
Illinois Journal of Mathematics
Volume 57, Number 4, Winter 2013, Pages 965–1008
S 0019-2082

MAPPINGS WITH SUBEXPONENTIALLY INTEGRABLE
DISTORTION: MODULUS OF CONTINUITY, AND
DISTORTION OF HAUSDORFF MEASURE AND

MINKOWSKI CONTENT

ALBERT CLOP AND DAVID A. HERRON

Abstract. We study mappings of finite distortion whose dis-
tortion functions are locally subexponentially integrable. We es-
tablish a local modulus of continuity estimate for the inverse of

such a map. As applications, we describe the possible expansion

and compression of certain Hausdorff measures and Minkowski

contents under such mappings. We also exhibit examples that
describe the extent to which our results are sharp.

1. Introduction

We call Rn ⊃Ω
f−→ Rn a mapping of finite distortion provided

• f belongs to the Sobolev space W1,1
loc(Ω;R

n),
• J(·, f) belongs to the Lebesgue space L1loc(Ω;R),
• there exists a measurable function K =Kf : Ω→ [1,∞] that is finite almost
everywhere and is such that for almost every x ∈Ω,

(1.1)
∣∣Df(x)

∣∣n ≤K(x)J(x, f).

Here Ω is a domain (open and connected) in Euclidean space Rn with n≥ 2,
|Df(x)| denotes the operator norm of the differential matrix of f at the point
x, and Jf = J(·, f) is the Jacobian determinant of f . Any (measurable) func-
tion K, with the distortion inequality (1.1) valid, is called a distortion function
for f . When K ∈ L∞ we recover the well known class of mappings of bounded
distortion, also known as quasiregular mappings; see for instance [Res89].

Received November 30, 2012; received in final form April 28, 2014.
This work was done while the first author was visiting the University of Cincinnati;

he is grateful for their hospitality and financial support. The second author was partially
supported by the Charles Phelps Taft Research Center.

2010 Mathematics Subject Classification. Primary 30C65. Secondary 28A78, 26B10.

965

c©2014 University of Illinois

http://www.ams.org/msc/
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More generally, nonconstant mappings of finite distortion are continuous, dis-
crete, and open, provided their distortion function satisfies certain conditions;
see [IKO01], [KKM+03] and also the monograph [IM01]. For example, the fi-
nite distortion mappings of exponentially integrable distortion, that is, those
for which epK ∈ L1loc for some p > 0, have been extensively studied. See [IM01]
and the references therein.

In this work, we study finite distortion homeomorphisms whose distor-
tion functions K are locally subexponentially integrable, which means that
expA(pK) ∈ L1loc for some p > 0 and a given sublinear control function A;
see Section 2.2 for the precise hypotheses on A. In this setting, we establish
a sharp local modulus of continuity inequality for the inverse map. Then,
using this inequality, we prove an estimate for the possible compression of
certain Hausdorff measures induced by such maps, and similarly an estimate
for the possible expansion of certain Minkowski contents. Finally, we exhibit
examples that illustrate the sharpness of our results.

We start with our modulus of continuity result. It concerns homeomor-
phisms of finite distortion K with expA(pK) ∈ L1loc and is a direct generaliza-
tion of [HK03, Theorem B]. See Section 2.2 for the precise assumptions on A.
For brevity, we set

ω(s) := sA−1(s)1/(n−1).

Theorem A. Let n≥ 2 and p > 0. Assume A has the properties described
in Section 2.2.1. There is a constant C(A, n), that depends only on the data
associated with A and the dimension n, such that the following holds. Sup-
pose Ω,Ω′ ⊂ Rn are domains and f : Ω→Ω′ is a finite distortion homeomor-
phism with expA(pKf ) ∈ L1loc(Ω). Then for each ball B(z,R) ⊂ Ω and all
x ∈ B(z,R/6),

(1.2)
∣∣f(x)− f(z)

∣∣≥D exp

(
−C(A, n)

p1/(n−1)
ω

(
log

ΛR

|x− z|

))
,

where

D :=
1

2
dist

(
f(z), ∂f

(
B(z;R/3)

))
and

Λ :=

(
1

|B(z,R)|

∫
B(z,R)

expA(pKf )

)1/n

.

Example 4.7 reveals the optimality of the above inequality. For future
reference, we note that (1.2) is equivalent to the local modulus of continuity
inequality

(1.3)
∣∣g(y)− g(a)

∣∣≤ ΛR exp

(
−ω−1

(
p1/(n−1)

C(A, n)
log

D

|y− a|

))
,

where g := f−1, y := f(x), and a := f(z).
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Our first application of Theorem A describes the possible compression of
Hausdorff measure under finite distortion homeomorphisms with subexponen-
tially integrable distortion. An analogous result, for finite distortion homeo-
morphisms with exponentially integrable distortion, was established in [Zap11,
Theorem 1.1]. She also constructed examples to illustrate the sharpness of
her theorem; see [Zap11, Example 1.3] as well as our discussion in Section 4.2.

We assume the same conditions on A as above.

Theorem B. Let n≥ 2, s ∈ (0, n], and p > 0. Let C(A, n) be the constant
from Theorem A and define the dimension gauge function

h(t) = hs,p,A,n(t) := exp

(
−sω−1

(
p1/(n−1)

C(A, n)
log

1

t

))
.

Suppose Ω,Ω′ ⊂ Rn are domains and Ω
f−→ Ω′ is a finite distortion homeo-

morphism with expA(pKf ) ∈ L1loc(Ω). Then for each E ⊂Ω with Hs(E)> 0,
Hh(f(E))> 0.

Examples 4.2, 4.3, 4.5, 4.6 illustrate the sharpness of the above compression
result.

Our second application of Theorem A, Theorem C given below, describes
the possible expansion of (upper) Minkowski content under a finite distortion
homeomorphism with subexponentially integrable distortion. This is a direct
generalization of [HK03, Theorem A]. Its proof utilizes certain volume growth
estimates, and so now we consider control functions of the form A(t) = t/L(t)
for certain functions L. Here our assumptions on A (see Section 2.2.2) are
such that the self-improving integrability conditions (2.11) and (2.13) are in
force.

We note that in this setting, with A(t) = t/L(t), we have ω−1(t) 	
A(tn−1)1/n for all sufficiently large t (see (2.14c)), and then

ω−1

(
p1/(n−1)

C
log

1

t

)
	A

(
p

C
logn−1 1

t

)1/n

	 p1/n

C
A
(
logn−1 1

t

)1/n

,

where now the constant C = C(L, n) depends only on the function L and
dimension n. It follows that the modulus of continuity inequality (1.3) can
be replaced with

∣∣g(y)− g(a)
∣∣≤ΛR exp

(
−Cp1/nA

(
logn−1 D

|y− a|

)1/n)

and the dimension gauge function in Theorem B can be replaced with

h(t) = hs,p,A,n(t) := exp

(
−Csp1/nA

(
logn−1 1

t

)1/n)
.(1.4)
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Theorem C. Let n ≥ 2, k ∈ N, and p > 0. Assume A(t) = t/L(t) where
L= Lk is as described in (2.5). There exists a constant c= c(k,n) with the
following property. Define the dimension gauge functions

hβ(t) := tnLk+1(1/t)
β .

Suppose Ω
f−→ Ω′ is a finite distortion homeomorphism between domains

Ω,Ω′ ⊂ Rn with expA(pKf ) ∈ L1loc(Ω). Then for every β < cp and each

compact set E ⊂ Ω with upper Minkowski dimension dimM(E) < n,
M̄hβ (f(E)) = 0.

Results related to Theorem C can be found in the works [KZZ10], [KZZ09],
[Raj11], [RZZ11a] and [RZZ11b]. The first three of these articles deal with
planar Sobolev maps and provide sufficient conditions such that the images of
certain sets have zero generalized Hausdorff measure when certain dimension
gauges are used; the last has similar results for Rn with n ≥ 2; the fourth
paper deals with finite distortion homeomorphisms of spatial domains with
subexponentially integrable distortion controlled by A(t) = t/ log(1 + t).

We also mention the foundational work [AIKM00] that includes many mod-
ulus of continuity results. In addition, the idea behind our Cantor dust con-
struction in Section 4.1 is based on the proof of [AIKM00, Theorem 7.2].

We prove Theorems A, B, C in Sections 3.1, 3.2, 3.3, respectively. Exam-
ple 4.5 illustrates that, in a certain sense, as s→ 0, the gauge function in (1.4)
gives an optimal result in Theorem B. In addition, it indicates that perhaps
the factor s should be replaced by s/(n− s). We first discuss the related Ex-
amples 4.2 and 4.3 for finite distortion homeomorphisms with exp(pK) ∈ L1loc;
these slightly improve upon [Zap11, Example 1.3]. We end with Example 4.7
that is related to the modulus of continuity inequality (1.2).

2. Preliminaries

Our notation is relatively standard. We write C = C(a, . . .) to indicate a
constant C that depends only on the parameters a, . . .; the notation A � B
means there exists a finite constant c with A ≤ cB, and A 	 B means that
both A � B and B � A hold. Typically a, b, c,C,K, . . . are constants that
depend on various parameters, and we try to make this as clear as possible
often giving explicit values, however, at times C will denote a generic constant
whose value depends only on the data present but may differ even on the same
line of inequalities.

We write |x − y| for the Euclidean distance between points x, y in Eu-
clidean space Rn; B(x; r) := {y : |x − y| < r} and S(x; r) := {y : |x − y| = r}
are the open ball and the sphere of radius r centered at the point x. We let
Bn := B(0; 1) and Sn−1 = ∂Bn denote the open unit ball and unit sphere, re-
spectively; their natural measures are Ωn and ωn−1. Given a ball B and
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σ > 0, we let σB denote the dilated ball with the same center; that is,
σB(x, r) := B(x,σr).

It is convenient to introduce the following convention. We say that a prop-
erty holds “as t→∞” provided there is some t0 such that the property holds
for all t≥ t0. For example, we write ϕ(t)� ψ(t) as t→∞ to mean that there
are t0 (usually large) and C ≥ 1 such that for all t≥ t0,

ϕ(t)≤Cψ(t).

Of course, ϕ(t)	 ψ(t) as t→∞ provided both ϕ(t)� ψ(t) and ψ(t)� ϕ(t) as
t→∞.

For example, for any a > 0, β > 0, c > 0, log(atβ + c)	 log t as t→∞ where
t0 and C depend only on a,β, c.

We require the following information; see [CK09, Proposition 5.1].

Fact 2.1. Let (0,∞)
L−→ (0,∞) be an increasing C1 function. Suppose that

L satisfies

lim
t→∞

L(t) =∞(2.1)

and there are constants CL ≥ 0 and tL ≥ 1 such that

∀t≥ tL, t
L′(t)

L(t)
≤ CL

log(1 + t)
.(2.2)

Then

lim
t→∞

logL(t)

log t
= 0(2.3)

and for any a > 0, β > 0, c > 0,

L
(
atβ + c

)
	 L(t) as t→∞,(2.4)

where t0 and C depend only on a,β, c, tL,CL.

Condition (2.3) says that L grows to infinity more slowly than any power
and (2.4) says that L does not see exponents.

Examples of such functions include both Lk and Lk for any k ∈N. Here

(2.5) Lk(t) := L1(t)L2(t) · · ·Lk(t)

and Lk is a k-times iterated logarithm defined by

Lk(t) := log◦k(ek + t) with ek := exp◦k(0),

where F ◦k denotes F composed with itself k times, which is defined by

F ◦1 := F and for k ≥ 2, F ◦k := F ◦ F ◦(k−1).

The constant ek is defined so that Lk(0) = 0. Notice that L−1
k (1) = ek+1− ek.

For example,

L3(t) = log log log
(
ee + t

)
and L−1

3 (1) = exp
(
ee
)
− ee.

We require the following technical facts. For example, we make use of item
(c) below in our proof of Theorem C.
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Lemma 2.2. Let [1,∞)
L−→ [1,∞) be a C1 homeomorphism that satisfies

(2.1) and (2.2).

(a) We always have limt→∞
L(t)

L(tL(t)) = 1.

(b) Let [1,∞)
ϕ,ψ−−→ [1,∞) be functions with limt→∞ϕ(t) =∞= limt→∞ψ(t).

Then

lim
t→∞

ϕ(t)

ψ(t)
= 1 =⇒ lim

t→∞

L(ϕ(t))

L(ψ(t))
= 1.

(c) Given β > 0, define Q(s) =Qβ(s) := sL−1(s1/β). Then Q−1(t)	 L(t)β as
t→∞. More precisely, for all sufficiently large t,

(1 + β)−βCL(t)β ≤Q−1(t)≤ L(t)β ,

where C =CL.

Proof. (a) Since L is increasing, L(t)≤ L(tL(t)) for all t≥ 1. Let ε > 0 be
given. Using (2.3), we produce a τ = τ(ε)> 1 with the property that for all
t≥ τ , L(t)≤ tε. Thus L(tL(t))≤ L(t1+ε). Then from (2.2) we obtain

log
L(t1+ε)

L(t)
=

∫ t1+ε

t

L′(u)

L(u)
du≤C

∫ t1+ε

t

du

u logu
=C log(1 + ε)

and therefore for all t≥ τ ,

1≤ L(tL(t))

L(t)
≤ L(t1+ε)

L(t)
≤ (1 + ε)C ,

where C =CL.
(b) Assume that limt→∞(ϕ(t)/ψ(t)) = 1. Then limt→∞(logϕ(t)/

logψ(t)) = 1. Thus,∣∣∣∣log L(ϕ(t))

L(ψ(t))

∣∣∣∣=
∣∣∣∣
∫ ϕ(t)

ψ(t)

L′(u)

L(u)
du

∣∣∣∣≤C

∣∣∣∣
∫ ϕ(t)

ψ(t)

du

u logu

∣∣∣∣=C

∣∣∣∣log logϕ(t)

logψ(t)

∣∣∣∣,
where again C =CL.

(c) The change of variables t=Q(L(u)β) = L(u)βL−1(L(u)) = uL(u)β gives

Q−1(t)

L(t)β
=

(
L(u)

L(uL(u)β)

)β

.

Since L is increasing with L≥ 1, we have

L(u)≤ L
(
uL(u)β

)
≤ L

(
u1+β

)
≤ (1 + β)CL(u)

with the latter two inequalities holding for all sufficiently large u.
The first inequality implies that Q−1(t)≤ L(t)β and the latter two inequal-

ities provide the lower estimate for Q−1(t). �

As a simple example, (b) above gives us that for any a, b > 0, limt→∞L(at)/
L(at + b) = 1. More importantly, from the proof of (b) we have that
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limt→∞(logϕ(t)/ logψ(t)) = 1 and thus

lim
t→∞

L(logϕ(t))

L(logψ(t))
= 1, and similarly lim

t→∞

L(L(logϕ(t)))

L(L(logψ(t)))
= 1,

and so forth. Using similar ideas, it is straightforward to verify the following.

Lemma 2.3. Let k ∈N, C > 0, and define the k-times iterated logarithm

L(t) := log◦k(C + t).

Then for all a > 0, b > 0, α > 0,

lim
t→∞

L(at)

L(btα)
=

{
1/α when k = 1,

1 when k ≥ 2.

In particular, the above is valid for the functions Lk defined just after (2.5).

2.1. Orlicz spaces. For our purposes, any homeomorphism [0,∞)
P−→ [0,∞)

is an Orlicz function and the associated Orlicz space LP (Ω,Rn) consists of all
Lebesgue measurable functions f : Ω→ Rn with the property that for some
positive finite λ,

∫
Ω
P (λ|f |)<∞. Then the non-linear Luxemburg functional

is defined, for f ∈ LP (Ω,Rn), by

‖f‖P = ‖f‖LP (Ω,Rn) := inf

{
λ > 0

∣∣∣ ∫
Ω

P
(
λ−1|f |

)
<P (1)

}
.

For example, if A is a measurable subset of Rn with positive measure |A|,
then ∫

Rn

P
(
λ−1χA

)
=

∫
A

P
(
λ−1

)
= P

(
λ−1

)
|A|

and therefore

‖χA‖P = P−1

(
P (1)

|A|

)−1

.(2.6)

A standard reference for Orlicz spaces and Orlicz functions is the text [RR91].
A pair of Orlicz functions P and Q satisfy Young’s inequality provided for

all x, y ≥ 0,

xy ≤ P (x) +Q(y).(2.7)

When this holds, we have the Orlicz–Hölder inequality

‖gh‖L1 ≤C‖g‖LP ‖h‖LQ ,(2.8)

where C = P (1) +Q(1); see [RR91, Proposition 1, p. 58].
There is a useful way to produce such a pair of Orlicz functions. Let

[0,∞)
F−→ [0,∞) be a homeomorphism and put G := F−1. Given any β > 0,

define

P (x) = Pβ(x) := xF (x)β and Q(y) =Qβ(y) := yG
(
y1/β

)
.
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If xy > P (x), then y1/β > F (x), so G(y1/β)> x and hence Q(y)> xy. Thus
we see that P and Q, as defined above, satisfy Young’s inequality (2.7), so
the Orlicz–Hölder inequality (2.8) holds with C = F (1)β +G(1).

We will apply the above construction to maps [0,∞)
L−→ [0,∞) that satisfy

the hypotheses in Fact 2.1; see also Lemma 2.2(c).

2.2. Subexponential integrability. In this paper, we study homeomor-
phisms f of finite distortion Kf that are subexponentially integrable, meaning
that there is a sublinear control function A such that for some p > 0,

expA(pKf ) ∈ L1loc.

Everywhere here and below [0,∞)
A−→ [0,∞) is a homeomorphism with the

property that ∫ ∞

1

A(t)

t2
dt=∞.

This assumption is critical in order for the mapping f to be discrete, open,
and to satisfy Lusin’s N -condition; see [KKM+03].

2.2.1. Hypotheses for A in Theorems A and B. For both Theorem A and
Theorem B we also assume that A is a C1 diffeomorphism on (0,∞) with
t �→ tA′(t) an increasing function,

(2.9) lim
t→∞

t
A′(t)

A(t)
= 1,

and with both A and A−1 doubling.
The doubling condition for A asserts that A(2t)	A(t). The assumption

that t �→ tA′(t) is increasing is a minor requirement that allows us to avoid
many technicalities. The condition (2.9) implies that

(2.10) lim
t→∞

logA(t)

log t
= 1, and hence that lim

t→∞
tA′(t) =∞.

2.2.2. Hypotheses for A in Theorem C. Our proof of Theorem C utilizes
a volume growth estimate established in [CK09]. Given a sublinear control
function A, we define

E(t) := 1+

∫ t

1

A(ξ)

ξ2
dξ

and then for each β > 0 we set

Pβ(t) := tE(t)β .
In [CK09] it was shown that, with certain additional hypotheses on A, there
exists a constant c(A, n), that depends only on the data associated with A
and the dimension n, such that

(2.11) expA(pKf ) ∈ L1loc =⇒ ∀β < c(A, n)p, Jf ∈ L
Pβ

loc .
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In [CK09] the authors work with a control function of the form A(t) = t/L(t)
where L satisfies (2.1) and (2.2) (and some other conditions too).

For Theorem C, we further assume that A(t) = t/Lk(t) for some k ∈ N,
where Lk is defined in (2.5). We note that Lk satisfies the hypotheses in
Fact 2.1 and that such an A satisfies all the assumptions listed above in
Section 2.2.1 including those necessary for the work in [CK09]. In particular,
it is straightforward to check that for such an A we have

(2.12) E(t)	 A(t)

t
A−1(log t)	 (log t)Lk(log t)

Lk(t)
	 Lk+1(t) as t→∞.

Thus, in this setting, (2.11) reads as

(2.13) expA(pKf ) ∈ L1loc =⇒ ∀β < cp, Jf ∈ L
Pβ

loc,

where c = c(k,n) and Pβ(t) := tLk+1(t)
β . Gill [Gil10] established a more

precise result in the plane setting.
It is worth mentioning that any requirements on A need only hold as t→∞:

Any A with the needed properties valid for all t ≥ t0 can be modified for
0≤ t≤ t0 so that the desired conditions hold for all t≥ 0.

2.2.3. Technical A facts. In both parts of our proof of Theorem A, we would
like to estimate certain integrals by using Jensen’s Inequality with the aux-
iliary function ϕ(t) := expA(ptα) for some α > 0. However, such a function
ϕ may not be convex. To circumvent this problem, we employ a “Jensen’s
Inequality Replacement Trick” that makes use of the fact that t �→ t−1ϕ(t) is
increasing on the interval [τp,∞). To determine τp, we note that(

ϕ(t)

t

)′
=

ϕ(t)

t2
(
αptαA′(ptα)− 1

)
.

Thus,

τp := (tα/p)
1/α, where tα := inf

{
t≥ 0 | tA′(t)≥ α−1

}
.

That such a tα (which depends on both α and the data associated with A)
exists (i.e., that tα <∞) follows from (2.10).

In both parts of our proof of Theorem A, the “Jensen’s Inequality Re-
placement Trick” works provided a certain quantity exceeds τp. As we cannot
guarantee that this requirement is met, we need the following result. (We use
this in two cases: first with α= 1/n and M = 6n and then with α= n− 1 and
M = 4n.)

Lemma 2.4. Let p > 0 and α > 0. Assume that A satisfies the condi-
tions described in Section 2.2.1. Define ϕ, tα, τp as in the above paragraph.
Suppose that M ≥ 1 is such that α logM > 1. Then there is a constant
C =C(M,α,A)≥ 1 (that does not depend on p) such that τp ≤Cϕ−1(M).

Proof. Since ϕ−1(s) = (p−1A−1(log s))1/α, we see that

τp ≤Cϕ−1(M) ⇐⇒ A
(
C−αtα

)
≤ logM.
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It is now easy to check that we can take C = 1 if either tα ≤A−1(logM) or
tα ≥ ϑ, where ϑ= ϑ(M,α,A)> 0 is such that

∀t≥ ϑ, t
A′(t)

A(t)
≥ 1

α logM
.

That such a ϑ exists follows from (2.9), since α logM > 1. Notice that when
tα ≥ ϑ we have

1

α logM
≤ tα

A′(tα)

A(tα)
=

1/α

A(tα)
, so A(tα)≤ logM.

For the case when A−1(logM) ≤ tα ≤ ϑ, we put C := (ϑ/A−1(logM))1/α.
Then

tα
Cα

=
tα
ϑ
A−1(logM)≤A−1(logM), so τp ≤Cϕ−1(M). �

We also require the following technical information, especially in our later
examples.

Lemma 2.5. Let [1,∞)
L−→ [1,∞) be a C1 homeomorphism that satisfies

(2.1) and (2.2). Define

A(t) :=
t

L(t) and ω(s) := sA−1(s)1/(n−1).

Then

(2.14a) ∀C > 0, A(Ct)≤CLCA(t) for all sufficiently large t > 1,

where CL is a constant that depends only on L. In addition:

lim
s→∞

A−1(s)

sL(s) = 1.(2.14b)

As s→∞, ω(s)	A−1
(
sn

)1/(n−1)
.(2.14c)

∀C > 0, lim
s→∞

A−1(C(s+ 1))

A−1(Cs)
= 1.(2.14d)

lim
s→∞

A−1(s)1/(n−1)

ω′(s)
=

n− 1

n
.(2.14e)

∀a > 0, lim
N→∞

1

ω(aN)

N∑
k=1

A−1(ak)1/(n−1) =
1

a

n− 1

n
.(2.14f)

∀C > 0, lim
u→∞

L(un)

L(Cω(u)n−1)
= 1.(2.14g)

Proof. Here we refer to the above assertions as (a), . . . ,(g), respectively. To
check (a), we note that when C ≥ 1 we can take CL = 1. Assume 0<C < 1.
An appeal to Fact 2.1 reveals that for all sufficiently large t > 1: Ct ≥

√
t,
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so L(Ct)≥L(
√
t)≥CLL(t) and therefore A(Ct) =Ct/L(Ct)≤CLCt/L(t) =

CLCA(t).
The limit in (b) is just [CK09, Lemma 2.2] from which it is easy to see that

(c) and (d) hold (remembering Fact 2.1 for (c)). To establish (e), we compute

ω′(s) = A−1(s)1/(n−1) +
s

n− 1
A−1(s)

1
n−1−1 d

ds

[
A−1(s)

]
= A−1(s)1/(n−1)

(
1 +

s

n− 1

(A−1)′(s)

A−1(s)

)
.

Thus (e) will follow once we verify that

lim
s→∞

s(A−1)′(s)

A−1(s)
= 1.

Writing t :=A−1(s), and remembering that A(t) = t/L(t), we find that

s(A−1)′(s)

A−1(s)
=

A(t)

tA′(t)
and then

tA′(t)

A(t)
= 1− t

L′(t)

L(t) −→ 1.

Now we turn our attention to (f). Since A−1 is increasing, we can use
Riemann sums to obtain the estimates∫ N

0

A−1(ξ)1/(n−1) dξ ≤
N∑

k=1

A−1(ak)1/(n−1) ≤
∫ N+1

1

A−1(ξ)1/(n−1) dξ.

Since each of the integrals above tends to infinity with N , we can use
l’Hôpital’s Rule to determine the limit of their quotients when we divide by
ω(aN). Using (e) for the left-hand quotient, and (d) and (e) for the right-hand
one, we see that both have the same limit thereby establishing (f).

To validate (g) we start with the change of variable t= un, so

ω(u)n−1 =
(
uA−1(u)1/(n−1)

)n−1
= t(n−1)/nA−1

(
t1/n

)
and the claim is that

lim
t→∞

L(t)
L(Ct

n−1
n A−1(t

1
n ))

= 1.

We write

L(t)
L(Ct

n−1
n A−1(t

1
n ))

= F (t) ·G(t) ·H(t),

where

F (t) :=
L(t)
L(Ct)

, G(t) :=
L(Ct)

L(CtL(t 1
n ))

, H(t) :=
L(CtL(t 1

n ))

L(Ct
n−1
n A−1(t

1
n ))

.

We demonstrate that

lim
t→∞

F (t) = lim
t→∞

G(t) = lim
t→∞

H(t) = 1.
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If C ≥ 1, then L(Ct) ≥ L(t) and so for all sufficiently large t (so that
L(t)≥C) we have

1≥ F (t) =
L(t)
L(Ct)

≥ L(t)
L(tL(t)) −→ 1 as t→∞

thanks to Lemma 2.2(a). Assume that 0 < C < 1. The change of variable
τ :=Ct gives us

L(t)
L(Ct)

=
L(C−1τ)

L(τ) =

(
L(τ)

L(C−1τ)

)−1

−→ 1 as t→∞

thanks to the first case.
Next, we claim that for all sufficiently large t > 1 (e.g., so that L(t1/n)≥ 1),

1≥G(t)≥ L(Ct)

L(CtL(t)) =
L(Ct)

L(CtL(Ct))
· L(CtL(Ct))

L(CtL(t)) .

For the first fraction, we again use Lemma 2.2(a) to see that

L(Ct)

L(CtL(Ct))
=

L(τ)
L(τL(τ)) −→ 1 as t=Cτ →∞.

Similarly,

CtL(Ct)

CtL(t) =
L(Ct)

L(t) −→ 1 as t→∞

and thus according to Lemma 2.2(b)

L(CtL(Ct))

L(CtL(t)) −→ 1 as t→∞.

Finally, by (2.14b)

CtL(t 1
n )

Ct
n−1
n A−1(t

1
n )

=
CtL(t 1

n )

Ct
n−1
n t

1
nL(t 1

n )
· t

1
nL(t 1

n )

A−1(t
1
n )

=
t

1
nL(t 1

n )

A−1(t
1
n )

−→ 1

and thus another appeal to Lemma 2.2(b) tells us that H(t)→ 1 as t→∞. �

2.3. Hausdorff and Minkowski dimensions. A non-decreasing function

(0,∞)
h−→ (0,∞) is called a dimension gauge provided limt→0+ h(t) = 0. We

use a dimension gauge h to define the (generalized) Hausdorff measure Hh

via

Hh(E) := lim
r→0+

[
inf

{∑
i

h(diamAi) : E ⊂
⋃
i

Ai,diam(Ai)≤ r

}]

for any set E ⊂ Rn.
Typically we are only interested in knowing whether this quantity is zero,

or positive and finite, or infinite. For this we can assume that the covering
sets Ai are balls B(ai, ri) with ri ≤ r, and then h(diamAi) is replaced with
h(2ri); doing this does not change the positivity or the finiteness of Hh(E).
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When we consider covering sets that are balls all having the same ra-
dius, we are lead to the notion of Minkowski content; the (generalized) upper
Minkowski content M̄h is defined by

M̄h(E) := limsup
r→0+

|Er|h(r)r−n,

where E ⊂ Rn is any set and |Er| denotes the Lebesgue n-measure of the set

Er :=
{
x ∈ Rn | dist(x,E)≤ r

}
=

⋃
x∈E

B̄(x, r).

When h(t) = ts for some s > 0, we use the standard notations Hs and M̄s

instead of Hh and M̄h, and then Hs(E) is called the s-dimensional Hausdorff
measure of a set E and M̄s(E) is the s-dimensional outer Minkowski content
of E. The Hausdorff dimension of E is determined by

dimH(E) := inf
{
s > 0 | Hs(E) = 0

}
and the upper Minkowski dimension of E is

dimM(E) := inf
{
s > 0 | M̄s(E) = 0

}
.

However, in this paper we require a finer notion of “size”; for example, we
will need to distinguish the “sizes” of certain zero-dimensional sets.

It is easy to check that for any two dimension gauge functions g and h,

Hh(E)≤ limsup
t→0+

h(t)

g(t)
Hg(E) and M̄h(E)≤ limsup

t→0+

h(t)

g(t)
M̄g(E).

With this in mind, we impose an ordering on dimension gauges as follows:
given two such functions g and h we write

g � h ⇐⇒ limsup
t→0+

h(t)

g(t)
<∞ and g ≺ h ⇐⇒ lim

t→0+

h(t)

g(t)
= 0.

Here are some simple examples.

(1) When r > 0 and s > 0: r < s ⇐⇒ tr ≺ ts.
(2) When p > 0 and q > 0: tp[log(1/t)]q ≺ tp ≺ tp/[log(1/t)]q .
(3) For any α,β ∈ R: α< β ⇐⇒ [log(1/t)]−α ≺ [log(1/t)]−β .
(4) When p > 0: α< β ⇐⇒ exp(−α[log(1/t)]p)≺ exp(−β[log(1/t)]p).

Notice that when g � h, Hh � Hg . Also, if g ≺ h, then Hg(E) < ∞ =⇒
Hh(E) = 0; that is, sets that are “small” with respect to Hg are Hh-null sets.

We can use this order to see what are the “best” gauges. For example, in
Theorem B, we verify that a certain set has positive measure. In this setting,
the “best” gauge is the biggest: if g ≺ h, then h is a better gauge in the sense
that Hh(E)> 0 is a stronger statement than Hg(E)> 0. On the other hand,
in many of our examples we construct a certain set with zero measure, and in
this setting the “best” gauge is the smallest: if g ≺ h, then g is a better gauge
in the sense that Hg(E) = 0 is a stronger statement than Hh(E) = 0.
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We remark that for any α ∈ R and any p < 1, both of the gauges [log(1/t)]−α

and exp(−α[log(1/t)]p) are zero-dimensional. That is, if the measure of a set
E (with respect to either of these gauges) is finite, then dimH(E) = 0.

2.4. Capacity estimates. Our proof of Theorem A depends on a capacity
estimate that we provide here. The (variational) p-capacity of a compact set
E ⊂Ω, relative to Ω, is

capp(E;Ω) := inf
u∈W

∫
Ω

|∇u|p,

where W := C(Ω)∩W1,p
0 (Ω) is the family of all functions u that are continuous

in Ω, possess weak derivatives whose pth-powers are integrable, have zero
‘boundary values’, and satisfy u ≥ 1 on E. Standard arguments permit us
to assume that u ∈ C∞

0 (Ω) with 0≤ u≤ 1, and we call these latter functions
admissible for capp(E;Ω); see [HKM93, pp. 27–28].

We write cap = capn for the conformal n-capacity in Rn.
The following is [HK03, Corollary 2.5].

Fact 2.6. Let E be a continuum joining some point a to the sphere S(a; r).
Suppose that v ∈W1,p(B(a; r),R) is continuous, satisfies v ≥ 1 on E, and has
integral average vB(a;r) ≤ 1/2. Then for each n− 1< p< n,∫

B(a;r)

|∇v|p ≥C(p,n)r−p.

2.5. Quasiconformal compression. We recall that for λ ≥ 1, the map
x �→ |x|λ−1x defines a K-quasiconformal self-homeomorphism of Rn, with K =
λn−1. Given λ≥ 1 and σ ∈ (0,1), we define

Ψ(x) :=

⎧⎪⎨
⎪⎩
x for x ∈ Rn \Bn,

|x|λ−1x for x ∈ Bn \ σBn,

σλ−1x for x ∈ σBn.

We note that

Ψ(x) = x on |x|= 1 and Ψ(x) = σλ−1x on |x|= σ.

In particular, Ψ is a λn−1-quasiconformal self-homeomorphism of Rn that is
the identity in Rn \Bn, conformal in σBn, and with

Ψ
(
Bn

)
= Bn and Ψ

(
σBn

)
= σλBn, so Ψ

(
Bn \ σBn

)
= Bn \ σλBn.

Moreover, the distortion of Ψ “lives” in Bn \ σBn; that is, Ψ is conformal in
σBn ∪ (Rn \ B̄n).
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r

σr

r

σλr

Ψσ,λ
a,ra a

σB

B \ σB

Figure 1. The radial squeeze-stretch map Ψσ,λ
a,r .

By employing auxiliary similarity maps, we can transport the action of Ψ
to any ball B := B(a, r); see Figure 1. We define Ψσ,λ

a,r via

Ψσ,λ
a,r (x) :=

⎧⎪⎨
⎪⎩
x for x ∈ Rn \B,
a+ |x−a

r |λ−1(x− a) for x ∈ B \ σB,
a+ σλ−1(x− a) for x ∈ σB.

Then Ψσ,λ
a,r is a λn−1-quasiconformal self-homeomorphism of Rn that is the

identity in Rn \B, conformal in σB, and with

Ψσ,λ
a,r (B) = B and Ψσ,λ

a,r (σB) = σλB, so Ψσ,λ
a,r (B \ σB) = B \ σλB,

(2.15)
and also for all points x ∈ Rn,

∣∣Ψσ,λ
a,r (x)− x

∣∣≤ r.

We call Ψσ,λ
a,r a radial squeeze-stretch mapping : it “squeezes” the ball σB to

σλB via scaling by σλ−1 and “stretches” the spherical ring B \ σB to the ring
B \ σλB via the radial map x �→ |x|λ−1x. In addition, the distortion of Ψσ,λ

a,r

“lives” in the ring B \σB̄; that is, Ψσ,λ
a,r is conformal in σB∪ (Rn \ B̄). Finally,

we note that the radial squeeze-stretch map Ψσ,λ
a,r is uniquely determined by

the concentric ball triple(
B, σB, σλB

)
:=

(
B(a, r),B(a,σr),B

(
a,σλr

))
.

3. Proofs of theorems

Here—in Sections 3.1, 3.2 and 3.3—we corroborate Theorems A, B and C.

3.1. Proof of Theorem A. We assume that Ω
f−→ Ω′ is a finite dis-

tortion homeomorphism (between domains in Rn) with K = Kf satisfying
expA(pK) ∈ L1loc(Ω) for some p > 0; see Section 2.2.1 for the precise hypothe-
ses on A. We establish inequality (1.2).
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An affine change of variables permits us to assume that z = 0, f(0) = 0,
and R= 3/2, in which case the asserted inequality (1.2) reduces to

∀|x|< 1

4
,

∣∣f(x)∣∣≥D exp

(
−C(n)

p
1

n−1

ω

(
log

3Λ

2|x|

))
;

hereD = (1/2)dist(0, ∂B′) and Λn =
∫
B(0,3/2)

expA(pK), where B = B(0,1/2)

and B′ = f(B).
Fix a point a ∈ B(0,1/4) and let a′ = f(a). We can assume |a′| <D (for

otherwise we are done) and then dist(a′, ∂B′)>D, so the line segment E′ =
[0, a′] lies inside of B′. We then have the standard capacity estimate [Väi71,
7.5, p. 22]

cap
(
E′,B′)≤ ωn−1

/(
log

D

|a′|

)n−1

,

where ωn−1 denotes the measure of the unit sphere Sn−1.
Having established this upper bound, we now seek a lower bound for this

capacity. Let u be an admissible test function for cap(E′,B′) and put v = u◦f .
The chain rule in conjunction with the distortion inequality (1.1) yield∫

B′
|∇u|n ≥

∫
B′

|∇v ◦ f |nJf ≥
∫
B

|∇v|n
K

.

Thus we search for lower bounds for the integral on the right-hand side. In
fact, we show that

(3.1)

∫
B

|∇v|n
K

≥C(A, n)p
/
ω

(
log

3Λ

2|a|

)n−1

and this will finish the proof. Indeed, combining (3.1) with the above capacity
estimate, and taking the infimum over all testing functions u, we obtain

ωn−1

logn−1(D/|a′|)
≥ C(A, n)p

ω(log 3Λ
2|a| )

n−1

and therefore, as asserted,

∣∣a′∣∣≥D exp

(
−C(A, n)

p1/(n−1)
ω

(
log

3Λ

2|a|

))
.

To establish (3.1), we examine two cases, depending on whether or not the
average value vA of v over the ball A := B(0, |a|)⊂B exceeds 1/2.

The case vA ≤ 1/2. Here we appeal to Fact 2.6, taking p := n2/(n+1), and
use Hölder’s inequality to see that

C(n)

|a|p ≤
∫
A

|∇v|p ≤
(∫

A

|∇v|n
K

)p/n(∫
A

Kn

)p/n2

,
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so, ∫
A

|∇v|n
K

≥ C(n)

|a|n
(∫

A

Kn

)−1/n

and hence ∫
B

|∇v|n
K

≥ |A|
∫
A

|∇v|n
K

≥C(n)

(∫
A

Kn

)−1/n

.

Our next goal is to obtain an upper bound for
∫
A
Kn. Consider the auxil-

iary function

ϕ(t) := expA
(
pt1/n

)
.

We would like to make use of Jensen’s Inequality; see the discussion at the
beginning of Section 2.2.3. If we knew that ϕ were convex, then we would
obtain

ϕ

(∫
A

Kn

)
≤
∫
A

ϕ
(
Kn

)
≤ 1

|A|

∫
B(0,3/2)

expA(pK) =

(
3

2

Λ

|a|

)n

(3.2)

so that ∫
A

Kn ≤ ϕ−1

((
3

2

Λ

|a|

)n)
=

(
1

p
A−1

(
n log

(
3

2

Λ

|a|

)))n

(3.3)

and thus∫
B

|∇v|n
K

≥C(n)

(∫
A

Kn

)−1/n

≥ C(n)p

A−1(n log(32
Λ
|a| ))

≥ C(A, n)p

A−1(log( 32
Λ
|a| ))

,(3.4)

where the doubling property ofA−1 was used to obtain the very last inequality.
The above estimate is, in fact, stronger than inequality (3.1).

The problem with this approach is that we do not know that ϕ is convex. To
deal with this issue, we use the facts that ϕ is increasing and that t �→ ϕ(t)/t
is increasing on [τp,∞), where

τp := (t1/n/p)
n and t1/n := inf

{
t≥ 0 | tA′(t)≥ n

}
.

Thus for any τ ≥ τp we have∫
A

Kn ≤
∫
A∩{Kn≥τ}

Kn + τ |A| ≤ τ

ϕ(τ)

∫
A∩{Kn≥τ}

ϕ
(
Kn

)
+ τ |A|

≤ τ

ϕ(τ)

∫
B(0;3/2)

expA(pK) + τ |A|

≤ τ |A|
(
1 +

1

ϕ(τ)

(
3

2

Λ

|a|

)n)
;

the last inequality just above is, again, a consequence of the fact

1

|A|

∫
B(0;3/2)

expA(pK) =
|B(0,3/2)|

|A| Λn =

(
3

2

Λ

|a|

)n

.
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So, for each τ ≥ τp, ∫
A

Kn ≤ τ

(
1 +

1

ϕ(τ)

(
3

2

Λ

|a|

)n)
.

If τp ≤ ϕ−1(6n), then, as 3Λ
2|a| ≥ 6, we can apply the above with τ :=

ϕ−1(( 3Λ
2|a| )

n) to get∫
A

Kn ≤ 2τ = 2

(
1

p
A−1

(
n log

(
3

2

Λ

|a|

)))n

.

Except for the extra factor of 2, this is just inequality (3.3), and again we get
(3.4).

For the general case, we appeal to Lemma 2.4 (with α= 1/n and M = 6n)
to get a constant C = C(A, n)≥ 1 such that τp ≤ Cϕ−1(6n). Then we apply
the above with τ :=Cϕ−1((3Λ/2|a|)n) to get∫

A

Kn ≤ τ

(
1 +

ϕ(τ/C)

ϕ(τ)

)
≤ 2τ = 2C

(
1

p
A−1

(
n log

(
3

2

Λ

|a|

)))n

.

Except for the extra factor of 2C, this is just inequality (3.3), and once again
we get (3.4).

The case vA ≥ 1/2. Here we utilize a chaining argument together with a
Poincaré inequality. In order to facilitate a technical calculation below, we
first rescale via the change of variable g(x) := f(x/σ). Then Kg(x) =K(x/σ)
is a finite distortion function for g with

Lg :=

∫
B(0;3σ/2)

expA(pKg) = σnLf , where Lf :=

∫
B(0;3/2)

expA(pKf );

so taking σ = (Ωn/Lf )
1/n we obtain Lg = Ωn. Next, let w(x) := v(x/σ)

and note that wσA = vA and also
∫
σB

|∇w|n/Kg =
∫
B
|∇v|n/K. Thus, we

are still in the case wσA ≥ 1/2 searching for a lower bound for the integral∫
σB

|∇w|n/Kg .

Let ν ≥ 2 be the integer with 1/2ν+1 < σ|a| ≤ 1/2ν ; so ν 	 log(1/(σ|a|).
Put b := (1,0, . . . ,0) and consider the balls

Ai = B(ai; ri/2) and Bi = B(bi; ri),

where

ri := 1/2ν−i+1, bi := 2rib, ai := bi + (ri/2)b, and i≥ 1.

Also, put B0 := B(0; 1/2ν) and A0 := B(a0; r1/4) where a0 := (5/4)r1b. Then
for each i≥ 1: Ai−1,Ai ⊂Bi with each of ∂Ai−1, ∂Ai being tangent to ∂Bi

and 2diamAi−1 = diamAi = (1/2)diamBi; also, σA,A0 ⊂B0.
Let � be the smallest integer with 1/2ν−� ≥ σ/2; so 1≤ �≤ ν − 1 as σ < 1.

Then A� lies in the complement of σB = B(0;σ/2), so wA�
= 0 because the
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support of w lies in σB. Thus we can write

1/2≤wσA = (wσA −wA0) + (wA0 −wA1) + · · ·+ (wA�−1
−wA�

).

Next, employing a Poincaré inequality, we can estimate the absolute value of
each of these terms thereby obtaining

C(n)≤
�∑

i=0

diam(Bi)

∫
Bi

|∇w|.

Now we use Hölder’s inequality twice, first on each of the integrals, and
then on the sum itself, to get

C(n)≤
(

�∑
i=0

(
diam(Bi)

)n∫
Bi

|∇w|n
Kg

)1/n( �∑
i=0

∫
Bi

K1/(n−1)
g

)(n−1)/n

.

The first factor on the right-hand side above can be estimated from above
by (a constant times) (

∫
σB

|∇w|n/Kg)
1/n; this is because Bi ∩ supp(w)⊂ σB

and the balls Bi have bounded overlap. Thus, raising to the power n provides
us with

(3.5) C(n)≤
(∫

σB

|∇w|n
Kg

)( �∑
i=0

∫
Bi

K1/(n−1)
g

)n−1

.

It therefore remains to exhibit an upper bound for (
∑�

i=0

∫
Bi

K
1/(n−1)
g )n−1.

In fact we verify that

(3.6)

(
�∑

i=0

∫
Bi

K1/(n−1)
g

)n−1

≤ C(A, n)

p
ω

(
log

3Λ

2|a|

)n−1

.

It is easy to see that (3.1) is an immediate consequence of (3.6) in conjunction
with (3.5), once we recall that

∫
σB

|∇w|n/Kg =
∫
B
|∇v|n/K.

Our next goal is to obtain an upper bound for each integral average∫
Bi

K
1/(n−1)
g . Notice that for each 0≤ i≤ �, Bi ⊂ (3σ/2)Bn = σB. Consider

the auxiliary function

ϕ(t) := expA
(
ptn−1

)
.

We would like to use Jensen’s Inequality; see the discussion at the beginning
of Section 2.2.3. If we knew that ϕ were convex, then (recall the rescaling
done above to ensure that Lg =Ωn) we would obtain

ϕ

(∫
Bi

K1/(n−1)
g

)
≤
∫
Bi

expA(pKg)(3.7)

≤ 1

|Bi|

∫
3σB

expA(pKg) =
Lg

|Bi|
= r−n

i
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so ∫
Bi

K1/(n−1)
g ≤ ϕ−1

(
r−n
i

)
=

(
1

p
A−1

(
n log

1

ri

))1/(n−1)

.(3.8)

The problem with this approach is that we do not know that ϕ is convex.
To deal with this issue (see the discussion at the beginning of Section 2.2.3),
we use the facts that ϕ is increasing and that t �→ ϕ(t)/t is also increasing on
[τp,∞), where

τp := (tn−1/p)
1/(n−1) and tn−1 := inf

{
t≥ 0 | tA′(t)≥ 1/(n− 1)

}
.

Thus for any τ ≥ τp we have∫
Bi

K1/(n−1)
g ≤

∫
Bi∩{Kg≥τn−1}

K1/(n−1)
g + τ |Bi|

≤ τ

ϕ(τ)

∫
Bi∩{Kg≥τn−1}

ϕ
(
K1/(n−1)

g

)
+ τ |Bi|

≤ τ

ϕ(τ)

∫
3σB

expA(pKg) + τ |Bi|

≤ τ |Bi|
(
1 +

1

ϕ(τ)rni

)
;

the last inequality just above is, again, a consequence of the fact that Lg =Ωn.
So, for each τ ≥ τp,∫

Bi

K1/(n−1)
g ≤ τ

(
1 +

1

ϕ(τ)rni

)
.

If τi = ϕ−1(r−n
i )≥ τp, then we can apply the above to get∫

Bi

K1/(n−1)
g ≤ 2τi = 2

(
1

p
A−1

(
n log

1

ri

))1/(n−1)

.

Except for the extra factor of 2, this is just inequality (3.8).
For the general case, we note that for each 0≤ i≤ �, r−n

i ≥ 4n. We appeal
to Lemma 2.4 (with α= n−1 and M = 4n) to get a constant C =C(A, n)≥ 1
such that τp ≤ Cϕ−1(4n). Then we apply the above with τi := Cϕ−1(r−n

i )≥
τp to get

(3.9)

∫
Bi

K1/(n−1)
g ≤ 2τi = 2Cϕ−1

(
r−n
i

)
= 2C

(
1

p
A−1

(
n log

1

ri

))1/(n−1)

.

Except for the extra factor of 2C, (3.9) is once again inequality (3.8).
Finally, we demonstrate that inequality (3.9) implies (3.6). We have

r−1
i = 2ν−i+1 = 2j , where 2≤ j := ν − �+ 1≤ ν + 1.
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Using the facts that A−1 is both increasing and doubling we obtain

�∑
i=0

A−1

(
n log

1

ri

)1/(n−1)

=

ν+1∑
j=ν−�+1

A−1(jn log 2)1/(n−1)

≤
ν+1∑
j=2

A−1(jn log 2)1/(n−1) ≤ νA−1
(
(ν + 1)n log 2

)1/(n−1)

≤CνA−1(ν)1/(n−1) ≤C log
3Λ

2|a|A
−1

(
log

3Λ

2|a|

)1/(n−1)

=Cω

(
log

3Λ

2|a|

)
;

here the last two inequalities hold because

ν 	 log
1

σ|a| = log
3Λ

2|a| .

Evidently, the above in conjunction with (3.9) gives (3.6).

3.2. Proof of Theorem B. We assume Ω
f−→Ω′ is a finite distortion home-

omorphism with expA(pKf ) ∈ L1loc(Ω) for some p > 0. Also, we have the
Hausdorff gauge function

h(t) = hs,p,A,n(t) := exp

(
−sω−1

(
p1/(n−1)

C
log

1

t

))
.

Here s ∈ (0, n] and C =C(A, n) is the constant from Theorem A. We demon-
strate that for each E ⊂Ω, Hh(f(E)) = 0 implies that Hs(E) = 0.

Set g := f−1. According to (1.3), for each point a ∈Ω′, there are constants
L= L(a) and D =D(a) ∈ (0,dist(a, ∂Ω′)) such that for each y ∈ B(a,D),∣∣g(y)− g(a)

∣∣≤ L exp

(
−ω−1

(
p1/(n−1)

C
log

D

|y− a|

))
.

Thus for all r ∈ (0,D]

diam
(
g
[
B(a, r)

])
≤ 2L exp

(
−ω−1

(
p1/(n−1)

C
log

D

r

))
.

For integers j, k with j ≥ 2, k ≥ 1 we define

Fjk :=
{
a ∈Ω′ |D(a)≥ 1/j,2L(a)≤ k

}
.

Then Ω′ =
⋃

j,k Fjk. Also, for each a ∈ Fjk and all r ∈ (0,1/j),

diam
(
g
[
B(a, r)

])
≤ k exp

(
−ω−1

(
p1/(n−1)

C
log

1

jr

))
.
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Suppose E ⊂ Ω with Hh(f(E)) = 0. Fix integers j, k with j ≥ 2, k ≥ 1.
We show that Hs(E ∩ g(Fjk)) = 0. Let ε > 0 be given. Select ρ ∈ (0,2/j2).
Note that

0< r <
2

j2
=⇒ 1

2r
<

1

(jr)2
and so log

1

2r
< 2 log

1

jr
.

Since Hh(f(E) ∩ Fjk) = 0, there are balls Bi := B(ai, ri) with ai ∈ f(E) ∩
Fjk, ri ∈ (0, ρ), f(E)∩Fjk ⊂

⋃
iBi and such that

∑
i h(2ri)< ε. As ai ∈ Fjk,

ri < ρ< 2/j2 ≤ 1/j ≤D(ai) and thus

diam
(
g(Bi)

)
≤ k exp

(
−ω−1

(
p1/(n−1)

C
log

1

jri

))

≤ k exp

(
−ω−1

(
p1/(n−1)

C
log

1

2ri

))
.

Therefore∑
i

(
diam

(
g(Bi)

))s ≤ ks
∑
i

exp

(
−sω−1

(
p1/(n−1)

C
log

1

2ri

))

= ks
∑
i

h(2ri)≤ ksε.

Since E ∩ g(Fjk)⊂
⋃

i g(Bi), by letting ε↘ 0 in the above we conclude that

Hs
(
E ∩ g(Fjk)

)
= 0. �

3.3. Proof of Theorem C. Here we assume that

A(t) = t/L(t), where L(t) = Lk(t) = L1(t) · · ·Lk(t)

for some k ∈N. See (2.5). We work with the gauge functions

hβ(t) := tnLk+1(1/t)
β .

Suppose Ω
f−→ Ω′ is a finite distortion homeomorphism between domains

Ω,Ω′ ⊂ Rn with expA(pKf ) ∈ L1loc(Ω) for some p > 0. In this setting, (2.13)
tells us that

∀β < cp, Jf ∈ L
Pβ

loc(Ω),

where c = c(k,n) and Pβ(t) := tLk+1(t)
β . With this in mind, we define

Qβ(t) := tL−1
k+1(t

1/β). Then Pβ and Qβ satisfy Young’s inequality (2.7), so
the Orlicz–Hölder inequality (2.8) is in force. Also, thanks to Lemma 2.2(c)
we know that

Q−1
β (t)	 Lk+1(t)

β as t→∞.

Now fix β ∈ (0, cp). Suppose a compact set E ⊂Ω has upper Minkowski di-
mension dimM(E)< n. Let F := f(E) and pick ε > 0 with n− ε > dimM(E);
so, M̄n−ε(E) = 0. Noting that

α> β and M̄hα(F )<∞ =⇒ M̄hβ (F ) = 0,
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we deduce that it suffices to show that M̄hβ (F ) < ∞. To do this, we
demonstrate that |Fr|hβ(r)r

−n has a finite upper bound that is indepen-
dent of r and valid for all sufficiently small r > 0. Of course, |Fr|hβ(r)r

−n =
|Fr|Lk+1(1/r)

β , and |Fr| denotes the Lebesgue n-measure of the set Fr := {y |
dist(y,F )≤ r}=

⋃
y∈F B̄(y, r).

To start, we choose R> 0 so that

ER :=
{
x | dist(x,E)≤R

}
=

⋃
x∈E

B̄(x,R)⊂Ω

and—by taking R sufficiently small—so that

∀ρ ∈ (0,R], |Eρ| ≤ ρε,

where |Eρ| denotes the n-measure of Eρ :=
⋃

x∈E B̄(x,ρ). Next, since f(ER)

is compact (so f−1 is uniformly continuous on f(ER)), there exists an r0 > 0
such that for all points a, y ∈ f(ER) (say, a= f(z), y = f(x)) we have

|y− a|< r0 =⇒ |x− z|=
∣∣f−1(y)− f−1(a)

∣∣<R/6.

Suppose r ∈ (0, r0) and y = f(x) ∈ Fr. Then there is a point a = f(z) ∈
F with y ∈ B̄(a, r). Now z ∈ E, so B(z,R) ⊂ ER ⊂ Ω, and x ∈ B(z,R/6).
According to Theorem A, we thus have

r ≥ |y− a|=
∣∣f(x)− f(z)

∣∣≥D(z) exp

(
− C

p1/(n−1)
ω

(
log

Λ(z)R

|x− z|

))
.

Here C =C(k,n) and D(z) := (1/2)dist(f(z), ∂f [B(z,R/3)]). As f is a home-
omorphism and E is compact, there is a δ > 0 with D(ζ) ≥ δ for all ζ ∈ E.
Also, for all ζ ∈E,

Λ(ζ) :=

(∫
B(ζ,R)

expA(pK)

)1/n

≤
(

|ER|
ΩnRn

)1/n(∫
ER

expA(pK)

)1/n

=:M,

where the constant M depends only on the data. Therefore,

r ≥ δ exp

(
− C

p1/(n−1)
ω

(
log

MR

|x− z|

))

and so appealing to (2.14c) we obtain

p1/(n−1) log
δ

r
≤Cω

(
log

MR

|x− z|

)
≤CA−1

(
logn

MR

|x− z|

)1/(n−1)

or equivalently,

A
(
p

C
logn−1 δ

r

)
≤ logn

MR

|x− z| .
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Summarizing, for each r ∈ (0, r0) and all points y = f(x) ∈ Fr, there exists
a z ∈E with

|x− z| ≤ ρ= ρ(r) :=MR exp

(
−A

(
p

C
logn−1 δ

r

)1/n)
.

In particular, we see that x ∈Eρ and thus Fr ⊂ f(Eρ). By adjusting our choice
of r0, if necessary, we may ensure that for r ∈ (0, r0] we also have ρ ∈ (0,R];
for example, it suffices to pick r0 with lognM ≤A((p/C) logn−1(δ/r0)).

It now follows that for all r ∈ (0, r0),

|Fr| ≤
∣∣f(Eρ)

∣∣≤ ∫
Eρ

Jf ≤C‖Jf‖Pβ
‖χEρ‖Qβ

;

here (2.8) provides the right-most inequality above. A glance back at (2.6)
reveals that

‖χEρ‖Qβ
=Q−1

β

(
Qβ(1)

|Eρ|

)−1

, where Qβ(1) = L−1
k+1(1) = ek+2 − ek+1 =:Ck.

According to Lemma 2.2(c) and Fact 2.1,

Q−1
β (t)	 Lk+1(t)

β and Lk+1

(
atε

)
	 Lk+1(t).

We claim that Lk+1(ρ
−1)	 Lk+1(r

−1) as r→ 0+, and therefore as r→ 0+

‖χEρ‖Qβ
	 Lk+1

(
Ck

|Eρ|

)−β

≤ Lk+1

(
Ck

ρε

)−β

	 Lk+1

(
ρ−1

)−β 	 Lk+1

(
r−1

)−β
.

The middle inequality above holds because ρ ∈ (0,R] ensures that |Eρ| ≤ ρε.
Finally, by making use of the first and last estimates in the above para-

graph, we see that for all r ∈ (0, r0) (again, adjusting r0 as necessary),

|Fr|Lk+1

(
r−1

)β ≤C‖Jf‖Pβ
<∞;

this demonstrates that M̄hβ (F )<∞ as asserted.
It remains to check the claim that Lk+1(ρ

−1)	 Lk+1(r
−1) as r→ 0+. This

follows from the fact that for any positive constants B,C,D,

Lk+1

(
B exp

[
A
(
C logn−1Dt

)1/n])	 Lk+1(t) as t→∞.

To see this, we use the properties of Lk explained in Fact 2.1 in conjunction
with the two estimates that

as t→∞, Lk

(
A(t)

)
	 Lk(t) and Lk(log t)	 Lk+1(t).

Thus for all sufficiently large t, we have

Lk+1

(
B exp

[
A
(
C logn−1Dt

)1/n]) 	 Lk

(
logB +A

(
C logn−1Dt

)1/n)
	 Lk

(
A
(
C logn−1 t

)1/n)
	 Lk

(
A
(
C logn−1 t

))
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	 Lk

(
C logn−1 t

)
	 Lk

(
logn−1 t

)
	 Lk(log t)	 Lk+1(t). �

4. Compression examples

Here we present examples that illustrate to what extent Theorem A and
Theorem B are optimal. See Example 4.7 for the former.

Our examples for Theorem B center on the gauge functions hs,p,A,n and are
based on Cantor sets. A generalized Cantor dust is a compact set E =

⋂∞
1 EN

where E1 ⊃E2 ⊃ · · · ⊃EN ⊃ · · · is a decreasing sequence of compact sets and
each EN is a finite union of disjoint closed balls. In our examples, EN will
be a union of certain closed subballs that are chosen from each of the balls
that comprise EN−1. We first give an overview, then describe our general
construction, and then give specific examples.

4.1. General construction. We start with the closed unit ball E0 := B̄ :=
B̄n ⊂ Rn. We pick m1 disjoint closed balls E1

i ⊂ E0 (1 ≤ i ≤ m1) and put
E1 :=

⋃m1

1 E1
i . Next, for each 1 ≤ i ≤ m1, we pick m2 disjoint closed balls

E2
ij ⊂ E1

i (1≤ j ≤m2) and put E2 :=
⋃m1

i=1

⋃m2

j=1E
2
ij . (In fact, we do this so

that the sets E1
i \

⋃m2

j=1E
2
ij are “isomorphic”.) Continuing in this manner we

get

EN :=
⋃
J

EN
J , where J = (j1, . . . , jN ) ∈ {1, . . . ,m1} × · · · × {1, . . . ,mN}.

Thus EN is a union of m1 · · ·mN disjoint closed balls EN
J . By appropriately

specifying the radii of these balls, we obtain a finite upper bound for the
Hausdorff measure of E =

⋂∞
1 EN , and by choosing the balls “fairly uniformly

distributed” we also get a positive lower bound for this measure; see [Mat95,
pp. 63–64].

We follow this method for our general construction. We require the fact
that for each positive integer m ∈ N, there are m disjoint closed balls in Bn

each with the same radius r and such that mrn = κn where κ = κ(n) is a
dimensional constant. By working with dyadic cubes, it is straightforward to
confirm this with κ(n) := 1/

√
8n. We start with a given s ∈ (0, n) (and later

a given p > 0, A, and a given Hausdorff gauge h). We construct generalized
Cantor dusts E,F ⊂ Bn and a self-homeomorphism f of Rn such that

f(E) = F, Hs(E)	 1, either Hh(F ) = 0 or Hh(F )<∞,

and so that f has finite distortion Kf with expA(pKf ) ∈ L1loc. The precise
details for these latter conditions will be provided in each example.

In each specific example, we will select integers mN ≥ 2 and distortion
constants λN ≥ 1. At each step 1,2, . . . ,N, . . . we choose mN disjoint closed
balls B̄(aNi ,RN ) ⊂ Bn (so here 1 ≤ i ≤ mN ) each of radius RN where RN
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is chosen so that mNRn
N = κn

N ; we choose these balls “fairly uniformly dis-

tributed” in Bn. Here 0< κN ≤ κ(n) = 1/
√
8n. We also select σN ∈ (0,1) so

that mN (σNRN )s = 1. (Such a σN exists provided mNRs
N > 1, so provided

we take mN > (1/κN )ns/(n−s).)
Thus, starting with 0< κN ≤ κ(n) and mN > (1/κN )ns/(n−s), we take

RN := κNm
−1/n
N and σN := κ−1

N m
(1/n)−(1/s)
N = κ−1

N m
(s−n)/ns
N .

Let ϕN
i and ϑN

i be the similarities of Rn given by

ϕN
i (x) := aNi + σNRNx and ϑN

i (x) := aNi + σλN

N RNx,

so that

ϕN
i

(
Bn

)
= B

(
aNi , σNRN

)
and ϑN

i

(
Bn

)
= B

(
aNi , σλN

N RN

)
;

here λN ≥ 1 are auxiliary parameters that will be chosen later to determine
the distortion of f . Notice that aNi = ϕN

i (0). Next—see Figure 2 and recall
that B̄ := B̄n—we define

E1
i := ϕ1

i (B̄) for 1≤ i≤m1,

E2
ij := ϕ1

i ◦ϕ2
j (B̄) for 1≤ i≤m1 and 1≤ j ≤m2,

and, in general, for J = (j1, . . . , jN ) ∈ {1, . . . ,m1} × · · · × {1, . . . ,mN},
EN

J := ΦN
J (B̄), where ΦN

J := ϕ1
j1 ◦ϕ

2
j2 ◦ · · · ◦ ϕ

N
jN .

Similarly, define

FN
J := ΘN

J (B̄), where ΘN
J := ϑ1

j1 ◦ ϑ
2
j2 ◦ · · · ◦ ϑ

N
jN .

Figure 2. The 2nd generation set E2 with m1 =m2 = 4.
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We obtain generalized Cantor dusts

E :=

∞⋂
1

EN and F :=

∞⋂
1

FN ,

where

EN :=
⋃
all J

EN
J and FN :=

⋃
all J

EN
J .

It is straightforward to calculate the centers and radii of the balls EN
J , FN

J .
For example, the latter ball has center

ΘN
J (0) = a1j1 + σλ1

1 R1

(
a2j2

+ σλ2
2 R2

[
· · ·+ σ

λN−2

N−2 RN−2

(
aN−1
jN−1

+ σ
λN−1

N−1 RN−1a
N
jN

)])
.

Also, the balls EN
J each have radius σ1R1 · · ·σNRN . Since these balls form a

cover of E with∑
all J

(σ1R1 · · ·σNRN )s =m1 · · ·mN (σ1R1 · · ·σNRN )s = 1,

it is clear thatHs(E)� 1. In fact, since these balls are chosen “fairly uniformly
distributed” in their parent, it follows that Hs(E)	 1; see [Mat95, pp. 63–64].
In the examples that follow, we also determine the size of F . For this it is
useful to know that each FN

J has radius tN := σλ1
1 R1 · · ·σλN

N RN .

Finally, we construct a homeomorphism Rn f−→ Rn with the property that
f(E) = F and such that f has a given distortion; in fact, f(EN ) = FN for all
N , and f will have distortion KN := λn−1

N in the union of certain spherical
rings and will be conformal elsewhere. This map f is given as the limit of a
sequence (fN )∞N=1 of quasiconformal self-homeomorphisms of Rn; the maps
fN are defined via a recursive relation. In order to accomplish this task, we
introduce triples (BJ ,CJ ,DJ) of concentric balls defined by

BJ := B(cJ , rN ),

CJ := σNBJ = B(cJ , σNrN ),

DJ := σλN

N BJ = B
(
cJ , σ

λN

N rN
)
,

where rN := σ
λN−1

N−1 rN−1RN (with r0 = σ0 = λ0 := 1)

and it remains to specify the centers cJ . In fact, cJ := ΘN
J (0), but this is

more easily understood by starting at the beginning. Write f0 to denote the
identity map: f0(x) = x.

Step 1. For 1≤ i≤m1, put

Bi := f0 ◦ϕ1
i

(
σ−1
1 B

)
,

Ci := σ1Bi = f0 ◦ϕ1
i (B),

Di := σλ1
1 Bi.
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One can readily check that

Bi = B(ci, r1) and C̄i = f0
(
E1

i

)
,

where ci := ϑ1
i (0) = a1i and r1 := R1. For each triple (Bi,Ci,Di), we have a

radial squeeze-stretch map Ψ1
i := Ψσ1,λ1

ci,r1 (see Section 2.5) and we define

g1(x) :=

{
Ψ1

i (x) for x ∈Bi, 1≤ i≤m1,

x for x ∈ Rn \
⋃m1

i=1Bi.

Thus Rn g1−→ Rn is K1-quasiconformal, K1 := λn−1
1 , and conformal in Rn \⋃m1

1 (B̄i \Ci) with

g1(Bi) = Bi and g1(Ci) =Di via a scaling by σλ1−1
1 and

g1(Bi \Ci) = Bi \Di via the radial stretch x �→ |x|λ1−1x.

We set f1 := g1 ◦ f0. Note that Bi \Ci = ϕ1
i (σ

−1
1 B \B), so the distortion of

f1 is given via

Kf1 =

{
K1 in

⋃m1

i=1ϕ
1
i (σ

−1
1 B \ B̄),

1 in Rn \
⋃m1

i=1ϕ
1
i (σ

−1
1 B̄ \B).

Also, by comparing centers and radii, we see that

f1
(
E1

i

)
= f1 ◦ϕ1

i (B̄) = g1(C̄i) = D̄i = F 1
i and so f1(E1) = F1.

Step 2. For 1≤ i≤m1 and 1≤ j ≤m2, put

Bij := f1 ◦Φ2
ij

(
σ−1
2 B

)
,

Cij := σ2Bij = f1 ◦Φ2
ij(B),

Dij := σλ2
2 B2

ij .

One can readily check that

Bij = f1 ◦ϕ1
i

[
B
(
a2j ,R2

)]
= B(cij , r2) and C̄ij = f1

(
E2

ij

)
,

where cij := Θ2
ij(0) and r2 := σλ1

1 r1R1. For each triple (Bij ,Cij ,Dij) we have

radial a squeeze-stretch map Ψ2
ij := Ψσ2,λ2

cij ,r2 (see Section 2.5) and we define

g2(x) :=

{
Ψ2

ij(x) for x ∈Bij , 1≤ i≤m1, 1≤ j ≤m2,

x for x ∈ Rn \
⋃m1

i=1

⋃m2

j=1Bij .

Thus Rn g2−→ Rn is K2-quasiconformal, K2 := λn−1
2 , and conformal in Rn \⋃

i,j(B̄ij \Cij) with

g2(Bij) = Bij and g2(Cij) =Dij via a scaling by σλ2−1
2 and

g2(Bij \Cij) = Bij \Dij via the radial squeeze-stretch x �→ |x|λ2−1x.

We set f2 := g2 ◦ f1. Then, since
f−1
1 (Bij) = Φ2

ij

(
σ−1
2 B

)
,
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we see that

f2(x) =

{
Ψ2

ij ◦ f1(x) for x ∈Φ2
ij(σ

−1
2 B),

f1(x) otherwise.

Note that Φ2
ij(σ

−1
2 B) = ϕ1

i [B(a
2
j ,R2)]⊂ ϕ1

i (B) = Ci. In Ci, f1 = g1 is con-

formal (being a linear scaling/squeeze by σλ1−1
1 ). Therefore, the distortion of

f2 in Φ2
ij(σ

−1
2 B) comes only from Ψ2

ij (which has distortion K2 in B2
ij \ C̄ij

and is conformal elsewhere). In particular, we deduce that the distortion of
f2 is given via

Kf2 =

⎧⎪⎨
⎪⎩
K2 in

⋃
i,j Φ

2
ij(σ

−1
2 B \ B̄),

K1 in
⋃m1

i=1ϕ
1
i (σ

−1
1 B \ B̄),

1 everywhere else.

Also, by comparing centers and radii, we confirm that

f2
(
E2

ij

)
= g2(C̄ij) = D̄ij = F 2

ij and so f2(E2) = F2.

Step N. For each J = I × {j} = (j1, . . . , jN ) ∈ {1, . . . ,m1} × · · · × {1, . . . ,
mN}, put

BJ := fN−1 ◦ΦN
J

(
σ−1
N B

)
,

CJ := σNBN
J = fN−1 ◦ΦN

J (B),

DJ := σλN

N BN
J .

One can check that

BJ = fN−1 ◦ΦN−1
I

[
B
(
aNj ,RN

)]
= B(cJ , rN ) and C̄J = fN−1

(
EN

J

)
,

where cJ := ΘN
J (0) and rN := σ

λN−1

N−1 rN−1RN . For each triple (BJ ,CJ ,DJ)

we have radial a squeeze-stretch map ΨN
J := ΨσN ,λN

cJ ,rN (see Section 2.5) and we
define

gN (x) :=

{
ΨN

J (x) for x ∈BJ ,

x for x ∈ Rn \
⋃

J BJ .

Thus Rn gN−−→ Rn is KN -quasiconformal, KN := λn−1
N , and conformal in Rn \⋃

J(B̄J \CJ) with

gN (BJ) = BN
J and gN (CJ) =DJ via a scaling by σλN−1

N and

gN (BJ \CJ) = BJ \DJ via the radial squeeze-stretch x �→ |x|λN−1x.

We set fN := gN ◦ fN−1. Then, since

f−1
N−1(BJ) = ΦN

J

(
σ−1
N B

)
,

we see that

fN (x) =

{
ΨN

J ◦ fN−1(x) for x ∈ΦN
J (σ−1

N B),

fN−1(x) otherwise.
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Note that for J = I × {j}, ΦN
J (σ−1

N B) = ΦN−1
I [B(aNj ,RN )]⊂ΦN−1

I (B).

In ΦN−1
I (B), fN−2 is conformal (in fact, a linear scaling/squeeze) with

fN−2[Φ
N−1
I (B)] =CI . In CI , gN−1 is conformal (being a dilation by σ

λN−1−1
N−1 ).

Therefore, in each ball ΦN−1
I (B), fN−1 = gN−1 ◦ fN−2 is conformal.

It now follows that the distortion of fN in ΦN
J (σ−1

N B) comes only from
ΨN

J (which has distortion KN in BN
J \ C̄J and is conformal elsewhere). In

particular, we deduce that the distortion of fN is given via

KfN =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

KN in
⋃

J Φ
N
J (σ−1

N B \ B̄),
...

...

K2 in
⋃

i,j Φ
2
ij(σ

−1
2 B \ B̄),

K1 in
⋃m1

i=1ϕ
1
i (σ

−1
1 B \ B̄),

1 everywhere else.

Also, by comparing centers and radii, we corroborate that

fN
(
EN

J

)
= gN (C̄J) = D̄J = FN

J and so fN (EN ) = FN .

Final step. We thus have a sequence (fN )∞1 of quasiconformal self-
homeomorphisms of Rn. In fact, using (2.16) we see that this sequence is
uniformly Cauchy, so there is a limit map f := limN→∞ fN that is evidently
a homeomorphism. Since fN (EN ) = FN for each N , f(E) = F . Also, since

fN = fN−1 in Rn \
⋃
all J

ΦN
J

(
σ−1
N B

)
,

and, for J = I × {j},
ΦN

J

(
σ−1
N B

)
=ΦN−1

I

[
B
(
aNj ,RN

)]
⊂EN−1

I ,

we deduce that

{fN �= fN−1} ⊂
⋃
all J

ΦN
J

(
σ−1
N B

)
⊂EN−1.

Recalling that E =
⋂
EN is a Lebesgue null set, we see that for almost every

x in Rn, the tail of the sequence (fN (x))∞1 is constant.
Now, for each fixed x /∈ E, there is an open ball B := B(x; ε) and

an N ∈ N such that f |B = fN |B ; here ε and N both depend on x (or
rather on dist(x,E)). In particular, since each fN is a quasiconformal self-
homeomorphism of Rn, we see that f is absolutely continuous on lines and
differentiable almost everywhere. Below we address the question of whether
or not f is a Sobolev homeomorphism.

We see that f has the distortion function

Kf =

{
KN in

⋃
J Φ

N
J (σ−1

N B \ B̄),
1 everywhere else.
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We note that Kf = KN occurs in the union of MN := m1m2 · · ·mN spher-
ical rings each with outer radius σ1R1 · · ·σN−1RN−1RN and inner radius
σ1R1 · · ·σNRN ; here we set σ0 =R0 := 1.

To determine the local integrability properties of the function x �→
P (Kf (x))—here P (t) can be tp or ept or expA(pt)—it suffices to examine
the convergence of the series

∞∑
N=1

MN

[
(σ1R1 · · ·σN−1RN−1RN )n − (σ1R1 · · ·σNRN )n

]
P (KN ).

Recalling that σNRn
N = m

−n/s
N and σN = κ−1

N m
(s−n)/ns
N , we find that the

above series equals

∞∑
N=1

MN

(
σ−n
N − 1

)
(σ1R1 · · ·σNRN )nP (KN )(4.1)

=

∞∑
N=1

(
σ−n
N − 1

)
M

1−n/s
N P (KN )

=

∞∑
N=1

(
κn
Nm

(n−s)/s
N − 1

)
M

1−n/s
N P (KN ).

In certain of our specific examples we consider regular Cantor dusts by
which we mean that κN = κ and mN =m are some fixed constants. In this
setting, the above convergence question simplifies to looking at convergence
of the series

(4.2)
∞∑

N=1

mN(1−n/s)P (KN ).

We also need to estimate Hh(F ), at least to show that this is zero or finite.
For this it suffices to examine the behavior of MNh(diam(F J

N )) as N →∞.
Recall that F =

⋂
FN where FN is the union of MN disjoint closed balls each

of radius tN := σλ1
1 R1 · · ·σλN

N RN ; this simplifies to tN = σλ1+···+λNRN when
F is a regular Cantor dust.

Finally, we discuss the question of whether or not f is a mapping of finite
distortion. We know that f is absolutely continuous on lines and differentiable
almost everywhere with a Jacobian that is positive almost everywhere. Once
we know that the differential Df of f is locally integrable, then the absolute
continuity on lines permits us to assert that f belongs to W1,1

loc(R
n,Rn), and

then being a Sobolev homeomorphism, we also know that the Jacobian of f
belongs to L1loc(R

n); see for example [IM01, p. 106 and Corollary 6.3.1, p. 108].
Thus we must determine whether or not Df is locally integrable; in fact, we

need only consider the integral over the doubled unit ball A := 2Bn. From our
construction, we can calculate Df , but its integral depends on the parameters
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in our construction in a non-trivial manner. One way to circumvent these
difficulties is to employ a weak compactness argument using uniform Lploc
estimates for DfN ; here 1< p < n. To this end, we apply Young’s inequality
to

|DfN |p =
(
|DfN |n

)p/n
=K

p/n
fN

J
p/n
fN

to obtain

|DfN |p ≤ n− p

n
K

p/(n−p)
fN

+
p

n
JfN .

This yields ∫
A

|DfN |p ≤ n− p

n

∫
A

K
p/(n−p)
fN

+
p

n
|A|.

Thus uniform Lploc bounds for DfN exist provided

sup
N∈N

∫
A

K
p/(n−p)
fN

<∞.

Such a condition will hold, for some 1< p< n, if we know that for some q > 1,
the series in (4.1) converges with P (t) = tq ; we then get p := qn/(1 + q).

Assuming this latter condition, the above discussion reveals that (fN |A)∞1
is a bounded sequence in W1,p(A,Rn). Therefore, there is a subsequence (fM )
of (fN |A) that converges weakly to some g in W1,p(A,Rn). In particular, this
means that for all test functions ϕ (i.e., ϕ ∈ C∞

c (A,Rn)),

(4.3a)

∫
A

fM ·ϕ−→
∫
A

g ·ϕ as M →∞

and

(4.3b)

∫
A

(DfM )tϕ−→
∫
A

(Dg)tϕ as M →∞.

We know that (fN )∞1 converges to f uniformly on all of Rn, so it follows from
(4.3a) that f |A and g are equal as L1loc(A) functions.

Now

DfM = [D1fM · · ·DnfM ], where DjfM =
∂fM
∂xj

,

so ∫
A

∂g

∂xj
·ϕ = lim

M→∞

∫
A

∂fM
∂xj

·ϕ=− lim
M→∞

∫
A

fM · ∂ϕ

∂xj

= −
∫
A

g · ∂ϕ

∂xj
=−

∫
A

f · ∂ϕ

∂xj
;

here the two left-most equalities follow from (4.3b) and (4.3a), respectively,
and the last equality holds because f = g. The equality of the first and last
integrals above implies that Dg is the distributional derivative of f .
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Since g ∈ W1,p(A,Rn), we conclude that f belongs to the Sobolev space

W1,1
loc(R

n;Rn).

In summary, the above construction produces a homeomorphism Rn f−→ Rn

and Cantor dusts E,F ⊂ Bn with f(E) = F and Hs(E) 	 1. The map f is
differentiable almost everywhere, and the integrability of the distortion of f
can be determined by checking the convergence of the appropriate series in
(4.1) or (4.2); when this series converges, f is a mapping of finite distortion.
Finally, we can provide upper estimates for the Hausdorff measure Hh(F ) by
controlling the radii tN of the balls used to construct F .

Here is a precise statement.

Theorem 4.1. Let n ≥ 2, s ∈ (0, n), p > 0 be given. Let (mN )∞N=1 and
(κN )∞N=1, (λN )∞N=1 be sequences of integers and real numbers, respectively,

that satisfy mN > (1/κN )ns/(n−s), 0 < κN ≤ κ(n) := 1/
√
8n, and λN ≥ 1 for

all N . Then there are generalized Cantor dusts E,F ⊂ Bn and a homeomor-
phism f : Rn → Rn with the properties that

Hs(E)	 1 and f(E) = F and ∀x ∈ Rn \Bn, f(x) = x.

The map f is absolutely continuous on lines, differentiable almost everywhere,
and if the series (4.1) converges with P (t) = tq for some q > 1, then f is
a mapping of finite distortion. Moreover, for P (t) equal to tp or exp(pt)
or expA(pt), we have P (Kf ) ∈ L1loc(R

n) if and only if the series in (4.1)
converges (or in (4.2) for the special case where mN =m and κN = κ(n) for
all N ). Here KN := λn−1

N and MN :=m1 · · ·mN .

4.2. Compression examples with exp(pK) ∈ L1loc. Here we examine The-
orem B in the special case where A(t) = t. In part, we do this as it provides a
simpler version of what we present below in Section 4.3, but our results here
are also relevant for the case of exponentially integrable distortion.

In this setting, we have ω−1(t) = t(n−1)/n and so the gauge function h =
hs,p,A,n (that appears in the statement of Theorem B) is of the form h= hα

where

hα(t) := exp

(
−α

(
log

1

t

)(n−1)/n)
.

The analog of Theorem B in this special case was established by Zapadinskaya
(see [Zap11, Theorem 1.1]) and she proved that we can use the gauge function

hγ0 , where γ0 :=C(n)sp1/n;

here C(n) is, essentially, the constant from [HK03, Theorem B]. She also
constructed an example to illustrate the sharpness of her theorem; see [Zap11,
Example 1.3]. Briefly, given s ∈ (0, n), and p > 0, she constructs a finite
distortion homeomorphism f : Rn → Rn, with exp(qKf ) ∈ L1loc(R

n) for all q ∈



998 A. CLOP AND D. A. HERRON

(0, p), and a set E ⊂ Rn with Hs(E)> 0 but Hhα(f(E)) = 0 for all α > ζ0 :=
Zsp1/n, where Z = Z(s,n) is given by

Z(s,n) :=

(
n

n− 1

)n−1
n ζ(s,n)

(n− s)
1
n

,

ζ(s,n) :=

⎧⎨
⎩

1

(1−s)
n−1
n

when 0< s< 1,

log
n−1
n m(s)
log 2 when 1≤ s < n,

and m(s) := (�2 1
n−sn

s
2(n−s) �)n.

In our example, exp(pKf ) ∈ L1loc(R
n), and our range of allowable gauge

functions is slightly better (because A(s,n)<Z(s,n)).

Example 4.2. Let n ≥ 2, s ∈ (0, n), and p > 0 be given. Fix α > α0 :=
Asp1/n where

A=A(s,n) :=

(
n2

n− 1

)(n−1)/n
1

n− s
.

There exists a finite distortion homeomorphism Rn f−→ Rn and a regular Cantor
dust E in Bn such that f has p-exponentially integrable distortion, that is,
exp(pKf ) ∈ L1loc(R

n), and Hs(E) 	 1 but Hhα(f(E)) = 0. Moreover, for all
x ∈ Rn \Bn, f(x) = x.

Proof. For each integer m> (1/κ)ns/(n−s) (recall that κ= κ(n) = 1/
√
8n),

set

αm :=

(
n

n− 1

)(n−1)/n

p1/n
(

s

n− s

)1/n/(
n− s

ns
− log(1/κ)

logm

)(n−1)/n

.

Then as m→∞, αm ↘ α0. Thus we may select m sufficiently large so that
α> αm >α0, and these inequalities will also hold if we take a larger m.

For this m, we pick R and σ so that mRn = κn and m(σR)s = 1. Thus,

R := κm−1/n and σ := κ−1m(1/n)−(1/s) = κ−1m(s−n)/ns.

Using these values of m,R,σ—and taking λN := (aN)1/(n−1), so that KN =
aN—we “do” the Cantor dust construction to obtain a finite distortion home-
omorphism f : Rn → Rn and regular Cantor dusts E,F ⊂ Bn with F = f(E)
and Hs(E) 	 1. We claim that the constant a can be chosen so that both
exp(pKf ) ∈ L1loc(R

n) and Hhα(F ) = 0.
Recalling—see (4.2)—that the integrability condition epKf ∈ L1loc(R

n) is
equivalent to convergence of the series

∞∑
N=1

m(1−n/s)NepKN =
∞∑

N=1

m(1−n/s)NepaN ,
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and writing

m(1−n/s)NepaN = exp

(
s− n

s
N logm+ paN

)

= exp

(
N

(
s− n

s
logm+ pa

))
,

we see that

exp(pKf ) ∈ L1loc
(
Rn

)
⇐⇒ a <

1

p

n− s

s
logm.

Below we demonstrate that by choosing

a > α−n

(
n

n− 1

)n−1

logm
/(

n− s

ns
− log(1/κ)

logm

)n−1

we obtain Hhα(F ) = 0. Thus we must check that we can pick a constant a
that satisfies

α−n

(
n

n− 1

)n−1

logm
/(

n− s

ns
− log(1/κ)

logm

)n−1

< a<
1

p

n− s

s
logm.

This is equivalent to requiring that

αn >

(
n

n− 1

)n−1

p

(
s

n− s

)/(
n− s

ns
− log(1/κ)

logm

)n−1

and this holds because α> αm.
It remains to confirm that the above lower bound on a forces Hhα(F ) = 0.

This holds provided mNhα(tN )→ 0 as N →∞, where

tN = σSNRN

is the radius of the balls used to construct FN = f(EN ) and

SN = λ1 + · · ·+ λN =K
1/(n−1)
1 + · · ·+K

1/(n−1)
N = a1/(n−1)

N∑
k=1

k1/(n−1).

Notice that

mNhα(tN ) = exp

(
N logm− α log(n−1)/n 1

tN

)
−→ 0

if and only if

α log(n−1)/n 1

tN
−N logm−→∞.

We have

log
1

tN
= SN log

1

σ
−N logR

= SN

((
n− s

ns

)
logm− log

1

κ

)
+N

(
1

n
logm+ log

1

κ

)
=NTN logm,
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where

TN :=
SN

N

((
n− s

ns

)
− log(1/κ)

logm

)
+

(
1

n
+

log(1/κ)

logm

)
.

Thus we must check that

α(NTN logm)(n−1)/n −N logm−→∞ as N →∞.

To establish this limit, we first rewrite the above left-hand side as

N(logm)(n−1)/n

[
α

(
TN

N1/(n−1)

)(n−1)/n

− (logm)1/n
]
.

Using the fact that

SN

Nn/(n−1)
= a1/(n−1)

N∑
k=1

(
k

N

)1/(n−1)
1

N

> a1/(n−1)

∫ 1

0

x1/(n−1) dx= a1/(n−1)n− 1

n

we see that

TN

N1/(n−1)
=

1

N1/(n−1)

[
SN

N

((
n− s

ns

)
− log(1/κ)

logm

)
+

(
1

n
+

log(1/κ)

logm

)]

>
SN

Nn/(n−1)

(
n− s

ns
− log(1/κ)

logm

)

> a1/(n−1)n− 1

n

(
n− s

ns
− log(1/κ)

logm

)

and therefore

α

(
TN

N1/(n−1)

)(n−1)/n

− (logm)1/n

>α

[
a1/(n−1)n− 1

n

(
n− s

ns
− log(1/κ)

logm

)](n−1)/n

− (logm)1/n

= α

[
a

(
n− 1

n

)n−1(
n− s

ns
− log(1/κ)

logm

)n−1]1/n
− (logm)1/n.

Finally, the right-hand side immediately above, which contains no N terms,
is strictly positive if and only if

a > α−n

(
n

n− 1

)(n−1)

logm
/(

n− s

ns
− log(1/κ)

logm

)n−1

,

and when this holds, the displayed quantity at the beginning of this paragraph
does indeed tend to ∞ as N →∞. �
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It is not difficult to use the above to construct an example where the map
does not depend on either of the parameters α, s. Let (sj)

∞
1 and (αj)

∞
1 be

monotone sequences in (0, n) and (α0,∞), respectively with sj ↗ n and αj ↘
α0 as j →∞. Let fj and Ej be the maps and sets constructed in Example 4.2
using the parameters sj , αj (with some fixed p > 0). By translating the set
Ej , we may assume that Ej ⊂ Bj := B(2je,1) where e := (1,0, . . . ,0) ∈ Rn. In
particular, for all x ∈ Rn \Bj , fj(x) = x. Thus we may define f : Rn → Rn by
letting f(x) := fj(x) for x ∈ Bj and f(x) := x for x ∈ Rn \A where A :=

⋃
Bj .

We summarize this as follows.

Example 4.3. Let n≥ 2 and p > 0 be given. There exists a finite distortion
homeomorphism f : Rn → Rn with exp(pKf ) ∈ L1loc(R

n) and a set A ⊂ Rn

(a union of open balls each of radius one) with the following property. For
each s ∈ (0, n) and each α > α0, there is a regular Cantor dust E ⊂ A such
that Hs(E)> 0 but Hhα(f(E)) = 0.

We point out that the above provides a set A with dimH(A) = n and
dimH(f(A)) = 0.

To verify the above conclusion, let s ∈ (0, n) and α > α0 be given. Pick j
so that s ≤ sj and α ≥ αj , and let E = Ej . Then Hsj (E) 	 1 implies that
Hs(E)> 0 (quite likely, Hs(E) =∞). Similarly, since αj ≤ α, hαj � hα, and

therefore Hhα �Hhαj .
The above example reveals several things regarding Theorem B (for the

special case where A(t) = t). A natural question is whether or not there is
an improved version of this result that holds with a gauge that is better than
the gauge function hγ0 . Assume h is a gauge function with the conclusion of
Theorem B (with A(t) = t) holding. Then it cannot be that hα � h for any
α> α0. This means that

∀α> α0, limsup
t→0+

[
h(t) exp

(
α log(n−1)/n 1

t

)]
=∞.

In particular, for gauges of the form h= hβ , this implies that β ≤ α0.
The above discussion leads to the following questions. Here we take

A(t) = t.

Questions 4.4. (a) What is the largest constant C(n) such that Theo-
rem B holds for the gauge function hγ with γ =C(n)sp1/n?

(b) Does Theorem B hold for some gauge function h with hγ0 ≺ h?
(c) Does Theorem B hold for some gauge function hβ with β > γ0?
(d) Does Theorem B hold for the gauge function hα0?
(e) Does Theorem B hold for any gauge function hγ with γ = C(n)(s/

(n− s))p1/n?
(f) Is there an example like Example 4.2 but with α= α0?
(g) Is there an example like Example 4.2 but for some gauge function h with

h� hα0?



1002 A. CLOP AND D. A. HERRON

We note that the gauge functions in item (e) are better than those in
item (a), at least for s > n − 1, and so would give a stronger result. Also,
Example 4.2 provides the following information about the constant C(n) in
item (a): any such constant must satisfy

C(n)≤ n−1/n

(
n

n− 1

)(n−1)/n

so, for example, C(2)≤ 1.

We mention that this also provides information regarding [HK03, Problem B].

4.3. Compression examples with expA(pK) ∈ L1loc. We continue our
discussion of the optimality of the gauge function h= hs,p,A,n that appears in
Theorem B. We assume that the control function has the form A(t) = t/L(t)
as in Lemma 2.5. As noted in (1.4), here the gauge h is of the form h= gβ
where β =Csp1/n (with C =C(L, n)) and

gβ(t) := exp

(
−βA

(
logn−1 1

t

)1/n)
.

In addition, we further assume that L = Lk for some k ∈ N; see (2.5). This
assumption is only used once, when we appeal to Lemma 2.3.

Example 4.5. Let n ≥ 2, s ∈ (0, n), and p > 0 be given. Fix β > β0 :=
Bsp1/n where

B =B(s,n) :=

(
n

n− 1

)(n−1)/n
n

n− s
.

There exists a finite distortion homeomorphism Rn f−→ Rn and a regular Cantor
dust E in Bn such that f has p-subexponentially integrable distortion, that
is, expA(pKf ) ∈ L1loc(R

n), and Hs(E)	 1 but Hgβ (f(E)) = 0. Moreover, for
all x ∈ Rn \Bn, f(x) = x.

Proof. We proceed as in Example 4.2, but here there are more technical
details. For each integer m> (1/κ)ns/(n−s) (recall that κ = κ(n) = 1/

√
8n),

set

βm :=

(
n

n− 1

)(n−1)/n

p1/n
(

ns

n− s

)1/n/(
n− s

ns
− log(1/κ)

logm

)(n−1)/n

.

Then as m→∞, βm ↘ β0. Thus we may select m sufficiently large so that
β > βm > β0, and these inequalities will also hold if we take a larger m.

For this m we pick R and σ so that mRn = κn and m(σR)s = 1. Thus

R := κm−1/n and σ := κ−1m(1/n)−(1/s) = κ−1m(s−n)/ns.

Now we select λN so that with KN := λn−1
N we have

A(pKN ) = aN, where a > 0 is a constant described below.
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We use these values of m,R,σ,λN in the Cantor dust construction to obtain
a finite distortion homeomorphism f : Rn → Rn and regular Cantor dusts
E,F ⊂ Bn with F = f(E) and Hs(E)	 1. We claim that the constant a can
be chosen so that both expA(pKf ) ∈ L1loc(R

n) and Hhβ (F ) = 0.

Recalling—see (4.2)—that the integrability condition eA(pKf ) ∈ L1loc(R
n) is

equivalent to convergence of the series
∞∑

N=1

m(1−n/s)NeA(pKN ) =

∞∑
N=1

m(1−n/s)NeaN ,

and writing

m(1−n/s)NeaN = exp

(
s− n

s
N logm+ aN

)
= exp

(
N

(
s− n

s
logm+ a

))
,

we see that

exp(pKf ) ∈ L1loc
(
Rn

)
⇐⇒ a <

n− s

s
logm.

Below we demonstrate that by choosing

(4.4) a > β−n

(
n

n− 1

)n−1

np logm
/(

n− s

ns
− log(1/κ)

logm

)n−1

we obtain Hgβ (F ) = 0. Thus we must check that we can pick a constant a
that satisfies

β−n

(
n

n− 1

)n−1

np logm
/(

n− s

ns
− log(1/κ)

logm

)n−1

< a<
n− s

s
logm.

This is equivalent to requiring that

βn >

(
n

n− 1

)n−1

p

(
ns

n− s

)/(
n− s

ns
− log(1/κ)

logm

)n−1

and this holds because β > βm.
It remains to confirm that the above lower bound on a, in (4.4), forces

Hgβ (F ) = 0. This holds provided mNgβ(tN )→ 0 as N →∞, where

tN = σSNRN

is the radius of the balls used to construct FN = f(EN ) and

SN := λ1 + · · ·+ λN =K
1/(n−1)
1 + · · ·+K

1/(n−1)
N .

Notice that

mNgβ(tN ) = exp

(
N logm− βA

(
log(n−1)/n 1

tN

))
−→ 0

if and only if

βA
(
log(n−1)/n 1

tN

)
−N logm−→∞.(4.5)
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We have

log
1

tN
= SN log

1

σ
−N logR

= SN

((
n− s

ns

)
logm− log

1

κ

)
+N

(
1

n
logm+ log

1

κ

)

=
logm

n

[
SN

(
n− s

s
− n

log 1/κ

logm

)
+N

(
1 + n

log 1/κ

logm

)]

=
logm

n
SN

[(
n− s

s
− n

log 1/κ

logm

)
+

N

SN

(
1 + n

log 1/κ

logm

)]

=
logm

n
SN

[
n− s

s
+

N

SN
+

(
N

SN
− 1

)
n
log 1/κ

logm

]

=
logm

n
SNTN ,

where

TN :=
n− s

s
+

N

SN
+

(
N

SN
− 1

)
n
log 1/κ

logm
.

Recalling that A(t) = t/L(t) we obtain

A
(
logn−1 1

tN

)1/n

=
((logm/n)SNTN )(n−1)/n

L(((logm/n)SNTN )n−1)1/n
=

(QNSN )(n−1)/n

L((QNSn)n−1)1/n
,

where QN := (logm/n)TN , and so

βA
(
logn−1 1

tN

)1/n

−N logm=N logm

(
β

N logm

(QNSN )(n−1)/n

L((QNSn)n−1)1/n
− 1

)
.

We (eventually) show that

(4.6) lim
N→∞

β

N logm

(QNSN )(n−1)/n

L((QNSn)n−1)1/n
> 1 ⇐⇒ (4.4) holds;

that is, the above limit exists and is strictly larger than one if and only if (4.4)
holds. Thus by choosing the constant a so that (4.4) holds, the limit inequality
in (4.6) will hold, so (4.5) will be true, which in turn gives mNgβ(tN )→ 0 as
N →∞ and therefore Hgβ (F ) = 0. Thus it remains to establish (4.6).

To this end, we recall that ω(aN) = aNA−1(aN)1/(n−1), and write

1

N logm

(QNSN )(n−1)/n

L((QNSn)n−1)1/n

=

(
ap1/(n−1)SN

ω(aN)

)(n−1)/n

· ω(aN)(n−1)/n

a(n−1)/np1/nN
· Q

(n−1)/n
N / logm

L((QNSn)n−1)1/n

=

(
ap1/(n−1)SN

ω(aN)

)(n−1)/n

· Q
(n−1)/n
N

p1/n logm
·
(

A−1(aN)

NL((QNSn)n−1)

)1/n

.
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Next, we claim that as N →∞,

lim
N→∞

ap1/(n−1)SN

ω(aN)
=

n− 1

n
,(4.7a)

lim
N→∞

QN =
logm

n

(
n− s

s
− n

log 1/κ

logm

)
,(4.7b)

lim
N→∞

A−1(aN)

NL((QNSN )n−1)
=

a

n
.(4.7c)

Armed with this information, we see that the limit on the left-hand side of
(4.6) exists and is equal to β/p1/n logm times the appropriate “product-power
combination” of the above limits; that is,

lim
N→∞

β

N logm

(QNSN )(n−1)/n

L((QNSN )n−1)1/n

=
β

p1/n logm

[(
n− 1

n

logm

n

(
n− s

s
− n

log 1/κ

logm

))n−1
a

n

]1/n

= β

(
n− 1

n

)(n−1)/n(
a

pn logm

)1/n(
n− s

ns
− log 1/κ

logm

)(n−1)/n

.

Evidently, the limit above is strictly larger than one if and only if (4.4) holds,
and this establishes (4.6) (under the assumption that (4.7a), (4.7b), (4.7c) all
hold).

Finally, it remains to establish the limits expressed in (4.7a), (4.7b), and
(4.7c). The first of these, (4.7a), follows immediately from (2.14f) once we
remember that

SN :=

n∑
j=1

λj =

n∑
j=1

K
1/(n−1)
j = p−1/(n−1)

n∑
j=1

A−1(aj)1/(n−1).

Next, since QN = (logm/n)TN , we see that (4.7b) is equivalent to

lim
N→∞

TN =

(
n− s

s
− n

log 1/κ

logm

)
.

The above limit follows easily from the definition of TN and the fact that
limN→∞(N/SN ) = 0; this latter limit is found by writing

N

SN
=

ω(aN)

SN
· N

ω(aN)
=

ω(aN)

SN
· 1

A−1(aN)1/(n−1)
,

using (4.7a), and remembering that A−1(s)→∞ as s→∞.
To verify (4.7c), we first use (2.14b) to see that

lim
N→∞

A−1(aN)

NL((QNSN )n−1)
= lim

N→∞

aNL(aN)

NL((QNSN )n−1)
= lim

N→∞

aL(aN)

L((QNSN )n−1)
.
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We let u := aN and write

L(aN)

L((QNSN )n−1)
=

L(u)
L(un)

· L(un)

L(Λω(u)n−1)
· L(Λω(u)n−1)

L((QNSN )n−1)
,

where Λ is a constant that is described below. The three fractions on the
above right-hand side have limits 1/n,1,1, respectively, as N →∞, and thus
(4.7c) holds. The first of these limits is an easy consequence of Lemma 2.3.
The second is just (2.14g). For the third, we note that—by employing both
(4.7a) and (4.7b)—we have

Λ := lim
N→∞

(
QNSN

ω(u)

)n−1

=

(
1

ap1/(n−1)

n− 1

n

logm

n

(
n− s

s
− n

log 1/κ

logm

))n−1

;

that is, the above limit exists and equals the right-hand quantity. Therefore

lim
N→∞

Λω(u)n−1

(QNSN )n−1
= 1,

so by Lemma 2.2(b),

lim
N→∞

L(Λω(u)n−1)

L((QNSN )n−1)
= 1. �

It is not difficult to use the above to construct an example where the map
does not depend on either of the parameters α, s. Let (sj)

∞
1 and (αj)

∞
1 be

monotone sequences in (0, n) and (α0,∞) respectively with sj ↗ n and αj ↘
α0 as j →∞. Let fj and Ej be the maps and sets constructed in Example 4.5
using the parameters sj , αj (and some given control function A and fixed
p > 0). By translating the set Ej , we may assume that Ej ⊂ Bj := B(2je,1),
where e := (1,0, . . . ,0) ∈ Rn. In particular, for all x ∈ Rn \Bj , fj(x) = x. Thus,
we may define f : Rn → Rn by letting f(x) := fj(x) for x ∈ Bj and f(x) := x
for x ∈ Rn \A where A :=

⋃
Bj . We summarize this as follows.

Example 4.6. Let n ≥ 2, p > 0, and A be given. There exists a finite
distortion homeomorphism f : Rn → Rn with expA(pKf ) ∈ L1loc(R

n) and a
set A⊂ Rn with the following property. For each s ∈ (0, n) and each β > β0,
there is a regular Cantor dust E ⊂A such that Hs(E)> 0 but Hgβ (f(E)) = 0.

4.4. Modulus of continuity example. We conclude with an example that
illustrates to what extent Theorem A is best possible. We assume L : [0,∞)→
[0,∞) is a C1 homeomorphism that satisfies (2.1) and (2.2) and define

A(t) :=
t

L(t) and ω(s) := sA−1(s)1/(n−1).

Example 4.7. Define Rn f−→ Rn by f(x) := ρ(|x|) x
|x| where

ρ(t) := exp

(
− M

p
1

n−1

ω

(
log

1

t

))
;
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here p > 0 is given and M > 0 will be chosen appropriately. Then f is a finite
distortion homeomorphism. When M is sufficiently small (i.e., M ≤C(L, n)),
expA(pKf ) is locally integrable in a neighborhood of the origin.

Proof. Since f is a radial map, it is not difficult to check that, with r := |x|,
∣∣Df(x)

∣∣=max

{
ρ′(r),

ρ(r)

r

}
and J(x, f) = ρ′(r)

(
ρ(r)

r

)n−1

.

A calculation reveals that for r sufficiently small, |Df(x)|= ρ′(r) and so

Kf (x) = p−1Mn−1ω′(log(1/r))n−1
.

Thanks to (2.14e), ω′(s) ≤ 2A−1(s)1/(n−1) for all sufficiently large s > 0, so
for all sufficiently small r = |x|,

pKf (x)≤ (2M)n−1A−1

(
log

1

r

)
.

Appealing to (2.14a) we now deduce that for all sufficiently small r = |x|,

expA
(
pKf (x)

)
≤ exp

(
C(2M)n−1 log

1

r

)
=

1

rβ
,

where C =C(L) depends on L and β = 2n−1CMn−1.
Thus by choosing M > 0 so that β < n, that is, with Mn−1 < n/(2n−1C),

we obtain expA(pKf ) locally integrable in a neighborhood of the origin. �
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tion under mappings of sub-exponentially integrable distortion, Ann. Acad.
Sci. Fenn. Math. 36 (2011), 553–566. MR 2865513

[RZZ11b] T. Rajala, A. Zapadinskaya and T. Zürcher, Generalized Hausdorff dimension
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