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FINITE TYPE MINIMAL ANNULI IN S
2 ×R

L. HAUSWIRTH, M. KILIAN AND M. U. SCHMIDT

Abstract. We study minimal annuli in S
2 × R of finite type

by relating them to harmonic maps C → S
2 of finite type. We

rephrase an iteration by Pinkall–Sterling in terms of polynomial

Killing fields. We discuss spectral curves, spectral data and the

geometry of the isospectral set. We consider polynomial Killing

fields with zeroes and the corresponding singular spectral curves,

bubbletons and simple factors. We investigate the differentiable

structure on the isospectral set of any finite type minimal annu-
lus. We apply the theory to a 2-parameter family of embedded
minimal annuli foliated by horizontal circles.

Introduction

In the last decade, there has been an interest in extending minimal surface
theory to the target space S

2 ×R [26], [22], [23], [12], [15]. A minimal surface
that is conformally immersed in S

2×R is essentially described by a harmonic
map G : Ω⊂C→ S

2. There is an important subclass of such harmonic maps
that have an algebraic description, the so-called harmonic maps of finite type.
For example, all constant mean curvature (cmc) tori in R

3,S3,H3 have har-
monic Gauss maps of finite type [14], [24]. The description of conformally
immersed proper minimal annuli of finite type is analogous to the well known
theory of constant mean curvature tori of finite type [14], [24], [2], [4], [9], [10],
[7], [20]. Thus, periodic minimal immersions X : C→ S

2×R of finite type can
be described by algebraic data. Up to some finite dimensional and compact
degrees of freedom, the immersion is determined by the so-called spectral data
(a, b). This consists of two polynomials of degree 2g respectively g + 1 for
some g ∈ N. The polynomial a(λ) encodes a hyperelliptic Riemann surface
called the spectral curve. The genus of the spectral curve is called spectral
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genus. The other polynomial b(λ) encodes the extrinsic closing conditions.
This correspondence is called the algebro-geometric correspondence. In par-
ticular, we characterize those algebraic curves which are the spectral curves
of minimal annuli in S

2 × R. The spectral data is the starting point for a
deformation theory to be used in [13].

Let us briefly outline this paper. In Section 1, we provide a short introduc-
tion to the local theory of minimal surfaces in S

2×R and prove a Sym-Bobenko
type formula. In Section 2, we discuss polynomial Killing fields, how these
are related to the Pinkall–Sterling iteration and define the spectral curve. In
Section 3, we invoke the Iwasawa factorization of the underlying loop groups,
mention the generalized Weierstrass representation, and briefly discuss the
Symes method [28], [5], [6]. In Section 4, we treat the spectral curve, the
isospectral action, and prove some properties of the isospectral set. In partic-
ular, we discuss singular spectral curves and how to remove singularities with
the isospectral action. The isospectral set I(a) of a minimal annulus consists
of all minimal annuli with the same spectral data (a, b). We decompose I(a)
with the help of a group action into orbits and identify each orbit smoothly
with a commutative Lie group. These orbits have different dimensions. The
lower dimensional orbits are in the closures of the higher dimensional ones.
Our main results are:

(1) The isospectral sets I(a) are compact.
(2) If the 2g-roots of a are pairwise distinct, then there is one orbit diffeo-

morphic to
I(a)∼=

(
S
1
)g
.

(3) If a has a double root α0 ∈ S
1, then there is a diffeomorphism

I(a)∼= I(ã) with a(λ) = ᾱ0(λ− α0)
2ã(λ).

(4) If a has a double root α0 /∈ S
1 there are two invariant submanifolds dif-

feomorphic to

I(a) ∼= I(ã)∪G× I(ã) with

G = C or C× and a(λ) = (λ− α0)
2(1− λᾱ0)

2ã(λ).

In Section 5, we turn to periodic finite type harmonic maps, spectral data and
how the closing conditions are encoded in the spectral curve. In Section 6, we
encounter bubbletons, simple factors and prove a factorization theorem for
polynomial Killing fields with zeroes. In particular, we show that changing
the line in the simple factor preserves the period, and that for some choices
of lines the nodal singularity on the spectral curve disappears. In Section 7,
we compute the spectral data of minimal annuli in S

2 × R that are foliated
by circles. These low spectral genus examples will play an important role in a
forthcoming paper [13]. This paper presents a mostly self-contained account
of the integrable systems approach to minimal surfaces in S

2×R of finite type,
but may also serve as a companion for other integrable surface geometries.
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1. Minimal surfaces in S
2 ×R

We study conformal minimal immersions X : Ω⊂ C→ S
2 ×R where Ω is

a simply connected domain of C. We write X = (G,h) for G : Ω→ S2 and
h : Ω→R, and call G the horizontal, and h the vertical components of X . If
we denote by (C, σ2(u)|du|2) the complex plane with the metric induced by
the stereographic projection of S2 (σ2(u) = 4/(1+ |u|2)2), the map G : Ω→C

satisfies

Gzz̄ +
2Ḡ

1 + |G|2GzGz̄ = 0.

The holomorphic quadratic Hopf differential associated to the harmonic map
G is given by

Q(G) =
(
σ ◦G(z)

)2
GzḠz(dz)

2 := φ(z)(dz)2.

The function φ depends on z, whereas Q(G) does not.
By conformality the induced metric is of the form ds2 = ρ2(z)|dz|2, and

writing z = x+ iy the partial derivatives satisfy |Xx|2 = |Xy|2 and Xx ⊥Xy .
Conformality reads

|Gx|2σ + (hx)
2 = |Gy|2σ + (hy)

2 and 〈Gx,Gy〉σ + (hx)(hy) = 0,

hence (hz)
2(dz)2 =−Q(G). The zeroes of Q are double, and we can define η

as the holomorphic 1-form η =±2i
√
Q. The sign is chosen so that

h=Re

∫
η.

The unit normal vector n in S
2 ×R has third coordinate〈

n,
∂

∂t

〉
= n3 =

|g|2 − 1

|g|2 + 1
, where g2 :=−Gz

Gz̄

.

We define the real function ω : C→R by

n3 := tanhω.

We express the differential dG independently of z by

dG=Gz̄ dz̄ +Gz dz =
1

2σ ◦Gg−1η− 1

2σ ◦Ggη,

and the metric ds2 is given in a local coordinate z by

ds2 =
(
|Gz|σ + |Gz̄|σ

)2|dz|2 = 1

4

(
|g|−1 + |g|

)2|η|2 = 4cosh2 ω|Q|.

We remark that the zeroes of Q correspond to the poles of ω, so that the
immersion is well defined. Moreover, the zeroes of Q are points where the
tangent plane is horizontal. The Jacobi operator is

L=
1

4|Q| cosh2 ω
(
∂2
x + ∂2

y +Ric(n) + |dn|2
)
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and can be expressed in terms of Q and ω by

(1.1) L=
1

4|Q| cosh2 ω

(
∂2
x + ∂2

y + 4|Q|+ 2|∇ω|2

cosh2 ω

)
.

Since n3 = tanhω is a Jacobi field obtained by vertical translation in S
2 ×R,

we have L tanhω = 0 and

Δω+ 4|Q| sinh(ω) cosh(ω) = 0,

where Δ= ∂2
x + ∂2

y is the Laplacian of the flat metric.

Minimal annuli. Consider a minimal annulus A properly immersed in
S
2 × R. If A is tangent to a horizontal plane {x3 = t}, the set A ∩ {x3 = t}

defines on A a set of analytic curves with isolated singularities at points where
the tangent plane of A is horizontal. Near such a singularity q, there are 2k+2
smooth branches meeting at equal angles, for some integer k ≥ 1.

Annuli are transverse to every horizontal plane S
2 × {t}. To see that we

claim that A \ {x3 = t} defines at least three connected components. At
most two of them are non-compact because the immersion is proper. Hence
there is a compact disk in A with boundary in {x3 = t}, a contradiction to
the maximum principle. To prove the claim, consider A1,A2, . . . ,A2n distinct
local components at q of A\{x3 = t}. We know that the Ai alternate between
{x3 ≥ t} and {x3 ≤ t}. If A1 and A3 are not in the same component of
{x3 ≥ t}, then A2 yields a third component and A\{x3 = t} has at least three
connected components. If A1 and A3 are in the same component of {x3 ≥ t},
we can construct a cycle α13 in {x3 ≥ t} which meets S2 × {t} only at q. We
consider α0 in {x3 > 0} joining a point x of A1 and y of A2. Then join x
to y by a local path α1 in A going through q. Let α13 = α0 ∩ α1. If A2 and
A4 were in the same component we could find a cycle α24 on A which meets
α13 in a single point, which is impossible since the genus of A is zero. If A2

and A4 are not in the same component of {x3 ≤ t}, then A1 yields a third
component.

Hence, properly immersed annuli are transverse to horizontal planes and
the third coordinate map h : A→ R is a proper harmonic function on each
end of A with dh �= 0. Then each end of A is parabolic and the annulus can
be conformally parameterized by C/τZ. We will consider in the following
conformal minimal immersions X : C→ S

2 ×R with X(z + τ) =X(z).
Since dh �= 0, the Hopf differential Q has no zeroes. If h∗ is the har-

monic conjugate of h, we can use the holomorphic map i(h+ ih∗) : C→ C

to parameterize the annulus by the conformal parameter z = x+ iy. In this
parametrization, the period of the annulus is τ ∈R and

X(z) =
(
G(z), y

)
with X(z + τ) =X(z).
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We say that we have parameterized the surface by its third component. We
remark that Q= 1

4 (dz)
2 and ω satisfies the sinh-Gordon equation

(1.2) Δω+ sinh(ω) cosh(ω) = 0.

Remark 1.1. We relax the condition τ ∈R
× to τ ∈C

×, but we will param-
eterize our annuli conformally such that Q = φdz2 is constant, independent
of z and 4|φ|= 1. This means that the third coordinate is linear.

In summary we have proven the following theorem.

Theorem 1.2. A proper minimal annulus is parabolic and X : C/τZ →
S
2 ×R has conformal parametrization X(z) = (G(z), h(z)) with

(1) Harmonic map G : C/τZ→ S2, and h(z) = Re(−ieiΘ/2z).
(2) Constant Hopf differential Q= 1

4 exp(iΘ)dz2.

(3) The metric of the immersion is ds2 = cosh2(ω)dz ⊗ dz̄.
(4) The third coordinate of the unit normal vector is n3 = tanhω.
(5) The function ω : C/τZ→R is a solution of (1.2).

Sym-Bobenko type formula. We use a description of harmonic maps into
the symmetric space S2 in terms of SU2-valued frames.

Identify su2
∼= R

3,
( iw
−u+iv

u+iv
−iw

)∼= (u, v,w), so S
2 ⊂ R

3 consists of length

‖X‖=
√
detX = 1 elements in su2 and 〈X1,X2〉=−1

2 tr(X1X2). Pick

σ3 =

(
i 0
0 −i

)
∈ S

2.

Let T denote the stabiliser of σ3 under the adjoint action of SU2 on su2, so
that S

2 ∼= SU2/T. If π : SU2 → SU2/T is the coset projection, then a map
F : Ω ⊂ C→ SU2 with G(z) = π ◦ F (z) is called a frame of G, and we have
G(z) = F (z)σ3F

−1(z).
Harmonic maps come in S

1-families (associated families), associate to the
same solution of the sinh-Gordon equation. Here λ ∈ S

1 parameterizes an
associated family of harmonic maps, and the frame of such an associated
family is called an extended frame.

A method to obtain an extended frame is to write down an integrable
1-form which integrates to an extended frame by solving the integrability
condition. We present a result which is similar to results in Bobenko [3]. We
next specify for a real solution of the sinh-Gordon equation (1.2) a minimal
surface in S

2 ×R with a particularly simple vertical component.

Theorem 1.3. Let ω : C→ R be a solution of the sinh-Gordon equation.
Let δ, γ ∈ S

1 be arbitrary but fixed, and Fλ(z) the solution of F−1
λ dFλ =

α(ω), Fλ(0) = 1 where

(1.3) α(ω) =
1

4

(
2ωz iλ−1δeω

iγe−ω −2ωz

)
dz +

1

4

(
−2ωz̄ iγ̄e−ω

iλδ̄eω 2ωz̄

)
dz̄.
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Then the map Xλ(z) = (Fλ(z)σ3Fλ(z)
−1,Re(−i

√
γδλ−1z)) with λ ∈ S

1 de-
fines an associate family of conformal minimal immersions Xλ : C→ S2 ×R

with metric

ds2 = cosh2 ω dz ⊗ dz̄,

and Hopf differential

Q=
1

4
γδλ−1 dz2.

Remark 1.4 (Reality condition). For λ ∈ S1, αλ = α(ω) in (1.3) takes
values in su2, so Fλ takes values in SU2. For general λ ∈ C

× we have Fλ ∈
SL2(C). From the relation α1/λ̄

t = −αλ, the solution of F−1
λ dFλ = α(ω)

satisfies the reality condition

(1.4) F1/λ̄

t
= F−1

λ .

Proof of Theorem 1.3. Decomposing α(ω) = α′ dz + α′′ dz̄ into (1,0) and
(0,1) parts, we compute

α′
z̄ =

1

4

(
2ωzz̄ iλ−1ωz̄δe

ω

−iγωz̄e
−ω −2ωzz̄

)
,

α′′
z =

1

4

(
−2ωzz̄ −iγ̄ωze

−ω

iλωz δ̄e
ω 2ωzz̄

)
.

Using F−1
λ dFλ = α in the integrability condition (Fλ)zz̄ = (Fλ)z̄z gives

α′
z̄ − α′′

z = [α′, α′′], and a direct computation shows this is equivalent to the
sinh-Gordon equation (1.2). Hence, we can integrate dFλ = Fλα to obtain
a map Fλ : C → SL2(C) and define Gλ = Fλσ3F

−1
λ . The vertical compo-

nent is h= i
2 (−(γδ)1/2λ−1/2z + (γδ)−1/2λ1/2z̄). Its partial derivatives of are

hz =− i
2 (γδ)

1/2λ−1/2 and hz̄ =
i
2 (γδ)

−1/2λ1/2. Then〈
(Xλ)z, (Xλ)z

〉
= −1

2
tr
([
α′, σ3

]2)
+ (hz)

2 = 0,

〈
(Xλ)z̄, (Xλ)z̄

〉
= −1

2
tr
([
α′′, σ3

]2)
+ (hz̄)

2 = 0,

and the conformal factor computes to

2
〈
(Xλ)z, (Xλ)z̄

〉
= 2
〈[
α′, σ3

]
,
[
α′′, σ3

]〉
+ 2(hz)(hz̄)

=
1

2
cosh(2ω) +

1

2
= cosh2(ω).

As Q = 〈(Gλ)z, (Gλ)z〉(dz)2 = −1
2 tr([α

′, σ3]
2)(dz)2 = 1

4γδλ
−1(dz)2 is holo-

morphic, we conclude that G is harmonic. �

Remark 1.5 (Isometric normalisation 1). By conformal parametrization,
we can choose 4|φ|= 1 (the annulus is transverse to horizontal planes). We
have constants δ, γ ∈ S

1 which are related to the Hopf differential, namely
4Q = δγλ−1 dz2. We can normalize the parametrization with δ = 1 and a
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constant |γ|= 1. For a given extended frame Fλ which satisfies the equation
F−1
λ dFλ = α(ω), Fλ(0) = 1, we consider the U(1)-gauge

(1.5) g(δ) =

(
δ1/2 0
0 δ−1/2

)
∈ T.

Then F̃λ = g(δ)−1Fλg(δ) induces the immersion X̃ which differs from X by

a rotation in S
2. The third coordinate h = h̃ is preserved while G̃λ(z) =

F̃λσ3F̃
−1
λ = g(δ)−1Gλ(z)g(δ) and for α(ω) as in (1.3) with δ̃ = 1 and γ̃ = δγ

have

F̃−1
λ dF̃λ = g(δ)−1α(ω)g(δ).

2. Polynomial Killing fields and spectral curves

We explain in this section how solutions of the sinh-Gordon equation give
rise to polynomial Killing fields as solutions of a Lax equation. Polynomial
Killing fields in turn define spectral curves, which are hyperelliptic Riemann
surfaces.

If ω is a solution of the sinh-Gordon equation, we consider a deforma-
tion ωt = ω + tu+O(t2). If ωt is a one parameter family of solutions of the
sinh-Gordon equation, then the variational function u : C → R satisfies the
linearized sinh-Gordon equation

(2.1) Δu+ u cosh(2ω) = 0.

Definition 2.1. A solution ω of the sinh-Gordon equation is of finite type
if there exist g ∈N such that

(2.2) Φλ(z) =
λ−1

4

(
0 ieω

0 0

)
+

g∑
n=0

λn

(
un(z) eωτn(z)

eωσn(z) −un(z)

)

is a solution of the Lax equation

(2.3) dΦλ =
[
Φλ, α(ω)

]
for some functions un, τn, σn : C→C, and some γ ∈ S

1, and δ = 1 in α(ω).

Proposition 2.2. Suppose Φλ is of the form (2.2) for some arbitrary
ω : C→ R, and that Φλ solves the Lax equation (2.3) with α(ω) as in (1.3),
δ = 1 and |γ|= 1. Then:

(1) The function ω is a solution of the sinh-Gordon equation (1.2).
(2) The functions un are solutions of the linearized sinh-Gordon equation

(2.1).
(3) The following iteration gives a formal solution of dΦλ = [Φλ, α(ω)].

Let un, σn, τn−1, with un solution of (2.1) be given. Now solve the system

τn;z̄ =
1

2
iγ̄e−2ωun, τn;z = 4iγ̄ωzun;z − 2iγ̄un;zz
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for τn;z and τn;z̄ . Then define un+1 and σn+1 by

un+1 =−2iτn;z − 4iωzτn, σn+1 = γe2ωτn + 4iγun+1;z̄.

(4) Each τn is defined up to a complex constant cn, so un+1 is defined up to
−4icnωz .

(5) u0 = ωz, ug−1 = cωz̄ for some c ∈C, and λgΦ1/λ̄

t
also solves (2.3).

Proof. Inserting (2.2) into (2.3) and comparing coefficients yields

4un;z + ie2ωσn+1 − iγτn = 0,(2.4a)

4un;z̄ + iγ̄σn − ie2ωτn−1 = 0,(2.4b)

4ωzτn + 2τn;z − iun+1 = 0,(2.4c)

2eωτn;z̄ − iγ̄e−ωun = 0,(2.4d)

2eωσn;z + iγe−ωun = 0,(2.4e)

4ωz̄σn + 2σn,z̄ + iun−1 = 0.(2.4f)

(1) Solving (2.4b) for σn+1, (2.4c) for un+1, (2.4d) for τn;z̄ , and inserting
these, and un+1;z̄ and τn;z̄z into (2.4a) gives e2ωiγτn(16ωzz̄ − e−2ω + e2ω) = 0,
which implies (1.2) if τn �= 0.

(2) ∂̄(2.4a)− 1
2ie

2ω(2.4f) + 1
2iγe

−ω(2.4d) reads

4un;zz̄ +
1

2
un

(
e2ω + γγ̄e−2ω

)
= 0.

(3) The equation for τn;z̄ is (2.4d). Taking the z-derivative of (2.4a) and us-
ing (2.4a), (2.4c) and (2.4e) gives τn;z = 4iγ̄ωzun;z − 2iγ̄un;zz . The equations
for un+1, σn+1 are given by (2.4c) respectively (2.4b).

(4) In the iteration (3), the function τn is determined up to an integration
constant. This gives an additional term ωz in un+1.

(5) Left to the reader. �

Pinkall–Sterling [24] constructed a series of special solutions of the induc-
tion of Proposition 2.2(3) via an auxiliary function φ as follows: For a given
solution un of the linearized sinh-Gordon equation (2.1), consider the function
φ : C→C defined by

(2.5) φn;z = 4ωzun;z, φn;z̄ =−un sinhω coshω.

Then τn = 2iγ̄(12φn −un;z) and un+1 := (un)zz −ωzφn. This defines a hierar-
chy of solutions of (2.1). Applying this iteration to the trivial solution u0 ≡ 0
yields the sequence, whose first four terms are

u0 = 0,

u1 = ωz,

u2 = ωzzz − 2ω3
z ,

u3 = ωzzzzz − 10ωzzzω
3
z − 10ω2

zzωz + 6ω5
z .
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This infinite sequence produces solutions of the linearized sinh-Gordon equa-
tion on C. These come from the iteration (2.5), and Pinkall–Sterling prove in
Proposition 3.1 [24], that φn depends only on ω and its kth derivatives with
k ≤ 2n+ 1. The fact that we consider on C a uniformly bounded solution of
the sinh-Gordon equation ω : C→R, implies by Schauder estimates that each
un is uniformly bounded on C.

Proposition 2.3. A proper minimal annulus A immersed in S2 ×R with
bounded curvature and linear area growth has a metric ds2 = cosh2 ω|ds|2,
where ω : C/τC → R is a finite type solution of the sinh-Gordon equation.
We say that the annulus is of finite type.

Proof. A first step is to prove that the function ω : C/τC→R is uniformly
bounded. Consider a sequence of points pn in A such that ω(pn) is diverging
to infinity and consider a sequence of translations tne3 such that A+ tne3 is a
sequence of annuli with pn+tne3 points of S

2×{0}. Then by the bounded cur-
vature hypothesis there is a sub-sequence converging locally to A0, a properly
immersed minimal surface. The linear area growth assumption assure that
A0 is an annulus. But our hypothesis leads to a pole occurring at the height
t= 0 since |ω| →∞. The limit normal vector n3(pn) = tanhωn(pn)→±1 and
the annulus A0 would be tangent to the height S

2 × {0}, a contradiction to
the maximum principle. Thus

sup
z∈A

|ω| ≤C0.

Now we apply Schauder estimates to the sinh-Gordon equation to obtain a
Ck,α estimate on the solution of the sinh-Gordon equation on C/τZ. There
exists a constant C0 > 0 such that for any k ∈N

|ω|A,k,α ≤C0.

Meeks–Perez–Ros [21] provide us with the following theorem.

Theorem 2.4 ([21]). An elliptic operator Lu = Δu + qu on a cylinder
S
1 × R has for bounded and continuous q a finite dimensional kernel on the

space of uniformly bounded C2-functions on S1 ×R.

Since solutions u0, u1, u2, . . . of the linearized sinh-Gordon equation are
solutions depending only on ω and its higher derivatives, this family is a finite
dimensional family by Theorem 2.4. Thus, there is a g ∈ N, and there exist
ai ∈C such that

g∑
i=1

aiui = 0.

This algebraic relation implies that ω is of finite type, and ensures the exis-
tence of a polynomial Killing field Φλ of degree g. To achieve that, one has
to prescribe the right constants c0, c1, . . . , cg in the iteration procedure, and
set the g+ 1-coefficient to zero. �



706 L. HAUSWIRTH, M. KILIAN AND M. U. SCHMIDT

Potentials and polynomial Killing fields. To parameterize real solutions
of the sinh-Gordon equation, we make the following.

Definition 2.5. The set of potentials is

Pg =

{
ξλ =

g∑
d=−1

ξ̂dλ
d
∣∣∣ ξ̂−1 ∈

(
0 iR+

0 0

)
, tr(ξ̂−1ξ̂0) �= 0,

ξ̂d =−ξ̂g−1−d

t

∈ sl2(C) for d=−1, . . . , g

}
.

Remark 2.6 (Isometric normalization 2). For δ ∈ S
1, we denote by Pg(δ),

potentials with residues

ξ̂−1 ∈
(
0 iδR+

0 0

)
.

These correspond to the normalization of Remark 1.4 and there is an isomor-
phism Pg(δ)→Pg , given by

ξλ �→ g(δ)−1ξλg(δ).

Each ξλ ∈ Pg satisfies the reality condition

(2.6) λg−1ξ1/λ̄
t
=−ξλ.

In other words, for ξλ ∈ Pg , we have a map S
1 → su2, λ �→ λ

1−g
2 ξλ. The poly-

nomial
a(λ) :=−λdet ξλ

then satisfies the reality condition

(2.7) λ2ga(1/λ̄) = a(λ).

On su2 the determinant is the square of a norm, thus we have for λ ∈ S
1 that

(2.8) λ−ga(λ)≤ 0 for λ ∈ S
1.

When g is even, ξ̂0, . . . , ξ̂ g
2−1 are independent 2×2 traceless complex matrices.

For odd g, ξ̂0, . . . , ξ̂ g−3
2

are independent 2× 2 traceless complex matrices and

ξ̂ g−1
2

∈ su2. Thus the space of potentials Pg of real finite type solutions of the

sinh-Gordon equation is an open subset of a 3g + 1 dimensional real vector

space. The condition tr(ξ̂−1ξ̂0) �= 0 implies that a(0) �= 0 and by symmetry the
highest coefficient of a is therefore non-zero. Thus, λ �→ a(λ) is a polynomial
of degree 2g with complex coefficients, and we denote such by C

2g[λ]. Define

Mg =
{
a ∈C

2g[λ] | a(λ) =−λdet ξλ with ξλ ∈ Pg

}
=
{
a ∈C

2g[λ] | a(0) �= 0, λ2ga(1/λ̄) = a(λ) and
(2.9)

λ−ga(λ)≤ 0 for λ ∈ S
1
}
,

M0
g =
{
a ∈Mg | λ−ga(λ)< 0 for |λ|= 1

}
.
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Thus, M0
g is an open subset of the 2g+1 dimensional real vector space Mg .

Definition 2.7. Polynomial Killing fields are maps ζλ : C→Pg (see Def-
inition 2.5) which solve the Lax equation

dζλ =
[
ζλ, α(ω)

]
with ζλ(0) = ξλ ∈ Pg.

We use solutions Φλ of the Lax equation to construct polynomial Killing
related to a finite type solution ω : C→R of the sinh-Gordon equation.

Lemma 2.8. For a solution Φλ of (2.3) with δ = 1 in α(ω) (see formula
(1.3)), there exists constants γ ∈ S

1 and k ∈R
+ such that

ζλ(z) = kΦλ(z)− kλg−1Φ1/λ̄(z)
t

and ζλ(0) = ξλ

is a polynomial Killing field.

Proof. The map ζλ satisfies the reality condition (2.6) so that

λg−1ζ1/λ̄(z)
t
=−ζλ(z).

It remains to prove that the residues ζ̂−1 and ξ̂−1 are upper triangular with

purely imaginary non-zero coefficient and tr(ξ̂−1ξ̂0) �= 0. We use the following.

Remark 2.9 (Isometric normalization 3). We write αλ,δ,γ(ω) := α(ω) for
the 1-form (1.3) and Φλ,δ,γ(z) := Φλ(z) the associate solution (2.2) of the Lax
equation (2.3). We use the unitary matrix g(δ) defined in (1.5). Now Φλδ,1,γ

solves (2.3) with αλδ,1,γ(ω) = αλ,δ−1,γ(ω), so g(δ)Φλδ,1,γg(δ)
−1 solves (2.3)

with α(ω) = g(δ)αλ,δ−1,γg(δ)
−1 = αλ,1,δ−1γ . We conclude that

Φλ,1,δ−1γ = g(δ)Φλδ,1,γg(δ)
−1.

In particular, if ξλ ∈ Pg(δ), then a solution of the Lax equation of Defini-
tion 2.7 satisfies ζλ : C→Pg(δ). This can be deduced from Proposition 2.2,
where τ−1(z) = τ−1(0).

Remark 2.9 proves that changing γ by δ−1γ changes the highest coefficient
of Φλ by

σg

(
δ−1γ

)
= δg−1σg(γ).

We compute the residue ξ̂−1 at z = 0 with γ̃ = δ−1γ, and choose a unimodular
number δ, such that

1

4
ieω − σ̄g(γ̃)e

ω =
1

4
ieω − δ1−gσ̄g(γ)e

ω ∈ iR+.

We choose k to normalize the residue with k−1 = 1+4iδ1−gσ̄g(γ) ∈R
+. There

remains to compute with σ0 = iγe−2ω/4,

tr(ξ̂−1ξ̂0) =

(
1

4
ieω
)(

1

4
iγe−ω

)
=−γ/16 �= 0.

Since ξλ ∈ Pg , the Lax equation assures that ζλ(z) ∈ Pg (see Remark 3.3). �
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Spectral curve. Suppose ξλ ∈ Pg and ζλ is the polynomial Killing field with
ζλ(0) = ξλ. Suppose further that the polynomial a(λ) = −λdet ξλ has 2g-
pairwise distinct roots. Define

Σ∗ =
{
(ν,λ) ∈C

2 | det(ν1− ζλ) = 0
}

(2.10)

=
{
(ν,λ) ∈C

2 | ν2 =−det ξλ = λ−1a(λ)
}
.

By construction, we have a map λ : Σ∗ →C× of degree 2, which is branched
at the 2g simple roots of the polynomial a. By declaring the points over
λ= 0,∞ to be two further branch points, we then have 2g+2 branch points.
This 2-point compactification Σ is called the spectral curve of the polynomial
Killing field ζλ.

The Riemann–Hurwitz formula gives that the spectral curve Σ is a hyper-
elliptic Riemann surface of genus g, and its genus is called the spectral genus.
It has three involutions

σ : (λ, ν) �→ (λ,−ν),

� : (λ, ν) �→
(
λ̄−1,−λ̄1−g ν̄

)
,(2.11)

η : (λ, ν) �→
(
λ̄−1, λ̄1−g ν̄

)
.

The involution σ is called the hyperelliptic involution. Note that η has no
fixed points (a(1) ∈R

−) and � fixes S1 pointwise. In particular, roots of a are
symmetric with respect to inversion across the unit circle so that a(αi) = 0⇔
a(1/ᾱi) = 0.

3. Harmonic maps and Weierstrass representation

The generalized Weierstrass representation [8] gives a correspondence be-
tween harmonic maps, extended frames and potentials. To formulate the
generalized Weierstrass representation for harmonic maps into S

2 we need
various loop groups and a loop group factorization.

For real r ∈ (0,1], denote the circle Sr = {λ ∈C | |λ|= r}, the disk Ir = {λ ∈
C | |λ|< r} and the annulus Ar = {λ ∈ C | r < |λ|< 1/r}. The loop group of
SL2(C) is the infinite dimensional Lie group ΛrSL2(C) = O(Sr,SL2(C)) of
analytic maps Sr → SL2(C).

We need two subgroups. The first is

ΛrSU2 =
{
Fλ ∈O(Ar,SL2(C) | Fλ∈S1 ∈ SU2

}
.

Thus

(3.1) Fλ ∈ ΛrSU2 ⇐⇒ F1/λ̄

t
= F−1

λ .

The second subgroup that participates in the Iwasawa decomposition is

Λ+
r SL2(C) =

{
Bλ ∈O

(
Ir ∪ Sr,SL2(C)

) ∣∣∣B0 =

(
ρ c
0 1/ρ

)
for

ρ ∈R
+ and c ∈C

}
.
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The normalization that B0 is upper-triangular with real diagonals ensures
that

ΛrSU2 ∩Λ+
r SL2(C) = {1}.

The following important result is due to Pressley–Segal [25], and generalized
by McIntosh [19].

Theorem 3.1. Multiplication ΛrSU2 × Λ+
r SL2(C) → ΛrSL2(C) is a real

analytic diffeomorphism onto. The unique splitting of φλ ∈ ΛrSL2(C) into
φλ = FλBλ with Fλ ∈ ΛrSU2 and Bλ ∈ Λ+

r SL2(C) is called the r-Iwasawa
decomposition of φλ or just Iwasawa decomposition when r = 1.

Before specializing to the finite type theory of harmonic maps G : C→ S
2,

let us briefly recall the generalized Weierstrass representation [8]. Set

Λ∞
−1sl2(C) =

{
ξλ ∈O

(
C

×, sl2(C)
) ∣∣∣ (λξλ)|λ=0 ∈

(
0 C

×

0 0

)}
.

A potential is a holomorphic 1-form on C with values in Λ∞
−1sl2(C). Sup-

pose that we have such a potential ξλ dz with ξλ ∈ Λ∞
−1sl2(C). To obtain a

corresponding extended frame Fλ is a two step procedure:

(1) Solve the holomorphic ODE dφλ = φλξλ to obtain a map C→ ΛrSL2(C),
z �→ φλ(z).

(2) The r-Iwasawa factorization φλ(z) = Fλ(z)Bλ(z) at each z ∈ C gives an
extended frame C→ ΛrSU2, z �→ Fλ(z).

Note that while φλ is holomorphic in z ∈ C, the resulting extended frame is
not, since it also depends on z̄ by the reality condition (1.4). It is proven
in [8] that each extended frame can be obtained from a potential ξλ by the
Iwasawa decomposition. Hence for any conformal minimal immersion X =
(G,h) : C → S

2 × R there is a potential and corresponding extended frame
which frames G.

An extended frame is of (semi-simple) finite type, if there exists a g ∈ N,
and it has a corresponding potential ξλ dz with ξλ ∈ Pg ⊂ Λ∞

−1sl2(C). Hence
harmonic maps of finite type come from constant (1, 0)-forms with values in
the finite dimensional space Pg , and thus have an algebraic description. In
the finite type case, the first step in the above two step procedure is explicit,
since then φλ = exp(zξλ). Thus, extended frames of finite type are obtained
by factorizing exp(zξλ) = FλBλ with ξλ ∈ Pg . This step can be made explicit
in terms of theta functions on the spectral curve (see Bobenko [2]).

Expanding a polynomial Killing field ζλ : C→Pg as

ζλ(z) =

(
0 β−1(z)
0 0

)
λ−1(3.2)

+

(
α0(z) β0(z)
γ0(z) −α0(z)

)
+ · · ·+

(
αg(z) βg(z)
γg(z) −αg(z)

)
λg
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we associate a matrix 1-form defined by

(3.3) α(ζλ) =

(
α0(z) β−1(z)λ

−1

γ0(z) −α0(z)

)
dz −

(
α0(z) γ0(z)

β−1(z)λ −α0(z)

)
dz̄.

The following proposition is well known, and the correspondence between
potentials, polynomial Killing fields and extended frames is known as ‘Symes
method’ [5], [6], [28].

Proposition 3.2. For each ξλ ∈ Pg there is a unique polynomial Killing
field ζλ : C→Pg solving dζλ = [ζλ, α(ζλ)] with ζλ(0) = ξλ. The unitary factor
Fλ : C→ ΛSU2 of the Iwasawa decomposition exp(zξλ) = FλBλ is a solution
of F−1

λ dFλ = α(ζλ) with initial value Fλ(0) = 1 and ζλ(z) =Bλ(z)ξλB
−1
λ (z) =

F−1
λ (z)ξλFλ(z).

Proof. Clearly ζλ = Bλ(z)ξλB
−1
λ (z) = F−1

λ (z)ξλFλ(z) uniquely solves

dζλ = [ζλ, F
−1
λ dFλ] with ζλ(0) = ξλ, so it remains to show F−1

λ dFλ = α(ζλ).

Now F−1
λ dFλ =BλξλB

−1
λ − dBλB

−1
λ , so by the reality condition (1.4) we

have F−1
λ dFλ = a−1λ

−1 + a0 + a1λ. If we decompose aj = a′j dz + a′′j dz̄ into
(1, 0) and (0, 1) parts, then we have in addition that

a′′0 =−a′0
t
, a′′1 =−a′−1

t
, a′′−1 =−a′1

t
.

Now F−1
λ (Fλ)z = ζλ − (Bλ)zB

−1
λ , and (Bλ)zB

−1
λ is holomorphic at λ = 0.

Hence a′−1 = ζ̂−1. Further, F−1
λ (Fλ)z̄ = −(Bλ)z̄B

−1
λ implies a′′−1 = 0. It re-

mains to determine a0.
Expand Bλ = B̂0+ B̂1λ+ · · · . Now a′0 = ζ0− (B̂0)zB̂

−1
0 . Since B̂0 is upper-

triangular, then so is (B̂0)zB̂
−1
0 . Hence the lower-diagonal term of a′0 is γ0,

and the upper-diagonal term of a′′0 is −γ̄0. Also a′′0 = −(B̂0)z̄B̂
−1
0 is upper-

triangular, so the lower-diagonal entry of a′′0 is zero, and consequently also the
upper-diagonal entry of a′0 is zero.

Finally, writing B(0) = B̂0 =
(
ρ
0

c
1/ρ

)
, and a′0 =

(
u
w

v
−u

)
, then ū = ρ−1ρz̄

and u = α0 − ρ−1ρz . These two equations, and since ρ is real analytic, give
2u= α0. �

Remark 3.3. With initial data β−1(0) ∈ iR+, the Lax equation gives
β−1(z) ∈ iR+. For a given potential ξλ and polynomial Killing field ζλ : C→
Pg we define ω : C→ R by setting 4β−1 := ieω . The iteration implies that
2α0 = ωz . To express γ0 in terms of α0 and β−1, we consider the Lax equa-
tion and find (γ0)z̄ = −2ᾱ0γ0. Then γ0 = qe−ω where q is a holomorphic
function. The term q is constant. The reason is that along the parameter
z, we have a(λ) = −λdet ζλ(z) = −λdet ξλ and a(0) = β−1γ0 = q/4. Coef-
ficients of ζλ depend only on higher derivatives of ω point wise in z, and
α(ζλ) = α(ω).
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Remark 3.4 (Isometric normalization 4). With initial data β−1(0) ∈ iδR+

(i.e., ξλ ∈ Pg(δ)), the Iwasawa decomposition gives a solution of the Lax equa-

tion ζλ : C→Pg(δ) given by ζλ(z) = F−1
λ (z)ξλFλ(z).

4. Isospectral set

The set I(a) consists of all initial conditions ξλ which give rise to the same
spectral curve Σ and the same off-diagonal product a(0) = β−1γ0.

Definition 4.1. Define for polynomial Killing field ζλ : C→Pg(δ) as in
(3.2), and a(λ) =−λdet ζλ the set

Iδ(a) :=

{
ξλ ∈ Pg(δ)

∣∣∣ λdet ξλ =−a(λ) and

β−1γ0 = a(0) =− 1

16
ei(1−g)θ :=− 1

16
eiΘ
}
.

When δ = 1, we write I(a). The set I(a) is called the isospectral set of the
polynomial Killing field ζλ.

We next define the isospectral action π : Cg × I(a)→ I(a).

Definition 4.2. Let ξλ ∈ I(a) and t= (t0, . . . , tg−1) ∈Cg , and

(4.1) exp

(
ξλ

g−1∑
i=0

λ−iti

)
= Fλ(t)Bλ(t)

the Iwasawa factorization. Define the map π(t) : I(a)→ I(a) by

π(t)ξλ =Bλ(t)ξλB
−1
λ (t).

Since Fλ(t)Bλ(t) commutes with ξλ we have

π(t)ξλ =Bλ(t)ξλB
−1
λ (t) = F−1

λ (t)ξλFλ(t).

Proposition 4.3. The map π(t) : I(a) → I(a) defines a commutative
group action

π
(
t+ t′

)
= π(t)π

(
t′
)
= π
(
t′
)
π(t).

Proof. For t, t′ ∈C
g , we have

Fλ

(
t+ t′

)
Bλ

(
t+ t′

)
= Fλ(t)Bλ(t)Fλ

(
t′
)
Bλ

(
t′
)
= Fλ

(
t′
)
Bλ

(
t′
)
Fλ(t)Bλ(t).

Hence,

exp
(
Bλ(t)ξλB

−1
λ (t)Σλ−it′i

)
= Bλ(t)Fλ

(
t′
)
Bλ

(
t′
)
B−1

λ (t)

= F−1
λ (t)Fλ

(
t+ t′

)
Bλ

(
t+ t′

)
B−1

λ (t),

exp
(
Bλ

(
t′
)
ξλB

−1
λ

(
t′
)
Σλ−iti

)
= Bλ

(
t′
)
Fλ(t)Bλ(t)B

−1
λ

(
t′
)

= F−1
λ

(
t′
)
Fλ

(
t+ t′

)
Bλ

(
t+ t′

)
B−1

λ

(
t′
)
.
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Set B̂λ(t) =Bλ(t+ t′)B−1
λ (t′) and B̃λ(t

′) =Bλ(t+ t′)B−1
λ (t). Then

π
(
t+ t′

)
ξλ = Bλ

(
t+ t′

)
ξλB

−1
λ

(
t+ t′

)
= B̃λ

(
t′
)
Bλ(t)ξλB

−1
λ (t)B̃−1

λ

(
t′
)

= B̃λ

(
t′
)
π(t)ξλB̃

−1
λ

(
t′
)
= π
(
t′
)
π(t)ξλ

= B̂λ(t)Bλ

(
t′
)
ξλB

−1
λ

(
t′
)
B̂−1

λ (t)

= B̂λ(t)π
(
t′
)
ξλB̂

−1
λ (t) = π(t)π

(
t′
)
ξλ. �

Removing singularities on Σ. Elements of different isospectral sets may
give the same extended frame up to conjugation by g ∈ T (see Remark 1.4
and below). This is the case in particular if an initial value ξλ has a root at
some λ = α0 ∈ C

×. Then the corresponding polynomial Killing field ζλ also
has a root at λ= α0 for all z ∈ C. In this case, we may reduce the order of
ξλ and ζλ without changing the immersion. This situation corresponds to a
singular spectral curve because then the polynomial a(λ) = −λdet ξλ has a
root of order at least two at α0. We can remove such a singularity by changing
the surface by an isometry. We describe this change below.

Proposition 4.4. Suppose a polynomial Killing field ζλ has roots in
λ ∈ C

×. Then there is a polynomial p(λ) such that ζλ/p(λ) has no roots

in λ ∈ C
×. If Fλ and F̆λ are the extended frames of ζλ respectively

ζλ/p(λ), then F̆λ(p(0)z) = Fλ(z). Hence, there is g(δ) ∈ T with ζ̃λ :=

g(δ)−1(ζλ/p(λ))g(δ) : C → Pg and F̃ (z) := g(δ)−1F̆λ(p(0)z)g(δ) induces a

minimal surface X̃λ congruent to Xλ in S
2 ×R.

Proof. Suppose the polynomial Killing field ζλ(z) = F−1
λ (z)ξλFλ(z) has a

root at λ= α0. Define

p(λ) =

{√−α0λ+
√−α0 if α0 ∈ S

1,

(λ− α0)(1− ᾱ0λ) if α0 ∈C
× \ S1.

If ζλ has a simple root at λ = α0 ∈ C
×, then ζλ/p(λ) : C → Λg−deg p

−1 sl2(C)
does not vanish at α0. Then there is a map C : C→ Λ+SL2(C) such that

Fλ(z)Bλ(z) = exp(zξλ) = exp
(
p(λ)zξ̆λ

)
= exp

(
p(0)zξ̆λ

)
C(z)

= F̆λ

(
p(0)z

)
B̆λ

(
p(0)z

)
and

Fλ(z) = F̆λ

(
p(0)z

)
=

{
F̆λ(

√−α0z) if α0 ∈ S
1,

F̆λ(−α0z) if α0 ∈C
× \ S1.

We consider δ =
√−α0 when |α0| = 1 and δ = −ᾱ0/|α0| in the other case.

We conjugate ζλ/p(λ) by g(δ) ∈ T. Hence by Remarks 1.5, 2.6, 2.9, 3.4, the
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immersion X̃λ obtained from F̃λ(z) = g(δ)−1F̆λ(p(0)z)g(δ) is congruent to the
immersion Xλ. �

Hence amongst all polynomial Killing fields that give rise to an extended
frame of finite type there is one of smallest possible degree. We say that a
polynomial Killing field has minimal degree if and only if it has neither roots
nor poles in λ ∈C

×. We summarize two results by Burstall–Pedit [5], [6].

Proposition 4.5. For an extended frame of finite type there exists a unique
polynomial Killing field of minimal degree. There is a smooth 1–1 correspon-
dence between the set of extended frames of finite type and the set of polynomial
Killing fields without zeroes.

Proof. We briefly outline how to prove the existence and uniqueness of a
minimal element. If the initial value ξλ gives rise to an extended frame Fλ,
then the corresponding polynomial Killing field ζλ can be modified according
to Proposition 4.4 so that ζ̃λ is of minimal degree, and still giving rise to Fλ.
Hence, there exists a polynomial Killing field ζλ ∈ Pg of least degree giving
rise to Fλ.

For the uniqueness, let ζλ and ζ̃λ both solve dζλ + [α(ω), ζλ] = 0, with

deg ζλ ≥ deg ζ̃λ. We can assume that ζλ, ζ̃λ have no roots (if not, we simplify
the polynomial Killing field using Proposition 4.4). We use the iteration of
Proposition 2.2. We prove that there is a polynomial q ∈C

k[λ] such that

(4.2) ζλ(z) = q(λ)ζ̃λ(z).

The polynomial q is constructed recursively by considering coefficients un,
σn, τn−1 and ũn, σ̃n, τ̃n−1. Since τ−1, τ̃−1, are constant, there is q0 with
τ̃−1 = q0τ−1. This implies that ũ0 = q0u0, σ̃0 = q0σ0 and there is q1 such that
τ̃0 = q0τ0 + q1τ−1. By the iteration, if there are constants q0, q1, . . . , q
 with

ũ0 = q0u0, ũ1 = q0u1 + q1u0, . . . , ũ
 = q0u
 + · · ·+ q
u0,

σ̃0 = q0σ0, σ̃1 = q0σ1 + q1σ0, . . . , σ̃
 = q0σ
 + · · ·+ q
σ0,

τ̃−1 = q0τ−1, τ̃0 = q0τ0 + q1τ−1, . . . , τ̃
−1 = q0τ
−1 + · · ·+ q
τ−1,

the iteration implies that there is q
+1 such that τ̃
 = q0τ
 + · · ·+ q
+1τ−1 and

this proves (4.2). Now, since ζλ, ζ̃λ have no roots, the polynomial q(λ) = q0 is

constant and since the residues coincide, we conclude that ζλ = ζ̃λ. �

Remark 4.6. Since the Iwasawa factorization is a diffeomorphism, and all
other operations involved in obtaining an extended frame from a polynomial
Killing field are smooth, the resulting minimal surface depends smoothly on
the entries of the polynomial Killing field, and thus also smoothly on the
entries of its initial value.
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For ξλ ∈ I(a), the polynomial a(λ) =−λdet ξλ has the form

(4.3) a(λ) = b

g∏
i=1

(λ− αi)(1− λᾱi), b ∈R
−.

The condition (2.8) implies a(1)≤ 0 so that b ∈R
−.

Lemma 4.7. (1) If a has a double root α0 ∈ S
1, then we have an isomor-

phism

I(a)∼= I
(
−α0(λ− α0)

−2a
)
.

(2) If a has double root α0 /∈ S
1, then I(a) = {ξλ ∈ I(a) | ξα0 �= 0} ∪ {ξλ ∈

I(a) | ξα0 = 0} and there is an isomorphism{
ξλ ∈ I(a) | ξα0 = 0

}∼= I
(
(λ− α0)

−1(1− ᾱ0λ)
−1a
)
.

Proof. (1) If a has a double root at α0 ∈ S
1 then for any ξλ ∈ I(a), we

have ξα0 = 0. We can remove this root by Proposition 4.4, with δ =
√−α0,

to obtain the isomorphism

ξλ �→ (
√
−α0λ+

√
−α0)

−1g(δ)−1ξλg(δ) ∈ I
(
−α0(λ− α0)

−2a
)
.

(2) Suppose a has a double root at α0 /∈ S
1. Then the isospectral set splits

into a part which contains potentials with a zero at α0, which we can remove,
and the set of potentials not zero at α0. But in this last case, this means
that ξα0 is a nilpotent matrix. We use Proposition 4.4, with δ =−ᾱ0/|α0|, to
obtain the isomorphism

ξλ �→ 1

λ− α0

1

1− ᾱ0λ
g(δ)−1ξλg(δ) ∈ I

(
1

λ− α0

1

1− ᾱ0λ
a

)
. �

Theorem 4.8. Isospectral sets are compact. If the 2g-roots of the polyno-
mial a(λ) = −λdet ξλ for ξλ ∈ Pg are pairwise distinct, then I(a) ∼= (S1)g is
a connected smooth g-dimensional manifold diffeomorphic to a g-dimensional
real torus.

The proof of Theorem 4.8 follows in several steps. The compactness is a
consequence of the next Proposition 4.9. The second statement follows from
Propositions 4.10 and 4.11. We shall prove several properties of the map

(4.4) A : Pg →Mg, ξλ �→ −λdet ξλ.

Proposition 4.9. The map A in (4.4) is proper.

Proof. Since A is continuous it suffices to show that pre-images of com-
pact sets are bounded. Let K ⊂Mg be compact. Then the map S

1 ×K →
R, (λ,a) �→ λ−ga(λ) is bounded. For the compactness of the pre-image it
suffices to show that all Laurent-coefficients of a ξλ ∈ Pg are bounded, if
A(ξλ) ∈K. Fix a polynomial a ∈K and consider the isospectral set I(a) as a
closed subset of the (3g + 1)-dimensional vector space Pg . For d= (1− g)/2



FINITE TYPE MINIMAL ANNULI IN S
2 × R 715

the map λdξλ is traceless and skew-hermitian for |λ| = 1. The determinant
of traceless skew-Hermitian 2× 2 matrices is the square of a norm ‖ · ‖. The

Laurent-coefficients of ξλ =
∑g

i=−1 λ
iξ̂i are

ξ̂i =
1

2πi

∫
S1

λ−iξλ
dλ

λ
.

Using the norm gives

‖ξ̂i‖ ≤
1

2πi

∫
S1

∥∥λ(1−g)/2ξλ
∥∥dλ
λ

≤ sup
λ∈S1

√
−λ−ga(λ).

Thus each entry of ξ̂i is bounded on S1, so A is proper and I(a) therefore
compact. �

Proposition 4.10. Suppose ξλ ∈ Pg has no roots in λ ∈ C
×. Then the

map A in (4.4) has maximal rank 2g+1. Let a(λ) =−λdet ξλ. Then I(a) is
a g-dimensional sub-manifold of Pg .

Proof. Since det is the square of a norm on su2, at all roots of a on S1, the
corresponding ξλ ∈ I(a) has to vanish. If ξλ is without roots, then a ∈M0

g .
We show that the derivative of the map A has rank 2g + 1 at a potential
ξλ without roots, and then invoke the implicit function theorem. Hence it
suffices to prove that for all roots α0 of a of order n, and all β ∈C there exists
a tangent vector ξ̇λ along Pg at ξλ, such that the corresponding derivative of
a is equal to

ȧ(λ) =−λdet ξλ tr
(
ξ−1
λ ξ̇λ

)
=

βa(λ)

(λ− α0)m
+

λmβ̄a(λ)

(1− ᾱ0λ)m

with m= 1, . . . , n. Such a vector field fixes all roots of a except α0. The set of
these vector fields form a 2g-dimensional real vector space. Besides the roots
of a(λ) also the coefficient b in (4.3) can be changed by this variation. We

consider ξ̇λ = tξλ with

ȧ(λ) =−λdet ξλ tr
(
ξ−1
λ ξ̇λ

)
=−2λtdet ξλ.

This vector field preserves all roots of a(λ), but changes a(1) with variational
field ȧ(1) = ta(1), and b ∈ R

− is changing non-trivially. This will prove the
theorem.

Now we construct vector fields ξ̇λ. If α0 is a root of a of order n, then
det ξα0 vanishes, and ξα0 is nilpotent. For a non-zero nilpotent 2× 2-matrix
ξα0 there exists a matrix Q ∈ su2 such that ξα0 = [Q,ξα0 ]. To prove this
remark, observe that it holds if ξ0 =

(
0
0

1
0

)
, by setting Q0 =

(
1
0

0
−1

)
. The

general statement now follows since there exists g ∈ SU2 with ξα0 = g−1ξ0g,
and setting Q= g−1Q0g.

We need the following basic fact: For A,B ∈ sl2(C) and A �= 0, we have

(4.5) tr(AB) = 0 ⇐⇒ B = [C,A] with some C ∈ sl2(C).
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For any ξλ ∈ Pg , we have ξ2λ =−det(ξλ)1 and at a root α0 of a(λ) of order n,
there exists for any m= 1, . . . , n, a matrix

Q̂λ(m) =Q0 +Q1(λ− α0) + · · ·+Qm−1(λ− α0)
m−1

with Q0, . . . ,Qn−1 ∈ sl2(C), such that ξλ − [Q̂λ(m), ξλ] has at α0 a root of

orderm. The matrix Q̂λ(m) is constructed inductively using (4.5). We remark
that at α0, the function λ �→ tr(ξ2λ) has a root of order n. Then there is Q0 such
that ξλ − [Q0, ξλ] = (λ−α0)ξλ,1 and tr(ξλ(ξλ − [Q0, ξλ])) = (λ−α0) tr(ξλξλ,1)
has a root at α0 of order n. Then there is a matrix Q1 with ξλ,1 − [Q1, ξλ] =
(λ− α0)Q2. Now we define for m= 1, . . . , n

Q̃λ(m) =−tQ̄0 − tQ̄1(1− ᾱ0λ)λ
−1 − · · · − tQ̄m−1(1− ᾱ0λ)

m−1λm−1.

Then ξλ − [Q̃λ(m), ξλ] has at ᾱ
−1
0 a root of order m. Now we define

qm(λ) =
β

(λ− α0)m
+

λmβ̄

(1− α0λ)m
,

Qλ(m) =
β

(λ− α0)m
Q̂λ(m) +

λmβ̄

(1− α0λ)m
Q̃λ(m).

There exists some P ∈ su2 such that

ξ̇λ = qm(λ)ξλ −
[
Qλ(m), ξλ

]
+ [P, ξλ] ∈ TξλPg.

To see that we need to check
˙̂
ξ−1 ∈ iR+

(
0
0

1
0

)
and |ȧ|(0) = 0. Note that if

A ∈ su2 and B =
(
0
0

1
0

)
, then [A,B] =

(
α
0

ix
−α

)
with α ∈ C, x ∈ R. Then we

can choose P ∈ su2 such that

˙̂
ξ−1 =

βξ−1 − β[Q0(m), ξ−1]

(−α0)n
+ [P, ξ−1] ∈ iR+

(
0 1
0 0

)
.

For the second condition we have (ȧā+ a¯̇a)(0) = |a|2(0)(−α0)
−n(β + β̄), and

we can choose β ∈ C such that the variational field keeps |a(0)| unchanged
along the deformation. This proves that ξ̇λ ∈ TξλPg , and such vector fields
span a 2g+1 dimensional real vector space of vector fields in the complement
of the kernel of the map. This proves that around ξλ without zeroes, I(a) is
a real g-dimensional manifold. �

Proposition 4.11. For all ξλ ∈ Pg without roots the vector fields of the
isospectral group action generate at ξλ a real g-dimensional subspace of the
tangent space Pg at ξλ.

Proof. The vector field (t0, . . . , tg−1) of the isospectral action at ξλ takes
the values

ξ̇λ =

[(
g−1∑
i=0

λ−itiξλ

)+

, ξλ

]
=−

[(
g−1∑
i=0

λ−itiξλ

)−

, ξλ

]
.
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Here
g−1∑
i=0

λ−itiξλ =

(
g−1∑
i=0

λ−itiξλ

)+

+

(
g−1∑
i=0

λ−itiξλ

)−

is the Lie algebra decomposition of the Iwasawa decomposition. For A ∈ sl2(C)
with A �= 0 we have that {B ∈ sl2(C) | [A,B] = 0}= {xA | x ∈ C}. Hence the
vector field corresponding to (t0, . . . , tg−1) vanishes at ξλ if and only if there

exists a decomposition of the polynomial
∑g−1

i=0 λ−iti = f+(λ) + f−(λ) into
complex functions such that(

g−1∑
i=0

λ−itiξλ

)+

= f+ξλ and

(
g−1∑
i=0

λ−itiξλ

)−

= f−ξλ.

Hence f+(λ̄−1) = λgf+(λ) and f−(0) = 0.

The polynomial
∑g−1

i=0 λ−iti is a linear combination of such functions if and
only if tg−1−i = t̄i. The subspace of such (t0, . . . , tg−1) is a real g-dimensional
subspace of Cg . This implies the proposition. �

Recall Mg from (2.9), and define

M1
g = {a ∈Mg | a has 2g-pairwise distinct roots},

P1
g =
{
ξλ ∈ Pg | a(λ) =−λdet ξλ ∈M1

g

}
.

Proposition 4.12. For all a ∈M1
g , the isospectral action π : Rg × I(a)→

I(a) acts transitively on I(a) and the mapping A : P1
g →M1

g is a principal

bundle with fibre I(a) = (S1)g .

Proof. At all roots of ξλ ∈ Pg , the determinant det ξλ has a higher order
root. Hence all ξλ ∈ P1

g have no roots on C
×. Proposition 4.10 implies that

A : P1
g → M1

g has maximal rank 2g + 1 and induces a fibre bundle, whose
fibres are real g-dimensional manifolds. The isospectral action preserves the
determinant and thus the fibres. Proposition 4.11 implies that for all ξλ ∈ P1

g

the corresponding orbit of the isospectral action is an open submanifold of the
corresponding fibre. If π(tn)ξλ converges to ξ̃λ ∈ P1

g for a sequence (tn)n∈N

in R
g , then the orbit of ξ̃λ is again an open submanifold of the corresponding

fibre. Thus π(tn)ξλ belongs to the orbit of ξ̃λ for sufficiently large n ∈N. Then

π(tn)ξλ = π(t′n)ξ̃λ and ξ̃λ = π(tn − t′n)ξλ is in the orbit of ξλ. This shows that
the orbits of the isospectral set I(a) are open and closed submanifolds of the
fibre. Due to Proposition 4.9, the fibers are compact. Therefore all orbits
are compact as well. Due to Proposition 4.11, for all ξλ ∈ P1

g the stabilizer
subgroup

(4.6) Γξλ =
{
t ∈R

g | π(t)ξλ = ξλ
}

is discrete and R
g/Γξλ is diffeomorphic to the connected component of the

fibre of ξλ. We conclude that Γξλ is a lattice in R
g isomorphic to Z

g . This
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shows that A : P1
g →M1

g is a fibre bundle, whose fibres have connected com-

ponents all isomorphic to (S1)g .
It remains to prove that I(a) has only one connected component. We first

show that M0
g (see (2.9)) is path connected: If a, ã ∈M0

g satisfy

(4.7) tã(0) + (1− t)a(0) �= 0 for all t ∈ [0,1]

then tã+(1− t)a ∈M0
g for all t ∈ [0,1]. If a, ã ∈M0

g do not satisfy (4.7), then

modifying λ �→ a(λ) by the rotation λ �→ e−igθa(eiθλ) for some suitable θ ∈R

we can ensure that (4.7) holds. Hence, M0
g is path connected.

Since M1
g is an open subset of M0

g , whose complement M0
g \ M1

g has

codimension at least 2, we conclude that M1
g is connected and A : P1

g →M1
g

has maximal rank 2g + 1 at any point. Hence it remains to show that there
exists at least one a ∈M1

g for which I(a) has only one connected component.
Denote the entries of ξλ ∈ Pg by polynomials α,β, γ so that

ξλ =

(
α(λ) β(λ)
γ(λ) −α(λ)

)
.

Then a(λ) =−λdet ξλ = λα2+λβγ. Here α is a polynomial of degree at most

g − 1. For |λ|= 1 the polynomial λ
1−g
2 α ∈ iR and λ1−gα2 ≤ 0, and therefore

λ1−gβγ ∈R.
Now we consider a potential ξλ with λβ = γ, and γ has only roots on

|λ| = 1. We claim in this case that I(a) is connected. This condition on β

implies that a(λ) = λα2 + γ2 and λgγ(λ̄−1) =−λβ(λ) =−γ(λ). Now observe
that λ−gγ2 ≤ 0 and λ−ga(λ)≤ λ1−gα2 ≤ 0.

Let ξ̃λ ∈ I(a) with entries α̃, β̃, γ̃. We construct a family ξλ,t =
(
αt

γt

βt

−αt

)
with αt = tα+(1− t)α̃. We prove that there exist polynomials βt, γt uniquely

defined such that ξλ,t ∈ I(a) for all t ∈ [0,1], with β1 = β, γ1 = γ and β0 = β̃,
γ0 = γ̃.

Since λ1−gα̃2 ≤ 0 for |λ|= 1 we have λ1−gα2
t ≤ 0 for all t ∈ [0,1]. Now we

consider the polynomial pt(λ) = a(λ)− λ1−gα2
t . If α0 is a root of pt(λ), then

ᾱ−1
0 is a root of pt(λ). For t = 0, we know that p0 = λβ̃γ̃ where roots of β̃

are symmetric to the roots of γ̃. At roots of pt we can define βt and γt with
β1 ∈ iR+. At t= 1, we have p= γ2 and all the roots of p1 are double roots on
the unit circle. Then γ is defined uniquely, and I(a) is connected, if we can
find such a path with a ∈M1

g .

Therefore, we consider γ = λg +1 and α= ik(λg−1+1) with k ∈R
+. Then

0 = λg + 1 = λg−1 + 1 implies λg−1(1− λ) = 0. Then the polynomials γ and
α do not have common roots. Hence at k = 0 we have λ−ga(λ) = λ1−gα2 +
λ−gγ2 ≤ 0 for |λ|= 1, and a has only double roots on the unit circle. For k > 0
small enough, the roots change. But there are no roots on the unit circle and
the roots are simple and conjugate, so that a ∈M1

g . �
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5. Periods

Suppose Xλ = (Gλ, hλ) is an associated family of minimal surfaces in
S
2 ×R. For one member of this family to be periodic, say for λ = 1 with

period τ ∈ C
×, this means that X1(z + τ) =X1(z) for all z ∈ C, or equiva-

lently G1(z + τ) =G1(z) and h1(z + τ) = h1(z) for all z ∈ C. If Gλ(z) =

Fλ(z)σ3Fλ(z)
−1 and hλ(z) = Re(−4i

√
β−1γ0λ−1z) = Re(−ieiΘ/2

√
λ−1z)

(where Q= 1
4e

iΘ(dz)2) then periodicity reads[
F−1
1 (z)F1(z + τ), σ3

]
= 0 and Re

(
−ieiΘ/2τ

)
= 0.

The monodromy of an extended frame Fλ with respect to the period τ is the
matrix

Mλ(τ) = Fλ(z)
−1Fλ(z + τ).

Thus periodicity of the horizontal part reads [Mλ(τ), σ3] = 0. Due to (1.3), the
monodromy C

× → SL2(C), λ �→ Mλ(τ) is a holomorphic map with essential
singularities at λ= 0,∞.

For a periodic immersion its conformal factor ω is periodic, and hence
also α(ω) in (1.3) is periodic. This in turn implies that dMλ(τ) = 0 so that
Mλ(τ) does not depend on z. Hence, Mλ(τ) = Fλ(0)

−1Fλ(τ) = Fλ(τ) since
Fλ(0) = 1.

Let ζλ be a periodic solution of the Lax equation (2.3) with initial value
ξλ ∈ Pg , with period τ so that ζλ(z + τ) = ζλ(z) for all z ∈ C. Then also the
corresponding α(ζλ) in (3.3) is τ -periodic. Let dFλ = Fλα(ζλ), Fλ(0) = 1 and
Mλ(τ) = Fλ(τ) be the monodromy with respect to τ . Then for z = 0 we have
ξλ = ζλ(0) = ζλ(τ) = F−1

λ (τ)ξλFλ(τ) =M−1
λ (τ)ξλMλ(τ) and thus[

Mλ(τ), ξλ
]
= 0.

The monodromy takes values in SU2 for |λ|= 1. The monodromy depends on
the choice of base point, but its conjugacy class and hence eigenvalues μ,μ−1

do not. The eigenspaces of M(λ, τ) depend holomorphically on (ν,λ). The
eigenvalues of ξλ and Mλ(τ) are different functions on the spectral curve Σ.

Proposition 5.1. Let Mλ =
(
A
B

C
D

)
∈ ΛSU2 and ξλ =

(
α
γ

β
−α

)
∈ Pg with

[Mλ, ξλ] = 0. Assume ν �= 0 and μ2 �= 1. Then Mλ and ξλ have same eigen-
vectors ψ+ = (1, (ν − α)/β), ψ− = (1,−(ν + α)/β) with

2ξλψ+ = νψ+ and Mψ+ = μψ+,

ξλψ− = −νψ− and Mψ− = μ−1ψ−.

The involution η : (λ, ν)→ (λ̄−1, λ̄1−gν̄) acts on μ by η∗μ= μ̄.

Proof. From the reality condition λg−1ξ1/λ̄
t =−ξλ or equivalently ξ1/λ̄ =

−λ̄1−gξλ
t and with ψ̃− = (1,−(ν̄ + ᾱ)/γ̄) we have

ξ1/λ̄ψ̃− =−λ̄1−g

(
ᾱ γ̄
β̄ −ᾱ

)
ψ̃− = λ̄1−g ν̄ψ̃−.
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Since M1/λ̄

t−1 = Mλ, and Mλψ+ = μψ+, and ψ+ = (1, (ν − α)/β) =

(1, γ/(ν + α)), we obtain the system

A+C
γ

ν + α
= μ and B +D

γ

ν + α
= μ

γ

ν + α
.

This implies by direct computation that M1/λ̄ψ̃− =M−1
λ

t
ψ̃− = μ̄ψ̃−. �

At λ= 0 and λ=∞ a monodromy Mλ(τ) has essential singularities. Next,
we study the behavior of μ= μ(λ, τ) at these two points.

Lemma 5.2. Let ψ = ψ(λ, z) = (1, h(λ, z)) be an eigenvector of ζλ(z) =
Fλ(z)

−1ξλFλ(z). Then there exists a complex function f = f(λ, z) such that

(5.1) f(λ, z)ψ(λ, z) = F−1
λ (z)ψ(λ,0)

which satisfies

(1) f−1 df =− i
4λ

−1/2 exp(iΘ/2)dz +O(1) in a neighborhood of λ= 0,

(2) f−1 df =− i
4λ

1/2 exp(−iΘ/2)dz̄ +O(1) in a neighborhood of λ=∞.

Proof. Note that h(λ, z) and f(λ, z) are 2-valued in λ because they depend
on the choice of eigenvalue. By Proposition 5.1, an eigenvector of

ζλ(z) =

(
α(λ, z) β(λ, z)
γ(λ, z) −α(λ, z)

)

associate to the eigenvalue ν =
√
a(λ)λ−1 is given by ψ(λ, z) = (1, (ν−α)/β).

Now using ζλ(z) = F−1
λ (z)ξλFλ(z) we see that F

−1
λ (z)ψ(λ,0) is an eigenvector

of ζλ(z) and it is collinear to ψ(λ, z). This defines the function f(λ, z).
Differentiating (5.1) reads dfψ+ f dψ =−α(ζλ)F

−1
λ ψ|z=0, and then

(5.2) f−1 dfψ =−α(ζλ)ψ− dψ.

In a neighborhood of λ= 0, we have ν2 =−det ζλ = λα2+λβγ
λ = β−1γ0

λ +O(1) =
−eiΘ

16λ +O(1). Expanding at λ= 0

α(ζλ) =

(
α0 β−1λ

−1

γ0 −α0

)
dz +O(1),

and considering the first entry of the vector equation (5.2) yields

f−1 df = −α0 dz − β−1λ
−1 ν − α(z)

β(z)
dz +O(1)

= −ν dz +O(1) =
−ieiΘ/2

4
√
λ

dz +O(1).

In a neighborhood of λ=∞, we have

α(ζλ) =

(
−ᾱ0 −γ̄0

−β̄−1λ ᾱ0

)
dz̄ +O(1)
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and we obtain (ii) by considering the eigenvector ψ = ( β
ν−α ,1) and looking at

the second entry gives

f−1 df = β̄−1λ
β

ν − α
dz̄ +O(1) =

β̄−1βg−1√−a2g

√
λdz̄ +O(1)

=
−ie−iΘ/2

√
λ

4
dz̄ +O(1).

Further, ξ̂d = − ¯̂
ξtg−1−d implies βg−1 = −γ̄0 and a2g = −βg−1γg = −γ̄0β̄−1 =

e−iΘ/16. �

Using these properties, we compute the local behavior of μ(λ, τ) near λ= 0
and λ=∞.

Proposition 5.3. Let X : A → S
2 × R be an immersed finite type min-

imal cylinder with spectral curve Σ. Then there exists a meromorphic dif-
ferential d lnμ on Σ with second order poles without residues at λ = 0,∞
so that d lnμ− 1

4iτ exp(iΘ/2)d
√
λ
−1

extends holomorphically to λ = 0, and

d lnμ− 1
4iτ̄ exp(−iΘ/2)d

√
λ extends holomorphically to λ=∞.

This differential is the logarithmic derivative of a function μ : Σ → C

which transforms under the involutions (2.11) as σ∗μ= μ−1, �∗μ= μ̄−1 and
η∗μ= μ̄. Further μ=±1 at each branch point of Σ.

Proof. If ν �= 0, the eigenspace of ζλ is a complex 1-dimensional vector space
and since [Mλ, ζλ] = 0, every eigenvector ψ of ζλ with associated eigenvalue
ν �= 0 is an eigenvector of Mλ with eigenvalue μ which depends only on (ν,λ).
If ν = 0 then μ = ±1. Note that μ is a non-zero holomorphic function on
Σ∗. At λ = 0 and λ = ∞, the monodromy has essential singularities and
we thus need the local analysis of Lemma 5.2. If τ is the period of the
annulus, we have ψ(τ) = ψ(0) and f(τ)ψ(0) = F−1

λ ψ(0). Then μ = f−1(τ).

This proves that at λ= 0, d lnμ− i
4 exp(iΘ/2)τ d

√
λ
−1

is holomorphic, and at

λ =∞ the differential d lnμ− i
4 exp(−iΘ/2)τ̄ d

√
λ extends holomorphically.

The differential d lnμ has second order poles without residues at λ= 0 and at
λ=∞.

If ψ+ and ψ− are eigenvectors associated to eigenvalues ±ν of ζλ, the corre-
sponding eigenvalues μ± of Mλ satisfy μ+μ− = 1. To see how the involution
η acts on μ, we note that since Mλ satisfies (1.4), we have that μ̄ is the
corresponding eigenvalue of M1/λ̄ associated to μ by Proposition 5.1. Thus,

η∗μ= μ̄. Similarly �∗μ= μ̄−1.
If ν = 0, then det ζλ = 0, so let (ẽ1, ẽ2) ∈ C

2 such that ζλ(ẽ1) = 0 and
ζλ(ẽ2) = δẽ1. Since Mλ ∈ SL2(C), let (e1, e2) be a basis of eigenvectors of Mλ

associate to μ and μ−1 and ζλ(e1) = κ1δẽ1, ζλ(e2) = κ2δẽ1. Inserting this in
Mλζλ(ei) = ζλMλ(e1) proves that μ= μ−1. This proves that the holomorphic
function μ takes values ±1 at each branch point of Σ. �
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Next, we relate the eigenvalues μ to the isospectral action. We prove in
particular that the existence of such a holomorphic function is a sufficient
condition to close the period of a polynomial Killing field with any initial
potential.

Proposition 5.4. The stabilizer Γξλ in (4.6) depends only on the orbit of
ξλ. If γ ∈ Γξλ satisfies Fλ(γ) =±1 for some ξλ ∈ Pg then the same is true for
every element in the orbit of ξλ. The period τ is related to t= (τ,0, . . . ,0) ∈
Γξλ .

Proof. This follows from the commuting property of the isospectral action,
since

π(γ)π(t)ξλ = π(t)π(γ)ξλ = π(t)ξλ. �

Proposition 5.5. Assume ξλ ∈ Pg has no roots. Then γ ∈ Γξλ if and only
if there exists on Σ a function μ which satisfies the following properties:

(1) μ is holomorphic on Σ∗ and there exist holomorphic functions f, g on C×

with μ= fν + g.
(2) σ∗μ= μ−1, �∗μ= μ̄−1, η∗μ= μ̄ and μ=±1 at branch points of Σ.

(3) d lnμ is a meromorphic 1-form with d lnμ− d(
∑g−1

i=0 γiλ
−iν) holomorphic

in a neighborhood of λ= 0 and d lnμ+d(
∑g−1

i=0 γ̄iλ
i+1−gν) is holomorphic

at λ=∞.

Proof. For γ ∈Rg , we write exp(
∑g−1

i=0 γiλ
−iξλ) = Fλ(γ)Bλ(γ) for the Iwa-

sawa decomposition. Then γ ∈ Γξλ if and only if [Fλ(γ), ξλ] = [Bλ(γ), ξλ] = 0.
Hence, Fλ(γ) and Bλ(γ) act trivially on ξλ and ξλ = ζλ(0) = ζλ(γ) =
F−1
λ (γ)ξλFλ(γ) =Bλ(γ)ξλB

−1
λ (γ). Since Fλ(γ) and Bλ(γ) commute with ξλ,

we have by (4.5) that Fλ(γ) = f(λ)ξλ + 1
2 tr(Fλ(γ))1 and Bλ(γ) = e(λ)ξλ +

1
2 tr(Bλ(γ))1 with functions e, f depending only on λ. In this case we define
on the spectral curve Σ the eigenvalue function μ(λ) of Fλ(γ) by

μ(λ) = f(λ)ν + g(λ) = f(λ)ν +
1

2
tr
(
Fλ(γ)

)
.

We prove that μ satisfies properties (1), (2) and (3). Since λ �→ Fλ(γ) is holo-
morphic, the function λ �→ tr(Fλ(γ)) is holomorphic on Σ∗. Since Fλ(γ) and
ξλ commute, can write fξλ = Fλ(γ)− 1

2 tr(Fλ(γ))1), and since ξλ has no ze-

roes conclude that λ �→ f(λ) is holomorphic. Hence, μ : Σ̃→C is holomorphic
and f, g have no poles on C

×, proving (1).
Property (2) follows since μ is the eigenvalue of Fλ(γ) and Fλ satisfies (1.4).
At λ = 0, the eigenvalue of the matrix Bλ(γ) = e(λ)ξλ + 1

2 tr(Bλ(γ))1 is
holomorphic, so e(0) = 0 (ξλ has a pole at λ= 0). Hence, B0(γ) = 1. Since

exp

(
g−1∑
i=0

γiλ
−iν

)
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is the product of eigenvalues of the product Fλ(γ)Bλ(γ), then at λ= 0, this
is precisely the value of μ, which proves (3). Similarly, using �∗ d lnμ= d lnμ
allows to deal with the point λ=∞.

Conversely, assume μ : Σ→C satisfies conditions (1), (2) and (3). Assume
there are two holomorphic function f, g : C× → C with μ = fν + g. Hence,
F = fξλ + g1 is holomorphic on Σ∗ and belongs to the first factor of the
Iwasawa decomposition (a consequence of (2)). Due to (3), the matrix

Bλ = F−1
λ exp

(
g−1∑
i=0

γiλ
−iξλ

)

is holomorphic in a neighborhood of λ = 0 and [Bλ, ξλ] = 0. Since Bλ −
1
2 tr(Bλ)1 is at λ = 0 proportional to

(
0
0

1
0

)
, Bλ belongs to the second fac-

tor of the Iwasawa decomposition. This shows that FλBλ is the Iwasawa
decomposition of

exp

(
g−1∑
i=0

γiλ
−iξλ

)
= FλBλ.

Since [Fλ(γ), ξλ] = 0, we conclude that γ ∈ Γξλ . �

Remark 5.6. Holomorphic functions f, g : C× →C are given by

μ=
1

2

(
μ− σ∗μ

ν

)
ν +

1

2

(
μ+ σ∗μ

)
= fν + g.

Theorem 8.2 in Forster [11] assures that f, g extend to holomorphic functions
on C

×. At fixed points of the involution σ (zeroes of ν), the function μ−σ∗μ
has zeroes.

In case ν has higher order roots, the function (μ−σ∗μ)/ν may have a pole.
Then the condition that μ= fν + g with f, g holomorphic is stronger than μ
being holomorphic on Σ∗.

The 1-form d lnμ is meromorphic on Σ, and changes sign under the hyper-
elliptic involution.

The closing conditions for regular spectral curves. In the following, we
restrict to the case where a has only simple roots. Then the spectral curve Σ
is a hyperelliptic curve without singularities. The closing condition is simplest
as we only need to check the existence of the holomorphic ν by Remark 5.6.

Proposition 5.7. Let a ∈C
2g[λ] satisfy (2.7) and (2.8). Then on Σ there

exist for all τ ∈C
× a unique meromorphic differential φ such that

(1) σ∗φ=−φ, �∗ =−φ̄, η∗φ= φ̄,
(2) φ has second order poles at 0 and ∞ without residues, and no other poles,

(3) φ = 1
4iτe

iΘ/2 d
√
λ
−1

+O(1) at λ = 0 and φ = 1
4iτ̄ e

−iΘ/2 d
√
λ+ O(1) at

λ=∞,
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(4)
∫ 1/ᾱi

αi
φ=Re(

∫ 1/ᾱi

αi
φ) = 0 for all roots αi of a where the integral is com-

puted along the line segment [αi,1/ᾱi].

In conclusion, there exists a unique b ∈ C
g+1[λ] with φ= bdλ

νλ2 which satisfies

λg+1b̄(λ̄−1) =−b(λ).

Proof. We make the Ansatz that φ = bdλ
νλ2 . The conditions (1), (2) and

(3) fix the highest and lowest coefficient of b, so there remain g real free
coefficients of b. These coefficients correspond to holomorphic differentials

satisfying condition (4) Re(
∫ 1/ᾱi

αi
φ) = 0. The first equality comes from the

reality condition (1) and reads∫ αi/|αi|

αi

φ=

∫ 1/ᾱi

αi/|αi|
φ.

Concerning uniqueness, holomorphic differentials whose integrals along cycles
are imaginary, are zero by Riemann’s bilinear relations. �

Definition 5.8. We define a compact Riemann surface with boundary by
Σ̂ = Σ \

⋃
γi where γi are closed cycles over the straight lines connecting the

branch points αi and 1/ᾱi.

Corollary 5.9. Let a ∈C
2g[λ] satisfy (2.7) and (2.8).

(1) If there is τ ∈C and b which satisfies (1)–(4) of Proposition 5.7, then there

exists a unique meromorphic function h(λ) : Σ̂→ C such that σ∗h(λ) =
−h(λ) and dh= bdλ

νλ2 .

(2) I(a) corresponds to minimal annuli in S
2 × R if and only if there ex-

ists τ ∈ C
× with τeiΘ/2 ∈ R

×, and such that the polynomial b defining
the function h(λ) : Σ̂→ C, satisfies σ∗h(λ) =−h(λ) and dh= bdλ

νλ2 . This
function continuously extends to boundary segments connecting αi and
1/ᾱi and then takes values on iπZ at all roots of (λ− 1)a(λ).

Proof. (1) In a small neighborhood of Σ over λ = 0, the function h is
uniquely determined by dh= bdλ

νλ2 up to some additive constant. This constant
is determined by σ∗h(λ) =−h(λ) in this small neighborhood. By conditions
on b, we have

∫
γi
dh= 0, so∫

γi

bdλ

νλ2
= 2

∫ 1/ᾱi

αi

bdλ

νλ2
= 0.

Now we can uniquely extend the function h to Σ̂.
(2) For an immersed annulus

X1(z) =
(
F1(z)σ3F

−1
1 (z),Re

(
−ieiΘ/2z

))
in S

2 ×R the extended frame Fλ(z) admits a period τ ∈C× with τeiΘ/2 ∈R,
and periodic Killing field ζλ(z + τ) = ζλ(z). This implies that d lnμ is a
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meromorphic differential with second order pole at 0 and ∞ without residues
and no other poles and satisfies condition (1)–(3) of Proposition 5.7. The
integrals of d lnμ along closed cycles are integer multiples of 2πi, since the
function μ is globally single-valued by condition (4). Since the extended frame
F1(z) is periodic then μ(1) = ±1. Since μ2 = 1 at branch points αi, it is
equivalent to the condition lnμ(αi) ∈ iπZ. Hence, there is a polynomial b
associated to τ ∈C such that d lnμ= bdλ

νλ2 .
Conversely, consider (a, b) such that on the spectral curve Σ the mero-

morphic differential φ = bdλ
νλ2 satisfies

∫ αi

1
φ ∈ πiZ and

∫ αj

αi
φ ∈ πiZ. While

h(λ) =
∫ λ

1
φ is a multiple-valued function on Σ, the function eh : Σ → C is

again holomorphic. It is described in Proposition 5.5 where τ is given by the
residue of φ at 0 and ∞. Then ζλ(z+ τ) = ζλ(z), and we can integrate the ex-
tended frame Fλ. There remains to prove that F1(τ) =±1. We remark that a
solution of the characteristic equation of a solution of F−1

λ dFλ = α(ζλ) defines
a meromorphic differential d lnμ which satisfies (1)–(3) of Proposition 5.7. By
uniqueness of such differentials, d lnμ= φ and μ(1) = eh(1) =±1 so that F1 is
τ -periodic. �

Definition 5.10. The spectral data of a minimal cylinder of finite type in
S
2 ×R with sym point at λ= 1 is a pair (a, b) ∈C

2g[λ]×C
g+1[λ] such that

(i) λ2ga(λ̄−1) = a(λ), λ−ga(λ)≤ 0 for all λ ∈ S1 and a(0) =− 1
16e

iΘ,

(ii) λg+1b(λ̄−1) =−b(λ),

(iii) b(0) = τeiΘ

32 ∈ eiΘ/2
R (closing condition of the third coordinate),

(iv) Re(
∫ 1/ᾱi

αi

bdλ
νλ2 ) = 0 for all roots αi of a where the integral is computed

along the straight segment [αi,1/ᾱi],

(v) the unique function h : Σ̃ → C, where Σ̃ = Σ \
⋃
γi and γi are closed

cycles over the straight lines connecting αi and 1/ᾱi, satisfies

σ∗h(λ) =−h(λ) and dh=
bdλ

νλ2
.

This function continuously extends to boundary segments connecting αi

and 1/ᾱi and then takes values on iπZ at all roots of (λ− 1)a(λ),
(vi) when a has higher order roots then eh = fν + g for holomorphic

f, g : C× →C with f(1) = 0.

6. Bubbletons

The term ‘bubbleton’ is due to Sterling–Wente [27]. They are the solitons
of the theory, and finite type solutions of the sinh-Gordon equations with
bubbletons have singular spectral curves. For more details on the relation-
ship between bubbletons, Bianchi–Bäcklund transformations, simple factors
and cmc surfaces we refer to [17], [16], [18] and the references therein. By
Proposition 4.4, we can discard roots of a potential ξλ without changing the
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surface, but it remains to discuss higher order roots of det ξλ where ξλ is not
semi-simple.

We now consider potentials ξλ for which the polynomial a(λ) =−λdet ξλ
has higher order roots. Roots of ξλ come in symmetric pairs α0,1/ᾱ0 ∈ C

×

and we set in this section δ =−ᾱ0/|α0|. Because the polynomial λ �→ a(λ) is
homogeneous of degree 2, such roots generate even roots of order at least 2 in
the polynomial a. Then there exists a polynomial ã with

a(λ) = (λ− α0)
2(1− ᾱ0λ)

2ã(λ).

We study such ξλ and show that they can be factored into a product of simple
factors (see below) and a potential ξ̃λ ∈ I(ã). If ξα0 �= 0 but ordα0 det ξλ ≥ 2,
then the matrix ξα0 is nilpotent and defines a complex line

L= ker ξα0 = im ξα0 ∈CP
1.

Let v1 ∈ C
2 be a unit vector which spans L, and complement v1 to an or-

thonormal basis (v1, v2) of C
2. Set

p(λ) = (λ− α0)(1− ᾱ0λ)

and let QL ∈ SU2 with QL(e1) = v1. The entries of ξλ in the basis (v1, v2) are
given by

(6.1) Q−1
L ξ(λ)QL :=

(
α̃(λ)p(λ) β̃(λ)(1− ᾱ0λ)

2

γ̃(λ)(λ− α0)
2 −α̃(λ)p(λ)

)
,

where λα̃(λ)2 − λβ̃(λ)γ̃(λ) = ã(λ). If (u1, u2) ∈ ker ξα0 then (−ū2, ū1) ∈
ker ξ1/ᾱ0

.

Simple factors. Define for λ �= α0, ᾱ
−1
0 the SL2(C)-valued maps

πα0(λ) :=

⎛
⎝
√

λ−α0

1−ᾱ0λ
0

0
√

1−ᾱ0λ
λ−α0

⎞
⎠ and πL :=QLπα0Q

−1
L .

At λ= 0, we apply the QR-decomposition to get

πL(0) =QLπα0(0)Q
−1
L =Q0,LR0,L =R1,LQ1,L,

where Q0,L,Q1,L ∈ SU2 and R0,L,R1,L are upper triangular matrices of the
form

(
ρ
0

r
ρ−1

)
for ρ ∈R

+ both depending on α0 and L.

Definition 6.1. Let L ∈CP
1 and α0 ∈C with r <min{|α0|,1/|α0|}. A left

simple factor is a map

gL,α0(λ) = π−1
L (λ)Q0,L.

Then H

α0

= {gL,α0 | L ∈CP
1} ∼=CP

1, and H

α0

⊂ Λ+
r SL2(C).

A right simple factor is a map

hL,α0(λ) =Q1,Lπ
−1
L (λ).

Then Hr
α0

= {hL,α0 | L ∈CP
1} ∼=CP

1, and Hr
α0

⊂ Λ+
r SL2(C).
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Lemma 6.2. There is a one-to-one correspondence between H

α0

and Hr
α0

via

(6.2) gL,α0 = π−1
L Q0,L =Q0,Lπ

−1
L′ = hL′,α0 ,

where
L′ =Q−1

0,LL and Q1,L′ =Q0,L.

Conversely, if L′ is given then we can define a QR-decomposition πL′ =
R1,L′Q1,L′ with

L=Q1,L′L′.

Proof. For any A ∈ SU2 and L′ = AL we have QAL = AQL. Hence πL′ =
QALπα0Q

−1
AL = AπLA

−1. Now we define L′ = Q−1
0,LL and we have g−1

L,α0
=

Q−1
0,LπL = πL′Q−1

0,L. With πL(0) =Q0,LR0,L, we observe that

πL′(0) =Q−1
0,LπL(0)Q0,L =R0,LQ0,L =R1,L′Q1,L′

and hence Q1,L′ =Q0,L. Then g−1
L,α0

(λ) = πL′Q−1
0,L = πL′Q−1

1,L′ = h−1
L′,α0

(λ). If

L′ =Q−1
0,LL, so that L=Q0,LL

′ =Q1,L′L′. �

Now we consider the matrix ξ̆λ = p−1(λ)g−1
L,α0

ξλgL,α0 .

Proposition 6.3. Let ξλ ∈ I(a) with ξα0 �= 0 and ordα0 det ξλ ≥ 2. Let
δ =−ᾱ0/|α0|. Then ξλ uniquely factorizes as

ξλ = p(λ)gL,α0 ξ̆λg
−1
L,α0

with L = ker ξα0 and ξ̆λ ∈ Pg(δ) with ξ̃λ = g(δ)−1ξ̆λg(δ) ∈ I(ã) (i.e., ξ̆λ ∈
Iδ(ã)).

Proof. The matrix ξα0 uniquely defines the line L. Consider

ξ̆λ = p−1(λ)g−1
L,α0

ξλgL,α0 .

We need to prove that ξ̆λ has no poles at α0, ᾱ
−1
0 and ξ̆λ ∈ Iδ(ã). First, define

Q−1
L ξλQL :=

(
α̃(λ)p(λ) β̃(λ)(1− ᾱ0λ)

2

γ̃(λ)(λ− α0)
2 −α̃(λ)p(λ)

)
.

The following matrix has neither pole nor zero at λ= α0, ᾱ
−1
0 :

Q−1
L Q0,Lξ̆λQ

−1
0,LQL =

πα0√
p
Q−1

L ξλQL

π−1
α0√
p

=

(
α̃(λ) β̃(λ)
γ̃(λ) −α̃(λ)

)
.

The residue of ξ̆λ at λ= 0 is R0,Lδξ̂−1R
−1
0,L. As R0,L ∈ Λ+SL2(C), we conclude

that the residue takes values in iδR+
(
0
0

1
0

)
. Therefore ξ̆λ ∈ Pg−2(δ). By

Remark 2.6 on Isometric normalization, we conclude that ξ̃λ = g(δ)−1ξ̆λg(δ) ∈
I(ã). �

Using the relation (6.2) between left and right factors immediately yields
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Corollary 6.4. Let ξλ ∈ I(a) with ξα0 �= 0 and ordα0 a(λ)≥ 2. Then ξλ
uniquely factorizes as

ξλ = p(λ)hL′,α0 ξ̆λh
−1
L′,α0

with (L′, ξ̆λ) ∈CP
1 × Iδ(ã) where L′ =Q−1

0,LL and L= ker ξα0 .

Remark 6.5. The factorizations of Proposition 6.3 and Corollary 6.4 give

rise to pairs in (L′, ξ̆λ) ∈CP
1 × Iδ(ã), and we say that we decompose such ξλ

into (L, ξ̆λ) or (L
′, ξ̆λ) or into (L̃, ξ̃λ) or (L̃

′, ξ̃λ) where ξ̃λ = g(δ)−1ξ̆λg(δ) ∈ I(ã)

and L̃= g(δ)−1L, L̃′ = g(δ)−1L′ depending on the context.

A special situation occurs when L′⊥ is an eigenline of ξ̆α0 .

Proposition 6.6. Suppose ξλ decomposes into (L′, ξ̆λ) and ξ̆α0L
′⊥ = L′⊥.

Then ξλ has zeroes at λ= α0,1/ᾱ0. Furthermore the singularity of the spectral
curve is removable and up to a conformal change of coordinate the potentials

ξλ and ξ̆λ induce the same extended frame F̆λ(p(0)z) = Fλ(z).

Proof. We prove that

dimC ker ξα0 = dimC kerp(α0)π
−1
L′ (α0)ξ̆α0πL′(α0) = 2.

If L′⊥ = 〈v2〉 is an eigenline of ξ̆α0 , then πL′(λ)v2 =
√

1−ᾱ0λ
λ−α0

v2 and

π−1
L′ (α0)ξ̆α0πL′(α0)v2 = μv2 and ξα0v2 = 0.

If L′ = 〈v1〉, we have πL′(λ)v1 =
√

λ−α0

1−ᾱ0λ
v1 and

p(α0)π
−1
L′ (α0)ξ̆α0πL′(α0)v1 = 0.

Then ξλ has a zero at λ = α0 and we can remove it without changing the
extended frame by Proposition 4.4. �
Terng–Uhlenbeck formula. Let ξλ ∈ Pg with ξα0 �= 0,ordα0 a(λ) ≥ 2 for

some α0 ∈ C
× \ S

1. Suppose ξλ decomposes into (L′, ξ̆λ), and let 0 < r <
min{|α0,1/|α0|}. Now consider the unitary factor Fλ : R2 → ΛrSU2(C) of the
r-Iwasawa decomposition

exp(zξλ) = FλBλ

and define F̆λ : R2 → ΛrSU2(C) to be the unitary factor of the r-Iwasawa
decomposition

exp
(
zp(λ)ξ̆λ

)
= F̆λB̆λ.

Terng–Uhlenbeck [29] obtained a relationship between Fλ and F̆λ and found

Fλ(z) = hL′,α0 F̆λ(z)h
−1
L′(z),α0

with L′(z) = tF̆α0(z)L
′.

We provide a proof of this in the Appendix. We next show that closing
conditions are preserved when changing the first factor in the factorization

(L′, ξ̆λ).
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Proposition 6.7. If there is (L′
0, ξ̆λ) ∈CP

1 × Iδ(ã), such that

ξ0,λ = p(λ)hL′
0,α0

ξ̆λh
−1
L′

0,α0

induces a minimal annulus with period τ , then for any L′
1 ∈CP

1, the extended

frame associate to ξ1,λ = p(λ)hL′
1,α0

ξ̆λh
−1
L′

1,α0
produces a τ -periodic minimal

annulus.

Proof. The annulus induced by F0,λ is periodic at λ= 1, so F0,1(z + τ) =
F0,1(z). In particular F0,1(τ) = 1 and the solution of sinh-Gordon equa-
tion is periodic ω0(z + τ) = ω0(z). This period condition on ω0 implies
ζ0,λ(z + τ) = ζ0,λ(z) for any λ ∈ C

× and z ∈ C, since entries of ζ0,λ depend
only on ω0 and its derivatives. Now we remark that the associate polynomial

Killing field ζ0,λ(z) ∈ I(a) decomposes uniquely as (L′
0(z), ζ̆λ(z)) ∈CP

1×Iδ(ã)

where L′
0(z) =Q−1

0,L0(z)
L0(z) and L0(z) = ker ζ0,α0(z). Thus, ζ0,α0(z) periodic

implies that L0(z) and L′
0(z) are periodic. The decomposition of ζ0,λ(z) is

given by

ζ0,λ(z) = p(λ)gL0(z),α0
ζ̆λ(z)g

−1
L0(z),α0

= p(λ)hL′
0(z),α0

ζ̆λ(z)h
−1
L′

0(z),α0

and ζ̆λ(z + τ) = ζ̆λ(z) for any λ ∈C
×. We can recover explicitly this relation

by using the decomposition with L′ =Q−1
0,LL and the formula

Fλ(z) = hL′
0,α0

F̆λ(z)h
−1
L′

0(z),α0
,

where L′
0(z) =

tF̆α0(z)L
′
0. Then

ζ0,λ(z) = Fλ(z)
−1ξ0,λFλ(z)

= hL′
0(z),α0

F̆−1
λ (z)h−1

L′
0,α0

ξ0,λhL′
0,α0

F̆λ(z)h
−1
L′

0(z),α0
.

Since L0(z + τ) = L0(z), we have L′
0(z + τ) = L′

0(z). Periodicity F1(τ) = 1
implies F̆1(τ) = 1, and then there is a τ -periodic extended frame without

a bubbleton associate to the polynomial Killing field ζ̆λ. Now we consider

ξ1,λ associate to (L′
1, ξ̆λ) and we prove that its extended frame has the same

period τ . To see that it remains to prove that F̆α0(τ) = 1 to conclude the

periodicity L′
1(τ + z) = tF̆α0(τ)L

′
1(z) = L′

1(z).

If L′
0(τ) = L′

0, then L′
0 = L′

0(τ) =
t ¯̆Fα0(τ)L

′
0 and L′

0 is an eigenvalue of
tF̆α0(τ) = F̆−1

1/ᾱ0
(τ), hence (L′

0)
⊥ is an eigenline of F̆α0(τ).

Now ζ̆λ(τ) = ζ̆λ(0) for all λ ∈C
× implies [ξ̆0,α0 , F̆α0(τ)] = 0. Thus (L′

0)
⊥ is

not an eigenline of ξ̆0,α0 , since the polynomial Killing field ξ0,α0 would have
a zero and we could remove the singularity of the spectral curve.

Recall that if A ∈ SL2(C) and B ∈ sl2(C), then [A,B] = 0 implies A =

xB+ y1. This implies F̆α0(τ) = xξ̆0,α0 + y1. Now ξ̆0,α0L
⊥
0 �= L⊥

0 implies x= 0

and thus F̆α0(τ) =±1. �
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Group action on bubbletons. We prove that there is a group action which
acts transitively on the first factor L̃′ of the decomposition ξλ into (L̃′, ξ̃λ).
For ξλ ∈ Pg and β ∈C, define

m(β)ξλ =

{
( β
λ−α0

+ β̄λ
1−ᾱ0λ

)λ
1−g
2 ξλ, when g = 2k+ 1,

( β
λ−α0

+ β̄λ
1−ᾱ0λ

)(λ
−g
2 + λ1− g

2 )ξλ, when g = 2k.

Let exp
(
m(β)ξλ

)
= Fλ(β)Bλ(β) be the r-Iwasawa factorization for r <

min{|α0|,1/|α0|}. We have a complex 1-dimensional isospectral group action
π̃ : C× I(a)→ I(a) defined by

(6.3) ξλ(β) := π̃(β)ξλ = Fλ(β)
−1ξλFλ(β) =Bλ(β)ξλB

−1
λ (β).

The potential ξλ(β) has a decomposition
(
L̃′(β), ξ̃λ(β)

)
, and we prove that

ξ̃λ(β) = ξ̃λ is invariant under this action.

Theorem 6.8. Suppose a potential ξλ decomposes into
(
L̃′, ξ̃λ

)
∈ CP

1 ×
I(ã). Then the action (6.3) on ξλ preserves the second term ξ̃λ. If det ξ̃α0 �=
0, then C acts on L̃′ ∈ CP1 \

{
L̃′
1, L̃

′
2

}
transitively where

(
L̃′
1

)⊥
,
(
L̃′
2

)⊥
are

eigenlines of ξ̃α0 and fixed points of the action. If det ξ̃α0 = 0, then C acts on

L̃′ ∈CP
1 \
{
L̃′
3

}
transitively where

(
L̃′
3

)⊥
is the eigenline of ξ̃α0 .

Proof. Using Remark 6.5, we prove the theorem with L′ = g(δ)L̃′ and ξ̆λ =

g(δ)ξ̃λg(δ)
−1. Now L̃′ is an eigenline of ξ̃α0 if and only if L′ is an eigenline of

ξ̆λ. We consider for β ∈C the map

ψ(λ,β) =

{
( β
λ−α0

+ β̄λ
1−ᾱ0λ

)λ
1−g
2 p(λ)ξ̆λ, when g = 2k+ 1,

( β
λ−α0

+ β̄λ
1−ᾱ0λ

)(λ
−g
2 + λ1− g

2 )p(λ)ξ̆λ, when g = 2k.

Then ψ satisfies tψ(1/λ̄, β) = −ψ(λ,β) and ψ ∈ Λrsu2. We have by the

r-Iwasawa decomposition exp(ψ(λ,β)) = F̆λ(β). Further, since B̆λ(β) = 1 we
have

F̆−1
λ (β)ξ̆λF̆λ(β) = B̆λ(β)ξ̆λB̆

−1
λ (β) = ξ̆λ.

Suppose ξλ(β) has a decomposition (L′(β), ξ̆λ(β)). We prove next that

ξ̆λ(β) = ξ̆λ is invariant by the group action m(β)ξλ.

From Fλ(β)Bλ(β) = hL′,α0 exp(ψ(λ,β))h
−1
L′,α0

= hL′,α0 F̆λ(β)h
−1
L′,α0

, and by
the Terng–Uhlenbeck formula we obtain

Fλ(β) = hL′,α0 F̆λ(β)h
−1
L′(β),α0

, where L′(β) = tF̆α0(β)L
′.

Applying the action and the invariance of the conjugation of ξ̆λ by F̆λ(β) we
have

ξλ(β) = π̃(β)ξλ = p(λ)hL′(β),α0
ξ̆λh

−1
L′(β),α0

.
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This proves that ξ̆λ is invariant while L′(β) changes under the group action.
We consider now the map β �→ L′(β), and prove that this map spans CP1 (if

L′(0) �= L′
0 and L′(0) /∈ {L̃′

1, L̃
′
2, L̃

′
3}).

First, we assume det ξ̆α0 �= 0 (so also det ξ̆1/ᾱ0
�= 0). We denote by v1, v2

the eigenvectors of ξ̆1/ᾱ0
, and by ν1, ν2 the corresponding eigenvalues. Since

tr ξ̆λ = 0, we have ν2 =−ν1. Now we have for

γ0 =

{
ᾱ
g/2−5/2
0 (1− |α0|2) for g odd,

ᾱ
g/2−3
0 (1− |α0|2) for g even,

that tψ(α0, β) =−ψ(1/ᾱ0, β) =−β̄γ0ξ̆1/ᾱ0
and tF̆α0(β) = exp(−ψ(1/ᾱ0, β)).

With L′ = 〈xv1 + yv2〉 we obtain

L′(β) = tF̆α0(β)(xv1 + yv2) = exp
(
−ψ(1/ᾱ0, β)

)
(xv1 + yv2)

= exp(−β̄γ0ν1)xv1 + exp(−β̄γ0ν2)yv2 =w.

Hence,
tF̆α0(β)L

′ = 〈w〉
and the map L′ : CP1 →CP1 given by L′(β) = 〈w〉 is surjective since

β : CP1 →
〈
exp(−β̄γ0ν1)xv1 + exp(β̄γ0ν1)yv2

〉
∈CP

1

is surjective.

Now assume det ξ̆α0 = det ξ̆1/ᾱ0
= 0. There exists a basis (v1, v2) with

ξ̆1/ᾱ0
v1 = 0 and ξ̆1/ᾱ0

v2 = v1, and then

exp
(
−ψ(1/ᾱ0, β)

)
(xv1 + yv2) = (x− β̄γ0y)v1 + yv2.

For y �= 0, the map β : CP1 → 〈(x− β̄γ0y)v1 + yv2〉 ∈CP
1 is surjective. When

y = 0 then L′ = v1 is an eigenvector of ξ̆α0 , and there is no bubbleton. �

7. Spectral curves of the Riemann family

The Riemann family consists of embedded minimal annuli in S
2×R that are

foliated by horizontal constant curvature curves of S2. From [12], these annuli
can be conformally parameterized by their third coordinate with Q= 1

4 (dz)
2

and the metric ds2 = cosh2 ω|dz|2 is obtained from real-analytic solutions of
the Abresch system [1]

(7.1)

{
Δω+ sinhω coshω = 0,
ωxy − ωxωy tanhω = 0.

The second equation is the condition that the curve x �→ (G(x, y), y) has con-
stant curvature. This condition induces a separation of variables of the sinh-
Gordon equation, and solutions can be described by two elliptic functions

(7.2) f(x) =
−ωx

coshω
and g(y) =

−ωy

coshω
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of real variables x and y respectively, and for c < 0, d < 0 solve the system

−(fx)
2 = f4 + (1+ c− d)f2 + c, −fxx = 2f3 + (1+ c− d)f,

−(gy)
2 = g4 + (1+ d− c)g2 + d, −gyy = 2g3 + (1+ d− c)g.

We can then recover the function ω by

(7.3) sinhω =
(
1 + f2 + g2

)−1
(fx + gy).

The spectral curves of members of the Riemann family have spectral genus 0,
1 or 2. The spectral genus zero case consists of flat annuli γ×R, where γ ⊂ S

2

is a great circle. In this case, the solution of the sinh-Gordon equation is the
trivial solution ω ≡ 0. The spectral genus 1 case consists of solutions of the
sinh-Gordon equation that only depend on one real variable. The correspond-
ing minimal annuli are analogous to associate family members of Delaunay
surfaces. In particular, the spectral genus 1 case contains the rotational annuli
and helicoids, and these are foliated by circles. Amongst the spectral genus 2
surfaces, the corresponding minimal annuli are again foliated by circles, but
no longer have rotational symmetry. This condition endows the spectral curve
with an additional symmetry.

Spectral genus 0. We first study annuli with spectral curves of genus 0.
Inserting the trivial solution of the sinh-Gordon equation ω0 ≡ 0 into (1.3),
and setting γ = 1, gives

(7.4) α(ω0) =
1

4

(
0 iλ−1

i 0

)
dz +

1

4

(
0 i
iλ 0

)
dz̄.

The solution of F−1
λ dFλ = α(ω0), Fλ(0) = 1 is given by

Fλ = exp

(
i

4

(
0 λ−1z + z̄

z + λz̄ 0

))
(7.5)

=

⎛
⎝ cos( 14 (

z√
λ
+ z̄

√
λ)) i sin((1/4)(z/

√
λ+z̄

√
λ))√

λ

i
√
λ sin( 14 (

z√
λ
+ z̄

√
λ)) cos(14 (

z√
λ
+ z̄

√
λ))

⎞
⎠ .

The horizontal part of (Fλσ3F
−1
λ ,Re(−iλ−1/2z)) computes to

Fλσ3F
−1
λ =

(
i cos(Re(zλ−1/2)) λ−1/2 sin(Re(zλ−1/2))

−λ1/2 sin(Re(zλ−1/2)) −i cos(Re(zλ−1/2))

)
.

Identifying su2 ∼=R3,
( iw
−u+iv

u+iv
−iw

)∼= (u, v,w), evaluating the associated fam-
ily at λ= 1, and writing z = x+ iy, we obtain the conformal minimal immer-
sion C→ S

2 ×R⊂R
4 given by

X1(x, y) = (sinx,0, cosx, y).
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Restricting X1 to the strip (x, y) ∈ [0,2π]×R then gives an embedded minimal
flat annulus in S

2 ×R. Evaluating the associated family at some other point

λ0 ∈ S
1, then τ -periodicity requires that Re(τλ

−1/2
0 ) ∈ 2πZ.

We next compute the corresponding spectral data (a, b). Since

Fλ = exp
(
zξλ − z̄ξ1/λ̄

t)
for ξλ =

i

4

(
0 λ−1

1 0

)
coincides with the extended flat frame (7.5) computed above, we conclude
that ξλ is a potential for the flat surface. Hence, a(λ) = −λdet ξλ =−1/16,
and the spectral curve (2.10) is the 2-point compactification of {(ν,λ) | ν2 =
−λ−1/16}. The flat annulus has the simplest possible spectral curve. It is
a genus zero hyperelliptic curve, so a double cover of CP1 with two branch
points.

The eigenvalues of Fλ in (7.5) are exp(± i
4 (zλ

−1/2 + z̄λ1/2)). Therefore,
the logarithmic eigenvalue (up to sign) of the monodromy with respect to the
translation z �→ z + 2π is

lnμ(λ) =
πi

2

(
λ−1/2 + λ1/2

)
.

Then

d lnμ=
πi(λ− 1)

4λ3/2
dλ=

π(1− λ)

16λ2ν
dλ

since λ3/2 =−4iλ2ν. Thus, b(λ) = π
16 (1− λ).

Spectral genus 1. We apply the Pinkall–Sterling iteration to the case where
ω satisfies αωz +βωz̄ = 0 for α,β ∈C. The relation implies that |α|= |β| and
up to a change of coordinate we assume without loss of generality that ωx = 0.
Then ωz =−ωz̄ , and we are exactly in the setting of Abresch’s system [1] and
there is a constant d < 0 with −b2y = (b2 + 1)(b2 + d) where

(7.6) b(y) =
−ωy

coshω
and sinhω =

by
1 + b2

.

We now use the Pinkall–Sterling iteration to compute the polynomial Killing
field. Starting with u−1 = σ−1 = 0 and τ−1 = i/4, and using 4ωzz̄ =
−1

2 sinh(2ω), gives

u0 =−4iωzτ−1 = ωz, σ0 = γe2ωτ−1 + 4iγu0;z̄ =
1

4
iγe−2ω.

We use the function φ0 to compute τ0 = 2iγ̄(12φ0 − u0;z). We have u0 =−ωz̄ ,
and then

φ0;z = −4ωzωzz̄ =
1

4

(
cosh(2ω)

)
z
,

φ0;z̄ = −ωz̄ sinhω coshω =
1

4

(
cosh(2ω)

)
z̄
.

Then τ0 = 2iγ̄(ωzz̄ +
1
8 cosh(2ω)) =

1
4 iγ̄e

−2ω .
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At the next step, we find u1 =−2iτo;z − 4iωzτ0 = 0, σ1 = γe2ωτ0 =
i
4 and

τ1 = 0. This gives the polynomial Killing field (2.2) as

ζλ =
i

4

(
−2ωy eωλ−1 + γ̄e−ω

γe−ω + eωλ 2ωy

)
.

Then a(λ) = −λdet ζλ = − 1
16 (γ + (2cosh(2ω) + 4ω2

y)λ + γ̄λ2). Using (7.6)
gives

2ω2
y + cosh2ω = 2b2 cosh2 ω+ 1+ 2sinh2 ω = 1− 2d

so that a(λ) =− 1
16 (γ+2(1− 2d)λ+ γ̄λ2). Its roots are (2d− 1± 2

√
d2 − d)γ.

If γ =±1, then this polynomial satisfies the additional symmetry

(7.7) λ2ga(1/λ) = a(λ)

for g = 1, and it has two real roots. The corresponding spectral curve is
a double cover of CP

1 branched at 4 points, so a hyperelliptic curve of
genus 1. To close the surface, we have to close the third coordinate with
Q= 1

4γλ
−1
0 (dz)2 = 1

4 (dz)
2. Riemann annuli of spectral genus 1 satisfy ωx = 0

or ωy = 0. This means that λ0 = ±γ. We can parameterize the annulus in
such a way that λ0 = 1, and apply the iteration with γ = 1. This corresponds
to the case where y �→ ω(y) depends only on its third coordinate and describes
rotational examples. In the other case where λ0 = 1 and γ =−1, this corre-
sponds to the helicoidal surfaces, where the surface is foliated by horizontal
geodesics. In this case, the function ω depends only on the variable x.

Symmetric spectral genus 2. We next consider general real-analytic solu-
tions of Abresch’s system. In this case, we first prove that they correspond to
spectral genus 2 surfaces.

Lemma 7.1. Every solution ω : C→R of Abresch’s system (7.1) satisfies

(7.8) ωzzz − 2ω3
z =−1

4
ωz̄ +

1

2
(c− d)ωz.

Proof. Differentiating ωz =− 1
2 (f − ig) cosh(ω) gives

ωzz =
1

4
(f − ig)2 sinh(ω) cosh(ω)− 1

2
(f − ig)z cosh(ω).

Now using the equation of the system, we have

2(f − ig)z = fx − gy =
(1+ f2 + g2)(g2 − f2 + d− c)

fx + gy
=

g2 − f2 + d− c

sinh(ω)
.

Then ωzz = tanh(ω)ω2
z − 1

4 coth(ω)(g
2 − f2 + d− c) and thus

tanh(ω)ωzz − tanh2(ω)ω2
z +

1

4

(
g2 − f2

)
=

1

4
(c− d) ∈R
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since the imaginary part is tanh(ω)(ωxy − tanh(ω)ωxωy) = 0. Using the ex-
pression for fx + gy and gy − fx we obtain

2fx =
(
1 + f2 + g2

)
sinh(ω)−

(
f2 − g2 + c− d

)
sinh−1(ω),

2gy =
(
1 + f2 + g2

)
sinh(ω) +

(
f2 − g2 + c− d

)
sinh−1(ω).

To understand higher order derivative, we write

−2
(
g2 − f2 + (d− c)

)
z
= (2ffx + 2iggy)

= (f + ig)
(
1 + f2 + g2

)
sinh(ω)

− (f − ig)
(
f2 − g2 + c− d

)
sinh−1(ω).

We can check that

1

8
(f + ig) cosh(ω) = −1

4
ωz̄,

1

8
(f + ig)

(
f2 + g2

)
cosh(ω) =

cosh(ω)

8
(f − ig)3 +

cosh(ω)

2
ifg(f − ig)

= − ω3
z

cosh2(ω)
− ifgωz.

Now we compute

ωzzz − 2ω3
z = −2ω3

z + ω3
z sech

2(ω) + 2 tanh(ω)ωzωzz

+
1

4
ωz csch

2(ω)
(
g2 − f2 + d− c

)
− 1

4
coth(ω)

(
g2 − f2 + d− c

)
z

= −2ω3
z + ω3

z sech
2(ω)− ω3

z sech
2(ω)− ifgωz

+ 2ωz

(
tanh2(ω)ω2

z +
1

4

(
f2 − g2 + c− d

))

+
1

4
ωz

(
g2 − f2 + d− c

)
csch2(ω)− 1

4
ωz̄

− 1

8
(f − ig)

(
f2 − g2 + c− d

)
coth(ω) csch(ω)

= −1

4
ωz̄ + ωz

(
2 tanh2(ω)ω2

z − 2ω2
z

)
+

1

2
(c− d)ωz +

1

2
(f − ig)2ωz

= −1

4
ωz̄ +

1

2
(c− d)ωz. �

Next, we use the iteration of Pinkall–Sterling to compute the spectral curve
associated to the algebraic relation (7.8). It is a priori a one-parameter family
of algebraic relations but ω itself encodes other invariant quantities than the
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one found in the expression of ωzz . The Pinkall–Sterling iteration gives

u−1 = u2 = σ−1 = τ2 = 0, u0 = ωz, u1 = γ̄ωz̄,

σ0 =
1

4
iγe−2ω, σ1 = 2ie−2ω

(
ωzz + ω2

z +
1

4
(c− d)

)
, σ2 =−1

4
iγ̄,

τ−1 =
1

4
i, τ0 = 2iγ̄

(
ω2
z − ωzz +

1

4
(c− d)

)
, τ1 =−1

4
iγ−2e−2ω.

This defines a solution of the Lax equation Φ by (2.2) of degree N = 2. To
obtain a polynomial Killing field we skew-symmetrize and define

ζλ(z) =
1

2
Φλ(z)−

λ

2
Φ1/λ̄(z)

t
.

Then λζ1/λ̄
t
=−ζλ and has λ−1-coefficient 1

8ie
ω(1− γ)

(
0
0

1
0

)
. For ζλ to be

P2-valued we require that 1
8ie

ω(1− γ) ∈ iR+, which means that γ =−1. In

this case, Q= 1
4γλ

−1(dz)2 implies that the Sym point is at λ =−1 and the
entries of the polynomial Killing field are

α = (ωz − λωz̄),

β =
i

4
λ−1eω + i

(
e−ω
(
ω2
z̄ + ωz̄z̄

)
− eω

(
ω2
z + ωzz

)
+

1

4
(c− d)

(
e−ω − eω

))
− i

4
λe−ω,

γ = − i

4
e−ω + iλ

(
e−ω
(
ω2
z + ωzz

)
− eω

(
ω2
z̄ + ωz̄z̄

)
+

1

4
(c− d)

(
e−ω − eω

))
+

i

4
λ2eω.

To compute the spectral curve, we have only to compute a(λ) = λ(α2 + βγ)
at one point. We choose a point where ω(x0, y0) = ∂xf(x0) = ∂yg(y0) = 0. At
this point ωzz = ωz̄z̄ = 0, thus

f(x0) = f0 =−∂xω(x0) =
1

2
(−1 + d− c+

√
Δ),

g(y0) = g0 =−∂yω(y0) =
1

2
(−1 + c− d+

√
Δ),

where Δ= (1+ c− d)2 − 4c= (1+ d− c)2 − 4d.
Writing a(λ) = λ(α2 + βγ) = a0 + a1λ + a2λ

2 + a3λ
3 + a4λ

4, and using
ωz(x0, y0) =− 1

2 (f0− ig0) and ωz̄(x0, y0) =−1
2 (f0+ ig0), a computation gives

the real coefficients

a0 = a4 =
1

16
,

a1 = a3 =
1

2

(
ω2
z + ω2

z̄

)
=

1

4

(
f2
0 − g20

)
,

a2 =
(
ω4
z + ω4

z̄

)
− 2
(
ωzωz̄ + ω2

zω
2
z̄

)
− 1

8
=−1

8
− 1

2
g20 −

1

2
f2
0 − f2

0 g
2
0 .
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The four real roots of a(λ) are −1− 2f2
0 ± 2

√
f2
0 + f4

0 ,1 + 2g20 ± 2
√
g20 + g40 ,

and a(λ) satisfies the additional symmetry (7.7) for g = 2. In summary the
spectral data of the 2-parameter family of the Riemann family are given by

Proposition 7.2. The genus 0 spectral data of an embedded annulus with
Sym point λ= 1 is given by

(1) a(λ) =− 1
16 and b(λ) = π

16 (1− λ).

The genus 1 spectral data of an embedded annulus with Sym point λ = 1 is
given by

(2) a(λ) = 1
16α (λ− α)(αλ− 1) for α ∈ (0,1) and b(λ) = b(0)

γ (λ− γ)(γλ− 1),

with γ ∈ (α,1) and b(0) ∈ iR both determined by α.

(3) a(λ) = −1
16β (λ+β)(βλ+1) for β ∈ (0,1) and b(λ) = b(0)

γ (1−λ)(1+λ) and

b(0) ∈R determined by β.

The genus 2 spectral data of an embedded annulus with Sym point λ = 1 is
given by

(4) a(λ) = 1
16βα (λ − α)(αλ − 1)(λ + β)(βλ + 1) for α,β ∈ (0,1) and b(λ) =

b(0)
γ (1+λ)(λ− γ)(γλ− 1) for γ ∈ (α,1) and b(0) ∈ iR both determined by

α and β.

In conclusion, the polynomial a satisfies the additional symmetry λ2ga(1/λ) =
a(λ) and

(a) λg+1b(1/λ) = b(λ) if a has a root α ∈R+ and b(0) ∈ iR;
(b) λg+1b(1/λ) =−b(λ) if a has only roots in R

− and b(0) ∈R.

Proof. We have seen above that spectral curves of the Riemann family have
an additional involution (λ, ν)→ (λ−1, λ1−gν), since in all cases λ2ga(1/λ) =
a(λ). Now depending on a(λ), we construct a function h which satisfies the
closing condition of the annulus. We prove that there are constants γ and
b(0) such that b satisfies the closing condition of Proposition 5.7.

First, we remark that λg+1b(1/λ̄) = −b(λ) by construction. We look for

h satisfying σ∗h = −h and dh = bdλ
νλ2 . First we need to prove that h is well

defined on Σ̂ (Definition 5.8).
In cases (1) and (3), there is a root α ∈ (0,1). Along the segment (α,1/α),

the polynomial b(λ) ∈ iR and ν ∈ iR. Since b(λ) has exactly one root in the
interval (α,1) at γ ∈ (α,1), there exists exactly one value of γ which cancels
the following integral for a given α and β. Using the additional symmetry,
there is a real γ ∈ (α,1) with

∫ 1/α

α

b

νλ2
dλ= 2

∫ 1

α

b

νλ2
dλ= 0.
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Moreover, in cases (2) and (3), we have by the reality condition that∫ −1/β

−β

b

νλ2
dλ= 0.

Now the function h with dh = bdλ
νλ2 and σ∗h = −h is well defined on Σ̂, the

curve with the two cycles around (−1/β,−β) and (α,1/α) removed.

For κ : (λ, ν)→ (λ̄, ν̄) on Σ̃ have κ∗h=−h̄, since b(λ̄) = b(λ).
On the real axis between λ = 0 and λ = α (or λ = 1 in the case (2)), the

polynomial a takes real positive values. Then the segment (0, α] (or (0,1] in
the case (2)) is a set of fixed points for the involution κ. On this segment we
deduce that h= κ∗h and the function h is purely imaginary on this segment.

Since the integral
∫ 1

α
d lnμ = 0, the function h is imaginary at λ = 1 and

h(α) = h(1) ∈ iR.
The involution � in (2.11) leaves S

1 invariant, and we have �∗ dh = −dh.
Hence, dh ∈ iR on S

1. Thus on the unit circle h stays imaginary, so in
particular h ∈ iR at λ=−1.

The segment (−1,−β) is a set of fixed points for κ and the function h ∈ iR
on this segment. Since on the real line the function a(λ) changes sign and
become real negative on (−β,0), the function h ∈R on this segment. We can
then deduce that h(−β) = 0 at this point. Now we can choose the value of
b(0) to get a multiple value of πi at the sym point λ = 1. This proves the
closing condition and concludes the proof of the proposition. �

Lemma 7.3. If γ is a root of b, then the corresponding function |μ(γ)| �= 1.

Proof. For λ ∈ [α, ᾱ−1], the function h= lnμ is real and
∫ 1

α
dh= 0. Then

γ is a root of dh and is contained in (α,1). Since Reh(α) = Reh(1) = 0, the
value γ is the local critical point of h. Then Reh(γ) �= 0, and thus |μ| �= 1. �

Appendix: Terng–Uhlenbeck formula

Proposition A.1. Let hL′,α0 ∈Hr
α0

the simple factor with α0 ∈ C
× \ S1,

with r <min{|α0|,1/|α0|} and L′ ∈CP
1. Then

Fλ(z) = hL′,α0 F̆λ(z)h
−1
L′(z),α0

with L′(z) = tF̆α0(z)L
′.

Proof. By r-Iwasawa decomposition,

Fλ(z)Bλ(z) = exp(zξλ) = exp
(
zp(λ)hL′,α0 ξ̆λh

−1
L′,α0

)
= hL′,α0 exp

(
zp(λ)ξ̆λ

)
h−1
L′,α0

∈ ΛrSL2(C)

and hL′,α0 ∈ Λ+
r SL2(C) (hL′,α0(0) =Q1,L′QL′π−1

α0
(0)Q−1

L′ =R−1
1,L′ at λ= 0 and

π is holomorphic for r < |α0|). Then

exp
(
zp(λ)ξ̆λ

)
h−1
L′,α0

= F̆λ(z)B̆
′
λ(z) = F̆λ(z)B̆λ(z)h

−1
L′,α0

.
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Now we have

Fλ(z)Bλ(z) = hL′,α0 exp
(
zp(λ)ξ̆λ

)
h−1
L′,α0

= hL′,α0 F̆λ(z)B̆
′
λ(z)

=
(
hL′,α0 F̆λ(z)H

)(
H−1B̆′

λ(z)
)
.

By uniqueness of the r-Iwasawa decomposition, we have only to prove that

if H = h−1
L′(z),α0

∈ Hr
α0

with L′(z) = t ¯̆Fα0(z)L
′ then hL′,α0 F̆λ(z)H ∈ ΛrSU2.

Clearly

hL′,α0 F̆λ(z)h
−1
L′(z),α0

∈ ΛrSL2(C)

is holomorphic on Ar away from α0 and 1/ᾱ0, and SU2-valued on S1. At the
roots α0 and 1/ᾱ0, we have simple poles and we have to study the residues of

Gλ(z) = π−1
L′ (λ)F̆λ(z)πL′(z)(λ).

Now we consider the simple factor L′(z) = tF̆α0(z)L
′. Let (L′(z),L′(z)⊥) be

an orthonormal basis of C2. Note that L′(z) = t ¯̆Fα0(z)L
′ = F̆−1

1/ᾱ0
(z)L′ and

F̆α0(z)
−1L′⊥ = L′(z)⊥. When λ→ 1/ᾱ0, we have

lim
λ→1/ᾱ0

GλL
′(z) = lim

λ→1/ᾱ0

√
λ− α0

1− ᾱ0λ
QL′π−1

α0
Q−1

L′ F̆λ
¯̆
F t
α0
L′(z) = L′,

lim
λ→ᾱ−1

0

(1− ᾱ0λ)GλL
′⊥(z) = lim

λ→ᾱ−1
0

(1− ᾱ0λ)

√
1− ᾱ0λ

λ− α0
QL′π−1

α0
Q−1

L′ F̆λL
′⊥(z)

= 0.

When λ→ α0, we compute

lim
λ→α0

(λ− α0)GλL
′(z) = lim

λ→α0

(λ− α0)

√
λ− α0

1− ᾱ0λ
QL′π−1

α0
Q−1

L′ F̆λL
′(z) = 0,

lim
λ→α0

GλL
′⊥(z) = lim

λ→α0

√
1− ᾱ0λ

λ− α0
QL′π−1

α0
Q−1

L′ F̆λF̆
−1
α0

L′⊥(z) = L′⊥.

This proves the proposition. �
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