set of equations holds. First, from t(gn + εnj ) =
1/p1 · · ·pn, the column sums of An must all be pn+1. Hence, we require∑k+1

j=0 A
n
ji = pn+1 for all i. Using the relation gn − pn+1gn+1 =

∑k
i=1 v

n
i ε

n+1
i ,

the previous equations become

k+1∑
j=0

An
jiε

n+1
j =

k∑
l=1

vnl ε
n+1
l +

⎧⎪⎨⎪⎩
0 if i= 0,∑k

1(Bn)jiε
n+1
j if 1≤ i≤ k,

−
∑k

l=1

∑k
j=1(Bn)jlε

n+1
j if i= k+ 1.

Restrict to the case j > 0 (each entry in the top row is determined by the
remaining ones in its column, as the column sums are all pn+1); taking co-
ordinates, we obtain the following equations, successively obtained by setting
i= 0, 1≤ i≤ k, and i= k+ 1,

Aj0 = vnj +Ak+1,0,

Aji = vnj + (Bn)ji +Ak+1,j for 1≤ i≤ k,

Aj,k+1 = vnj −
k∑

l=1

(Bn)jl +Ak+1,k+1.

Set ai = Ak+1,i (of course, we should really write this as a(i,n) = An
k+1,i

to indicate dependence on n), so we obtain these as free parameters, which

determine all the rest of the entries (and A0,i = pn+1−
∑k+1

j=1 Aji). The matrix
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An has the following form (recalling that 111 is the column of 1’s of size k):

An =

⎛⎝pn+1 − vT111− (k+ 1)a0
vn + a0111

a0

(∗∗)

(pn+1 − vT111)111T − 111TBn − (k+ 1)(a1, a2, . . . , ak) ∗
Bn + vn111T +111(a1, . . . , ak) vn −Bn111 + ak+1111

a1, a2, . . . , ak ak+1

⎞⎠ ,

where the (0, k + 1) entry (the upper right; left blank, because of horizon-
tal overflow) is pn+1 − vT111− (k + 1)a0 +111TBn111. The matrix Bn + vn111T +
111(a1, . . . , ak) appearing in the middle is a k × k block. If we sum all of the

columns except the leftmost, we obtain (k + 1)vn + (
∑k+1

i=1 ai)111; thus if we

impose the condition
∑k+1

i=1 ai = (k + 1)a0, the rank of the matrix An is at
most k+ 1.

The only restriction to deal with is positivity. We find a telescoping of Mn,
so that in the resulting telescoping and transformation, the column sums of
the corresponding Bn’s plus the sum of the entries of v plus (k + 1)ai is less
than the (new) pn+1 obtained from the telescoping.

We begin, as in the preceding case, with the original relations, gn =
pn+1gn+1 − vn. Replace gn+1 by g′n+1 = gn+1 + un (where un is to be deter-
mined), so that the new relation is gn = pn+1g

′
n+1 + vn − pn+1u

n. So we may
choose un so that v′n = vn−pn+1u

n has all its entries in {0,1,2, . . . , pn+1−1}.
Now the relation for g′n+1 in terms of gn+2 can be adjusted, and we continue
by induction. Relabelling everything in sight (including the matrices Mn), we
are now in the situation that vn ≥ 0 and ‖vn‖< pn+1.

Since {vn/pn+1} is a bounded set of Rk, it contains a convergent sub-
sequence, say vn(i)/pn(i)+1 → V ∈ [0,1]k. This yields an obvious telescop-

ing; set M (i) =Mn(i+1) ·Mn(i+1)−1 · · ·Mn(i)+1 and qi+1 =
∏n(i+1)

j=n(i)+1 pj , and

B(i) =Bn(i+1) ·Bn(i+1)−1 · · ·Bn(i)+1; then M (i) =
( qi+1

v(i)

000
Bi

)
.

The column v(i) has a relatively simple expression,

v(i) = qi+1

(
vn(i+1)

pn(i+1)+1
+

Bn(i+1)−1v
n(i+1) − 1

pn(i+1)+1pn(i+1)

+
Bn(i+1)−1Bn(i+1)−2v

n(i+1)−1 − 1

pn(i+1)+1pn(i+1)pn(i+1)−1
+ · · ·

)
.

Hence,∥∥∥∥ v(i)

qi+1
− vn(i+1)

pn(i+1)+1

∥∥∥∥≤
∑∥∥∥∥ vn(i+1)−j

pn(i+1)−j+1

∥∥∥∥ ·
∥∥∥∥Bn(i+1)−j+1

pn(i+1)−j+2

∥∥∥∥ · · · · ·
∥∥∥∥Bn(i+1)−1

pn(i+1)

∥∥∥∥.
(The norm on the matrices is the maximum absolute column sum, which is
either ∞−∞ or 1− 1.) Since we have made the norms of Bn be o(pn+1),
this goes to zero. Hence, v(i)/qi+1 → V . As before, we find W ∈ Zk and
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E ∈ GL(k,Z) such that the absolute sum of the entries of EV −W is less

than one. Now conjugate the matrices simultaneously with D =
(

1
W

000
E

)
as

before, and the new matrices are of the form
( qi+1

v(i)

000
Bi

)
where we can make the

substitution for a
(n)
i as we did in the previous case with a slight modification;

as before, we make a(i,n) = a(n) equal to each other for 1 ≤ i ≤ k, and we
require that

min{pn+1 − (vn)T111, pn+1 − (vn)T111 +111TBn111}
k+ 1

≥ a(n) ≥max
{
0,111TBn111− vni ,−vni ,−(Bn)ij − vn111T

}
1≤i,j≤k

in order that the resulting matrices be nonnegative, and of rank k + 1. But
‖Bn‖∞,∞ = o(

√
pn+1) (which obviously persists after the telescoping), so the

entries of Bn/pn+1 go to zero; dividing the expressions by pn+1, the Bn entries
contribute negligibly to the obstruction. Now Lemma 1.1 applies, and we have
a realization of G by ECS matrices of size k + 2. This yields the following
theorem.

Theorem 4.1. Let t : G→ U ⊆Q be a simple dimension group with unique
trace t, such that t is rational-valued. If rankG = k + 1, then G admits an
ECS realization by matrices of size k+ 2, and they are of the form (∗∗).

5. Nearly ultrasimplicial dimension groups

Effros called a dimension group ultrasimplicial if it has a realization as or-
dered direct limit (with nonnegative matrices) G� limAn : Zf(n) → Zf(n+1)

where kerAn = {0} for all n (so the obvious map Zf(n) →G is one to one).
Elliott [E1], [E2] showed that the simple dimension group with unique trace
Z[1/2]⊕Z (the trace is the projection onto Z[1/2]; this is the split case, cov-
ered by Proposition 2.1 with pn = 2 for all n and k = 1) is not ultrasimplicial,
whereas any totally ordered group is ultrasimplicial, and Riedel [R1] showed
that if G is free of finite rank and with unique trace, then it is ultrasimpli-
cial. It follows easily from Riedel’s result that if G is a simple dimension
group with unique trace τ and rank τ(G)> 1, then G is ultrasimplicial ([H2]).
This is practically the complementary class to the dimension groups consid-
ered here (which are characterized by rank τ(G) = 1 and rankG<∞) among
simple dimension groups with unique trace.

Motivated by the ECS results, we say a dimension group is co-rank one
ultrasimplicial if there exists a realization as partially ordered groups G �
limAn : Zf(n) → Zf(n+1) (as usual, An have only nonnegative entries, and
the free groups are equipped with the coordinatewise ordering) such that the
kernel of any telescoping (with m>n) AmAm−1 · · ·An+1An has rank at most
one (alternatively, the map Zf(n) →G given by x 
→ [x,n] has kernel of rank
at most one). Then among other things, combining the ultrasimplicial results
([H2], Corollary 4) with Theorem 4.1, we obtain that any finite rank simple
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dimension group with unique trace is co-rank one ultrasimplicial. A simple
direct limit argument extends this to the following theorem.

Theorem 5.1. Every simple dimension group with unique trace which is a
limit of finite rank simple dimension groups with unique trace is co-rank one
ultrasimplicial.

A better result would be that infinite rank simple dimension groups with
unique trace admit corank one ultrasimplicial realizations. This would be
true if every infinite rank simple dimension group with unique trace were a
direct limit of finite rank simple dimension groups with unique trace. This
occurs if the range of the trace has rank exceeding one, as is easy to check; so
Theorem 5.1 applies in this instance.

On the other hand, there exists a simple dimension group with unique trace
which is not a direct limit of simple dimension groups of finite rank (with no
constraint on their trace spaces). A discrete trace on a partially ordered
Abelian group H is a trace τ such that τ(H) is cyclic. Simple dimension
groups other than Z do not admit discrete traces, so Example 5.2 yields a
simple dimension group with unique trace which cannot be a direct limit of
finite rank simple dimension groups.

Example 5.2. A countable simple dimension group with unique trace G
such that if φ : H →G is a nonzero positive homomorphism of partially or-
dered Abelian groups with rankH <∞, then H must admit a discrete trace.

Remark. In particular, if H is a simple dimension group of finite rank and
not cyclic, then there are no nonzero positive homomorphisms φ : H →G. In
particular, G cannot be a direct limit of finite rank simple dimension groups.

Let G=Z[x] =
⊕∞

i=0 x
iZ be the polynomial ring over the integers; it is free

as an Abelian group. Define the ring homomorphism τ : Z[x]→R determined
by τ(x) = 1/2. Then τ(G) = Z[1/2] is dense in the reals, so that with the
positive cone G+ := τ−1(R++) ∪ {0}, G becomes a simple dimension group
with unique trace [EHS].

Let φ : H →G be a nonzero positive homomorphism, where H is of finite
rank. Since φ 	= 0, φ(H+) 	= 0, so there exists h ∈H+ such that φ(h) is an
order unit (the positive cone of G consists of 0 and order units). Since H is of
finite rank, so is φ(H); a finite rank subgroup of a free group (G) is itself free,
therefore finitely generated. Hence, there exists n such that φ(H)⊂

⊕n
i=0 x

iZ.
Thus τ ◦φ(H)⊂ 2−nZ, and moreover, τ ◦φ(h)> 0, as φ(h) is an order unit.

Hence, τ ◦ φ is nonzero and a trace on H with discrete value group, that is,
τ ◦ φ is a discrete trace of H .

An earlier version of this article claimed (essentially) that every simple
dimension group with unique trace was a direct limit of simple dimension
groups of finite rank, each with unique trace. The referee queried this, and this
example popped out. So it is still open whether every simple dimension group
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with unique trace, whose value group is rank one, is corank one ultrasimplicial.
Riedel [R2] also showed that some free rank three simple dimension groups

with two pure traces are not ultrasimplicial. It is possible that every simple
dimension group is co-rank one ultrasimplicial, although this seems unlikely.

6. Good and not-so-good traces

The previous results showed that if G is a simple dimension group with
unique trace, the trace is rational-valued, and G is of rank k + 1, then it
admits an ECS representation of size k + 2. For this section, we drop the
requirements that G be simple and have unique trace. We show that if (G,τ)
is a dimension group (having order units) and τ is a faithful rational-valued
trace, then G admits an ECS realization with τ obtained from the sequence of
rows consisting of multiples of 111T if and only if τ is good (as defined in [BeH]
and below; when the trace is unique, it is automatically good). However, even
in the finite rank case, the argument does not yield bounded ECS realizations.

Suppose G= limMi : Z
n(i) → Zn(i+1) is an ECS representation of the di-

mension group G, with the ith matrix having column sum ci. Then ECS
merely says that 111Tn(i+1)Mi = ci111

T
n(i). This allows us to define a trace τ on G,

via τ([w, j]) = 111Tn(j)w/
∏j−1

i=1 ci. We call this trace the trace associated to the

representation of G via Mi. Obviously τ is faithful (i.e., ker τ ∩G+ = {0}).
Different ECS realizations of the same group G can yield inequivalent

traces, moreover, some of the traces so obtained can be pure, while others
need not, and their value groups may differ. For example, consider the situa-

tion with Mj =
(

1
2j

2j

1

)
, a well-known construction with two pure traces; the

trace obtained from this ECS representation is not pure.
For a particular ECS realization, the value group of the trace is τ(G) =⋃

1∏j
i=1 ci

Z. Thus, τ(G)⊆Q. In particular, if each cj is a power of the same

integer k, then τ(G) =Z[1/k].
The set of order units of G will be denoted G++. Following [BeH], a trace

τ : G→R is good if for all b ∈G+, τ([0, b]) = τ(G) ∩ [0, τ(b)]; it is order unit
good when this property holds for all b in G++. Notation that is not explained
here will probably be found in [BeH].

Theorem 6.1. Suppose that (G,u) is a dimension group with order unit
and let τ be a normalized trace thereon.

(a) Suppose there is an ECS realization of G implementing τ . Then τ is a
faithful good trace with τ(G)⊆Q.

(b) Let (G,u, t) be a countable dimension group with order unit and trace
such that t(G) is a subgroup of the rationals. If t is faithful and good (as
a trace), then there exists a realization of G as a direct limit of simplicial
groups whose realizing matrices have the equal column sum property and
for which t is the corresponding trace.
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It is possible that the hypothesis in (b) that t be good can be weakened to
refinability ([BeH]) of t.

Toward (a), we have already observed that τ is a faithful rational-valued
trace. To show that τ is good, we have an elementary lemma.

Lemma 6.2. Let n be a positive integer, and Zn the simplicial group of
rank n. Define a trace t on Zn by t(v) = 111Tnv (so the vector v is sent to the
sum of its coordinates). Then t is good.

Proof. Select nonnegative vectors a = (ai)
T , b = (bi)

T in Zn such that
0<

∑
ai <

∑
bi. We fix b and systematically alter a. Let S−(a) = {i|ai > bi},

S+(a) = {j|aj < bj}, and S0(a) = {i|ai = bi}. Obviously S+(a) is not empty.
If S−(a) is empty, we are finished; otherwise, we proceed by induction on∑

S−(a)(ai−bi). Select j ∈ S+(a), and k ∈ S−(a), and define a′ by subtracting

1 from aj and adding 1 to ak, and leaving the rest of the entries unchanged.

Then 111Tna
′ = 111Tna, S+(a) ⊂ S+(a

′) ∪ S0(a
′), and S−(a

′) ⊆ S−(a), and more-
over,

∑
S−(a′)(a

′
i − bi) ≤

∑
S−(a)(ai − bi) − 1. The transformation a 
→ a′ is

repeated until the S−-set is empty, and we are done. �

Proof of Theorem 6.1(a). Now τ is the inverse limit of traces obtained in
Lemma 6.2, so is the limit of good traces, hence is good.

Proof of Theorem 6.1(b). Start with an arbitrary Zn with basis {ej} and
map ej 
→ gj 	= 0 in G+. Let t(G) =

⋃
k

∏
i≤km(i)−1Z (i.e., the m(i)’s are

the successive factors realizing the supernatural number of t(G)); set Mk =∏
i≤km(i). There exists k such that each t(gj) = aj/Mk for some positive

integer aj .
By goodness, there exists h ∈ G+ such that t(h) = 1/Mk, so again by

goodness, there exists hjl in G+ such that gj =
∑aj

l=1 hjl. This allows us to

create a simplicial map Zn → Z
∑

aj by sending ej 
→
∑aj

l=1Ejl, and we also

have the obvious map from Z
∑

aj to G via Ejl 
→ hjl; then the maps to G are
compatible.

The upshot of this preliminary construction is that all the basis elements
of the new simplicial group are sent to the same value under t. Now we apply
the usual construction (as in [EHS]), that is, adjoin the next pre-selected
generator of the positive cone, make it the image of a map, and fix up the
kernel, so we arrive at the following (all maps are positive):

Zn(1) � Zn′

G
� = � G

�



1078 D. HANDELMAN

such that the kernel of the left vertical map is contained in the kernel of
horizontal map, and Zn(1) is the Z

∑
aj of two paragraphs above. We extend

the horizontal map to a better simplicial group.
The standard basis elements Ei of the left simplicial group map to elements

hi with the property that t(hi) = 1/Mk for some k. Let Fj be the standard
basis elements of the right, say with images gj (we have re-indexed the bases).
Then hi =

∑
b(i, j)gj for some integers b(i, j), so that 1/Mk =

∑
b(i, j)t(gj).

Then applying the method of the preliminary construction, we obtain a map
Zn′ →Zn′′

(together with a map to G) such that the images of the new basis
elements all have value at t equalling 1/Mk′ for some k′ ≥ k (we can make
sure that k′ > k for infinitely many iterations of this process).

So we are in the following situation:

Zn(1) � Zn′′

G
� = � G

�

with the generators of the left group mapping to 1/Mk under t and the
generators of the right group mapping to 1/Mk′ under t; and of course, the
kernel of the vertical map from the preceding Zn is contained in the kernel
of Zn → Zn(i), etc. The image of Ei in the right group is the ith column
of the transition matrix; if the image of Ei is

∑
cjFj , applying t, we obtain

1/Mk =
∑

cj/Mk′ . Hence
∑

cj , the column sum, is independent of the
choice of column. So the transition matrix has equal column sums.

Now we repeat this process with the new Zn′′
(adjoin the next element of

the positive cone etc.). Since this sequence of transition matrices just obtained
intertwines the sequence built up via the [EHS] method, both give the same
dimension group as limit. �

There is a simple rank two dimension group with two pure traces, such
that the value groups are both Z[1/2] and their kernels are discrete [BeH,
Example 6]. In fact, in that example, there are no additive functions (let
alone traces, pure or impure) t : G→Q such that the kernel is not cyclic; in
particular, none of the countably many traces with rational value groups is
good (by [BeH, Corollary 1.8], the kernel of a good trace τ has dense range
in τ�).

To prove this, we note that G is strongly indecomposable and an extension
of a cyclic group by Z[1/2]; now if ker t were not cyclic, there would be (up
to isomorphism) a noncyclic subgroup of Q sitting inside G. Applying one of
traces to this subgroup, we see that it must be disjoint from the kernel, so that
its image in Z[1/2] is an isomorphic copy. But this forces the supernatural
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number of the subgroup to be 2∞, hence the subgroup is 2-divisible, hence
the restriction of the trace is of finite index, and therefore we have a split-
ting from a finite index subgroup of G, which is impossible, as G is strongly
indecomposable.

Hence, the kernel of any trace of G with rational values is either zero or
cyclic. Since G is simple, this means that no trace with rational values can
be good, and thus G cannot be represented by an ECS limit.

It is interesting to ask when other positive maps Zn → Z are good or
(better, for our purposes, order unit good, since a limit of order unit good
traces is still order unit good, and if the limit group happens to be simple,
the limit trace is then good). In fact, no others are good, but some others are
order unit good.

Lemma 6.3. Let w = (c(i)) ∈ Z1×n be a nonnegative row, for which
gcd{c(i)} = 1. Then the trace Zn → Z given by v 
→ wv is good iff all the
nonzero c(i) are 1.

Proof. We may discard the zero entries, and so reduce to the case wherein
all the c(i)> 0. If they are not all equal, by permuting the entries, we may
assume c(1) < c(2). Set b = (0,1,0, . . . ,0)T and a = (1,0, . . . ,0)T , so that
wa= c(1)< c(2) =wb. However, b is an atom, so the value of any nonnegative
less than b at the trace is zero. �

There is a characterization of order unit good traces for Zn with the usual
ordering [H6, Appendix 1], but it is far more complicated.

7. Introductory section on ERS

As usual, 111s denotes the column of size s all of whose entries are 1. When
s is understood, it may be deleted.

Let G be a dimension group (with order unit) that is not simplicial, and H
be a rank one subgroup such that G++ ∩H 	= {0}. Suppose we have an order
isomorphism of G with a limit of maps,

G� limAn : Fn → Fn+1,

where Fn = Zf(n) is the usual simplicially ordered free Abelian group of
columns of size f(n), and An are f(n+ 1)× f(n) matrices with nonnegative
integer entries, and suppose in addition, we have the following properties:

(a) for all n, there exists a (positive) integer pn+1 such that An111f(n) =
pn+1111f(n+1);

(b) the isomorphism from G to the direct limit sends the subgroup H to⋃
n[111f(n), n]Z.

We make a couple of observations. Condition (a) says that each An has
all of its row sums equal (to pn+1); we say the matrix An satisfies ERS when
this occurs. Condition (a) also implies [111f(n), n]Z⊆ [111f(n+1)]Z, so the union of
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rank one groups is an ascending union of rank one groups (and thus is a group,
and of rank one). We also note that 111f(n) is an order unit in Fn and its image
under An is an order unit in Fn+1 (by (a)). Hence [111f(n), n] is an order unit
in the direct limit. Moreover, if G0 denotes the direct limit, and H0 denotes⋃

n[111f(n), n]Z, then G0/H0 is torsion-free (just observe that if kg0 ∈H0, then
g0 must be represented by an element of the form t[111f(n), n]). We call the
sequence (or G0) an ERS realization of G with respect to H when (a) and
(b) hold. This of course forces G/H to be torsion-free and H ∩G++ 	= {0}.
Moreover, pn+1 > 1 for infinitely many n, or else the limit is simplicial, which
we forbid; hence H is not cyclic.

Sometimes, if H is understood, or we are talking about whether there exists
an H for which an ERS realization exists with respect to H , we say an ERS
realization for G exists. If the matrix sizes, {f(n)} are bounded, then there
is a telescoping so that the sizes are all equal, say to s, and then the matrices
have 111s as a common right eigenvector. In that case, we say that G has a
bounded (or size s) ERS realization (with respect to H).

For example, if as an Abelian group, G � U ⊕ Zk where U ⊆ Q, then
there is only one choice for H , namely U , and an ERS realization also re-
quires that none of the traces kill U . If instead, the underlying group of G is
Z[1/3]⊕ Z[1/2] and the only trace is given by summing (i.e., (a, b) 
→ a+ b,
so G is a simple dimension group with unique trace, and the trace has kernel
{(m,−m)}m∈Z �Z), then there are exactly two choices for H , (Z[1/2],0) and
(0,Z[1/3]). On the other hand, if G has the same underlying group, but has as
pure traces the two coordinatewise projections, then G is a simple dimension
group with two pure traces, but there are no candidates for H (so no ERS
realizations exist for G).

If G is simple with unique trace τ , the conditions on H are equivalent to
τ(H) 	= 0 (equivalently, since H is rank one, ker τ ∩H = {0}) and G/H is
torsion-free. The last property is a pink herring2 because for every rank one
subgroup H0 of a torsion free group J , there is a unique rank one subgroup
H of J such that H0 ⊆H and J/H is torsion-free.

Our results on ERS realizations show that for simple dimension groups
with unique trace, the obvious necessary conditions are sufficient, and we
obtain a bound on the size in terms of the rank. All our dimension groups are
countable. It has been known for some time that the necessary conditions on
H and G are sufficient, in the case of arbitrary simple dimension groups (not
necessarily with unique trace), as a result of Host on rational eigenvalues of
minimal dynamical systems, to obtain an ERS realization of G with respect
to H . In the unique trace case, we find upper bounds for the size (in terms
of the rank of the underlying group), and co-rank ultrasimpliciality.

2 Not as misdirecting as a red herring.
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Theorem 7.1. Let G be a simple dimension group with unique trace τ ,
together with a noncyclic rank one subgroup H such that τ(H) 	= 0 and G/H
is torsion-free.

(a) If rankG= k + 1, then there exists an ERS realization of G with respect
to H of size k+ 2.

(b) There exists a co-rank one ultrasimplicial ERS realization of G with re-
spect to H .

Part (a) (proved in the next section as part of Theorem 8.5) includes an
explicit bound in terms of the rank (which is sharp: some of these dimension
groups cannot be realized—even without the ERS property—at the same size
as their rank). Part (b) (established in Section 9) is a routine consequence of
(a), and of course permits infinite rank (which means that the f(n) have to
be unbounded).

We have a huge class of ERS representations available: begin with an
ECS realization of a dimension group by square matrices, for example as
obtained in Theorem 4.1, and take the sequence of transposes. The result-
ing dimension groups are not that closely related to the original ones from
which they emanated. For example, although the dimension group defined
by the transposes obtained from the previous construction will have unique
trace, generically, this trace is not rational-valued. (This will become clear
later.)3

We have to enter the looking-glass world of torsion-free Abelian groups,
and as a result, intuition goes out the window. For example, the group
G = Z[1/2]⊕ Z[1/3] is a simple-minded direct sum of two rank one groups;
however, the addition map Z[1/2]⊕Z[1/3]→Z[1/6] ((a, b) 
→ a+b) is onto and
has kernel isomorphic to Z (explicitly, (1,−1)Z); hence we have a nonsplit ex-
tension of G, Z→G→Z[1/6], by rank one groups, completely different from
the direct summands. More generally, if {m(i)}ki=1 are pairwise relatively
prime integers each exceeding one with m =

∏
m(i), then G =

⊕
Z[1/m(i)]

is an extension of Zk−1 by Z[1/m].

8. Transposes

Suppose J is an Abelian group, and is given as an Abelian group extension
0→ L→ J →M → 0, with τ : J →M denoting the quotient map. We say the

3 It is not true in general that if G is a limit of square strictly positive matrices (so is a

simple dimension group) and G has unique trace, then the limit dimension group of their
transposes need have unique trace (although it is simple). This is left as an exercise to the

reader, but with a hint: first find an example with upper triangular 2× 2 matrices where
the number of traces—corresponding to certain eigenvectors—can easily be made to change

by transposition, then perform a perturbation so the matrices are strictly positive.
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extension is nearly split4 if there exists a subgroup J0 of J such that L⊆ J0,
J0 = L⊕H0 for some subgroup H0 of J and |J/J0|<∞. Equivalently, there
exists a subgroup H0 of J such that H0 ∩L= {0} and τ(H0) is of finite index
in M .

In the following, the norms on rows are the maximum of the absolute values,
and the norms on matrices are the maximum absolute column sums.

Lemma 8.1. Let t : G→ V be an onto group homomorphism from a torsion-
free group G of rank s to a dense subgroup V of the reals. Let H be a noncyclic
rank one subgroup of G such that ker t ∩H = {0} and G/H is torsion-free.
Then there exists a realization of G as an Abelian group, as the direct limit of
matrices of the form

limMn :=

(
pn+1 un

000 Bn

)
: Zs →Zs

with pn+1 > 1, Bn ∈Z(s−1)×(s−1), detBn 	= 0, and un ∈Z1×(s−1) such that

(i) H � lim×pn+1 : Z→Z.
(ii) G/H is given as limBn : Zs−1 →Zs−1, each Bn of nonzero determinant,

and the trace t is given up to rational multiple by a sequence of rows of the
form ri = (1/p2 · · ·pi, ρi) ∈Rs×1 satisfying ri+1Mi = ri, with t[a, i] = ria.

(iii) The isomorphism of G with the direct limit identifies H with⋃
k∈N[(1,0,0, . . . ,0)T , k]Z.

(iv) ‖Bn‖ ≤ p
1/8s
n+1/(s!)

2/s and ‖un‖ ≤ p
1/4
n+1.

Moreover, if G/H is free, then ker t is free; if additionally, t(G) is rank one,
then the image of ker t in G/H is of finite index, the extension ker t→G→
t(G) is nearly split, and we can take Bn = Is−1.

Remark. When we change the matrices Bn to the identity, the corre-
sponding un will also change.

Proof of Lemma 8.1. We can write V first as countably generated, say
by {ln} ⊂ R, and t(H) =

⋃
(1/qn+1)Z where qn > 1 divides qn+1 and form

the subgroups Vn = (1/qn+1)Z +
∑n

i=1 liZ, so that Vn ⊆ Vn+1. Next, con-
sider ker t; we can write this as an increasing union of free Abelian groups,
Jn ⊂ Jn+1, all having the same rank as rankker t = s − rankV (this is true

4 Nearly split is almost the same as quasi-split used in Abelian group theory (that there

exist a map σ : M → J such that τσ is n times the identity for some nonnegative integer n).
However, quasi-split is also used in other contexts, and I thought it would be confusing here.

Different is the notion of almost split, used in representation theory of finite-dimensional
algebras.

In [R], nearly split is defined for extensions of nonabelian groups; it agrees with the
definition here when restricted to torsion-free Abelian groups. The equivalence classes of

nearly split extensions are closed under Baer sums and differences, hence form a subgroup
of Ext, although a very small one. We never use the additive structure of the group of

extensions.
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of any finite rank torsion-free Abelian group). Select h′
n ∈ H and gn ∈ G

such that t(h′
n) = 1/qn+1 and t(gn) = ln, and form the group Gn generated

by {Jn, h′
n, g1, g2, . . . , gn}; this is finitely generated, hence being a subgroup

of a torsion-free group, is free; moreover, its rank must rankJn + rankV =
rankker t+ rankV = s.

Then Gn ⊆Gn+1, and since ker t=
⋃
Jn ⊂

⋃
Gn, and

⋃
Gn → V is onto, it

follows that G=
⋃
Gn. Now define Hn =H ∩Gn; this is cyclic and its image

under t contains (possibly strictly) (1/qn+1)Z. We may choose its generator,
hn, so that t(hn)> 0 (which of course uniquely determines it). Since G/H is
torsion-free, so is Gn/Hn =Gn/(hnZ). Hence for each n, there is an ordered
Z-basis for Gn whose first entry is hn.

The matrix implementing Gn ⊆ Gn+1 with respect to the two bases is
precisely of the form displayed (but without the estimates in (iv) being sat-
isfied), where pn+1 is uniquely determined by hn = hn+1pn+1. Condition (i)
is straightforward to verify. We have seen that G =

⋃
Gn, so we obtain a

sequence of matrices whose limit Abelian group is G. The matrices Bn are
the maps Gn/hnZ→Gn+1/hn+1Z, and the limit of these is G/H . From the
rank conditions, rankBn = s− 1 for almost all n, so detBn 	= 0 for almost all
n (and so by deleting an initial segment of the direct limit, we can ensure that
detBn 	= 0 for all n). The second part of (ii) just follows from the definitions.
Condition (iii) comes from the construction.

Now we want to adjust the sequence in order to arrange that (iv) holds.
Having the original construction of Bn as the quotient maps on Gn/hnZ�

Zs/hnZ, let f : N → N be any strictly increasing function. Define Gn =
Gn + hf(n)Z. Then Gn ⊆Gn+1, and t(hf(n))/t(hf(n+1)) = pf(n+1)+1pf(n+1) ·
· · · · pf(n)+2. In particular, we can take the basis for Gn given by
(hn, yn,1, . . . , yn,k), and observe that (hf(n), yn,1, . . . , yn,k) is a Z-basis for Gn.

The map Mn : Gn →Gn+1 with respect to this basis then has its first column
simply (pf(n+1)+1pf(n+1) · · · · · pf(n)+2,0,0, . . . ,0)

T . Moreover, the induced

map Gn/hf(n)Z→Gn+1/hf(n+1)Z is naturally the same as the induced map

Gn/hnZ→Gn+1/hn+1Z, that is Bn. Hence, the form of the transition ma-
trices Mn is (

pf(n+1)+1pf(n+1) · · · · · pf(n)+2 un

000 Bn

)
for some (different, but relabelled) un ∈ Z1×s. Thus the new pn+1 is the
product pf(n+1)+1pf(n+1) · · · · ·pf(n)+2, which we can make as large as we like
(by choosing f to grow fast), while fixing Bn. Relabel the upper left corner
pn+1. Thus, we can ensure that ‖Bn‖2s ≤

√
pn+1/(s!)

2 (or smaller if we like)
and pn increasing.

Having this, we can now ensure that ‖un‖ < p
1/4
n+1. Set Un =

(
1
000

yn

Is−1

)
where yn ∈Z1×(s−1) is to be determined. Each Un is in GL(s,Z) and U−1

n =(
1
000

−yn

Is−1

)
. Then limMn : Zs → Zs is isomorphic to limUn+1M

nU−1
n : Zs →
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Zs (via [a,m] 
→ [Una,m]). We calculate

Un+1M
nU−1

n =

(
pn+1 un − pn+1yn + yn+1Bn

000 Bn

)
.

Set y1 = 000. Obviously, 0 	= |detBn| ≤ ‖Bn‖s−1 · (s − 1)! < p
1/4
n+1. Now B−1

n

exists as a matrix with rational entries, and detBn · (Bn)
−1 is simply the

adjoint matrix of B, so has integer entries. Let dn = |detBn|. Then we have
Z1×(s−1)dnB

−1
n ⊆Z1×(s−1). Applying Bn, we have dnZ

1×(s−1) ⊆Z1×(s−1)Bn.
This means that for any vector z ∈ Z1×(s−1), we can find y ∈ Z1×(s−1)

such that ‖z− yBn‖< dn (≤ dn/2 can be arranged, but is unnecessary here).
Given y1, . . . , yn, we can thus find yn+1 inductively so that ‖(un − pn+1yn)−
yn+1Bn‖ < dn. After relabelling Un+1M

nU−1
n to Mn, the resulting upper

right corner entry (again called un) thus satisfies ‖un‖< dn < p
1/4
n+1.

Each (newly relabelled) hn appears as [(1,0, . . . ,0)T , n] from the Z-basis
construction, and since H =

⋃
hnZ, the identification with H follows again.

Now we deal with the Moreover statement. The map ker t→G/H is one
to one; so if G/H is free, then ker t, being a subgroup, is free as well. Since G
has finite rank, G/H is free of rank s− 1. If additionally, t(G) has rank one,
then ker t has rank s− 1, the same as that of G/H , and since both are free,
the image ker t is of finite index in G/H .

Since G/H � limBn : Zs−1 →Zs−1 (Zs−1 is an abbreviation for Zs/hnZ),
and G/H is free of maximal rank, it must happen that |detBn| = 1 for all
but finitely many n (from finite generation of the direct limit). If G/H is
free, then ker t⊕H is of finite index in G: to see this, note that G→G/H
splits, so there exists a subgroup J of G such that H ⊕ J = G and J maps
isomorphically to G/H . There is no guarantee that ker t ⊆ J ; however, the
exact sequence H →H ⊕ ker t→ L (where L is the image of ker t in G/H)
yields G/(H ⊕ ker t) is finite, since it embeds in (G/H)/L, which is finite.

Still in the case that G/H is free, we may discard an initial segment of
nonelements of GL(s − 1,Z), so assume each Bn is in GL(s − 1,Z). Then
we can systematically pre- and post-multiply the Mn by matrices of the form
diag(1,En) where En ∈ GL(s − 1,Z) to arrange that the lower right blocks
are all the identity. �

For the general case, the matrices Bn can be put in Hermite normal form
(the normal forms arising from the action of GL(s − 1,Z) on Z(s−1)×(s−1)

from the left). It is not clear whether this would be useful.
An immediate observation is that e := (1,0, . . . ,0)T is a common right

eigenvector for all the matrices Mn appearing there, with eigenvalue pn+1,
and if we identify G with the direct limit, then H =

⋃
[e, k]Z. We can also

recalculate t in terms of the direct limit.

Lemma 8.2. Let Bi : Z
d → Zd be a sequence of matrices, and let J be the

direct limit as an Abelian group. Suppose that for all i, the left kernel of Bi,
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that is, {w ∈ Z1×l|wBi = 000}, is the same, Zz, for some z ∈ Z1×l. We may
assume that z is unimodular. Set W = z⊥ = {v ∈ Zl|zv = 0}; then BiW ⊆W
and form the direct limit, J0 := limCi : W →W , where Ci =Bi|W . Then the
natural map J0 → J given by [v, s]W 
→ [v, s], is an isomorphism (of Abelian
groups).

Proof. Since z(BiW ) = 0, not only is BiW ⊆W , but in fact Bi(Z
l)⊂W .

If Bn+t ·Bn+t−1 · · ·Bn+1v =000 for v as an element of W , then it is obviously
true as an element of Zl, and it follows that the map J0 → J is well defined
and one to one. Next, if y ∈ Zl, then Bsy ∈W , so that [y, s] = [Bsy, s+ 1]
which is in the image of the map J0 → J . Hence, the map is onto. �

In the ECS cases discussed earlier, the sequence of vectors (vn) is com-
patible with the addition operation on the Ext group, that is, with the Baer
sum ((pn+1, v

n+(vn)′) represents the Baer sum of the extensions arising from
(pn+1, v

n) and (pn+1, (v
n)′)); however, many different sequences can represent

the same equivalence class, and it is very difficult to decide when they do. The
same applies here, although if G/H is free, then as Abelian groups (but not
as extensions), G�Zs−1 ×H .

Here ρ denotes the spectral radius. The following is well known in a more
general setting, dealing with projective convergence and weak ergodicity. But
we do not need this generality in our situation.

Lemma 8.3. Let G= limCi : Z
s → Zs be a sequence of primitive matrices

for which there exists positive real numbers f(m,n) with m > n such that
limm→∞ f(m,k+ 1)/f(m,k)→ 1/ρ(Ck) for all k, and for all n

lim
m→∞&m>n

CmCm−1 · · ·Cn

f(m,n)
= Vn

exists and is strictly positive. Then the candidate map V : G → Rs via

V [a, k] = Vk/
∏k−1

i=1 ρ(Ci) is well-defined, and every pure trace of G factors
through it. In particular, G has unique trace iff rankVn = 1 for almost all n.

Remark. The simplest situation in which the hypotheses hold occur when
ρ(CnCn−1 · · ·Cm) =

∏n
m ρ(Ci) for all m>n, that is, when the spectral radius

is multiplicative on the matrices. For example, this occurs when the Ci have
a common right Perron eigenvector, or a common left Perron eigenvector.

Proof of Lemma 8.3. [a, k] = [Cka, k+ 1], and the latter is sent to

Vk+1Cka/
∏k

i=1 ρ(Ci). Now Cm · · ·Ck+1Ck/f(m,k) = (Cm · · ·Ck+1/f(m,
k + 1))Ck(f(m,k + 1)/f(m,k)). The left-hand side converges to Vk; the
right-hand side converges to Vk+1Ck/ρ(Ck). Hence Vk+1Cka= ρ(Ck)Vka, so
V is well-defined.

Next, suppose that [a, k] is an order unit in G; then there exists m> k such
that Cm−1Cm−2 · · ·Cka is strictly positive; as Vm has only nonzero entries,
this means VmCm−1Cm−2 · · ·Cka is nonnegative and not all entries are zero,
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and thus V [a, k] is nonnegative and nonzero (as an element of Rs), and thus V
is a positive group homomorphism. Each row of Vn is either zero, or induces a
trace on G (via Rs →R). Discard any zero rows from Vn (for all sufficiently

large n) obtaining a newly-labelled Vn which is now a map from G to Rs′

with s ≤ s′ such that every row of Vn is not zero. Then the map V sends
order units if G to order units of Rs′ .

Conversely, if [a, k] is an arbitrary element of G such that V [a, k]> 0, then
there exists m> k such that ‖(Cm−1Cm−2 · · ·Ck)/f(m,k)a− Vka‖ is smaller
than the infimum of the entries of Vka, and thus (Cm−1Cm−2 · · ·Ck)/f(m,k)a
is strictly positive, hence Cm−1Cm−2 · · ·Cka is strictly positive, and thus [a, k]
is an order unit of G. Now consider all the traces on G obtained by composing
V with any positive vector space map Rs → R. What we just obtained is
that these are enough to determine the order units of G, and this implies that
these traces include all the extreme points in the trace space of G, hence the
factorization for pure traces.

If rankVn = 1, then the trace space is 0-dimensional (after normalization,
a single point); conversely, if G has unique trace, then all the composed traces
are equal up to normalization, and it follows immediately that rankVn = 1 for
almost all n. �

Suppose Ai are primitive matrices of the same size with common right
Perron eigenvector. Then the spectral radius is multiplicative on products of
the Ai, and moreover, Ai/ρ(Ai) are uniformly bounded, as are their products.
Hence there exists a subsequence, 1 = n(1)< n(2)< n(3) · · · , such that for the
sequence (Ci :=An(i+1)−1 · · ·An(1)+1 ·An(1)), we have for all k,

Cm ·Cm−1 · · · · ·Ck∏m
i=k ρ(Ci)

converges to a matrix, necessarily strictly positive (since the row sums are
all one, all the rows have nonzero entries; it now follows since Ci are strictly
positive, that the limit matrices are strictly positive). Hence by suitably
telescoping, we use Lemma 8.3 to derive the pure traces from rows of the
limit matrices, and if G has unique trace, the limit matrices eventually have
rank one, so we can pick any fixed nonzero row.

Denote by B(p,B, v, a) for p and a positive integers, v ∈Zk and B ∈Zk×k,
the square matrix of size k+ 2,

B(p,B, v, a) =

⎛⎝ ∗ ∗ ∗
v+ a111 B + v111T + a111111T v+ (a− 1)111

a a111T a

⎞⎠ ,

where 111 is the column of size k consisting of ones, and the column sums are
all p (hence the entries marked with an asterisk are uniquely determined); in
particular, 111TB = p111T . We will eventually transpose these matrices. It is easy



REALIZING DIMENSION GROUPS 1087

to check that B(p,B, v, a)B(p′,B′, v′, a′) = B(pp′,BB′, p′v+Bv′, p′a). Setting
An = B(pn+1,Bn, v

n,An), then inductively

AnAn+1 · · ·An+j = B
(

j∏
i=0

pn+i+1,Bn · · ·Bn+j , v
(n,j), an

j∏
i=1

pn+i+1

)
,

where

v(n,j) = pn+1 . . . pn+j+1

(
vn

pn+1
+

Bnv
n+1

pn+1pn+2
+

BnBn+1v
n+2

pn+1pn+2pn+3
+ · · ·

+
Bn · · ·Bn+j−1v

n+j

pn+1 · · ·pn+j+1

)
.

We assume as we may that ‖Bn‖ = O(p
1/2
n+1), and that {vn/pn+1} is

bounded. Then limj→∞ v(n,j)/pn+1 · · ·pn+j+1 exists (provided pn →∞); call
it V ∞,n; this forces AT

n+jA
T
n+j−1 · · ·AT

n/pn+1 · · ·pn+j+1 to converge to the
rank one matrix

111k+2

(
1−

(
V ∞,n

)T
111− (k+ 1)an

pn+1
, V ∞,n +

an

pn+1
111T ,

an

pn+1

)
.

Call the row appearing in this factorization, W∞,n; if the An are primitive,
then it is strictly positive. The family {W∞,n} satisfies W∞,nAT

n =W∞,n−1,
hence induces a trace on the dimension group G= limAT

n : Zk+2 →Zk+2 via
τ [x,m] =W∞,mx. As G has unique trace, this is it, up to scalar multiple.

Now we consider G as an Abelian group with trace; then we obtain
a group isomorphism from the restriction to (zT )⊥ (where z = (−(k + 1),
1,1, . . . ,1)T ); using as ordered Z-basis for the latter, the columns ((1, . . . ,1)T ,
(0,1,0, . . . ,0,−1)T , . . . , (0,0, . . . ,0,1,−1)T ) (it is easy to check that this is a
Z-basis), the group isomorphism from Lemma 8.2 is with the group given

as J := limMn =
(
pn+1

0
(vn)T

BT
n

)
: Zk+1 → Zk+1. Moreover, the effect of W∞,1

on the basis yields the group homomorphism obtained from the rows Rn :=
(1, V ∞,1); that is, the corresponding homomorphism from J to R is given by
t[x,k] =Rkx. Since each Mn is one to one, a group homomorphism from J is
uniquely determined by its affect on the first level, that is, on elements of the
form [x,1].

In the following, the norms on rows are the maximum of the absolute values,
and the norms on matrices are the maximum absolute column sums.

Lemma 8.4. Let pn+1 ↑ ∞, let Bi be k × k integer matrices such that

detBi 	= 0 and ‖Bi‖ = o(p
1/2
i ), and let zi ∈ Z1×k with ‖zi‖ < pi+1; let

r1 = (1, ρ1) where ρ1 ∈R1×k. Then there exist a sequence {wi}, with wi ∈Zk

and ‖wi‖ < ‖zi‖+ (pi+1 + ‖Bi‖)/2 for all i > 1 together with group isomor-
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phisms Fi : Z
k+1 →Zk+1 such that the following diagram

Zk+1
(
p2 z1
0 B1

)� Zk+1
(
p3 z2
0 B2

)� Zk+1 · · · Zk+1
Mn := (

pn+1 zn
0 Bn

)� Zk+1 . . .�

↙ r1

R

↖ r1

Zk+1

F1

�
(
p2 w1
0 B1

)� Zk+1

F2

�
(
p3 w2
0 B2

)� Zk+1

F3

�
· · · Zk+1

Fn

�
(
pn+1 wn

0 Bn
) � Zk+1

Fn+1

�
. . .�

commutes, and such that

(2) ρ1 =
w1

p2
+

w2B1

p3p2
+

w3B2B1

p4p3p2
+

w4B3B2B1

p5p4p3p2
+ · · · .

Proof. We will define Fi =
(
1
0

yi

Ik

)
(where yi ∈Z1×k), and then define wi ∈

Z1×k so that all the properties hold. First, set y1 =000. Now define

z∞ =
z1
p2

+
z2B1

p3p2
+

z3B2B1

p4p3p2
+ · · ·

=
z1
p2

+

∞∑
i=2

ziBi−1Bi−2 · · ·B1

pi+1pi · · ·p2
.

That the sum exists is a consequence of ‖zi‖/pi+1 being bounded, ‖Bi‖ =
o(
√
pi+1), and summability of 1/

√
pipi−1 · · ·p2.

Now define

yn+1 =
[
pn+1pn · · · · · p2

(
ρ1 − z∞

)
(Bn ·Bn−1 · · · · ·B1)

−1
]
;

of course, the inverses of Bi exist as matrices with rational entries. Here the
integer function [ · ] means to take the nearest integer in each entry. Let Yn+1

denote the thing on the right before we take the integer function; it is an
element of R1×k. Then obviously we have yn+1 ∈Z1×k and ‖yn+1 − Yn+1‖ ≤
1/2.

Finally, set wn = zn+yn+1Bn−pn+1yn. It is easy to check that the squares
in the diagram all commute. We show that ρ1 is the infinite sum in (2).

Let Sn be the sum of the first n terms on the right-hand side of (2). When
we substitute wi = zi + yi+1Bn − pn+1yi, we find that the series partially
telescopes:

Sn =

(
z1
p2

+

n∑
i=2

ziBi−1Bi−2 · · ·B1

pi+1pi · · ·p2

)
+

yn+1BnBn−1 · · ·B1

pn+1 · · ·p1
,
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as follows immediately by induction. Now Yn+1Bn · · · · ·B1(pn+1 · · ·p2)−1 =
ρ1 − z∞, hence ‖yn+1Bn · · · · · B1(pn+1 · · ·p2)−1 − (ρ1 − z∞)‖ < 1/√
pn+1 · · · · · p1. Thus, limSn exists and

limSn = z∞ +
(
ρ1 − z∞

)
= ρ1.

Next, we estimate ‖wi/pi+1‖. We have∥∥∥∥wn − zn
pn+1

∥∥∥∥ =

∥∥∥∥yn+1Bn − pn+1yn
pn+1

∥∥∥∥
≤

∥∥∥∥Yn+1Bn − pn+1Yn

pn+1

∥∥∥∥+

∥∥∥∥ (Yn+1 − yn+1)Bn + pn+1(Yn − yn)

pn+1

∥∥∥∥
≤ 0 +

∥∥∥∥ Bn

2pn+1

∥∥∥∥+
1

2
.

Thus, ‖wn/pn+1‖ ≤ ‖zn/pn+1‖+ (1/2)(‖Bn‖/pn+1 + 1). �

We are permitted to telescope the bottom row, and then apply the same
transformation to the resulting upper right corner entries as we did in the
ECS case (for the lower left corners), conjugating by a block upper triangular
element of GL(k+2,Z), to ensure we could choose the an so that the resulting
matrices are positive. This yields the following.

Theorem 8.5. Let G be a simple dimension group of rank k+1 with unique
trace τ , and let H be a noncyclic rank one subgroup of G such that G/H is
torsion-free and τ(H) 	= 0. Then there exists an ERS realization of G of size
k + 2 such that the image of H in the direct limit is

⋃
j∈Z[(1,1, . . . ,1)

T , j]Z.

If G/H is free, then the extension 0→ ker τ →G→ τ(G)→ 0 is nearly split.

This does not require the trace to be rational-valued; since there is no
restriction on τ(G) except τ(H) 	= 0, the value group, τ(G) can be an arbitrary
subgroup of R containing τ(H) and of rank at most k + 1 (when equality
occurs, G is totally ordered).

9. Infinite rank ERS

The following is a routine argument involving direct limits, but it allows us
to prove Theorem 7.1(b) via Theorem 7.1(a), as well as results on simultaneous
ERS and ECS realizations (ECRS).

Lemma 9.1. Let Gn be a family of dimension groups and let φn : Gn →
Gn+1 be ordered group homomorphisms that send order units to order units.
Let G be the ordered group limφn : Gn →Gn+1.

(a) Suppose Hn are noncyclic rank one subgroups of Gn such that Hn∩G++ 	=
0 for all n, φn(Hn)⊆Hn+1, and each Gn admits an ERS realization with
respect to Hn. Define H = limφn|Hn. Then G admits an ERS realization
with respect to H obtained from telescoping.
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(b) Suppose that (G,u) is given as the direct limit of ψj : Gj →Gj+1 where
each Gj is a simple dimension group with unique trace, and each admits
an ECS realization. Then G admits an ECS realization with respect to its
unique trace.

(c) If each of the Gn admit an ERS realization with respect to Hn that is
simultaneously ECS, then G admits an ERS realization with respect to H
that is also ECS.

Proof. (a) For each n, let Gn � limi φ
n
i : Fn

i → Fn
i+1 (where Fi = Zf(i,n)

with the simplicial ordering) be an ERS realization of Gn with respect to
Hn. Let {enji} be the standard basis of Fn

i . We may of course replace � by
equality. Since φn is positive, given i, there exists m≡m(i, n) such that for all
j ≤ f(i, n), φn[enji] = [vj,i,m,m] where vj,i,m has all of its entries nonnegative.

Since φn(Hn) ⊆ Hn+1, we have φn[111f(i,n), i] = p[111f(l,n+1), l] for some in-

tegers l > n and p ≥ 1. Thus
∑f(i,n)

j=1 [enji, n] = p[111f(l,n+1), l]. Hence there

exists m′ ≡m′(i, n) such that for all j ≤ f(i, n), φn[enji] = [wj,n+1,m′] where

wj,n+1 ≥ 0 and
∑f(m′,n+1)

j=1 wj,n+1 is a multiple of 111f(m′,n+1). This means

we can define a positive matrix Cn
i : Fn

i → Fn+1
m′(i,n) which sends 111f(i,n) to a

multiple of 111f(m′,n+1); in particular, Cn
i has equal row sums.

Beginning with i = 1, we obtain a telescoping of the sequence for G2 by
composing and then relabelling F 2

m′(1,1) as F
2
1 (and telescoping and relabelling

the mappings), F 2
max{m′(1,1),m′(2,1)} as F 2

2 , etc., so that now the matrices C1
i

go straight down, that is map F 1
i → F 2

i (in the new notation). We may iterate
this construction inductively. It is now straightforward that G � limCn,n ◦
φn
n : Fn

n → Fn+1
n+1 , the order-isomorphism sending H to the obvious limit of

Hn, that is we have an ERS realization of G with respect to H .
(b) That G has unique trace is trivial. As in the preceding argument, we

may telescope the various rows, and assume that each φj is implemented by
nonnegative matrices Aj

i : F
j
i → F j+1

i , and we may assume that no Aj
i has

any zero rows (in fact, since each Gj is simple, it is easy to arrange that the
matrices be strictly positive).

The element u comes from some Gj , so we may normalize the unique trace
τj of Gj at its pre-image. Then τj+1 ◦ φj = τ j (from uniqueness); hence,
τ j [f,n] = τ j+1[Aj

nf,n] (where f ∈ F j
n). Since we have assumed each realiza-

tion is ECS, this says τ j [ei, n] = τ j [ei′ , n] for all standard Z-basis elements
ei, ei′ of F

j
n, for all j, and in particular, τ j [f,n] = λj,n

∑
fi, where f =

∑
fiei

for some positive rational number λj,n.
Thus for each basis element ei, we have (where 111T represents the row of

the appropriate size consisting of ones)

λj+1,n111
TAj

nei = τ j+1
[
Ajei, n

]
= τj [ei, n] = λj,n.
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Since the last term is independent of the choice of i, we have that all the
111TAj

nei are the same, as i varies. This means exactly that the column sums
of Aj

n are all equal. Now the diagonal argument (as in (a)) can be applied.
(c) In the simultaneous case, we first ensure that the process in (a) is carried

out, then apply the method of (b). �

Lemma 9.2. Let G be a simple dimension group with unique trace τ , and let
H be a noncyclic rank one subgroup such that τ(H) 	= 0 and G/H is torsion-
free. Then we can write G =

⋃
Gn where Gn ⊂ Gn+1 are simple dimension

groups with unique trace (in the relative ordering), each of finite rank, and
each containing H .

Proof. Consider the subgroup of the reals, τ(G); since this is countable,
and τ(H) is contained in it, we can find a countable set of elements {rn}
such that with Jn := τ(H) +

∑n
i=1 riZ ⊂R, we have τ(H)⊆ Jn ⊆ Jn+1 and⋃

Jn = τ(G). Select gi ∈G such that τ(gi) = ri.
Now ker τ is a countable torsion-free Abelian group (and nothing else: every

countable torsion-free Abelian group can appear as a ker τ ); we may thus
write it as an increasing union of free Abelian groups of finite rank (this is
completely elementary: list the elements, then take increasing finite subsets),
say ker τ =

⋃
Tn, each Tn of finite rank.

Finally, set Gn = Tn+H+
∑

1≤i≤n giZ. Then H ⊆Gn ⊂Gn+1 ⊂ · · · . Since
τ(H) ⊆ τ(Gn), the range of τ |Gn is dense, and it is immediate that with
the relative ordering inherited from G, Gn is a simple dimension group with
unique trace τ . Next let G0 =

⋃
Gn ⊆ G; we note that ker τ =

⋃
An ⊂ G0,

and τ(G0) = τ(G) by construction. Hence G0 =G. Since each of Tn, H , and∑
1≤i≤n giZ is of finite rank, so is Gn. �

Corollary 9.3 (Theorem 7.1(b)). Let G be a (countable) simple dimen-
sion group with unique trace τ , and let H be a noncyclic rank one subgroup of
G such that τ(H) 	= 0 and G/H is torsion-free. Then there is a co-rank one
ultramatricial ERS realization of G with respect to H .

Proof. By the preceding, we can write G=
⋃
Gn with H ⊂Gn, where each

Gn is a finite rank simple dimension group with unique trace given by the
restriction of τ . Since G/H is torsion-free and Gn/H ⊆G/H , we have Gn/H
is torsion-free. Hence, each Gn admits an ERS realization with respect to H .
The inclusion maps Gn →Gn+1 send H onto H , and implement a realization
of G as a direct limit of the Gns, hence Lemma 9.1 applies. �

There are still questions about realizations that both ERS and ECS (simul-
taneously; that is, the matrices have their row sums equal, and their column
sums equal). These will be addressed in the next two sections.
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10. ECRS and nearly split extensions

A realization is ECRS if it is simultaneously ECS and ERS. The trace
induced by normalized multiples of the rows 111f(n) is automatically rational-
valued, and will be denoted τ . If G admits an ECRS realization wherein,
viewed as an ERS realization, it is with respect to H , then we shall write,
an ECRS realization with respect to H . It is routine to see that if G admits
an ECRS realization with respect to H that is of size s (so all the matrices

have both 111s and 111Ts as their right and left Perron eigenvectors, respectively),
then |τ(G)/τ(H)| divides s: the image of the trace on G is

⋃
(1/pj+1 · · ·p2)Z,

while on the image of the subgroup
⋃
[111s, k]Z, it is

⋃
(s/pj+1 · · ·p2)Z, and the

one by the other is a quotient of Z/sZ, hence has order dividing s.
This puts a fairly stringent condition on the matrix sizes required for

bounded ECRS realizations. Of course, unbounded ECRS realizations can
be obtained as direct limits (obtained from unions) of bounded ones (exactly
as in the case of ERS realizations).

Lemma 10.1. Suppose t : G→ U ⊆Q is obtained as the direct limit G �
limCn : Zs →Zs where the map t is obtained from a common left eigenvector
w of all the Cn (with corresponding eigenvalue cn+1), via t[a,n] =wa/c1 · · · cn.
Suppose in addition, the Cn have a common right eigenvector v and wv 	= 0.
Then the extension 0→ ker t→G→ U → 0 is nearly split.

Proof. We note that the eigenvalue of v for Cn must be the same as that of
w, cn+1, since vw 	= 0. Set H =

⋃
[v,n]Z⊂G. Then

⋃
(c2 · · · cn)−1vwZ⊆H ,

and this is obviously of finite index in U = t(G) =
⋃
(c1 · · · cn)−1Z. Thus

ker t⊕H is of finite index in G, so the extension is nearly split. �

When ker t is free, the index of the image of ker t in G/H is finite. In that
case, ker t⊕H has finite index in G, so that the extension ker t→G→ U is
nearly split. Thus, we have the following.

Lemma 10.2. For any simple dimension group of finite rank with unique
trace, which is rational-valued, t : G → U ⊆ Q such that ker t is free, and
admits a bounded ERS realization, the extension ker t→G→ U is nearly split.

Although freeness of J/H implies J → J/H splits—yielding a group iso-
morphism J � Zs−1 × H—this does not imply that J → U splits. In the
stationary and ECRS example, G = lim

(
1
2

2
1

)
: Z2 → Z2, we have τ(G) :=

U = Z[1/3] and τ(H) = 2Z[1/3] (where H =
⋃

n[1112, n]Z), so the extension
0 → Z → G → U → 0 does not split, although G � Z ⊕ Z[1/3] (as Abelian
groups) and t|H 	= 0. As we will see in the next section, this is fairly typical.

Dropping the strong assumption that ker t or J/H be free, a sufficient
condition for the extension J → U to be nearly split, that is, ker t⊕H be of
finite index in J , is that the image of ker t be of finite index in J/H .
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This places restrictions on realizations of dimension groups by commuting
primitive matrices. For example, if G is a simple dimension group with unique
trace, and it is realized by commuting nonnegative matrices, we can telescope
and kill off zero rows, and arrange that the matrices additionally be primitive.
Hence, they will have common left and common right Perron eigenvectors and
the unique trace is determined from the left Perron eigenvector. Thus, the
corresponding extension 0→ ker τ →G→ τ(G)→ 0 given by the image of the
trace must be nearly split.

If for example, ker τ = Zk and τ(G) = U has an interesting supernatural
number (e.g., every prime has multiplicity at most one), then the set of iso-
morphism classes of nearly split extensions within the class of extensions of
Zk by U is negligible. So most extensions cannot be given by commuting
families of matrices. Certainly a realization of bounded matrix size that is
both ERS and ECS qualifies for Lemma 10.1, as does a stationary dimension
group.

In particular, Example 10.4 below is a simple dimension group with unique
and rational-valued trace, of rank two, that cannot be realized by any
sequence of (square) primitive matrices which have common right and com-
mon left eigenvectors; in particular, it cannot be realized by a bounded
sequence of simultaneously ERS and ECS primitive matrices. It can be re-
alized by a sequence of increasing size strictly positive rectangular matrices,
Mn : Zf(n) →Zf(n+1), where f(n)→∞, and each Mn is both ERS and ECS,
as we will see in the next section. It can be shown that for any such realization,
f(n+ 1)/f(n) must be divisible by 3 for infinitely many n.

There is a trivial case in which the extension must be nearly split.

Lemma 10.3. Suppose t : G→ U is a finite rank torsion-free group such that
U = Z[1/p] for some prime p. If G contains a noncyclic rank one subgroup
that is disjoint from ker t, then the extension 0→ ker t→G→ U → 0 is nearly
split.

Remark. Stationary examples show that such extensions need not be split.

Proof of Lemma 10.3. Obviously, t induces an embedding H → t(G). The
extension is nearly split because every noncyclic subgroup of Z[1/p] is of finite
index! �

Let p be a prime; all noncyclic subgroups of U = Z[1/p] are therefore of
finite index. Hence, if in the situation of Lemma 10.3, t(G) is isomorphic to
Z[1/p] (and H is not cyclic, which is part of the hypotheses), then the cor-
responding extension is nearly split (Lemma 10.3). Another situation arises
when the realization is by commuting matrices, or more generally, when the
implementing matrices have common left eigenvector and common right eigen-
vector. In the situation arising from positive matrices, these must be the
Perron eigenvectors, hence correspond to the same eigenvalue (for each n).
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Example 10.4. An example of a simple dimension group with unique,
rational-valued trace, which is ERS-realizable, but for which the correspond-
ing extension, 0→ ker t→G→ t(G) = U → 0, is not nearly split.

We construct a simple example for which the subgroup H � Z[1/3] and
t(G)�Z[1/6]. In this case, the extension Z→G→Z[1/6] is not nearly split,
but the corresponding dimension group admits an ERS realization (of size
three). It also admits an ECS realization, but cannot have a simultaneously
ECS and ERS realization of bounded size (since that would imply common left
and common right eigenvectors, which entails nearly splitting by Lemma 10.1).

Construct an extension 0→ Z→G0 → Z[1/2]→ 0 for which there are no
2-divisible elements in G0, equivalently, the extension is not nearly split. Let
t0 : G→Z[1/2] denote the map. We may regard G0 as a subgroup of its divis-
ible hull, which is of course Q2; t0 extends uniquely to a group homomorphism
T : Q2 →Q. Pick an element of G0, u ∈ t−1

0 (1), and form G=G0 + uZ[1/3]
(inside Q2). Then T restricts to a map, called t : G → Q, with values in
Z[1/2] +Z[1/3] =Z[1/6].

Now we show that ker t = ker t0 = Z, so that Z → G → Z[1/6] is the
corresponding extension. Elements of G are of the form g = g0 − um/3k

for g0 ∈ G0, m an integer, and k a nonnegative integer. If t(g) = 0, then
t(g0) =m/3k; there exist integers l and nonnegative j such that t(g0) = l/2j .
Hence 3kl= 2jm. This forces 3k to divide m, so g ∈G0. Hence ker t0 = ker t.

Next, we show that G contains no 2-divisible elements. Select g = g0 +
um/3k in G with g0 ∈G0 as in the previous paragraph. If g were 2-divisible,
for all positive integers l, we could solve the equations

g0 + u
m

3k
= 2l

(
gl + u

ml

3k(l)

)
,

where gl ∈ G0; we may assume that m and ml are relatively prime to 3.
Suppose for now that k, k(l) > 0. Fix l and multiply by 3k. This yields
3kg0 +mu = 3k2lgl + 2l3k−k(l)mlu. Thus 2lml3

k−k(l)u ∈ G0, so its value at
t0, 2lml3

k−k(l) ∈ Z[1/2]. Thus if k(l) > k, we must have 3 dividing ml, a
contradiction. Thus k ≥ k(l).

This yields 3k(g0 − 2lgl) = u(m− 2l3k−k(l)). Evaluating at t0, we obtain
3kt0(g0 − 2lgl) =m− 2l3k−k(l). If k > k(l), then 3 divides m (as the values
of t0) lie in Z[1/2], again a contradiction. Hence k = k(l), so that m− 2l ≡
0 mod 3k. Since m and k are fixed, but the mod3 equivalence classes of 2l

alternate between 1,2, this is impossible.
Let us dispose of the remaining possibilities; first, if k = 0, we have the

equations g + mu = 2lgl + 2lml3
−k(l)u, so 2lml3

−k(l)u ∈ G0; evaluating at
t0, we obtain 2lml3

−k(l) ∈ Z[1/2]; since 3 does not divide ml, we must have
k(l) = 0 for all l. But then the element g +mu = 2l(gl +mlu) is 2-divisible
within G0, a contradiction.
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Next, if k(l) = 0 for one value of l > 0, then um3−k ∈ G0, which forces
k = 0 (evaluate at t0 again), and we are in the preceding case.

Thus G contains no 2-divisible subgroup. Since any subgroup of finite
index in Z[1/6] must be 2-divisible, the extension cannot be nearly split. On
the other hand, the subgroup H = uZ[1/3] of G is 3-divisible, so there is a
group realization of the form described in Corollary 9.3, that is, common right
eigenvector, and a corresponding ERS realization for the dimension group.
But there cannot be a dimension group realization that is both ERS and ECS
simultaneously when the matrix size is bounded.

In terms of the Bn, a necessary condition for G → τ(G) to split is that
if dn = |detBn|, then H is of finite index in

⋃
(1/

∏n
i=1 di)Z+ t(H) (e.g., if

pn+1 are powers of the same prime p, this would force almost all the dn to be
powers of p). But this is not sufficient.

11. ECRS

Suppose that (G,H) is a simple dimension group with noncyclic rank one
subgroup such that G/H is torsion-free, and in addition that G admits a
unique trace τ . Moreover, assume that τ(G) := U is a subgroup of the ratio-
nals, and τ(H) 	= 0. These conditions (except the uniqueness of the trace) are
necessary for an ECRS realization of G with respect to H .

The converse is not quite true. We will show that if U is p-divisible for some
prime p (i.e., at least one prime has infinite multiplicity in the supernatural
number of U ), then the converse is true. However, in case U is not p-divisible
for any prime p, then an ECRS realization exists with respect to H exists if
and only if rankG≤ |τ(G)/τ(H)|. In this formulation, we allow ∞ as a value,
and this corresponds to unbounded realizations. In the cases that rankG<∞,
we have some control on the size of the realization.

In particular, if τ(G) has no primes with infinite multiplicity, and rankG>
1 (the case of rankG = 1 is trivial), then the split case, G = U ⊕ ker τ with
the strict ordering from the projection onto U , does not admit an ECRS
realization. If in addition, ker τ is free of finite rank, by earlier results, then
G admits both an ECS realization and an ERS realization with respect to H ,
of the same size, but no ECRS realizations at all.

We begin with the case that |τ(G)/τ(H)|<∞. This of course implies that
G→ U is nearly split. For now, we also assume G/H is free and finite rank.
Then we can write G = H ⊕ Zk (with τ(H) = nτ(G) for some integer n),
but we must recall that ker τ is not the copy of Zk that appears as a direct
summand.

For a row or column v consisting of integers, the content of v, denoted c(v)
is the greatest common divisor of the nonzero entries of v.

Lemma 11.1. Let λ, pn+1 > 1 be positive integers such that for all n, pn+1 ≡
1 mod λ, and let ρ ∈Zk be a vector such that (c(ρ), λ) = 1; set qn = p2 · · · · ·pn.
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For each n, define Mn =
(
pn+1

0
0
Ik

)
, and rn = (λ/p2 · · · · ·pn, ρ) for n > 1, and

r1 = (λ,ρ) ∈ Z1×(s+1); with G= limMn (as Abelian groups) define t : G→Q
by t[w,n] = rnw. Then there exist vn = ρ(pn+1−1)/λ, yn = ρ(qn−1)/λ ∈Z1×s

such that for all n, the following diagram commutes,

Zk+1
M1 � Zk+1

M2 � Zk+1 · · · Zk+1
Mn � Zk+1

. . .�

↙ r1

Q

↖ r1

Zk+1

(
1 y1
0 Ik

)

� (
p2 v1
0 Ik

)� Zk+1

(
1 y2
0 Ik

)

� (
p3 v2
0 Ik

)� Zk+1

(
1 y3
0 Ik

)

�
· · · Zk+1

(
1 yn
0 Ik

)

� (
pn+1 vn

0 Bn
)� Zk+1

(
1 yn+1
0 Ik

)

�
. . .�

and in addition, riMi = ri−1 and r1 is a common left eigenvector of all the
matrices

(
pn+1

0
vn
Bn

)
, with corresponding eigenvalue pn+1.

If we set H =
⋃
[111k+1, n]Z, then t(H) = λt(G).

Proof. Set y1 =000. To have r1 as common left eigenvector, we must have
(λ/qn)yn + ρ = ρ/qn, that is, yn = ρ(qn − 1)/λ; as pi ≡ 1 mod λ, λ divides
qn − 1, hence yn has only integer entries.

For the square to commute (now that we have define all the y’s), it is
equivalent to yn+1 = pn+1yn + vn, that is, we set vn = yn+1 − pn+1yn =
((qn+1 − 1)/λ− pn+1(qn − 1)/λ)ρ, and this simplifies to vn = ρ(pn+1 − 1)/λ.

At the nth level, the trace is given by (λ/qn, ρ), so its image is q−1
n (λZ+

qnc(ρ)Z). Since gcd (qn, λ) = gcd(c(ρ), λ) = 1, we have gcd(λ, qn) = 1. Hence
the range of the trace on the nth level is q−1

n Z, so that t(G) =
⋃
q−1
n Z. On

the other hand, t[(1,0, . . . ,0)T , n] = λ/qn. Hence, the range of t on H =⋃
[(1,0, . . . ,0)T , n]Z is

⋃
λq−1

n = λt(G). �

Under the assumptions of Lemma 11.1, set v0 = (1,1,0, . . . ,0) ∈Zk. There
exists E0 ∈GL(k,Z) such that ρE−1

0 = c(ρ)(1,0, . . . ,0). Then

v0(1− pn+1) +
pn+1 − 1

λ
ρE−1

0 =
pn+1 − 1

λ

(
c(ρ) + λ,λ,0, . . . ,0

)
.

Now gcd{λ, c(ρ) + λ}= gcd{λ, c(ρ)}= 1. There thus exists E1 ∈GL(k,Z)
such that (c(ρ) + λ,λ,0, . . . ,0)E−1

1 = (1,1, . . . ,1). Setting v = v0E
−1
0 E1

and E = E1E0 then for all n, v(1 − pn+1) + ρ(c(ρ) + λ,λ,0, . . . ,0)E =
pn+1−1

λ (1,1, . . . ,1).
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Let u = (1,1, . . . ,1) ∈ Zk. Now for any choice of integer p (such that λ
divides p− 1), we have(

1 v
0 E

)(
p p−1

λ ρ

0 I

)(
1 v
0 E

)−1

=

(
p −pvE−1 + (p−1

λ ρ+ v)E−1

0 E

)
=

(
p p−1

λ u

0 I

)
.

Hence, after conjugating every
(
pn+1

0
vn
I

)
by the same matrix, we reduce to

the case that the transition matrices are
(
pn+1

0

pn+1−1

λ u
I

)
, having (λ,ρE−1) as

common eigenvector, and since it is an eigenvector of the matrices, it follows
that ρE−1 = (1,1, . . . ,1) ∈Zk, and the trace on the group with homomorphism
is given by the suitably normalized eigenvector, (λ,1,1, . . . ,1)/qn at the nth
level.

At this stage, we note that if λ= k+1, there is a simple finishing argument.
Add the first row of each matrix, that is, (pn+1,

pn+1−1
λ u) to all the other rows,

and then subtract all the columns from the first. This amounts to conjugating
every one of the matrices with same elementary matrix. The entries are
suddenly strictly positive, and since the inner product of the left and right
unimodular Perron eigenvectors is λ= k+1, and they consist strictly positive
of strictly positive integers, they must all be exactly one. (We will review this
argument.)

We record the following elementary criterion.

Lemma 11.2. Let A be a primitive integer matrix of size s, whose Perron
eigenvalue is an integer, and let V and W be the corresponding left and right
Perron eigenvectors consisting of integers, such that c(V ) = c(W ) = 1. If
VW = s, then all row and column sums are equal.

Proof. The Perron eigenvectors consist of strictly positive real numbers,
and since they are all integers, each is at least one; as they are of size s, the
only way VW is as small as s is if every entry of each is one. Hence the
column and row sums are all equal. �

In the case that λ > k, our strategy is to embroider a block of λ−k−1 zero
rows and corresponding nonzero columns (or zero columns and nonzero rows)
around each of our current matrices in such a way that the resulting matrices
still have common left and common right eigenvectors corresponding to pn+1,
and such that their unimodularized inner product (the VW of Lemma 11.2)
is still λ. Then we conjugate all the matrices (with the same matrix), so that
as in the λ= k+ 1 case outlined above, the resulting matrices are primitive.

The embroidered pieces actually vary in n (in order to guarantee that the
eigenvectors do not vary in n), and must be carefully chosen.
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If λ < k+1, we run into a technical difficulty when we try this, and indeed,
an easy result shows that it is impossible to proceed.

Suppose λ≥ k+ 1; this bifurcates into λ− (k− 1)≤ k and λ− (k− 1)≥ k
(for which the treatments are different but similar).

We first justify the process of embroidering; this is elementary, and com-
pletely derivative of symbolic dynamical techniques.

Lemma 11.3. Let Mn :=
(
An

Cn

Bn

Dn

)
be block partitions of s× s integer ma-

trices (with An square of size a and Dn square of size s− a) of full rank, s.
Form the S × S matrices

M ′
n =

⎛⎝An Bn 0
Cn Dn 0
0 Xn 0

⎞⎠ , M ′′
n =

⎛⎝An Bn Zn

Cn Dn Yn

0 0 0

⎞⎠ ,

where Xn are (S−s)×s, Yn are s×(S−s), and Zn are a×(S−s) integer ma-
trices. Then there are natural isomorphisms G′ = limM ′

n →G= limMn and
G→G′′ = limM ′′

n , induced by ZS → Zs (projection onto first s coordinates)
and the natural inclusion of Zs in ZS .

Moreover, if v = (α,β) is a left eigenvector for Mn (with corresponding
block decomposition), then v′ = (α,β,000) is a left eigenvector for M ′

n.

Proof. Let V be the subgroup of ZS with zeros in the top s entries, and let
φ : ZS →Zs be the projection onto the top s coordinates, so that V U = kerφ.
Then φM ′

n =Mnφ, so φ induces a group homomorphism between the limit
groups, which is clearly onto. Since rankMn = s and this is full, it easily
follows that rankM ′

n = s, hence rankG′ ≤ s. As G′ →G is onto, and the rank
of the latter (s) is at least as large as that of the former, the map must be
one to one.

Define ψ : Zs →ZS to be the inclusion (viewing Zs as the subgroup whose
bottom S − s entries are zero). Then it is trivial that M ′′

nψ = ψMn, so ψ
induces a map G′′ →G, which is obviously one to one. SinceM ′′

n (Z
S)⊂ φ(Zs),

the map is onto (in the direct limit).
The eigenvector property is trivial. �

First, consider the case λ− k− 1≤ k (and λ≥ k+1). Relabel our current
matrices

Mn =

(
pn+1

pn+1−1
λ u

0 I

)
;

this has left eigenvector (λ,u) and right eigenvector (1,0, . . . ,0)T for pn+1

(recall u = (1,1, . . . ,1)). Here, a = 1 and s = k + 1. We set Xn = (Iλ−k−1000)
(the big zero is the block of size (λ− k− 1)× (k− λ), so Xn is (λ− k− 1)×
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(k− (λ− k− 1)), so we have

M ′
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

pn+1
pn+1−1

λ u 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
... Ik

...
...

0 0 0 . . . 0
000 Iλ−k−1000 000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Now we perform the elementary column operations which simply add the
first λ− k− 1 columns of the second block to their counterparts in the third
(so the columns get shifted to the right by k). The inverse operation is to
subtract the corresponding rows of the third block from their counterparts in
the second. The two operations together amount to simultaneous conjugation
by the same element of GL(λ,Z), and lead to the following matrices,⎛⎜⎜⎜⎝

pn+1
pn+1−1

λ (1,1, . . . ,1) pn+1−1
λ (1,1, . . . ,1)

0001×(λ−k−1) 000(λ−k−1)×k 000(λ−k−1)×(λ−k−1)

000k−(λ−k−1) 000(k−(λ−k−1))×(λ−k−1)Ik−(λ−k−1) 000

000 Iλ−k−1000 Iλ−k−1

⎞⎟⎟⎟⎠ .

Now we add the first row to each of the others, and correspondingly subtract
all the columns from the first; again, these are implemented simultaneously
in n by a single product of elementary matrices, and results in all the entries
being nonnegative, and moreover, all the matrices are primitive (since the
first column and the first row are strictly positive), and with the same zero
pattern (so products will still be primitive). Call these matrices An.

The content one left and right eigenvectors of M ′
n for pn+1 are V ′ = (λ,u,000)

andW ′ = (1,0, . . . ,0)T , hence their inner product V ′W ′ = λ. This is preserved
by simultaneous conjugation; as each An is primitive of size λ, it follows from
Lemma 11.2 above that the left and right Perron eigenvectors of An consist
entirely of ones, hence the column and row sums are equal. The simultaneous
conjugations obviously induce isomorphism of the groups with homomorphism
induced by the common left eigenvector, so we have a realization of G as
limAn, which is ECRS.

In case λ = k + 1, we skip the embroidery (Xn), and just proceed via
conjugations with elements of GL(k + 1,Z). If λ− k − 1 = k, then there are
no extra zero blocks, and the same process works. In this case, the realization
is ultrasimplicial.

The process for λ≥ k+1 and λ− k− 1≥ k (i.e., λ≥ 2k+1) is almost the
same. We embroider the matrix with λ− k− 1 columns of zeros at the right
(as we did before) and the same number of rows at the bottom, and with Xn

being
(
Ik
000

)
. Then we add the corresponding columns to the third block and

subtract the rows from the second analogously with what we did before, and
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we can again just perform the last operation, adding the first row to all the
others and subtracting the columns from the first.

So far, we have the following.

Proposition 11.4. Let G be a simple dimension group of finite rank
containing a rank one noncyclic subgroup H such that G/H is free and
H ∩G++ 	= ∅, and suppose G has a unique trace τ , and τ(G) is a rank one
subgroup of Q whose supernatural number contains no primes of infinite mul-
tiplicity. Then G admits an ECRS realization of size λ := |τ(G)/τ(H)| with
respect to H if λ≥ rankG.

Proof. If rankG= 1, then there is almost nothing to do. Otherwise, λ > 1.
For subgroups V ⊂ U of Q, |U/V | < ∞ implies there exists m such that
V =mU , and if U has no primes of infinite multiplicity, then |U/mU |=m. Set
U = τ(G), and discard from the supernatural number all the primes (including
multiples) that divide λ; the resulting subgroup U0 is isomorphic to U , and
correspondingly, U0/mU0 is isomorphic to U/mU . Consider the set of primes
(together with their multiplicities) dividing U0; since they are all relatively
prime to λ, we may telescope them to obtain sequence of positive integers
representing U0, {pn+1}∞n=1, such that pn+1 ≡ 1 mod λ.

Since G/H is free, the extension ker τ →G→ U is nearly split. Hence, we
can write G=H ⊕ Zk, and the trace, given by the row r1 at the first level,
is of the form described in the top row of the statement of Lemma 11.1. The
bottom row of the statement yields a representation of G as a direct limit
of Abelian groups, with group homomorphism induced by the common left
eigenvector, [w,n] 
→ r1w/qn.

The comment subsequent to Lemma 11.1 allows us to assume that the real-

izing matrices are all in the form
(
pn+1

0

pn+1−1

λ u
I

)
, having common left eigen-

vector (λ,1,1, . . . ,1). Now the embroidery process, together with Lemma 11.3,
and subsequent simultaneous conjugation, gives an isomorphism of groups
with group homomorphism to the direct limit of primitive matrices with equal
row and column sums, as described above. �

Now we show that if U has no primes of infinite multiplicity, then
|t(G)/t(H)| ≥ rankG is a necessary condition for G to have a bounded ECRS
realization.

Lemma 11.5. Let U be a noncyclic subgroup of rank one with no primes of
infinite multiplicity. If l is an integer exceeding 1, then U/lU �Z/lZ.

Proof. First, if j > 1, then U 	= jU , otherwise ×j is a group automorphism
of U , hence ×1/j is also an automorphism, and it easily follows that if p is a
prime dividing j, it must have infinite multiplicity in U . Thus if j properly
divides l, then jU 	= lU . As every subgroup of finite index in U is of the form
nU for some integer n, there is an obvious bijection between the intermediate
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subgroups lU ⊂ U0 ⊂ U and those of lZ ⊂ Z0 ⊂ Z, thus the map Z→ U →
U/lU has kernel lZ, and is obviously onto. �

Suppose G, with unique trace, has a realization as limAn : Zs →Zs which
is ECRS, where H is identified with

⋃
[111s, n]Z. Then the trace is given by the

normalized constant row, and we see immediately that τ(H) = sτ(G). Hence
if τ(G) has no primes with infinite multiplicity, we have |τ(G)/τ(H)| = s ≥
rankG. However, τ(G)/τ(H) is an invariant of (G,H), as G has unique trace.

Corollary 11.6. Suppose G is a finite rank simple dimension group with
unique trace τ , such that τ(G) is a rank one noncyclic subgroup of R with no
prime divisors of infinite multiplicity. If G admits an ECRS representation
with respect to H , then τ(G)/τ(H) is finite and must be at least as large as
rankG.

Proof. Finiteness comes from the extension G → τ(G) being nearly split
(Lemma 10.1). The rest is from the comment just above. �

Theorem 11.7. Suppose that G is a finite rank simple dimension group
with unique trace τ , having rational values, and H is a rank one noncyclic
subgroup such that G/H is free and τ(G) is not p-divisible for any prime p.
Then G admits an ECRS realization (with respect to H) if and only if
|τ(G)/τ(H)| ≥ rankG.

For example, if G= U⊕Zk where U is an infinite multiplicity-free noncyclic
subgroup of Q, and we impose the strict ordering induced by the projection
onto U , then the extension is split, and obviously |τ(G)/τ(H)| = 1; so G
admits an ECRS realization (there is only one choice for H , namely U ) if and
only if k = 0, and the latter is uninteresting. If instead, we impose as trace
τ(u, v) = lu+ v1 (lu+ the first entry of v), then τ(G) = U , but τ(U) = lU ,
so that |τ(G)/τ(H)| = l, then G admits an ECRS realization if and only if
l≥ k+ 1= rankG.

Now we assume G simple dimension group with unique trace τ , τ(G) is
rank one [and being dense, is noncyclic] H is a noncyclic rank one subgroup
of G such that G/H is torsion-free, and τ(H) 	= 0. We permit rankG and
τ(G)/τ(H) to be infinite.

Theorem 11.8. Suppose that G is a simple dimension group with unique
trace τ , the value group of τ is τ(G) = U ⊆Q, and U has no primes of infinite
multiplicity. Assume that H is a rank one noncyclic subgroup of G such that
τ(H) 	= 0 and G/H is torsion-free. Then G admits an ECRS realization with
respect to H if either of the conditions below hold.

(a) |τ(G)/τ(H)| = ∞, regardless of rankG (which can be infinite); in this
case the realization must be unbounded.

(b) ∞> |τ(G)/τ(H)| ≥ rankG, and in this case, the realization is bounded.
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Proof. First, we note that if U0 ⊂ U are noncyclic rank one subgroups of
Q, then there exists an infinite increasing chain of subgroups, U0 ⊂ U1 ⊂ U2 ⊂
· · · ⊂ U such that U =

⋃
Ui and |U/Ui|<∞. Applying this with U0 = τ(H)

and U = τ(G), set G0
i = τ−1(Ui). Moreover, Ui/U0, being finite, is cyclic.

Hence, there exists gi ∈Gi such that τ(Gi) = τ(H) + τ(gi)Z.
Since ker τ is torsion free, we may find an increasing union of finitely

generated groups F1 ⊆ F2 ⊆ F3 ⊆ such that ker τ =
⋃
Fi; by interposing

as many equalities as we like, and telescoping the Gi, we may assume
j + rankFj < |τ(Gj)/τ(H)|.

Set Gj = Fj +H +
∑

l≤j glZ; then Gj ⊆ Gj+1 and G =
⋃
Gj . Moreover,

rankGj ≤ rankFj + 1+ j ≤ |τ(Gj)/τ(H)|. In addition, Gj/H is finitely gen-
erated, and a subgroup of G/H , hence is torsion-free, hence is free. Since
τ(H) is dense in R, Gj with the relative ordering is a simple dimension group
with unique trace, the restriction of τ . Thus ker τ ∩ Gj → Gj → τ(Gj) is
nearly split, and the condition |τ(Gj)/τ(H)| ≥ rankGj ensures that Gj has a
bounded ECRS realization with respect to H .

Since G is obviously the direct limit of Gj , by Lemma 9.1(c), G has an
ECRS realization with respect to H . In case (a), it must be unbounded (since
bounded ERS realizations yield |τ(G)/τ(H)|<∞). In case (b), the realization
is obtained from telescoping a uniformly bounded family of realizations (using
the method of Lemma 9.1(c)), so is bounded (or see the observation in the
next paragraph). �

Now we have an elementary observation about unbounded ECRS realiza-
tions, when τ(G) has no infinite prime divisors. Suppose G= limAn : Zf(n) →
Zf(n+1) is an ECRS realization, with supf(n) =∞. The sequence of row vec-
tors (111Tf(n)/p2 · · · · · pn), where 111Tf(n)An = 111Tf(n+1)pn+1 (defining pn+1, the

constant column sum of An), induces a trace τ [y,n] = 111f(n)y/p2 · · · · · pn.
If G is simple with unique trace, then τ is the unique trace. Then τ(G)
is

⋃
n 1/p2 · · · · · pn. With H identified with

⋃
n[111f(n), n]Z, we see that

|τ(G)/τ(H)| ≥ f(n) for all n (this follows from no p-divisible subgroups for
all primes p).

Combining everything in sight, we have the following complete character-
ization of ECRS realizations when τ(G) has no p-divisible elements for any
prime p.

Theorem 11.9. Let G be simple dimension group with unique trace, τ .
Suppose that τ(G) is a subgroup of Q whose supernatural number has no
primes of infinite multiplicity. Let H be a rank one noncyclic subgroup of
G such that τ(H) 	= 0 and G/H is torsion-free. Then G admits an ECRS
realization with respect to H if and only if rankG≤ |τ(G)/τ(H)|; this includes
the case that one or both of rankG and |τ(G)/τ(H)| are infinite. Finally,
every ECRS realization is of size |τ(G)/τ(H)| (i.e., unbounded if and only if
τ(G)/τ(H) is infinite).
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When G is p-divisible for some prime, the situation is different; no restric-
tion on τ(G)/τ(H) is required.

Now we assume that t(G) is divisible by p∞ and to begin with, we also
assume G/H is free and λ := |τ(G)/t(H)| <∞. If p is any prime infinitely
dividing τ(G), then it also divides τ(H); hence gcd(λ, p) = 1 for any prime p
dividing H (which is isomorphic to t(H)). If λ= 1, we are in the split case, for
which there is an interesting argument, obtaining a realization by commuting
matrices.

Set G= U ⊕Zk with the projection onto U as the unique trace—this is the
split case—we show that G admits a bounded ECRS realization (with respect
to H = U , the only possible choice for H) under the assumption that U is
p-divisible for some prime p.

Find a power, q = pa > k − 1. Then the matrix M :=
(
q
0

0
−Ik

)
(note the

appearance of the negative of the identity matrix) satisfies all the conditions
of [BoH, Theorem 3.3]. Hence, there exists a primitive matrix M ′ that is
algebraically shift equivalent to M . By [M, Theorem 5], there exists a prim-
itive matrix A having equal row and column sums (so that 111T and 111 are
respectively left and right Perron eigenvectors of A for the eigenvalue q) shift
equivalent to M . In particular, A is algebraically shift equivalent to M .

If the supernatural number has only finitely many other primes of multiplic-
ity at least one, then U = Z[1/p] and then G admits a stationary realization
with An = A (the argument to show this will be included in what follows).
Otherwise, we may telescope the other primes (including their multiplicities),
so that U0 := lim×pi : Z→ Z (pi are products of the other primes) is rela-
tively prime to p and U =Z[1/p]⊗U0. Since gcd(pi, p) = 1, so gcd(pi, p

a) = 1,
hence by a further telescoping, we may also assume that pi ≡ 1 mod q = pa.

Now we use the following lemma to contort A.

Lemma 11.10. Let m> 1 be an integer, and suppose l is a positive integer
with l ≡±1 mod m. Then there exists f ∈ Z[x]+ (polynomials with nonneg-
ative integer coefficients) such that f(m) = l and f(−1) ∈ {±1}.

Proof. We find f0 ∈ Z[x]+ such that f0(m) = l; then we modify it induc-

tively until |f(−1)|= 1. Expand l=
∑t

i=0 aim
i with 0≤ ai <m as an m-adic

expansion. Then set f0 =
∑

aix
i. Obviously f0(m) = l

If f0(−1)> 1, then
∑

ai(−1)i > 1. If a0 is the only even-indexed coefficient
that is strictly greater than zero, then f(m) ≤ a0 < m < l, a contradiction.
Hence, there must exist i= 2j such that ai > 0. Replace ai by ai−1 and ai−1

by ai−1+m, to create f1. Then f1(m)−f0(m) =−mi+mi = 0, so f1(m) = l,
and f1(−1) = f0(−1)−m− 1.

For any polynomial g ∈Z[x], g(m)≡ g(−1) mod m+1. Hence l= f0(m)−
f0(−1) is a multiple of m+ 1; writing l = km+ 1 (if l ≡ 1 mod m), we have
km + 1 − f0(−1) = s(m + 1), so f0(−1) = 1 + km − s(m + 1) and so km ≥
s(m+ 1). Also, f1(−1) = km− (s+ 1)(m+ 1) + 1. If this is negative, then
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(s+1)m> km+1≥ s(m+1)+1, so m> s. Also, s+1> k ≥ s+s/m. This is
impossible. Hence f1(−1)≥ 1. If it equals 1, we are done. If not, the process
can be repeated, each time reducing the value at −1 by m+ 1, and it must
eventually hit 1. A similar process works if l ≡−1 mod m, except that the
value at −1 eventually hits −1.

If f1(−1)<−1, the process is similar, but easier (we do not have to worry
about large a0). There must exist i = 2j + 1 such that ai > 0; replace ai
by ai − 1 and ai−1 by ai−1 + m. The resulting f1 satisfies f1(m) = l and
f1(−1) = f0(−1)+m+1. A similar argument to that of the preceding allows
us to conclude that f1(−1) < 0 (if l ≡ −1 mod m) or f1(−1) ≤ 1, whence
either it is ±1, or strictly less than −1, and the process can be iterated. �

For each pi ≡ 1 mod q, there exists fi ∈ Z[x]+ such that fi(q) = pi and
fi(−1) = 1. Set An =Afn(A); as fn has only nonnegative coefficients, so does
An; since each An is a polynomial in A, its large eigenvalue is qfn(q) = qpn,
they commute with each other, and have the same Perron eigenvectors, 111T

and 111.
Suppose the matrix size of A is y (all we know is that y ≥ k+1; otherwise,

we have very little control over it).
Now form Mn =Mfn(M) =

(
qpn

0
0
Ik

)
. Suppose the algebraic shift equiv-

alence between M and A is given by X and Y ; that is, XM = AX ,
MY = Y A, and XY = At, Y X = M t (t is called the lag). Then for every
nonzero power of A, we have XMr = ArX and MrY = Y Ar; hence for ev-
ery polynomial g ∈ Z[x] such that g(0) = 0, we have Xg(M) = g(A)X and
g(M)Y = Y g(A). Hence the map X : Zk+1 → Zy induces a group homo-
morphism G = limMn → G′ = limAn by [z,m] 
→ [Xz,m], and similarly, Y
induces a group homomorphism G′ → G via [w,m] 
→ [Y w,m]. The prod-

ucts of the two group homomorphisms are given by Â and M̂ , respectively,
both of which are immediately seen to be group automorphisms of G′ and G
respectively. Hence, the maps induced by X and Y are isomorphisms.

Moreover, they take the eigenspaces of nonzero eigenvalues for A to those
of M (and vice versa), and in particular, they must send the common eigen-
vectors for q, and thus send (1,0, . . . ) to (1,1, . . . ,1) and the same with the
transposes. They thus induce an isomorphism of the groups with group ho-
momorphism. Moreover, it is easy (trivial) to see that G′ has a unique trace
(when given the direct limit ordering), so that the group isomorphism is an
order isomorphism from G (with ordering induced by the common left eigen-
vector of Mn for qpn) to G′ (with direct limit ordering). It is trivial that G
is simply the split extension.

The upshot is a special case.

Lemma 11.11. Suppose G = U ⊕ Zk where U is a rank one subgroup of
Q that is p-divisible for some prime p, and the unique trace on G is the
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projection onto U (the split case). Then with H = U , there exists a bounded

ECRS realization of G with respect to H by commuting matrices.

The matrices constructed in the other realizations need not commute.

A similar argument can be made to work in some nonsplit cases with a prime

having infinite multiplicity. We can of course extend this via the direct limit

argument of Lemma 9.1(c).

So we may assume that λ > 1.

If all primes infinitely divide H , then H (and thus τ(G)) are rational vector

spaces, λ = 1, the extension splits (indeed, there is only one extension). If

H � Z[1/n] for some integer n, then the system is stationary, and the result

follows from [M]. If there are only finitely many primes with finite multiplicity,

we reduce to the last case immediately.

Otherwise, there exist infinitely many primes each with finite and nonzero

multiplicity, in addition to at least one prime p with infinite multiplicity.

Throwing away all the primes that divide λ amounts to throwing away a

finite set of primes each with only finite multiplicity, hence does not change

anything.

There exists a power of p, q = pa such that q ≡ 1 mod λ. We may

also arrange, by taking a multiple of a if necessary, that qλ > k2 + k.

We may telescope the other primes with their powers, so obtain τ(G) as

Z[p−1]⊗ limpi : Z→ Z where gcd(pi, λ) = gcd(q, pi) = 1. Now we can imple-

ment the same isomorphism as in Lemma 11.1, with qpi+1 replacing pi+1 (and

(qpi+1−1)/λ replacing (pi+1−1)/λ), where we set y1 =000, vi = ρ · (qpi+1−1)/

λ, and yn = ρ ·(qqn−1)/λ. This yields a group isomorphism to the limit group
obtained as lim

(
qpi+1

000
wi

Ik

)
, and the group homomorphism has been converted

to left multiplication by the common eigenvector, (λ,ρ).

As in the previous case, we can simultaneously conjugate all the current

matrices by
(
1
000

v
E

)
where v ∈Z1×k and E ∈GL(k,Z). This replaces the upper

right entry by λ−1(qpi+1 − 1)(ρ− λv). We could have previously conjugated

the matrices with
(
1
000

000
J

)
where J ∈GL(k,Z), and so have assumed that ρ=

c(ρ)(1,0, . . . ,0) (this applies to the left eigenvector as well). Now set v =

(0,1,0, . . . ,0), so ρ− λv = (c(ρ),−λ); hence c(ρ− λv) = 1. Thus, there exists

E ∈ GL(k,Z) such that (ρ− λv)E−1 = (1,1,1, . . . ,1) = 111Tk , which as before,

we call u.

Hence, we are in the situation wherein the matrices are of the form(
qpi+1

000
(qpi+1−1)u/λ

Ik

)
, their common eigenvector is (λ,u) (for the eigenvalue

qpi+1), and the group homomorphism is obtained by left multiplication by

suitable multiples of the eigenvector.

Now we embroider λq−k−1 rows and columns around the matrix; the only

nonzero entries of the newly embroidered part occur in the top row, where we
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put pi+1111
T . This creates new matrices

Bn =

⎛⎝qpn+1
qpn+1−1

λ (1,1, . . . ,1)T pn+1(1,1, . . . ,1)
000 Ik 000
000 000 000

⎞⎠ ,

which are of size qλ. Miraculously, Bn have a common left eigenvector,
(λq, qu,λ111T ), where the third block is of size λq − k − 1 (it is not in gen-
eral true that embroidery where the right-hand side is not zero, in this case,
Zn in Lemma 11.3, will preserve the common left eigenvector property).

In order to perform the desired column and row operations, we need an
estimate. From q(k2 − λ2 − k+ λ)− k2/pi+1 + k+ 1≥ k (easy), we see that

qpi+1 − 1

λ
≥ k+

q

λ
;

hence there exists a multiple of k, t= sk, such that q/λ≤ t/k ≤ (qpi+1−1)/λ.
Now to each Bn, subtract s times each of the first k columns from their
counterpart in the second block. The inequalities we just used are equivalent
to the resulting top row consists of positive entries, and the sum of all but the
first is less that qpi+1. The inverse operation is to subtract the bottom rows
from their counterparts, but this has no effect. This amounts to a conjugacy
(which of course yields an isomorphism with group homomorphism), and now
we simply add the top row to each of the others, and all the columns but the
first from the first column. As before, the result is a primitive matrix, of size
λq; the inner product (as is easy to see) is the same as the size, so the matrix
has equal row and column sums.

This yields the following rather surprising result.

Proposition 11.12. Let G be a simple dimension group of finite rank with
unique trace τ , such that τ(G) is p-divisible for at least one prime p. Suppose
H is a noncyclic rank one subgroup such that τ(H) 	= 0 and G/H is free.
Then there exists an ECRS realization of G with respect to H .

And the direct limit argument, using Lemma 9.1 and Theorem 11.8, yields
the definitive result.

Theorem 11.13. Let G be a simple dimension group with unique trace τ ,
such that τ(G) is p-divisible for at least one prime p. Suppose H is a rank one
noncyclic subgroup of G such that τ(H) 	= 0 and G/H is torsion-free. Then
G admits an ECRS realization with respect to H .

So we have a dichotomy: if τ(G) is not p-divisible for every prime p, then
the condition |τ(G)/τ(H)| ≥ rankG is necessary and sufficient (allowing ∞ as
possible values); but if τ(G) is p-divisible for some prime p, there is no such
constraint.
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12. Comments

As discussed earlier, the primordial example of Elliott [E1], [E2] was the
rank two split extension dimension group Z[1/2]⊕Z (with the strict ordering),
which cannot be realized as a limit of simplicial groups of rank two (i.e., any
direct limit realization requires almost all the free Abelian groups to be of rank
at least three). He also showed that this dimension group can be realized as
a limit of rank three simplicial groups, and is stationary (via a size three
primitive matrix algebraically shift equivalent to diag(2,1)). This is in fact
what led me to think about using semigroups to obtain realization of the
transfer matrices.

This paper was motivated by a question of Christian Skau: given the split
extension G = U ⊕ Zk, with U ⊆Q and the projection onto U yielding the
ordering (so as to be a dimension group with unique trace), does it admit
a nice ERS representation? (As we have seen, there is only one possible
choice for the rank one noncyclic subgroup H such that G/H is torsion free,
namely U itself, so H is unambiguous.) This appears as a special case, and
the implementing matrices are the transposes of the matrices of the form
A appearing in section two (with parameters p= pn+1, once we ensure that
pn+1 > (k + 1)2). I would like to thank Christian for his repeated insistence
on solving this problem.

Skau’s question was motivated by questions concerning Töplitz Z-actions
on Cantor sets (systems which admit factor maps onto odometers). A partic-
ular consequence of the results here is that among uniquely ergodic minimal
actions of Z on Cantor sets, those that are strongly orbit equivalent to a
Töplitz, and those that are orbit equivalent, are characterized.

It has been known for over a decade that dimension groups which are
rational vector spaces admit ERS realizations with respect to any dimension
one subspace containing an order unit (this appears in [GJ]). The recipe is to
begin with any realization of the dimension group, find an increasing sequence
hnZ ⊂ hn+1Z whose union is H where hn is an order unit, telescope the
realization, so that a cofinal collection of the hn appear, each at the nth
level, say by a strictly positive vector vn, apply the obvious diagonal matrix
Δn ∈ GL(f(n),Q) so that Δnvn is a multiple of 111, replace the nth matrix
An by Δn+1AnΔ

−1
n , then multiply each by a positive integer to ensure that

the entries are all nonnegative integers. Since the dimension group G satisfies
G⊗Q�G, it follows immediately that the new improved direct limit yields
G, and the elements of H are implemented by constant vectors in the limit.

It has also been known for around a decade that if (G,u) is a simple di-
mension group and H is a rank one noncyclic subgroup containing the order
unit u, then there exists an ERS realization so that the order unit is [111T ,1]
in the direct limit. This does not of course give any indication of the size(s)
of the transition matrices that can be used.
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There is a substantial literature on realizing shift equivalence classes of
integer matrices with nonnegative entries ([BoH], [H1], [H3], [H4] and the ref-
erences therein), corresponding to stationary direct limits (i.e., G is a limit
with the same matrix repeated, as an Abelian group with real-valued ho-
momorphism emanating from the largest eigenvalue and corresponding left
eigenvector). Here we have a generally easier problem, since we are permitted
to telescope matrices, something not allowed in the matrix realization prob-
lem. On the other hand, there are situations in dimension group realization
questions (such as τ(G) being a subgroup of the rationals with no primes of
infinite multiplicity) which do not arise in the matrix realization case.
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