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STANLEY DEPTH OF WEAKLY POLYMATROIDAL IDEALS
AND SQUAREFREE MONOMIAL IDEALS

S. A. SEYED FAKHARI

Abstract. Let I be a weakly polymatroidal ideal or a squarefree
monomial ideal of a polynomial ring S. In this paper, we provide

a lower bound for the Stanley depth of I and S/I. In particu-
lar, we prove that if I is a squarefree monomial ideal which is

generated in a single degree, then sdepth(I) ≥ n− �(I) + 1 and

sdepth(S/I) ≥ n − �(I), where �(I) denotes the analytic spread
of I. This proves a conjecture of the author in a special case.

1. Introduction

Let K be a field and let S = K[x1, . . . , xn] be the polynomial ring in n
variables over K. Let M be a finitely generated Zn-graded S-module. Let
u ∈ M be a homogeneous element and Z ⊆ {x1, . . . , xn}. The K-subspace
uK[Z] generated by all elements uv with v ∈ K[Z] is called a Stanley space
of dimension |Z|, if it is a free K[Z]-module. Here, as usual, |Z| denotes
the number of elements of Z. A decomposition D of M as a finite direct
sum of Stanley spaces is called a Stanley decomposition of M . The minimum
dimension of a Stanley space in D is called the Stanley depth of D and is
denoted by sdepth(D). The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}
is called the Stanley depth of M . Stanley [10] conjectured that

depth(M)≤ sdepth(M)

for every Zn-graded S-module M . For a reader friendly introduction to Stan-
ley depth, we refer to [5].
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Let I be a monomial ideal of S with Rees algebra R(I) and let
m = (x1, . . . , xn) be the graded maximal ideal of S. Then the K-algebra
R(I)/mR(I) is called the fibre ring and its Krull dimension is called the ana-
lytic spread of I , denoted by �(I). This invariant is a measure for the growth
of the number of generators of the powers of I . Indeed, for k� 0, the Hilbert
function H(R(I)/mR(I),K, k) = dimK(I

k/mIk), which counts the number of
generators of the powers of I , is a polynomial function of degree �(I)− 1.

In this paper, we consider some linear algebraic approximations of the
analytic spread of a monomial ideal. Indeed, assume that v1, . . . , vt are t
vectors in Qn. Then they are said to be linearly dependent if there exist
rational numbers c1, . . . , ct, not all zero, for which

c1v1 + · · ·+ ctvt = 0.

Similarly they are affinely dependent, if in addition the sum of the coefficients
is zero:

t∑
i=1

ci = 0.

If v1, . . . , vt are not linearly dependent (resp. affinely dependent), then they are
said to be linearly independent (resp. affinely independent). Now we associate
two invariants to every monomial ideal I , which are called the rank and the
affine rank of I . For every vector a= (a1, . . . , an) of non-negative integers, we
denote the monomial xa1

1 · · ·xan
n by xa.

Definition 1.1. Let I ⊆ S =K[x1, . . . , xn] be a monomial ideal and G(I) =
{xa1 , . . . ,xam} be the set of minimal monomial generators of I . The rank of
I , denoted by rank(I) is the cardinality of the largest linearly independent
subset of {a1, . . . ,am}. Similarly the affine rank of I , denoted by afrank(I)
is the cardinality of the largest affinely independent subset of {a1, . . . ,am}.

It is clear from Definition 1.1 that for every monomial ideal I , the inequality
afrank(I) ≥ rank(I) holds. It is known [2, Lemma 10.3.19] that if I is a
monomial ideal which is generated in a single degree, then �(I) = rank(I). The
following proposition shows that in this case we also have �(I) = afrank(I).

Proposition 1.2. Let I be a monomial ideal, which is generated in a single
degree. Then �(I) = rank(I) = afrank(I).

Proof. It is sufficient to prove the second equality. Assume that afrank(I) =
t. Therefore, there exist integers 1≤ i1 < · · ·< it ≤m such that the equalities

c1ai1 + · · ·+ ctait = 0

and

c1 + · · ·+ ct = 0,
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with ci ∈ Q, for every 1 ≤ i ≤ t, imply that c1 = · · · = ct = 0. Since I is
generated in a single degree, say k, ai1 , . . . ,ait are linearly independent over Q.
Indeed, assume that there exist rational numbers d1, . . . , dt such that

d1ai1 + · · ·+ dtait = 0.

Now for every 1≤ j ≤ t, the sum of the components of aij is equal to k and
thus, the sum of the components of

d1ai1 + · · ·+ dtait

is equal to

d1k+ · · ·+ dtk

and this shows that

d1 + · · ·+ dt = 0.

Therefore

d1 = · · ·= dt = 0.

Hence, ai1 , . . . ,ait are linearly independent over Q. Therefore, rank(I) ≥ t.
Since we always have afrank(I)≥ rank(I), it follows that afrank(I) = rank(I).

�

In [6], the authors prove that if I ⊂ S is a weakly polymatroidal ideal I
(see Definition 2.1), which is generated in a single degree, then depth(S/I)≥
n− �(I), sdepth(S/I)≥ n− �(I) and sdepth(I)≥ n− �(I) + 1. In Section 2,
we generalize this result by proving that for every weakly polymatroidal ideal
I , the inequalities

sdepth(I)≥ n− afrank(I) + 1, sdepth(S/I)≥ n− afrank(I)

and

depth(S/I)≥ n− afrank(I)

hold (see Theorem 2.6).
In [8], the author conjectures that for every integrally closed monomial

ideal, the inequalities sdepth(S/I) ≥ n − �(I) and sdepth(I) ≥ n − �(I) + 1
hold (see Conjecture 3.1). In Section 3, we prove this conjecture for every
squarefree monomial ideal which is generated in a single degree. In fact, we
prove a stronger result. We show that for every squarefree monomial ideal I
of the polynomial ring S, the inequalities

sdepth(I)≥ n− rank(I) + 1

and

sdepth(S/I)≥ n− rank(I)

hold (see Theorem 3.3).
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2. Stanley depth of weakly polymatroidal ideals

Weakly polymatroidal ideals are generalization of polymatroidal ideals and
they are defined as follows.

Definition 2.1 ([4], Definition 1.1). A monomial ideal I of S =K[x1, . . . ,
xn] is called weakly polymatroidal if for every two monomials u= xa1

1 · · ·xan
n

and v = xb1
1 · · ·xbn

n in G(I) such that a1 = b1, . . . , at−1 = bt−1 and at > bt for
some t, there exists j > t such that xt(v/xj) ∈ I .

The aim of this section is to provide a lower bound for the depth and the
Stanley depth of weakly polymatroidal ideals. As usual for every monomial u,
the support of u, denoted by Supp(u), is the set of variables which divide u.

Lemma 2.2. Let I be a weakly polymatroidal ideal and let G(I) =
{u1, . . . , um} be the set of minimal monomial generators of I . Assume that

x1 ∈
m⋃
i=1

Supp(ui).

Then (I : x1) is a weakly polymatroidal ideal which is minimally generated by
the set

G =

{
ui

x1

∣∣∣ui ∈G(I) AND x1 divides ui

}
.

Proof. It is clear that the ideal generated by G is a weakly polymatroidal
ideal. Thus, we prove that (I : x1) is generated by the set G. Without loss of
generality, we may assume that u1, . . . , ut are divisible by x1 and ut+1, . . . , um

are not divisible by x1, where 1≤ t≤m. Let vi = ui/x1 (1≤ i≤ t). We should
prove that (I : x1) is generated by v1, . . . , vt. Let v ∈ (I : x1) be a monomial.
Then x1v ∈ I and so there exists 1≤ i≤m in such a way that ui divides x1v.
If 1≤ i≤ t, then v is divisible by vi and therefore, v ∈ (v1, . . . , vt). Hence, we
may assume that i≥ t+1. Now ui is not divisible by x1 and thus ui|v. Since

x1 ∈
m⋃
i=1

Supp(ui),

Definition 2.1 implies that there exists j ≥ 2 such that x1ui/xj ∈ I . Hence,
there exists 1≤ s≤m, such that us divides x1ui/xj . If t+ 1≤ s≤m, then
us divides ui/xj and thus us properly divides ui, which is a contradiction,
because G(I) is the set of minimal monomial generators of I . It follows that
1 ≤ s ≤ t. Therefore, vs divides ui/xj and hence, it divides ui. Since v is
divisible by ui, we conclude that vs divides v. This shows that v ∈ (v1, . . . , vt)
and completes the proof of the lemma. �

The following lemma shows that the affine rank of a weakly polymatroidal
ideal does not increase under the colon operation with respect to the vari-
able x1.
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Lemma 2.3. Let I be a weakly polymatroidal ideal. Then afrank((I : x1))≤
afrank(I).

Proof. If I = (I : x1), then there is nothing to prove. So assume that I �=
(I : x1). Let G(I) = {u1, . . . , um} be the set of minimal monomial generators
of I . Since I �= (I : x1), it follows that

x1 ∈
m⋃
i=1

Supp(ui).

Without loss of generality, we may assume that u1, . . . , ut are divisible by
x1 and ut+1, . . . , um are not divisible by x1, where 1≤ t≤m. Let vi = ui/x1

(1≤ i≤ t). By Lemma 2.2, the set {v1, . . . , vt} is the set of minimal monomial
generators of (I : x1). For simplicity, we assume that ai is the exponent vector
of vi (1≤ i≤ t). Suppose that afrank((I : x1)) = s and choose the monomials
vj1 , . . . , vjs , such that the equalities

c1aj1 + · · ·+ csajs = 0

and

c1 + · · ·+ cs = 0,

with ci ∈ Q, for every 1 ≤ i ≤ s, imply that c1 = · · · = cs = 0. Note that for
every 1 ≤ i ≤ t, the exponent vector of ui is equal to ai + e1, where e1 is
the first vector in the standard basis of Qn. Now assume that there exist
d1, . . . , ds ∈Q, such that d1 + · · ·+ ds = 0 and

d1(aj1 + e1) + · · ·+ ds(ajs + e1) = 0.

Therefore,

d1aj1 + · · ·+ dsajs + (d1 + · · ·+ ds)e1 = 0.

Since d1 + · · ·+ ds = 0, it follows that

d1aj1 + · · ·+ dsajs = 0.

By the choice of vj1 , . . . , vjs , we conclude that d1 = · · · = ds = 0. Thus,
afrank(I)≥ s and this proves our assertion. �

In the following lemma, we consider the behavior of the affine rank of an
arbitrary monomial ideal under the elimination of x1.

Lemma 2.4. Let I be a monomial ideal of S =K[x1, . . . , xn], such that

x1 ∈
⋃

u∈G(I)

Supp(u).

Let S′ =K[x2, . . . , xn] be the polynomial ring obtained from S by deleting the
variable x1 and consider the ideal I ′ = I∩S′. Then afrank(I ′)+1≤ afrank(I).
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Proof. Let G(I) = {u1, . . . , um} be the set of minimal monomial generators
of I . For simplicity we assume that ai is the exponent vector of ui (1≤ i≤m).
Without loss of generality, we may assume that u1, . . . , ut are divisible by x1

and ut+1, . . . , um are not divisible by x1, where 1 ≤ t ≤ m. Then the set
{ut+1, . . . , um} is the set of minimal monomial generators of I ′. Assume that
afrank(I ′) = s. Thus, there exist integers t+ 1≤ j1 < j2 < · · ·< js ≤m, such
that the equalities

c1aj1 + · · ·+ csajs = 0

and

c1 + · · ·+ cs = 0,

with ci ∈Q, for every 1≤ i≤ s, imply that c1 = · · ·= cs = 0. Now we consider
the set {u1, uj1 , . . . , ujs} and assume that there exist d0, d1, . . . , ds ∈Q, such
that d0 + d1 + · · ·+ ds = 0 and

d0a1 + d1aj1 + · · ·+ dsajs = 0.

Looking at the first component of the vector d0a1 + d1aj1 + · · · + dsajs , it
follows that d0 = 0 and hence, d1 + · · ·+ ds = 0 and

d1aj1 + · · ·+ dsajs = 0.

By the choice of integers j1, . . . , js, we conclude that d1 = · · ·= ds = 0. There-
fore, afrank(I)≥ s+ 1= afrank(I ′) + 1. �

Remark 2.5. It is completely clear from the proof of the Lemma 2.4, that
one can consider any arbitrary variable instead of x1.

We are now ready to state and prove the main result of this section.

Theorem 2.6. Let I be a weakly polymatroidal ideal of S =K[x1, . . . , xn].
Then we have the following assertions:

(i) sdepth(I)≥ n− afrank(I) + 1 and sdepth(S/I)≥ n− afrank(I),
(ii) depth(S/I)≥ n− afrank(I).

Proof. We prove (i) and (ii) simultaneously by induction on n and∑
u∈G(I)

deg(u),

where G(I) is the set of minimal monomial generators of I . If n= 1 or∑
u∈G(I)

deg(u) = 1,

then I is a principal ideal and so we have afrank(I) = 1, sdepth(I) = n,
depth(S/I) = n − 1 and by [7, Theorem 1.1], sdepth(S/I) = n − 1. There-
fore, in these cases, the inequalities in (i) and (ii) are trivial.
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We now assume that n≥ 2 and∑
u∈G(I)

deg(u)≥ 2.

Let S′ =K[x2, . . . , xn] be the polynomial ring obtained from S by deleting the
variable x1 and consider the ideals I ′ = I ∩ S′ and I ′′ = (I : x1). If

x1 /∈
⋃

u∈G(I)

Supp(u),

then the induction hypothesis on n implies that

depth(S/I) = depth
(
S′/I ′

)
+ 1≥ (n− 1)− afrank

(
I ′
)
+ 1= n− afrank(I).

On the other hand, by [7, Theorem 1.1] and [3, Lemma 3.6], we conclude
that sdepth(S/I) = sdepth(S′/I ′) + 1 and sdepth(I) = sdepth(I ′) + 1. There-
fore, using the induction hypothesis on n we conclude that sdepth(I) ≥
n − afrank(I) + 1 and sdepth(S/I) ≥ n − afrank(I). Therefore, we may as-
sume that

x1 ∈
⋃

u∈G(I)

Supp(u).

Now I = I ′S′ ⊕ x1I
′′S and S/I = (S′/I ′S′)⊕ x1(S/I

′′S) (as vector spaces)
and therefore by definition of the Stanley depth we have

sdepth(I)≥min
{
sdepthS′

(
I ′S′), sdepthS(I ′′)}(1)

and

sdepth(S/I)≥min
{
sdepthS′

(
S′/I ′S′), sdepthS(S/I ′′)}.(2)

On the other hand, by applying the depth lemma on the exact sequence

0−→ S/(I : x1)−→ S/I −→ S/(I, x1)−→ 0

we conclude that

depth(S/I)≥min
{
depthS′

(
S′/I ′S′),depthS(S/I ′′)}.(3)

Using Lemma 2.2, it follows that I ′′ is a weakly polymatroidal ideal and by
Lemma 2.3 we conclude that afrank(I ′′) ≤ afrank(I). Hence, our induction
hypothesis on ∑

u∈G(I)

deg(u)

implies that

depthS
(
S/I ′′

)
≥ n− afrank

(
I ′′

)
≥ n− afrank(I),

sdepthS
(
S/I ′′

)
≥ n− afrank

(
I ′′

)
≥ n− afrank(I)

and

sdepthS
(
I ′′

)
≥ n− afrank

(
I ′′

)
+ 1≥ n− afrank(I) + 1.
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On the other hand I ′S′ is a weakly polymatroidal ideal and since

x1 ∈
⋃

u∈G(I)

Supp(u),

using Lemma 2.4 we conclude that afrank(I ′S′)≤ afrank(I)− 1 and therefore
by the induction hypothesis on n we conclude that

sdepthS′
(
I ′S′) ≥ (n− 1)− afrank

(
I ′S′)+ 1≥ (n− 1)−

(
afrank(I)− 1

)
+ 1

= n− afrank(I) + 1,

and similarly sdepthS′(S′/I ′S′) ≥ n− afrank(I) and depthS′(S′/I ′S′) ≥ n−
afrank(I). Now the assertions follow by inequalities (1), (2) and (3). �

Remark 2.7. Soleyman Jahan [9] proves that Stanley’s conjecture holds
true for I , when it has linear quotient. This shows that Theorem 2.6 is more
interesting for the Stanley depth of S/I rather than I .

As an immediate consequence of Proposition 1.2 and Theorem 2.6, we
conclude the following result which appeared in [6].

Corollary 2.8. Let I be a weakly polymatroidal ideal of S =K[x1, . . . , xn]
which is generated in a single degree. Then we have the following assertions:

(i) sdepth(I)≥ n− �(I) + 1 and sdepth(S/I)≥ n− �(I),
(ii) depth(S/I)≥ n− �(I).

Using Theorem 2.6, we provide an upper bound for the height of associated
primes of a weakly polymatroidal ideal.

Corollary 2.9. Let I be a weakly polymatroidal ideal of S =K[x1, . . . , xn].
Then

max
{
ht(p) | p ∈Ass(S/I)

}
≤ afrank(I).

Proof. Let p ∈ Ass(S/I) be given. By [1, Proposition 1.2.13], we have
depth(S/I) ≤ n − ht(p), while by Theorem 2.6 we have depth(S/I) ≥ n −
afrank(I). This implies that ht(p) ≤ afrank(I) for every p ∈ Ass(S/I) and
completes the proof of the corollary. �

3. Stanley depth of squarefree monomial ideals

Let I ⊂ S be an arbitrary ideal. An element f ∈ S is integral over I , if
there exists an equation

fk + c1f
k−1 + · · ·+ ck−1f + ck = 0 with ci ∈ Ii.

The set of elements I in S which are integral over I is the integral closure
of I . It is known that the integral closure of a monomial ideal I ⊂ S is a
monomial ideal generated by all monomials u ∈ S for which there exists an
integer k such that uk ∈ Ik (see [2, Theorem 1.4.2]).

In [8], the author proposed the following conjecture regarding the Stanley
depth of integrally closed monomial ideals.



SDEPTH OF WEAKLY POLYMATROIDAL AND SQUAREFREE IDEALS 879

Conjecture 3.1. Let I ⊂ S be an integrally closed monomial ideal. Then
sdepth(S/I)≥ n− �(I) and sdepth(I)≥ n− �(I) + 1.

In this section we prove that Conjecture 3.1 is true for every squarefree
monomial ideal which is generated in a single degree. Indeed we show that
for every squarefree monomial ideal I of the polynomial ring S, the inequal-
ities sdepth(I) ≥ n − rank(I) + 1 and sdepth(S/I) ≥ n − rank(I) hold (see
Theorem 3.3).

First, we need the following lemma.

Lemma 3.2. Let I be a squarefree monomial ideal. Then for every 1≤ j ≤ n
we have rank((I : xj))≤ rank(I).

Proof. Let G(I) = {u1, . . . , um} be the set of minimal monomial generators
of I . Without loss of generality, we may assume that u1, . . . , ut are divisible by
xj and ut+1, . . . , um are not divisible by xj , where 0≤ t≤m. Put vi = ui/xj ,
if 1≤ i≤ t and vi = ui, if t+ 1≤ i≤m. For simplicity we assume that ai is
the exponent vector of ui and bi is the exponent vector of vi (1≤ i≤m). To
prove the assertion one just note that for every k �= j and every 1≤ i≤m, the
kth component of ai and bi are the same and for k = j, the kth component
of bi is always zero. �

We are now ready to state and prove the main result of this section.

Theorem 3.3. Let I be a squarefree monomial ideal of S =K[x1, . . . , xn].
Then sdepth(I)≥ n− rank(I) + 1 and sdepth(S/I)≥ n− rank(I).

Proof. Let G(I) be the set of minimal monomial generators of I . We prove
the assertions by induction on n. If n= 1, then I is a principal ideal and so we
have rank(I) = 1, sdepth(I) = n and by [7, Theorem 1.1], sdepth(S/I) = n−1.
Therefore, in this case, there is nothing to prove.

We now assume that n≥ 2. Let S′ =K[x2, . . . , xn] be the polynomial ring
obtained from S by deleting the variable x1 and consider the ideals I ′ = I ∩S′

and I ′′ = (I : x1). If

x1 /∈
⋃

u∈G(I)

Supp(u),

then by [7, Theorem 1.1] and [3, Lemma 3.6], we conclude that sdepth(S/I) =
sdepth(S′/I ′) + 1 and sdepth(I) = sdepth(I ′) + 1. Therefore, using our
induction hypothesis, we conclude that sdepth(I) ≥ n − rank(I) + 1 and
sdepth(S/I)≥ n− rank(I). Hence we may assume that

x1 ∈
⋃

u∈G(I)

Supp(u).

Now I = I ′S′ ⊕ x1I
′′S and S/I = (S′/I ′S′)⊕ x1(S/I

′′S) and therefore by
the definition of Stanley depth we have

sdepth(I)≥min
{
sdepthS′

(
I ′S′), sdepthS(I ′′)}(1)
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and

sdepth(S/I)≥min
{
sdepthS′

(
S′/I ′S′), sdepthS(S/I ′′)}.(2)

Note that the generators of I ′′ belong to S′. Therefore, our induction hypoth-
esis implies that

sdepthS′
(
S′/I ′′

)
≥ (n− 1)− rank

(
I ′′

)
and

sdepthS′
(
I ′′

)
≥ (n− 1)− rank

(
I ′′

)
+ 1.

Using Lemma 3.2 together with [7, Theorem 1.1] and [3, Lemma 3.6], we
conclude that

sdepth
(
S/I ′′

)
= sdepthS′

(
S′/I ′′

)
+ 1≥ (n− 1)− rank

(
I ′′

)
+ 1≥ n− rank(I)

and

sdepthS
(
I ′′

)
= sdepthS′

(
I ′′

)
+1≥ (n−1)−rank

(
I ′′

)
+1+1≥ n−rank(I)+1.

On the other hand, since

x1 ∈
⋃

u∈G(I)

Supp(u),

it follows that rank(I ′S′) ≤ rank(I) − 1 and therefore by our induction hy-
pothesis we conclude that

sdepthS′
(
I ′S′) ≥ (n− 1)− rank

(
I ′S′)+ 1≥ (n− 1)−

(
rank(I)− 1

)
+ 1

= n− rank(I) + 1,

and similarly sdepthS′(S′/I ′S′)≥ n− rank(I). Now the assertions follow by
inequalities (1) and (2). �

As an immediate consequence of Proposition 1.2 and Theorem 3.3, we
conclude that Conjecture 3.1 is true for every squarefree monomial ideal which
is generated in a single degree.

Corollary 3.4. Let I be a squarefree monomial ideal of S =K[x1, . . . , xn]
which is generated in a single degree. Then sdepth(I) ≥ n − �(I) + 1 and
sdepth(S/I)≥ n− �(I).
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