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DEFINABLE SMOOTHING OF CONTINUOUS FUNCTIONS

ATHIPAT THAMRONGTHANYALAK

Abstract. Let R be an o-minimal expansion of a real closed
field. Given definable continuous functions f : U → R and

ε : U → (0,+∞), where U is an open subset of Rn, we construct

a definable Cm-function g : U → R with |g(x)− f(x)|< ε(x) for

all x ∈ U . Moreover, we show that if f is uniformly continuous,
then g can also chosen to be uniformly continuous.

1. Introduction

This paper discusses the problem of smoothing continuous functions de-
finable in an o-minimal expansion of a real closed field. It is motivated by
a series of papers by Fischer [5], [7] and a question posed by C. Fefferman
during a meeting at the Fields Institute in Toronto in 2012, as part of its
Focus Program on Whitney Problems.

Smoothing problems have been studied widely in differential topology (see
[8] for classical results). Basically, the question is:

Question. Let U be an open subset of Rn, let f : U → R and ε : U →
(0,+∞) be continuous functions, and m ∈N. Is there a Cm-function g : U →
R such that |g(x)− f(x)|< ε(x) for all x ∈ U?

Classical methods that are used to answer this question involve convolu-
tions and integrations (see [9]), which are non-constructive and do not gen-
erally preserve definability in the sense of first-order logic. In this paper, we
study smoothing of continuous functions in the category of functions U → R

(U ⊆R
n open) which are definable in a given o-minimal expansion of the or-

dered field of real numbers. More generally, we fix an o-minimal expansion R
of a real closed ordered field R (not necessarily the real field). “Definable” will
mean “definable in R, possibly with parameters.” We assume that readers
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have some familiarity with o-minimal structures. The background required
for reading this paper can be found in [2].

In [4], Escribano proved that in R it is possible, given 1≤ n≤m ∈ N, to
find definable Cm-approximations of definable Cn-functions. The case n= 1
of this result can be strengthened by replacing “C1” with the weaker condition
“locally Lipschitz,” as shown by Fischer [5, Theorem 1]. (Every definable C1-
function is locally Lipschitz.) Here, we relax the condition further to just
“continuous.” To formulate our main theorem, we introduce some useful
terminology: Given definable subsets X ⊆E of Rn, we say that X is a small
subset of E if dim(X)< dim(E).

Theorem 1.1. Let f : U → R be a definable continuous function, where
U ⊆ Rn is open. Let Z be a definable closed small subset of U such that
f � (U \ Z) is Cm, where m ≥ 1. Let ε : U → R>0 be a definable continuous
function. Then, for any definable open neighborhood V of Z in U , there is a
definable Cm-function g : U →R such that

(1) |g(x)− f(x)|< ε(x) for every x ∈ U ;
(2) g = f outside V .

Note that by the Smooth Cell Decomposition theorem, given m≥ 1, such
Z as in Theorem 1.1 always exists.

We say that a definable function f : S →R (S ⊆ Rn, possibly non-open),
is Cm if there exists an open neighborhood U of S in Rn and an extension of
f to a definable Cm-function U →R. From the theorem above, Smooth Cell
Decomposition, and the definable version of the Tietze Extension theorem
(see, e.g., [1]) we immediately obtain:

Corollary 1.2. Let f : S → R and ε : S → R>0, where S ⊆ Rn, be de-
finable continuous functions. Then for each m ≥ 1 there exists a definable
Cm-function g : S →R such that |g(x)− f(x)|< ε(x) for every x ∈ S.

We prove Theorem 1.1 in Section 3, after some preliminary lemmas in
Section 2. Our proof follows the strategy to tackle smoothing problems in
o-minimal structures from [4], [5], [7]. In Section 4, we discuss the smoothing
of uniformly continuous maps.

Conventions and notations. Throughout this paper, d, k, l, m, n, and N
will range over the set N = {0,1,2,3, . . .} of natural numbers. Let S ⊆ Rn.
We denote by cl(S) the closure of S, by ∂(S) = cl(S)\S the frontier of S, and
by int(S) the interior of S. We denote the Euclidean norm on Rn by ‖ · ‖ and
the associated metric by (x, y) 	→ d(x, y) := ‖x− y‖. For r ∈R>0 and x ∈Rn

we let

Br(x) :=
{
y ∈Rn : d(x, y)< r

}
be the open ball of radius r around x.
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2. Some lemmas

This section contains some lemmas needed for the proof of the theorem.

2.1. A generalization of the �Lojasiewicz inequality. In [3], van den
Dries and Miller showed that many big theorems in real analytic geometry
can be modified to definable versions in o-minimal structures; in particular,
a definable version of the �Lojasiewicz inequality, which is a crucial tool in the
proof of Theorem 1.1, can be formulated. Given a function f : E → R, we
write Z(f) := {x ∈E : f(x) = 0} for the zero set of f .

Theorem 2.1 (Generalized �Lojasiewicz inequality [3, Theorem C.14]).
Let E be a non-empty, definable, closed, and bounded subset of Rn, and
f, g : E → R definable and continuous with Z(f) ⊆ Z(g). There is a defin-
able continuous strictly increasing bijection φ : R→R such that φ(0) = 0 and
|φ(g(x))| ≤ |f(x)| for all x ∈E.

By focusing on functions whose domains are Cm-cells, a Cm-version of the
�Lojasiewicz inequality follows:

Lemma 2.2. Let Ω⊆Rn be a bounded open Cm-cell and f : cl(Ω)→R≥0

be definable and continuous such that f(x) > 0 for all x ∈ Ω. Then there
is a definable continuous function g : cl(Ω)→ R such that g � Ω is Cm and
0< g(x)< f(x) for all x ∈Ω.

Proof. For x= (x1, . . . , xn) ∈Rn and i= 0, . . . , n, let πi(x) = (x1, . . . , xi) ∈
Ri. Let fi, gi : πi(Ω)→R (i= 0, . . . , n− 1) be the Cm-functions defining Ω.
Thus fi(x1, . . . , xi)< gi(x1, . . . , xi) for (x1, . . . , xi) ∈Ri, i= 0, . . . , n− 1, and

πi(Ω) =
{
(x1, . . . , xi) ∈ πi−1(Ω)×R :

fi−1(x1, . . . , xi−1)< xi < gi−1(x1, . . . , xi−1)
}

for i= 1, . . . , n. Define ρ : cl(Ω)→R by

ρ(x) :=

{∏n
i=1(xi − fi−1(πi−1(x))) · (gi−1(πi−1(x))− xi), if x ∈Ω;

0, otherwise,

where x = (x1, . . . , xn) ∈ cl(Ω). Clearly, ρ is Cm on Ω. Next, we will show
that ρ is continuous on cl(Ω). Let ε > 0 and x ∈ ∂Ω. Then there is i ∈
{1, . . . , n} such that πi−1(x) ∈ πi−1(Ω) and either xi = fi−1(πi−1(x)) or xi =
gi−1(πi−1(x)). Let first i ∈ {1, . . . , n} be such that πi−1(x) ∈ πi−1(Ω) and
xi = fi−1(πi−1(x)). Let ‖x‖∞ := max{|x1|, . . . , |xn|} for x= (x1, . . . , xn) ∈Rn,
and set

M := max
{
1, sup

{
‖a− b‖∞ : a, b ∈ cl(Ω)

}}
.

By continuity of fi−1, take δ0 > 0 so small that∣∣fi−1

(
πi−1(y)

)
− fi−1

(
πi−1(x)

)∣∣< ε

2M2n
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for every y ∈Bδ0(x)∩Ω. Set δ := min{δ0, ε
2M2n }. Suppose y ∈Bδ(x)∩ cl(Ω);

we have |ρ(y)− ρ(x)|= |ρ(y)| since x ∈ ∂Ω, and we claim that |ρ(y)|< ε. To
see this, we may assume y ∈Ω. Then∣∣ρ(y)∣∣≤ ∣∣(xi − fi−1

(
πi−1(x)

))∣∣ ·M2n

≤M2n
(
|yi − xi|+

∣∣xi − fi−1

(
πi−1(x)

)∣∣
+
∣∣fi−1

(
πi−1(x)

)
− fi−1

(
πi−1(y)

)∣∣)
≤M2n

(
ε

2M2n
+ 0+

ε

2M2n

)
< ε.

Similarly one shows that if i ∈ {1, . . . , n} such that πi−1(x) ∈ πi−1(Ω) and
xi = gi−1(πi−1(x)), then |ρ(y)|< ε. Thus, ρ is continuous on cl(Ω). Obviously,
ρ vanishes on ∂Ω. By Theorem 2.1, there is a definable continuous strictly
monotone bijection φ : R → R such that φ(0) = 0 and 0 < φ(ρ(x)) < f(x)
for x ∈ Ω. By the Smooth Monotonicity theorem, pick 0 < δ < 1 such that
φ � (0, δ) is Cm. Define ψ : R→R and g : cl(Ω)→R by

ψ(t) := φ

(
δt2

1 + t2

)
, g = ψ ◦ ρ.

Then g is Cm. We have t ≥ δt2

1+t2 for t ∈ (0,+∞). Since φ is an increasing
function,

0< g(x) = ψ
(
ρ(x)

)
= φ

(
δ(ρ(x))2

1 + (ρ(x))2

)
≤ φ

(
ρ(x)

)
< f(x)

for x ∈Ω. �

2.2. Special cases of Theorem 1.1. The rest of this section is devoted to
proving some special cases of our main theorem, before we give the proof of
the general case in the next section.

Lemma 2.3. Let Ω ⊆ Rn, where n ≥ 1, be a bounded open Cm-cell and
U be a definable open set with Ω × {0}l ⊆ U ⊆ Ω × Rl. Let F : U → R be
definable and continuous such that F � U \ (Ω × {0}l) and F � Ω × {0}l are
Cm. Let ε : U → R>0 be definable and continuous, and let O ⊆ Ω×Rl be a
definable open neighborhood of Ω×{0}l. Then there is a definable Cm-function
G : U →R such that

(1) |G(x)− F (x)|< ε(x) for all x ∈ U ;
(2) G= F outside O;
(3) G= F on Ω× {0}l.

Proof. Since F � Ω× {0}l is Cm, there are an open subset V of O and a
definable Cm-function f : V →R such that Ω× {0}l ⊆ V and F �Ω× {0}l =



DEFINABLE SMOOTHING OF CONTINUOUS FUNCTIONS 805

f �Ω×{0}l. Shrinking V if necessary, we can assume that |f(x)−F (x)|< ε(x)
2

for all x ∈ V . Set

Δ(x) =
1

2
·min

{
d(x,∂Ω), d

(
(x,0), ∂V

)
,1
}

for all x ∈Ω.

By Lemma 2.2, there is a definable Cm-function g : Ω → R such that 0 <
g(x) < Δ(x) for every x ∈ Ω. Let σ : R → R be a semialgebraic increasing
Cm-function such that σ(x) = 0 if x ≤ 0 and 0 < σ(x) ≤ 1 if x > 0. Define
ψ1, ψ2 : Ω×Rl →R by

ψ1(x, y) :=
l∏

i=1

[
σ
(
yi + g(x)

)
σ
(
g(x)− yi

)]
,

ψ2(x, y) :=
l∏

i=1

[
σ

(
−yi −

1

2
g(x)

)
+ σ

(
yi −

1

2
g(x)

)]
for x ∈Ω and y ∈Rl.

For each s ∈ (0,1], let

Ws :=
{
(x, y) : x ∈Ω, |yi|< s · g(x) for i= 1, . . . , l

}
⊆ V,

so Ws ⊆Wt for 0 < s ≤ t ≤ 1. Note that ψ1 = 0 outside W1, ψ2 = 0 in W 1
2
,

and ψ1 +ψ2 is positive on V . See Figure 1 for a schematic picture.

Figure 1. The sets Ω× {0}l, W 1
2
, W1, and V .
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Define G : U →R by

G(z) :=

{
ψ1(z)f(z)+ψ2(z)F (z)

ψ1(z)+ψ2(z)
, if z ∈ V ;

F (z), otherwise.

We will show that G satisfies the desired conditions. Since V ⊆ O, we have
G= F outside O. Moreover, G= f = F on Ω× {0}l, as ψ2 = 0 on Ω× {0}l.
To prove (1), let z ∈ V . Then

∣∣G(z)− F (z)
∣∣= ∣∣∣∣ψ1(z)f(z) +ψ2(z)F (z)

ψ1(z) + ψ2(z)
− F (z)

∣∣∣∣
=

∣∣∣∣ ψ1(z)

ψ1(z) +ψ2(z)

∣∣∣∣ · ∣∣f(z)− F (z)
∣∣

≤ ε

2
< ε.

Therefore, it remains to prove that G is Cm. Obviously, G is Cm on V \ (Ω×
{0}l). Since F is Cm on U \ (Ω× {0}l) and f is Cm on V , it is enough to
show the following:

(1) G= F on U \ cl(W1);
(2) G= f on W 1

2
.

G(z) =
ψ1(z)f(z) +ψ2(z)F (z)

ψ1(z) +ψ2(z)
=

ψ2(z)F (z)

ψ2(z)
= F (z) when z ∈ V \W1.

Thus G= F on U \W1. For (2), let x ∈Ω. Since W 1
2
is an open neighborhood

of Ω× {0}l and ψ2 = 0 on W 1
2
, there exists an open neighborhood V ′ ⊆W 1

2

of (x,0). On V ′, we have G= f . So, G is Cm on U . �

Lemma 2.4. Let U ⊆Rn be open and F : U →R be definable continuous,
and let a ∈ U be such that F � (U \ {a}) is Cm. Let ε : U →R>0 be definable
and continuous, and let O be a definable open neighborhood of a in U . Then
there is a definable Cm-function G : U →R such that

(1) |G(x)− F (x)|< ε(x) for all x ∈ U ; and
(2) G= F outside O.

Proof. We may assume that a= 0 ∈ U . Let ε0 := min{ε(x) : ‖x‖ ≤ 1}. Let
V ⊆O∩B1(0) be a definable open neighborhood of 0 such that |F (x)−F (0)|<
ε0
2 for every x ∈ V . Take a positive r ∈R such that (−2r,2r)n ⊆ V . We may
assume r = 1. Let σ : R→R be a semialgebraic increasing Cm-function such
that σ(x) = 0 if x ≤ 0 and 0 < σ(x) ≤ 1 if x > 0. Define ψ1, ψ2 : R

n → R
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by

ψ1(x) :=

n∏
i=1

[
σ(xi − 1)σ(1− xi)

]
,

ψ2(x) :=

n∏
i=1

[
σ

(
−xi −

1

2

)
+ σ

(
xi −

1

2

)]
.

For each s ∈ (0,1], let

Ws :=
{
x ∈Rn : |xi|< s for i= 1, . . . , l

}
⊆ V.

Similar to the proof of Lemma 2.3, we know that ψ1 = 0 outside W1, ψ2 = 0
in W 1

2
, and ψ1 +ψ2 is positive on V . Define G : U →R by

G(z) :=

{
ψ1(z)F (0)+ψ2(z)F (z)

ψ1(z)+ψ2(z)
, if z ∈ V ;

F (z), otherwise.

Since V ⊆O, G= F outside O. To prove (1), let z ∈ V . Then∣∣G(z)− F (z)
∣∣= ∣∣∣∣ψ1(z)F (0) +ψ2(z)F (z)

ψ1(z) + ψ2(z)
− F (z)

∣∣∣∣
=

∣∣∣∣ ψ1(z)

ψ1(z) +ψ2(z)

∣∣∣∣ · ∣∣F (0)− F (z)
∣∣

≤ ε0
2

< ε(z).

Thus, it remains to prove that G is Cm. Fortunately, by the same ar-
gument as in Lemma 2.3, we can also show that G is Cm on U \ {0}
and on an open neighborhood of 0 contained in W 1

2
. Hence, G is Cm

on U . �

The previous lemma now allows us to show Theorem 1.1 for a finite set Z:

Corollary 2.5. Let U ⊆ Rn be open and F : U → R be definable con-
tinuous, and let Z be a finite subset of U such that F � (U \ Z) is Cm. Let
ε : U →R>0 be definable and continuous, and let O be a definable open neigh-
borhood of Z in U . Then there is a definable Cm-function G : U → R such
that

(1) |G(x)− F (x)|< ε(x) for all x ∈ U ; and
(2) G= F outside O.

Proof. Let Z = {z1, . . . , zk}, where k = |Z|, and let i, j range over
{1, . . . , k}. For each i let Ui := U \ (Z \ {zi}), an open subset of Rn. For
each i choose a definable open neighborhood Oi of zi in O with Oi ∩Oj = ∅
for i = j, and further a definable open neighborhood O′

i of zi in Oi with
cl(O′

i) ⊆ Oi. By the previous lemma applied to F � Ui, zi, ε � Ui and O′
i in

place of F , a, ε and O, respectively, pick a definable Cm-function Gi : Ui →R



808 A. THAMRONGTHANYALAK

such that |Gi(x)− Fi(x)| < ε(x) for all x ∈ Ui, and Gi = F � Ui outside O′
i.

Now define G : U →R by G(x) := F (x) if x ∈ U \
⋃

iOi and G(x) :=Gi(x) if
x ∈Oi. One easily verifies that then G is Cm and satisfies (1) and (2). �

3. Proof of Theorem 1.1

Our main tool in the proof is the main theorem of [6], which we state next.
We need some definitions:

Definition 3.1. Let f = (f1, . . . , fn) : Ω→Rn be a Cm-map, where Ω is
an open subset of Rd, d ≥ 1. We say that f is Λm-regular if there is some
L ∈R>0 such that∥∥Dαf(x)

∥∥≤ L

d(x,∂Ω)|α|−1
for all x ∈Ω and α ∈N

d with 1≤ |α| ≤m.

Here, for α= (α1, . . . , αd) ∈N
d we set

Dα =
∂α1

∂xα1
1

· · · ∂αd

∂xαd

d

, |α| := α1 + · · ·+ αd,

and we let Dαf := (Dαf1, . . . ,D
αfn) if |α| ≤m (so D0f = f ).

We also define every map R0 →Rn to be Λm-regular.

Notation. Let Ω⊆Rd be definable and open. Set

Λm(Ω) :=
{
f : Ω→R : f is definable and Λm-regular

}
,

Λm
∞(Ω) := Λm(Ω,R)∪ {−∞,+∞},

where −∞ and +∞ are considered as constant functions on Ω. For f, g ∈
Λm
∞(Ω), we write f < g if f(x)< g(x) for all x ∈Ω.

Definition 3.2. Standard open Λm-regular cells in Rn are defined induc-
tively on n as follows:

(1) n= 0: R0 is a standard open Λm-regular cell in R0;
(2) n≥ 1: a set of the form

(f, g) :=
{
(x, y) : x ∈D,f(x)< y < g(x)

}
,

where f, g ∈ Λm
∞(D) such that f < g, and D is a standard open Λm-regular

cell in Rn−1.

We say that a subset of Rn is a standard Λm-regular cell in Rn if it is either
a standard open Λm-regular cell in Rn or one of the following:

(1) a singleton; or
(2) the graph of a definable Λm-regular map D→Rn−d, where D is a stan-

dard open Λm-regular cell in Rd, and 1≤ d < n.

A subset E ⊆Rn is called a Λm-regular cell in Rn if there is a linear orthogonal
transformation φ : Rn →Rn such that φ(E) is a standard Λm-regular cell in
Rn.
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Definition 3.3. Let Rn×n be the space of all n× n matrices with entries
from R, where n≥ 1, equipped with the operator norm ‖ · ‖. For each d≤ n,
let

Hn,d =
{
A ∈Rn×n : At =A,A2 =A, tr(A) = d

}
be the subset of Rn×n consisting of the matrices (with respect to the stan-
dard basis of Rn) of orthogonal projections of Rn onto a subspace of Rn,
having trace d. Note that Hn,d is an algebraic subset of Rn×n (where Rn×n

is identified with Rn2

as usual) and hence definable in R. Consider

δ : Hn,d ×Hn,d →R, δ(A,B) =
∥∥B⊥A

∥∥ where B⊥ = id−B.

In [6] it is shown that δ is a metric on Hn,d. For A ∈Hn,d and ε > 0 let

Bε(A) =
{
B ∈Hn,d : δ(B,A)< ε

}
be the open ball of radius ε centered at A in Hn,d.

Definition 3.4. Let M a d-dimensional (embedded) C1-submanifold of
Rn. We view the tangent bundle T (M) of M as a subbundle of T (Rn) ∼=
Rn × Rn in the natural way. Define τM : M → Hn,d by letting τM (x) be
the matrix (w.r.t. the standard basis of Rn) of the orthogonal projection
Rn → Tx(M). Let A ∈Hn,d and ε > 0. We say that M is ε-flat with respect
to A if τM (M)⊆Bε(A).

Note that every Λm-regular cell C of dimension d is a d-dimensional C1-
submanifold of Rn, hence the previous definition applies to C. A standard
Λm-regular cell of dimension d is called ε-flat if it is ε-flat with respect to
the projection of Rn onto the first d coordinates. In addition, we call a Λm-
regular cell ε-flat if there is a linear orthogonal transformation φ : Rn →Rn

such that the image of this set under φ is an ε-flat standard Λm-regular cell.
In [10], the author proved a simpler version of a result in [6]:

Lemma 3.5. Let 0< ε < 1

32d
3
2
be rational and suppose Ω is an εd-flat stan-

dard Λ1-regular cell in Rd. Let f : Ω→ Rn be a definable C1-map. Suppose
all derivatives of f are bounded by a rational L ∈R>0. Then f is Lipschitz.

Definition 3.6. A Λm-regular stratification of Rn is a finite partition D of
Rn into Λm-regular cells such that each ∂D (D ∈ D) is a union of sets from D .
Given ε > 0 and definable E1, . . . ,EN ⊆Rn, such a Λm-regular stratification
D of Rn is said to be ε-flat if each D ∈ D is an ε-flat Λm-regular cell, and
compatible with E1, . . . ,EN if each Ei is a union of sets from D .

Theorem 3.7 (Fischer, [6, Theorem 1.4]). Let E1, . . . ,EN be definable
subsets of Rn and ε > 0 be rational. There exists an ε-flat Λm-regular strati-
fication of Rn which is compatible with E1, . . . ,EN .

We now use Lemma 3.5 and Theorem 3.7 to show Theorem 1.1. First,
another lemma based on results from Section 2.
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Lemma 3.8. Suppose 0 < ε0 < 1

32d
3
2

be rational. Let U be a definable

bounded open subset of Rn and Z1, . . . ,ZN ⊆ U , N ≥ 1, be disjoint ε0
d-flat

Λm-regular cells. Suppose U0 := U \
⋃N

i=1Zi is open and

dim(Z1)≤ · · · ≤ dim(ZN ) = d < n, d≥ 1.

Let f : U → R be a definable continuous function such that f � U0 and f �
Zi (i = 1, . . . ,N ) are Cm. Let ε : U → (0,+∞) be a definable continuous

function, and let V be a definable open neighborhood of
⋃N

i=1Zi. Then there
is a definable continuous function g : U →R such that

(1) U0 ∪ZN is open in Rn;
(2) g � (U0 ∪ZN ) is Cm;
(3) |g(x)− f(x)|< ε(x) for every x ∈ U ;
(4) g = f outside V .

Proof. Since ZN is a Λm-regular cell of dimension d, after applying a suit-
able orthogonal transformation, we may assume that ZN = Γ(h) where Ω is
an open ε0

d-flat Λm-regular cell and h : Ω → Rn−d is a definable Lipschitz
Cm-map. (Lemma 3.5.) Let

Δ(x) := min
{
d
((
x,h(x)

)
,Zi

)
: i= 1, . . . ,N − 1

}
for x ∈X;

U ′ :=
{
(x, y) ∈Ω×Rn−d : ‖y‖<Δ(x)

}
; and,

O′ :=

{
(x, y) ∈ V ∩

(
Ω×Rn−d

)
: ‖y‖< 1

2
·min

{
d(x,∂Ω),Δ(x)

}}
.

Note that U ′ is a definable open neighborhood of ZN with U ′ ∩ Zi = ∅ for
i= 1, . . . ,N − 1. Hence, U0 ∪ZN = U0 ∪U ′ is open in Rn. For E ⊆Ω×Rn−d,
let

Ẽ :=
{
(x, y) ∈Ω×Rn−d :

(
x, y+ h(x)

)
∈E

}
,

and for a function φ : E →R define φ̃ : Ẽ →R by

φ̃(x, y) = φ
(
x, y+ h(x)

)
for (x, y) ∈ Ẽ.

Clearly, Z̃N =Ω× {0}n−d. By Lemma 2.3, there is a definable Cm function

G : Ũ ′ →R such that

(1) |G(x)− f̃(x)|< ε̃(x) for all x ∈ U ′;

(2) G= f̃ outside Õ′;

(3) G= f̃ on Z̃N .

Thus, define g : U →R by

g(x, y) :=

{
G(x, y− h(x)), if (x, y) ∈ U ′;

f(x, y), otherwise.

By the choice of O, for every z ∈ U ∩ ∂U ′, there is a neighborhood V ′ of z
such that V ′ ∩O′ = ∅. Therefore, g satisfies the desired properties. �
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Corollary 3.9. Suppose 0< ε0 <
1

32d
3
2

be rational. Let U be a definable

bounded open subset of Rn and Z1, . . . ,ZN ⊆ U , N ≥ 1, be disjoint ε0
d-flat

Λm-regular cells. Suppose U0 := U \
⋃N

i=1Zi is open and

dim(Z1)≤ · · · ≤ dim(ZN ) = d < n.

Let f : U →R be a definable continuous function such that f � U0 and f � Zi

(i = 1, . . . ,N ) are Cm. Let ε : U → R>0 be a definable continuous function,

and let V be a definable open neighborhood of
⋃N

i=1Zi. Then there is a defin-
able Cm-function g : U →R such that

(1) |g(x)− f(x)|< ε(x) for every x ∈ U ;
(2) g = f outside V .

Proof. We prove this by induction on N . For N = 1, Z1 is either a singleton
or an ε0

d-flat Λm-regular cell of positive dimension; since U0 ∪ Z1 = U , this
case immediately follows from Corollary 2.5 and Lemma 3.8. Assume N > 1.
By Corollary 2.5 again, we may assume that d ≥ 1. By Lemma 3.8, take
g0 : U →R with

(1) g0 is Cm on U0 ∪ZN and on
⋃N−1

i=1 Zi;

(2) |g0(x)− f(x)|< ε(x)
2 for all x ∈ U ;

(3) g0 = f outside V .

By induction hypothesis, there is g : U →R such that

(1) g is Cm on U ;

(2) |g0(x)− g(x)|< ε(x)
2 for x ∈ U .

(3) g = g0 outside V .

Therefore, for all x ∈ U we have∣∣g(x)− f(x)
∣∣≤ ∣∣g(x)− g0(x)

∣∣+ ∣∣g0(x)− f(x)
∣∣< ε(x)

2
+

ε(x)

2
= ε(x),

and g = g0 = f outside V ; so we are done. �
Proof of Theorem 1.1. Let U ⊆Rn definable and open, let Z be a definable

closed small subset of U , and let f : U →R be definable and continuous such
that f � (U \Z) is Cm, where m≥ 1. We need to show that for each definable
continuous ε : U →R>0 and each definable open neighborhood V of Z in U ,
there exists a definable Cm-function g : U →R such that

(1) |g(x)− f(x)|< ε(x) for every x ∈ U ;
(2) g = f outside V .

Let τ : Rn → (−1,1)n be given by

τ(x) =

(
x1√
1 + x2

1

, . . . ,
xn√
1 + x2

n

)
for x= (x1, . . . , xn) ∈Rn.

After replacing U , Z, f by τ(U), τ(Z), f ◦ τ−1, respectively, we may as-
sume that U is bounded. By the Λm-Regular Stratification theorem, we can



812 A. THAMRONGTHANYALAK

partition Z into ε0
d-flat Λm-regular cells Z1, . . . ,ZN , for some small ratio-

nal ε0, such that f � Zi is Cm for i = 1, . . . ,N and dim(Zi) ≤ dim(Zi+1) for
i= 1, . . . ,N − 1. By Corollary 3.9, this completes the proof. �

From Theorem 1.1, which deals with smoothing of definable functions, we
immediately obtain a version for definable maps:

Corollary 3.10. Let U ⊆ Rn be open and f : U → Rk be a definable
continuous map, and let Z be a definable closed small subset of U such that
f � (U \Z) is Cm. Let ε : U →R>0 be a definable continuous function. Then,
for any open neighborhood V of Z, there exists a definable continuous Cm-map
g : U →Rk with

(1) ‖g(x)− f(x)‖< ε(x) for every x ∈ U ;
(2) g = f outside V .

Naturally, once the above theorem is known, one may ask whether it is
possible to simultaneously approximate a definable family of continuous func-
tions. An answer to this question can be obtained by redoing the above
proof “uniformly in parameters,” or more elegantly, by simply appealing to
the Compactness theorem of first-order logic, as in the proof of the following
corollary:

Corollary 3.11. Let (fa)a∈A, where A⊆Rl, be a definable family of con-
tinuous maps fa : Ua →Rk, and let (εa)a∈A be a definable family of continu-
ous functions εa : Ua →R>0. There is a definable family (ga)a∈A of Cm-maps
ga : Ua →Rk with∥∥ga(x)− fa(x)

∥∥< εa(x) for every x ∈ Ua.

Proof. Let L be the language of R; we assume that L includes a name for
each element of R, so that each set and map definable in R is definable by an
L -formula. Let x, y, z be tuples of pairwise distinct variables of length n, k
and l, respectively, and let t be a variable distinct from each of the variables in
x, y, z. Let φf (x, y, z) and φε(x, t, z) be L -formulas such that for each a ∈A,
φf (x, y, a) defines the graph of fa and φε(x, t, a) defines the graph of εa. Let
also α(z) be an L -formula which defines A in R.

For each L -formula ψ(x, y, z), let χψ(z) be a formula such that, for each
a ∈Rl, χψ(a) holds precisely when a ∈A and ψ(x, y, a) defines a the graph of
a Cm-map ga : Ua →Rk such that ‖ga − fa‖< ε. Next, add l fresh constants
c1, . . . , cl to L and call the resulting language L ′. For notational convenience,
we write c= (c1, . . . , cl). By Corollary 3.10,

Th(R)∪
{
¬χψ(c) : ψ = ψ(x, y, z) is an L -formula

}
is inconsistent. Therefore, by the Compactness theorem, there are formulas

ψ1(x, y, z), . . . , ψN (x, y, z)
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such that, for each a ∈ A, one of ψi(x, y, a) defines the graph of a Cm-
approximation of fa. From the ψi one easily constructs a single formula
ψ(x, y, z) which works for every a ∈A. �

4. Smoothing of uniformly continuous maps

In [5], the constructions of approximation maps preserve the local Lipschitz
property and the Lipschitz property, respectively. Therefore, it is natural to
ask:

Is there an approximation method that preserves uniform continuity?

Below, we will give such a construction.

Corollary 4.1. Let U ⊆Rn be open and f : U →Rk be a definable uni-
formly continuous map. Let Z be a definable closed small subset of U such
that f � (U \ Z) is Cm. Let ε : U → R>0 be a definable continuous function
and V be an open neighborhood of Z. Then there exists a definable uniformly
continuous Cm-map g : U →Rk with

(1) ‖g(x)− f(x)‖< ε(x) for every x ∈ U ;
(2) g = f outside V .

In the proof, for x, y ∈Rn, we write

[x, y] :=
{
ty+ (1− t)x ∈Rn : t ∈ [0,1]

}
for the line segment connecting x and y.

Proof of Corollary 4.1. First, define ε0 : U →R by

ε0(x) := min

{
1, d(x,∂U),

1

‖x‖ , ε(x)
}

with the conventions that d(x,∂U) = +∞ if ∂U = ∅, and 1
‖x‖ =+∞ if x= 0.

By Corollary 3.10, we can find a definable Cm-map g : U →Rk such that

(1) ‖g(x)− f(x)‖< ε0(x) for all x ∈ U ;
(2) g = f outside V .

To prove that g is uniformly continuous, let ε̄ > 0 be given. Set

Kε̄ :=

{
x ∈ U : d(x,∂U)≥ ε̄

6
,‖x‖ ≤ 6

ε̄

}
.

Clearly, ε0(x) ≤ ε̄
6 for each x ∈ cl(U \Kε̄) and Kε̄ is definable, closed, and

bounded. Thus g � Kε̄ is uniformly continuous. Pick δ1 > 0 such that, for
every x, y ∈Kε̄, if ‖x− y‖< δ1, then ‖g(x)− g(y)‖< ε̄

2 . Since f is uniformly
continuous on U , there exists δ2 > 0 such that, for x, y ∈ U , if ‖x− y‖< δ2,
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then ‖f(x)− f(y)‖< ε̄
6 . Therefore, for every x, y ∈ cl(U \Kε̄),∥∥g(x)− g(y)

∥∥≤
∥∥g(x)− f(x)

∥∥+
∥∥f(x)− f(y)

∥∥+
∥∥f(y)− g(y)

∥∥
< ε0(x) +

ε̄

6
+ ε0(x)≤

ε̄

6
+

ε̄

6
+

ε̄

6
=

ε̄

2
< ε̄.

Let δ := min{δ1, δ2, ε̄
6}. From the above discussion, it is sufficient to show that

for x ∈ cl(U \Kε̄) and y ∈Kε̄ with ‖x−y‖< δ, we have ‖g(x)−g(y)‖< ε̄. Let
such x, y be given. Since δ ≤ ε̄

6 and d(y, ∂U)≥ ε̄
6 , we have Bδ(y)⊆ U . Hence,

[x, y] ⊆ U . Therefore, there exists z ∈ [x, y] such that z ∈ cl(U \ Kε̄) ∩ Kε̄.
Thus, ∥∥g(x)− g(y)

∥∥≤
∥∥g(x)− g(z)

∥∥+
∥∥g(z)− g(y)

∥∥<
ε̄

2
+

ε̄

2
= ε̄.

So, g is uniformly continuous. �

Next, we use the same trick as in Corollary 3.11 to prove the following.

Corollary 4.2. Let (fa)a∈A, where A⊆Rl, be a definable family of uni-
formly continuous maps fa : Ua →Rk, where Ua ⊆Rn is open, and let (εa)a∈A

be a definable family of continuous functions εa : Ua → R>0. Then there is
a definable family (ga)a∈A of uniformly continuous Cm-maps ga : Ua → Rk

such that ∥∥ga(x)− fa(x)
∥∥< εa(x) for every x ∈ Ua.

The following theorem is shown in [1]:

Theorem 4.3. Every definable bounded uniformly continuous function
E →R, where E ⊆Rn, extends to a definable uniformly continuous function
Rn →R.

Therefore, by a combination of Corollary 4.1 and Theorem 4.3 we obtain:

Corollary 4.4. Let U ⊆ Rn be open and f : U → Rk be a definable
bounded uniformly continuous map. Let Z be a definable closed small subset
of U such that f � (U \ Z) is Cm. Let ε : U → R>0 be a definable continu-
ous function, and let V be an open neighborhood of Z ∪ ∂U . There exists a
definable uniformly continuous Cm-map g : Rn →Rk with

(1) ‖g(x)− f(x)‖< ε(x) for every x ∈ U ;
(2) g = f outside V .
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