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CUSPED SURFACES AND BOUNDARY BEHAVIOR OF
MAPPINGS OF FINITE DISTORTION

TUOMO ÄKKINEN

Abstract. We study bounded quasiregular mappings and map-
pings of finite distortion f : Hn → R

n, n ≥ 3. We show that al-
most every k-dimensional cone-like cusp with vertex in ∂Hn maps

to a set of finite k-dimensional, k ∈ {2, . . . , n− 1}, measure under
these mappings.

1. Introduction

Let Ω⊂R
n be a domain, n≥ 2. A mapping f : Ω→R

n is called a mapping
of finite distortion if the following conditions are satisfied:

(1) f ∈W 1,1
loc (Ω,R

n),
(2) Jf (x) = det(Df) ∈ L1

loc(Ω),
(3) and there exists a measurable Kf : Ω→ [1,∞) so that for almost every

x ∈Ω we have ∣∣Df(x)
∣∣n ≤Kf (x)Jf (x).

If in addition Kf ∈ L∞(Ω), exp(λKf ) ∈ L1
loc(Ω) for some λ > 0 or Kf ∈

Lp
loc(Ω) for some p > n − 1 then we say that f is a quasiregular mapping,

f has exponentially integrable distortion or that f has p-integrable distor-
tion, respectively. All of the aforementioned assumptions give nice properties
for the mappings in consideration. Under these assumptions, f is continuous,
open, discrete, differentiable almost everywhere and satisfies Lusin’s condi-
tion (N). For these properties to hold in the p-integrable distortion case we

also have to assume f ∈W 1,n
loc (Ω,R

n). For the basic theory on quasiregular
mappings and mappings of finite distortion, see [5], [6], [7], [13], [14] and [16].

One interesting open question in the field of quasiregular mappings is the
generalization of Fatou’s theorem: does a bounded quasiregular mapping
f : Bn(0,1)→R

n have radial limits at almost every point in Sn−1(0,1)? For
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planar quasiregular mappings this is not true. Nevertheless, the radial limits
exist in a set with positive Hausdorff dimension, but this dimension can be
made arbitrarily small, see [10]. In higher dimensions, it is not even known
whether the radial limits exist for any point in Sn−1(0,1). If f is a quasireg-
ular mapping and there exist constants C > 0 and a ∈ (0, n− 1) so that for all
0< r < 1

(4)

ˆ
Bn(0,r)

Jf (x)dx≤C(1− r)−a,

then f has radial limits almost everywhere in Sn−1(0,1), see [8]. One also has
a Hausdorff dimension estimate for the set where radial limits do not exist,
see [9] and [1]. It is well known that every bounded quasiregular mapping
satisfies (4) with a = n− 1, see Section 4. In [1], the author has shown the
existence of radial limits almost everywhere if we assume

ˆ
Bn(0,r)

Jf (x)dx≤C(1− r)1−n logβ
(

1

1− r

)

for β <−1− n. For more results on boundary behavior of quasiregular map-
pings we refer the reader to see [14] and [16].

The boundary behavior of mappings with exponentially or p-integrable
distortion is not yet so well understood. In the planar case, we loose the ex-
istence of radial limits, since there exists a bounded mapping with exponen-
tially integrable distortion having no radial limits: Assume A : [1,∞)→ [1,∞)
is strictly increasing, and let g : D(0,1) → D(0,1) be a homeomorphism of
finite distortion given in polar coordinates by g(r, θ) = (r, θ + ξ(r)), where
ξ : [0,1]→ [0,∞) is such that

ξ(r) =

ˆ r

0

(
A−1

(
1

r(1− r)
1
5

)) 1
2

dr.

Notice that ξ′(r)→∞ as r → 1 and thus the image of each radial segment
under g is tangential to ∂D(0,1). Furthermore, let h : D(0,1) → C be the
bounded analytic function given by [3, Theorem 2.22] which does not have a
limit along {g(r, θ) : r ∈ [0,1)} for any θ ∈ [0,2π). Finally set f = h ◦ g, then
f does not have limits along any radial segment and

ˆ
D(0,1)

A
(
Kf (x)

)
dx≤ π

ˆ 1

0

A
(
ξ′(r)2

)
r dr = π

ˆ 1

0

1

r
1
5

dr <∞.

This shows that the quasiregularity assumption is sharp for the existence
of at least one radial limit. In all dimensions n≥ 2, we know that mappings
with exponentially integrable distortion satisfying (4) have radial limits almost
everywhere, see [1]. Moreover, we know that for this conclusion it suffices to
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assume thatˆ
Bn(0,r)

Jf (x)dx≤C(1− r)1−n logβ
(

1

1− r

)
for all r ∈ (0,1)

for β <−2−n. On the other hand, in Section 4, we show that every bounded
mapping with exponentially integrable distortion satisfiesˆ

Bn(0,r)

Jf (x)dx≤C(1− r)1−n logn−1

(
1

1− r

)
.

Similarly, one has the existence of radial limits almost everywhere for map-
pings in W 1,n

loc with p-integrable distortion satisfying (4) with a ∈ (0, n− 1−
n/p).

A mapping f has a radial limit along some radial segment, if the image
of that radial segment is rectifiable. We study the behavior of mappings on
k-dimensional sets that are symmetric with respect to radial segments. We
extend the results in [11], where Rajala proved that there is a family of (n−1)-
dimensional cusps, symmetric with respect to radial segments, with vertices in
Sn−1(0,1) such that they are mapped to sets of finite (n− 1)-measure under
quasiregular mapping. We extend this theorem to lower dimensional cusps
and prove similar results for mappings with exponentially and p-integrable
distortion. In [15], Rudin has constructed an example of a bounded analytic
function defined in the unit disc, so that the image of almost every radial seg-
ment is non-rectifiable. Thus the corresponding results for bounded analytic
mappings f , that is, n= 2 and Kf ≡ 1, are not valid. Throughout the paper
we keep k ∈ {2, . . . , n−1} fixed. If x ∈R

n we write x= (x̄, xk+1, . . . , xn), where
x̄= (x1, . . . , xk). To state our main theorem, define a mapping φ : Rk →R

n,

φ(x̄) =
(
x̄,0, . . . ,0, g

(
|x̄|

))
,

where g : (0,1)→ (0,1/2) is a diffeomorphism satisfying |(g−1)′(t)| ≤ 1 and

lim
t→0+

g(t) = 0.

Our standard surface is defined as

Ωk = φ
(
Bk(0,1) \ {0}

)
.

For x ∈ ∂Hn ∩Q(0,1) define

Ωk
x =Ωk + x.

Our main theorem is the following theorem.

Theorem 1.1. Let n ≥ 3, and let f : Hn → R
n be a bounded mapping of

finite distortion. Assume that g is as above and also satisfies

g−1(t)≤Ctζ log−σ

(
1

t

)
.

If f meets one of the following conditions:
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(i) f is quasiregular, ζ = 1 and

σ >
n+ k

n(k− 1)
,

(ii) there is λ > 0 such that
´
Hn∩B(a,r)

exp(λKf ) < ∞ for some r > 0 and

every a ∈ ∂Hn, ζ = 1 and

σ >
n(k+ 1) + k

n(k− 1)
,

(iii) f ∈ W 1,n
loc (H

n,Rn), there is p > n − 1 such that
´
Hn∩B(a,r)

Kp
f < ∞ for

some r > 0 and every a ∈ ∂Hn, ζ = 1+ k
p(k−1) and

σ >
p(n+ k) + k

pn(k− 1)
,

then Hk(f(Ωk
x))<∞ for almost every x ∈ ∂Hn.

Notice that if the distortion is p-integrable, then the results are weaker
than in the exponentially integrable distortion case and at the limit p →
∞ we recover the quasiregular case. For the proof, we use the modulus of
k-dimensional surfaces and a generalization of the KO-inequality for path
families. In the quasiregular case, if k = n− 1 we have σ > 2n−1

n(n−2) . This gives

a better result than the proof in [11]. The sharpness of these results would be
interesting to know, but there is a lack of examples even in the quasiregular
case.

2. Notation and preliminaries

We denote the upper half space of the n-dimensional Euclidean space R
n

by Hn. Euclidean ball and a sphere of dimension k, with center x and radius
r, are denoted by Bk(x, r) and Sk(x, r), respectively. We also define

S
k−1(x, r) :=

{
y ∈R

n : y = (ȳ,0, . . . ,0), |ȳ|= r
}
+ x.

By Q(x, r) we mean a closed cube with center x and side length 2r. The
symbol | · | denotes Euclidean norm or operator norm depending on the input.
It will be clear from the context which norm we mean. By A� B we mean A≤
CB, where C only depends on the data. Moreover, A≈B means that A� B
and B � A. We denote k-dimensional Hausdorff measure by Hk. Notice that
Ωk

x is symmetric with respect to the line {x+ ten : t > 0} and

{xn = t} ∩Ωk
x = S

k−1
(
x+ ten, g

−1(t)
)
.

For each i ∈N, we set ti = 2−i and H(i) = {ti+1 ≤ xn ≤ ti}. Moreover, define

Ωk
x,i =Ωk

x ∩H(i).
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Assume that E ⊂ ∂Hn is Borel-measurable, and define a collection of k-
dimensional surfaces

Γi
E =

{
Ωk

x,i : x ∈E
}
.

Let s≥ 1, and let ω : Rn → [0,∞] be a measurable function. A basic tool we
use in proving Theorem 1.1 is the concept of modulus for k-dimensional sets.
Let Γ be a collection of sets such that Hk(γ)> 0, for all γ ∈ Γ. We say that
a Borel-measurable function ρ : Rn → [0,∞] is admissible for Γ, denoted by
ρ ∈Adm(Γ), if ˆ

γ

ρdHk ≥ 1

for all γ ∈ Γ. The weighted s-modulus of Γ with weight ω, is defined as

Modωs (Γ) = inf
ρ∈Adm(Γ)

ˆ
Hn

ρ
s
k (x)ω(x)dx.

If ω ≡ 1 then we just write Mods. One should notice that Modn is invariant
under conformal mappings (Kf ≡ 1). A collection Γ is said to be s-exceptional
if Mods(Γ) = 0. This is equivalent to the fact that there exists s

k -integrable
ρ : Rn → [0,∞] such that ˆ

γ

ρdHk =∞

for all γ ∈ Γ, see [4, Theorem 2].
The following lemma is very useful in what follows. This is a special case

of [12, Lemma 4.6]. Denote

mk−1(u, r) =Hk−1
(
S
k−1(u, r)∩E

)
,

when u ∈ ∂Hn and r > 0.

Lemma 2.1. Assume ρ : Rn → [0,∞] Borel-measurable, and that E ⊂ ∂Hn

is a Borel set. Thenˆ
E

ˆ
Sk−1(x,r)

ρ(y)dHk−1(y)dHn−1(x) =

ˆ
∂Hn

ρ(u)mk−1(u, t)dHn−1(u).

Proof. First, we observe that

mk−1(u, r) =Hk−1
(
S
k−1(0, r)∩ (E − u)

)
=

ˆ
∂Hn

χE(z + u)dHk−1
|
Sk−1(0,r)

(z).

This leads to the following chain of equalities:ˆ
∂Hn

ρ(u)mk−1(u, r)dHn−1(u)

=

ˆ
∂Hn

ˆ
∂Hn

ρ(u)χE(z + u)dHk−1
|
Sk−1(0,r)

(z)dHn−1(u)

=

ˆ
∂Hn

ˆ
∂Hn

ρ(x− z)χE(x)dHn−1(x)dHk−1
|
Sk−1(0,r)

(z)
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=

ˆ
E

ˆ
Sk−1(0,r)

ρ(x− z)dHk−1(z)dHn−1(x)

=

ˆ
E

ˆ
Sk−1(x,r)

ρ(y)dHk−1(y)dHn−1(x). �

3. Modulus bounds for Γi
E and KO-inequality

For the proof of Theorem 1.1, we need lower bounds for Modωs (Γ
i
E). These

are derived using change of variables, Lemma 2.1 and some basic inequalities.
The next elementary inequality is needed in the proof of Lemma 3.2. Fix
i ∈N for this and the next section.

Lemma 3.1. Assume a, b≥ 0 and α> 0. Then

ab≤ a log
1
α (a+ 1) + e(1+

1
α )bα .

Proof. First, notice that if f : [0,∞[→ [0,∞[ is strictly increasing and
f(0) = 0, then

ab≤
ˆ a

0

f(t)dt+

ˆ b

0

f−1(t)dt.

Set f(t) = log
1
α (t+1). Then f−1(t) = et

α − 1 and using above inequality and

the fact that b≤ e
1
α bα , we have

ab≤
ˆ a

0

log
1
α (t+ 1)dt+

ˆ b

0

et
α − 1dt

≤ a log
1
α (a+ 1) + beb

α ≤ a log
1
α (a+ 1) + e(1+

1
α )bα . �

The next lemma contains lower bounds for Modωs (Γ
i
E) with no weight and

with p- and exponentially integrable weights.

Lemma 3.2. Assume E ⊂ ∂Hn ∩Q(0,1) and s > n− 1. Then

Mods
(
Γi
E

)
� g−1(ti)

s
k (1−k)2

i(s−k)
k Hn−1(E).

Assume that K : Rn → [1,∞] is measurable function. If there is λ > 0 such
that exp(λK) ∈ L1(Hn ∩Q(0,5)), then we have the following:

ModK
−1

s

(
Γi
E

)
� g−1(ti)

s
k (1−k)2

i(s−k)
k

(
log

(
2i

Hn−1(E)
+ 1

)
+ 1

)−1

Hn−1(E).

If instead of exponential integrability we assume that K ∈ Lp(Hn∩Q(0,5)) for
p > n− 1, then

ModK
−1

s

(
Γi
E

)
� g−1(ti)

s
k (1−k)2i

p(s−k)−k
pk Hn−1(E)

p+1
p .
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Proof. Define

A(u, t) =mk−1

(
u, g−1(t)

)
and fix x ∈E. If ρ ∈Adm(Γi

E) then

(5) 1≤
ˆ
Ωk

x,i

ρ(y)dHk(y).

Set h : Rn → R, h(x) = xn. Using the Co-area formula on rectifiable sets [2,
Theorem 2.93], we haveˆ

Ωk
x,i

ρ(y)CkD
Ωk

x,ih(y)dHk =

ˆ ti

ti+1

ˆ
Ωk

x,i∩h−1(t)

ρ(y)dHk−1(y)dt,

where DΩk
x,ih(y) =∇h(y)|Dφ(φ−1(y))(Rk) and CkD

Ωk
x,ih(y) is the Co-area fac-

tor defined as CkL=
√
detLLT for a linear map L : Rk → R

m, k ≥m. Since

|(g−1)′(t)| ≤ 1 we know that CkD
Ωk

x,ih(y) is bounded below by constant de-
pending only on the dimension. Using this with (5) and integrating both sides
over E, we get

Hn−1(E) �
ˆ ti

ti+1

ˆ
E

ˆ
Sk−1(x,g−1(t))

ρ(y+ ten)dHk−1(y)dHn−1(x)dt.

Now we can use Lemma 2.1 to get

(6) Hn−1(E)�
ˆ ti

ti+1

ˆ
∂Hn

ρ(u+ ten)A(u, t)dHn−1(u)dt.

From here we use different tools depending on the weight associated to the
modulus we are looking at. In the non-weighted case, we use Hölder’s inequal-
ity and Lemma 2.1 to get the following chain of inequalities:

Hn−1(E) �
ˆ ti

ti+1

ˆ
∂Hn

ρ(u+ ten)A(u, t)dHn−1(u)dt

≤
(ˆ ti

ti+1

ˆ
∂Hn

ρ
s
k (u+ ten)dHn−1(u)dt

) k
s

×
(ˆ ti

ti+1

ˆ
∂Hn

A(u, t)
s

s−k dHn−1(u)dt

) s−k
s

�
(ˆ

H(i)

ρ
s
k (x)dx

) k
s

×
(ˆ ti

ti+1

g−1(t)
k(k−1)
s−k

ˆ
∂Hn

A(u, t)dHn−1(u)dt

) s−k
s

�
(ˆ

H(i)

ρ
s
k (x)dx

) k
s
(ˆ ti

ti+1

g−1(t)
s(k−1)
s−k dt

) s−k
s (

Hn−1(E)
) s−k

s .
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From this we have the claim since g is increasing and ρ ∈ Adm(Γi
E) was

arbitrary. Next assume that we have a weight ω = 1
K on our modulus, whereˆ

Hn∩Q(0,5)

exp(λK)dx <∞.

Now we continue from (6) by Hölder’s inequality as in the non-weighted case:

Hn−1(E) �
ˆ ti

ti+1

ˆ
∂Hn

ρ(u+ ten)A(u, t)dHn−1(u)dt

≤
(ˆ ti

ti+1

ˆ
∂Hn

ρ
s
k (u+ ten)K

−1(u+ ten)dHn−1(u)dt

) k
s

×
(ˆ ti

ti+1

ˆ
∂Hn∩Q(0,2)

K
k

s−k (u+ ten)A(u, t)
s

s−k dHn−1(u)dt

) s−k
s

.

Let φi > 0 constant which will be given later. Using Lemma 3.1, we can
estimate the last term in the above inequality so thatˆ ti

ti+1

ˆ
∂Hn∩Q(0,2)

K
k

s−k (u+ ten)A(u, t)
s

s−k dHn−1(u)dt

≤ C̃

ˆ ti

ti+1

ˆ
∂Hn∩Q(0,2)

A(u, t)
s

s−k log
k

s−k
(
C̃A(u, t)

s
s−k /φi + 1

)
dHn−1(u)dt

+ φi

ˆ
Hn∩Q(0,5)

exp
(
λK(x)

)
dx.

Here C̃ = s/λ(s− k). Now we choose φi so that

φi

ˆ
Hn∩Q(0,5)

exp
(
λK(x)

)
dx= Ĉg−1(ti)

s(k−1)
s−k 2−iHn−1(E),

where Ĉ =C(n,p, k,λ). For simplicity, set

L=

ˆ
Hn∩Q(0,5)

exp
(
λK(x)

)
dx.

Now we can estimateˆ ti

ti+1

ˆ
∂Hn∩Q(0,2)

K
k

s−k (u+ ten)A(u, t)
s

s−k dHn−1(u)dt

� log
k

s−k

(
L2i

Hn−1(E)
+ 1

)ˆ ti

ti+1

g−1(t)
s(k−1)
s−k −1

ˆ
∂Hn

A(u, t)dHn−1(u)dt

+ g−1(ti)
s(k−1)
s−k 2−iHn−1(E)

� Hn−1(E) log
k

s−k

(
L2i

Hn−1(E)
+ 1

)ˆ ti

ti+1

g−1(t)
s(k−1)
s−k dt
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+ g−1(ti)
s(k−1)
s−k 2−iHn−1(E)

� g−1(ti)
s(k−1)
s−k 2−i

(
log

k
s−k

(
2i

Hn−1(E)
+ 1

)
+ 1

)
Hn−1(E).

Here we used Lemma 2.1 and the fact that g−1 is increasing. Since ρ was
arbitrary, combining the above estimate with the earlier one gives

Hn−1(E)
k
s �

(
ModK

−1

p

(
Γi
E

)) k
s g−1(ti)

k−12
−i(s−k)

s

(
log

k
s

(
2i

Hn−1(E)
+1

)
+1

)
.

Rearranging and raising to power s
k gives the claim

ModK
−1

p

(
Γi
E

)
� g−1(ti)

s
k (1−k)2

i(s−k)
k

(
log

(
2i

Hn−1(E)
+ 1

)
+ 1

)−1

Hn−1(E).

If K ∈ Lp(Hn) for some p > n− 1, then we can continue from (6) applying
Hölder’s inequality with β = ps

k :

Hn−1(E)1−
1
η �

(ˆ
H(i)

ρ
s
k (x)K−1(x)dx

) k
s

‖K‖
1
β

Lp

(ˆ ti

ti+1

g−1(t)η(k−1) dt

) 1
η

,

where η = ps
p(s−k)−k and the claim follows as in the non-weighted case. Thus,

the lemma is proved. �

In the remaining parts of this section, we will prove an analog of the KO-
inequality for path families for Modωs (Γ

i
E). By Dkf(x), we mean the

(
n
k

)
×

(
n
k

)
matrix whose entries are the k × k-minors of Df(x). Also, we denote the
Hilbert–Schmidt norm of a matrix A by |A|HS. In the next lemma, we prove

a change of variables formula for f ∈ W 1,s
loc (H

n ∩ Q(0,5),Rn), s > n − 1, on

k-dimensional sets Ωk
x,i.

Lemma 3.3. Let E ⊂ ∂Hn ∩Q(0,1) be a Borel set. Assume that ρ : Hn ∩
Q(0,5)→ [0,∞] is continuous and bounded. If f ∈W 1,s

loc (H
n ∩Q(0,5),Rn) for

some s > n− 1 then

(7)
√
n

ˆ
Ωk

x,i

ρ
(
f(z)

)∣∣Dkf(z)
∣∣dHk(z)≥

ˆ
f(Ωk

x,i)

ρ(y)dHk(y)

for almost every x ∈E.

Proof. Let {fj}j∈N be a sequence of smooth convolution approximations
of f . First, we show that

(8) lim
j→∞

ˆ
Ωk

x,i

ρ
(
fj(z)

)∣∣Dkfj(z)
∣∣dHk(z) =

ˆ
Ωk

x,i

ρ
(
f(z)

)∣∣Dkf(z)
∣∣dHk(z),
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for almost every x ∈ E. Denote Q =H(i) ∩Q(0,2). We make the following
observation: ˆ

Q

∣∣ρ(fj(x))∣∣Dkfj(x)
∣∣− ρ

(
f(x)

)∣∣Dkf(x)
∣∣∣∣ s

k dx

�
ˆ
Q

∣∣ρ(fj(x))− ρ
(
f(x)

)∣∣ s
k
∣∣Dkfj(x)

∣∣ s
k dx

+

ˆ
Q

∣∣ρ(f(x))∣∣ s
k
∣∣∣∣Dkf(x)

∣∣− ∣∣Dkfj(x)
∣∣∣∣ s

k dx

≤
ˆ
Q

∣∣ρ(fj(x))− ρ
(
f(x)

)∣∣ s
k
∣∣Dfj(x)

∣∣s dx
+ ‖ρ‖

s
k∞

ˆ
Q

∣∣∣∣Dkf(x)
∣∣− ∣∣Dkfj(x)

∣∣∣∣ s
k dx

�
ˆ
Q

∣∣ρ(fj(x))− ρ
(
f(x)

)∣∣ s
k
∣∣Dfj(x)

∣∣s dx
+ ‖ρ‖

s
k∞

ˆ
Q

∣∣Dkf(x)−Dkfj(x)
∣∣ s
k

HS
dx.

Notice that ˆ
Q

∣∣ρ(fj(x))− ρ
(
f(x)

)∣∣ s
k
∣∣Dfj(x)

∣∣s dx→ 0

as j → ∞, since ρ is continuous and fj → f uniformly on Q. If the latter
term in the above inequality vanishes as j →∞, then we have the claim by
Fuglede’s lemma [4, Theorem 3] for all x ∈E \F , where Mods(Γ

i
F ) = 0. Then

by Lemma 3.2 we know that Hn−1(F ) = 0. Thus it suffices to show
ˆ
Q

∣∣Dkf(x)−Dkfj(x)
∣∣n
k

HS
dx→ 0

as j →∞. For this, we use the language of differential forms. Notice that the
following holds:∣∣Dkf(x)−Dkfj(x)

∣∣2
HS

≤
∑

1≤i1≤···≤ik≤n

∣∣df i1
j ∧ · · · ∧ df ik

j − df i1 ∧ · · · ∧ df ik
∣∣2.

Writing the right-hand side of this equality as a telescoping sum and using
Hadamard’s inequality, we have∑

1≤i1≤···≤ik≤n

∣∣df i1
j ∧ · · · ∧ df ik

j − df i1 ∧ · · · ∧ df ik
∣∣2

=
∑

1≤i1≤···≤ik≤n

∣∣∣∣∣
k∑

l=1

df i1 ∧ · · · ∧ df il−1 ∧
(
df il

j − df il
)
∧ · · · ∧ df ik

j

∣∣∣∣∣
2
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�
∑

1≤i1≤···≤ik≤n

(
k∑

l=1

∣∣df i1
∣∣ · · · ∣∣df il−1

∣∣∣∣df il
j − df il

∣∣ · · · ∣∣df ik
j

∣∣)2

�
(

k∑
l=1

∣∣Df(x)
∣∣l−1∣∣Dfj(x)

∣∣k−l∣∣Dfj(x)−Df(x)
∣∣)2

.

Now we may deduce by Hölder’s inequality that

ˆ
Q

∣∣∣∣Dkf(x)
∣∣− ∣∣Dkfj(x)

∣∣∣∣ s
k dx

�
k∑

l=1

[ˆ
Q

∣∣Df(x)
∣∣ s(l−1)

k
∣∣Dfj(x)−Df(x)

∣∣ s(k−(l−1))
k dx

+

ˆ
Q

∣∣Df(x)
∣∣ s(k−1)

k
∣∣Dfj(x)−Df(x)

∣∣ s
k dx

]

�
k∑

l=1

[∥∥Df(x)
∥∥ s(l−1)

k

s

∥∥Dfj(x)−Df(x)
∥∥ s(k−(l−1))

k

s

+
∥∥Df(x)

∥∥ s(k−1)
k

s

∥∥Dfj(x)−Df(x)
∥∥ s

k

s

]
→ 0

as j →∞. Thus we have shown (8). Define the Area factor as JkL=
√
detLTL

for a linear map L : Rk →Rn, k ≤ n. Using (8), the Area and Cauchy–Binet
formulas [2, Theorem 2.71 and Proposition 2.69] we have for almost every
x ∈E

√
n

ˆ
Ωk

x,i

ρ
(
f(z)

)∣∣Dkf(z)
∣∣dHk(z)

≥
ˆ
Ωk

x,i

ρ
(
f(z)

)∣∣Dkf(z)
∣∣
HS

dHk(z)

= lim
j→∞

ˆ
Ωk

x,i

ρ
(
fj(z)

)∣∣Dkfj(z)
∣∣
HS

dHk(z)

≥ lim
j→∞

ˆ
Ωk

x,i

ρ
(
fj(z)

)
JkD

Ωk
x,ifj(z)dHk(z)

= lim
j→∞

ˆ
Bk(0,1)\{0}

ρ
(
fj ◦ φ(w)

)
JkD

Ωk
x,ifj

(
φ(w)

)
JkDφ(w)dHk(w)

= lim
j→∞

ˆ
fj(Ωk

x,i)

ρ(y)N
(
y, fj ◦ φ,Bk(0,1) \ {0}

)
dHk(y)

≥
ˆ
f(Ωk

x,i)

ρ(y)dHk(y).



588 T. ÄKKINEN

Here N(y, f,U) is the number of preimages that y has with mapping f in the
set U . �

Now we are in the position to prove an analog of the well-known KO-
inequality for path families [14].

Lemma 3.4. Suppose that E ⊂ ∂Hn∩Q(0,1) is a Borel set and F is the set
where the change of variables formula (7) does not hold. Assume further that
ρ ∈Adm(f(Γi

E\F ))∩C0(Hn ∩Q(0,5))∩L∞(Hn ∩Q(0,5)). Then we have for

quasiregular mapping f

Modn
(
Γi
E\F

)
≤ n

n
2k ‖K‖∞

ˆ
Hn

ρ(y)
n
k N

(
y, f,H(i)∩Q(0,2)

)
dy.

If instead f has exponentially integrable distortion or f ∈W 1,n
loc (H

n ∩Q(0,5))
and has p-integrable distortion, p > n− 1, then

Mod
1
K
n

(
Γi
E\F

)
≤ n

n
2k

ˆ
Hn

ρ(y)
n
k N

(
y, f,H(i)∩Q(0,2)

)
dy.

Proof. Define ρ̂ : Hn →R
n s.t.

ρ̂(z) =
√
nρ

(
f(z)

)∣∣Dkf(z)
∣∣χH(i)∩Q(0,2)(z).

Then by Lemma 3.3 we have that ρ̂ ∈ Adm(Γi
E\F ). Thus by distortion in-

equality (3) and change of variables we have

Modn
(
Γi
E\F

)
≤ n

n
2k

ˆ
H(i)∩Q(0,2)

ρ
(
f(z)

)n
k
∣∣Dkf(z)

∣∣n
k dz

≤ n
n
2k ‖K‖∞

ˆ
Hn

ρ(y)
n
k N

(
y, f,H(i)∩Q(0,2)

)
dy.

This proves the claim in the quasiregular case and the p-integrable and expo-
nential integrable distortion cases are proved similarly. �

4. Estimates for the integral of the Jacobian determinant

For the proof of our main theorem, we need to establish bounds for the
growth of the L1-norm of the Jacobian determinant of a mapping of finite
distortion.

Theorem 4.1. Assume that f : Hn ∩Q(0,5)→ R
n is a bounded mapping

of finite distortion. Thenˆ
H(i)∩Q(0,2)

Jf (x)dx � θf (i),

where θf (i) = 2i(n−1) if f is quasiregular, θf (i) = 2i(n−1)in−1 if f has expo-

nentially integrable distortion and θf (i) = 2
p+1
p i(n−1) if f ∈W 1,n

loc (H
n∩Q(0,5))

and has p-integrable distortion.



CUSPED SURFACES AND MAPPINGS OF FINITE DISTORTION 589

Proof. With all of the above assumptions on f , Jf fulfills the following
integration by parts formula:

ˆ
Hn

ϕ(x)Jf (x)dx=−
ˆ
Hn

f1(x)J(ϕ,f2,...,fn)(x)dx

for all ϕ ∈C∞
0 (Hn ∩Q(0,5)) cf. [5, Theorem 7.2.1]. Let ϕ= ψn, where ψ ≥ 0,

ψ ∈C∞
0 (Hn ∩Q(0,5)). Thus using integration by parts, distortion inequality

and Hölder’s inequality, we have
ˆ
Hn

ψnJf dx≤
ˆ
Hn

|f1|
∣∣d(ψn

)
∧ df2 ∧ · · · ∧ dfn

∣∣dx
≤ n

ˆ
Hn

|f ||ψ|n−1|∇ψ||Df |n−1 dx

≤ n

ˆ
Hn

|f ||ψ|n−1|∇ψ|K n−1
n J

n−1
n

f dx

≤ n‖f‖∞
(ˆ

Hn

|∇ψ|nKn−1 dx

) 1
n
(ˆ

Hn

|ψ|nJf dx
)n−1

n

.

This implies that

(9)

ˆ
Hn

|ψ|nJf dx≤ nn‖f‖n∞
ˆ
Hn

|∇ψ|nKn−1 dx.

Next choose ψ such that

ψ(x) = 1 if x ∈H(i)∩Q(0,2),

ψ(x) = 0 if x /∈ Q̂,∣∣∇ψ(x)
∣∣ ≤C(n)2i if x ∈ Q̂ \H(i)∩Q(0,2),

where Q̂ is the expansion of the set H(i) ∩ Q(0,2) by a factor of 2−i−2.

We observe that |Q̂ \ H(i) ∩ Q(0,2)| ≤ C(n)2−i. First, assume that f has
exponentially integrable distortion. Using Jensen’s inequality for the convex

function ψ(x) = exp(λx
1

n−1 ) yields

ˆ
Q̂

K(x)n−1 dx= ˆ|Q|ψ−1

(
ψ

( 
Q̂

K(x)n−1 dx

))

≤ ˆ|Q|ψ−1

( 
Q̂

ψ
(
K(x)n−1

)
dx

)

� 2−i logn−1

(
2i
ˆ
Hn∩Q(0,5)

exp
(
λK(x)

)
dx

)

� 2−i logn−1
(
2i

)
� 2−iin−1.
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Combining this with (9) givesˆ
H(i)∩Q(0,2)

Jf (x)dx � 2in
ˆ
Q̂\H(i)∩Q(0,2)

K(x)n−1 dx

� 2in
ˆ
Q̂

K(x)n−1 dx � 2i(n−1)in−1.

Next, assume f is quasiregular. Then from (9) it follows thatˆ
H(i)∩Q(0,2)

Jf (x)dx � 2in
ˆ
Q̂\H(i)∩Q(0,2)

K(x)n−1 dx

� 2i(n−1).

If f has p-integrable distortion then apply Hölder’s inequality to the right-
hand side of (9) and thus

ˆ
H(i)∩Q(0,2)

Jf (x)dx � 2in
(ˆ

Q̂\H(i)∩Q(0,2)

K(x)p dx

)n−1
p

×
∣∣Q̂ \H(i)∩Q(0,2)

∣∣ p−(n−1)
p

� 2i
np−p+(n−1)

p . �

5. Proof of the main theorem

Now we have the tools to prove our main theorem.

Proof of Theorem 1.1. Let f : Hn → R
n be a bounded mapping of finite

distortion. It is sufficient to show the claim in ∂Hn ∩ Q(0,1). Notice that
Lemma 3.3 fails in a set of measure zero, thus we may restrict to those x ∈
∂Hn ∩Q(0,1) for which Lemma 3.3 holds. We may also assume thatˆ

Ωk
x,i

∣∣Dkf(z)
∣∣dHk(z)<∞.

This can be deduced as follows: for each assumption (i)–(iii) in Theorem 1.1,

there exists sf > n−1 such that f ∈W
1,sf
loc (Hn∩Q(0,5),Rn). Then we observe

that ˆ
H(i)∩Q(0,2)

∣∣Dkf(z)
∣∣ sf

k dz ≤
ˆ
H(i)∩Q(0,2)

∣∣Df(z)
∣∣sf dz <∞.

Thus by the definition of
sf
k -exceptional sets we know that the modulus of

those Ωk
x,i ⊂H

n ∩Q(0,2) for whichˆ
Ωk

x,i

∣∣Dkf(z)
∣∣dHk(z) =∞

is zero. Then by Lemma 3.2 the corresponding collections of vertex points
has (n− 1)-dimensional measure zero.
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Now assume that f is a quasiregular mapping. Let σ be as in the statement
of the theorem. Define

Ei =
{
x ∈ ∂Hn ∩Q(0,1) : Hk

(
f
(
Ωk

x,i

))
> i−1−α

}
,

where

α=
σn(k− 1)

n+ k
− 1> 0.

By the definition of Ei, we know that i1+α ∈ Adm(f(Γi
Ei
)). Moreover, by

Lemmas 3.2 and 3.4, we have

Hn−1(Ei) � g−1(ti)
n
k (k−1)2−in−k

k i(i+α)n
k

ˆ
Hn

N
(
y, f,H(i)∩Q(0,2)

)
dy.

Using change of variables, Theorem 4.1, and the assumption on g−1, we have

Hn−1(Ei) � t
n
k (k−1)+n−k

k
i log

(
1

ti

)−σn
k (k−1)

i(1+α)n
k 2i(n−1)

= i−
σn
k (k−1)+(1+α)n

k = i−1−α,

where the last equality follows from the definition of α. Now set

E =

∞⋂
k=1

∞⋃
i=k

Ei.

Then by above calculations we have that

Hn−1(E)≤ lim
k→∞

∞∑
i=k

Hn−1(Ei) � lim
k→∞

∞∑
i=k

i−1−α = 0.

Thus, for almost every x ∈ ∂Hn ∩Q(0,1), there exists Nx ∈N such that

x ∈
(
∂Hn ∩Q(0,1)

) ∖ ∞⋃
i=Nx

Ei.

Fix such x. Then
∞∑

i=Nx

Hk
(
f
(
Ωk

x,i

))
≤

∞∑
i=Nx

i−1−α <∞.

We still need to show that

Hk
(
f
(
Ωk

x,i

))
<∞

for all i= 1, . . . ,Nx. This follows from the fact that for all these i’s,ˆ
Ωk

x,i

∣∣Dkf(z)
∣∣dHk(z)<∞,

and thus by Lemma 3.3

Hk
(
f
(
Ωk

x,i

))
≤
ˆ
Ωk

x,i

∣∣Dkf(z)
∣∣dHk(z)<∞.
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Thus, the quasiregular case is proved. Next, assume that f ∈W 1,n
loc (H

n) andˆ
Hn∩B(a,r)

Kp
f dx <∞

for some r > 0 and every a ∈ ∂Hn. By considering

h(x) = f

(
r

5
√
n
x+ a

)
we may assume that a = 0 and that

´
Hn∩Q(0,5)

Kp
f dx < ∞. Thus all the

results in Sections 3 and 4 are applicable to this situation. Let σ be as in the
statement of the theorem and define

α̃=
σpn(k− 1)

p(n+ k) + k
− 1> 0.

Now by Lemmas 3.2 and 3.4, and Theorem 4.1, we have

Hn−1(Ei)
p+1
p � g−1(ti)

n
k (k−1)

(
2−i

) p(n−k)−k
pk

ˆ
Hn

N
(
y, f,H(i)∩Q(0,2)

)
dy

≤ i
n
k (1+α̃−σ(k−1))

(
2−i

)ζ n
k (k−1)+ p(n−k)−k

pk + p+1
p (1−n)

.

By our choice of ζ, we have

ζ
n

k
(k− 1) +

p(n− k)− k

pk
+

p+ 1

p
(1− n) = 0.

Thus by the choice of α̃ we have that

Hn−1(Ei) � i
p

p+1 (1+α̃−σ(k−1)) = i−1−α̃.

The claim follows from this just as in the quasiregular case. Finally, assume
that ˆ

Hn∩B(a,r)

exp(λKf )dx <∞

for some r > 0 and every a ∈ ∂Hn. Again, arguing as above we may assume
that the results in Sections 3 and 4 are applicable. Then we define

α̂=
σn(k− 1)− nk

n+ k
− 1> 0.

By the distortion and Hölder’s inequalities, we have that f ∈ W 1,s
loc (H

n ∩
Q(0,5)), for some n − 1 < s < n. Thus, Lemma 3.3 holds for f , and using
the corresponding parts of Lemmas 3.2 and 3.4, we have

Hn−1(Ei) � g−1(ti)
n
k (k−1)2

−i(n−k)
k

(
log

(
2i/Hn−1(Ei) + 1

)
+ 1

)
×
ˆ
Hn

N
(
y, f,H(i)∩Q(0,2)

)
dy.

We may also assume that

Hn−1(Ei)≥ i−1−α̂,
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since otherwise we could use the same arguments as in the quasiregular case.
Thus, the above with Theorem 4.1 yields

Hn−1(Ei) � g−1(ti)
n
k (k−1)2

−i(n−k)
k

(
log

(
2ii1+α̂ + 1

)
+ 1

)
× i(1+α̂)n

k in−12i(n−1)

� i(1+α̂)n
k +n−1+1−σn

k (k−1) ≈ i−1−α̂.

From this, we can continue just as in the quasiregular case. �
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594 T. ÄKKINEN

[15] W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–
242. MR 0079093

[16] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math-
ematics, vol. 1319, Springer, Berlin, 1988. MR 0950174

Tuomo Äkkinen, Department of Mathematics and Statistics (P.O. Box 35

(MaD)), FIN-40014 University of Jyväskylä, Finland
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