
Illinois Journal of Mathematics
Volume 57, Number 1, Spring 2013, Pages 121–144
S 0019-2082

ON THE LEFSCHETZ AND HODGE–RIEMANN THEOREMS

TIEN-CUONG DINH AND VIÊT-ANH NGUYÊN

Abstract. We give an abstract version of the hard Lefschetz
theorem, the Lefschetz decomposition and the Hodge–Riemann

theorem for compact Kähler manifolds. Some examples are stud-
ied for compact symplectic Kähler manifolds.

1. Introduction

Let X be a compact Kähler manifold of dimension n and let ω be a Kähler
form on X . Denote by Hp,q(X,C) the Hodge cohomology group of bidegree
(p, q) of X with the convention that Hp,q(X,C) = 0 outside of the range
0 ≤ p, q ≤ n. When p, q ≥ 0 and p + q ≤ n, put Ω := ωn−p−q and define a
Hermitian form Q=QΩ on Hp,q(X,C) by

Q
(
{α},{β}

)
:= ip−q(−1)

(p+q)(p+q−1)
2

∫
X

α∧ β ∧Ω

for smooth closed (p, q)-forms α and β. The last integral depends only on the
classes {α}, {β} of α, β in Hp,q(X,C).

The classical Hodge–Riemann theorem asserts that Q is positive-definite
on the primitive subspace Hp,q(X,C)prim of Hp,q(X,C) which depends on Ω
and is given by

Hp,q(X,C)prim :=
{
{α} ∈Hp,q(X,C),{α}� {Ω}� {ω}= 0

}
,

where � denotes the cup-product on the cohomology ring ⊕H∗(X,C), see,
for example, Demailly [5], Griffiths and Harris [15] and Voisin [25].

Still under the assumption that Ω := ωn−p−q , the hard Lefschetz theorem
says that the linear map {α} �→ {α} � {Ω} defines an isomorphism between
Hp,q(X,C) and Hn−q,n−p(X,C). Moreover, the following Lefschetz decom-
position

Hp,q(X,C) = {ω}�Hp−1,q−1(X,C)⊕Hp,q(X,C)prim
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is orthogonal with respect to the Hermitian form Q. Consequently, we deduce
easily from the above theorems the signature of Q in term of the Hodge
numbers hp,q := dimHp,q(X,C). For example, when p= q = 1 the signature
of Q is equal to (h1,1 − 1,1).

The above three theorems are not true if we replace {Ω} with an arbitrary
class in Hn−p−q,n−p−q(X,R), even when the class contains a strictly positive
form, see, for example, Berndtsson and Sibony [4, §9] and Remark 2.9 below.
Our aim here is to give sufficient conditions on {Ω} for which these theorems
still hold. We will say that such a class {Ω} satisfies the Hodge–Riemann the-
orem, the hard Lefschetz theorem and the Lefschetz decomposition theorem
for the bidegree (p, q).

If E is a complex vector space of dimension n and E its complex conjugate,
we will introduce in the next section the notion of Hodge–Riemann cone in

the exterior product
∧k

E⊗
∧k

E with 0≤ k ≤ n, see Definition 2.1 below. In
practice, E is the complex cotangent space at a point x of X and we obtain
a Hodge–Riemann cone associated with X . Here is our main result.

Theorem 1.1. Let (X,ω) be a compact Kähler manifold of dimension n.
Let p, q be non-negative integers such that p+ q ≤ n and Ω a closed smooth
form of bidegree (n− p− q,n− p− q) on X . Assume that Ω takes values only
in the Hodge–Riemann cone associated with X . Then {Ω} satisfies the Hodge–
Riemann theorem, the hard Lefschetz theorem and the Lefschetz decomposition
theorem for the bidegree (p, q).

Roughly speaking, the hypothesis of Theorem 1.1 says that at every point
x of X , we can deform Ω continuously to ωn−p−q in a “nice way.” However,
we do not need that the deformation depends continuously on x and a priori
the deformation does not preserve the closedness nor the smoothness of the
form.

We deduce from Theorem 1.1 the following corollary using a result due to
Timorin [24], see Proposition 2.2 below.

Corollary 1.2. Let (X,ω) be a compact Kähler manifold of dimension n.
Let p, q be non-negative integers such that p+ q ≤ n and ω1, . . . , ωn−p−q be
Kähler forms on X . Then the class {ω1 ∧ · · · ∧ ωn−p−q} satisfies the Hodge–
Riemann theorem, the hard Lefschetz theorem and the Lefschetz decomposition
theorem for the bidegree (p, q).

The last result was obtained by the authors in [10], see also Cattani [6]
for a proof using the theory of variations of Hodge structures. It solves a
problem which has been considered in some important cases by Khovanskii
[19], [20], Teissier [22], [23], Gromov [16] and Timorin [24]. The reader will
find some related results and applications of the above corollary in Cattani
[6], de Cataldo and Migliorini [7], Gromov [16], Dinh and Sibony [9], [11] and
Keum, Oguiso and Zhang [18], [28].
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This paper is organized as follows. We begin Section 2 by defining the
notion of Hodge–Riemann forms. This notion plays a key role in this work.
Next, we will establish some of its important properties. This preparatory
material is necessary for us to prove Theorem 1.1 in Section 3. Section 4 is
devoted to a thorough study of an explicit family of Hodge–Riemann forms
in the context of compact symplectic Kähler manifolds.

2. Hodge–Riemann forms

In this section, we introduce the notion of Hodge–Riemann form in the
linear setting and we will discuss some basic properties of these forms.

Let E be a complex vector space of dimension n and E its conjugate space.
Denote by V p,q the space

∧p
E ⊗

∧q
E of (p, q)-forms with the convention

that V p,q := 0 unless 0 ≤ p, q ≤ n. Recall that a form ω in V 1,1 is a Kähler
form if it can be written as

ω = idz1 ∧ dz1 + · · ·+ idzn ∧ dzn

for some coordinate system (z1, . . . , zn) of E, where zi ⊗ zj is identified with
dzi ∧ dzj .

Recall also that a form Ω in V k,k with 0≤ k ≤ n, is real if Ω = Ω. Let V k,k
R

denote the space of real (k, k)-forms. A form Ω in V k,k is positive1 if it is a

combination with positive coefficients of forms of type ik
2

α∧α with α ∈ V k,0.
So, positive forms are real. If Ω is positive its restriction to any subspace of
E is positive. A positive (k, k)-form Ω is strictly positive, if its restriction to
any subspace of dimension k of E does not vanish. The powers of a Kähler
form are strictly positive forms. Fix a Kähler form ω as above.

Definition 2.1. A (k, k)-form Ω in V k,k is said to be a Lefschetz form for
the bidegree (p, q) if k = n− p− q and the map α �→ α ∧Ω is an isomorphism

between V p,q and V n−q,n−p. A real (k, k)-form Ω in V k,k
R

is said to be a
Hodge–Riemann form for the bidegree (p, q) if there is a continuous deforma-

tion Ωt ∈ V k,k
R

with 0≤ t≤ 1, Ω0 =Ω and Ω1 = ωk such that

(∗) Ωt ∧ ω2r is a Lefschetz form for the bidegree (p− r, q− r)

for every 0≤ r ≤min{p, q} and 0≤ t≤ 1. The cone of such forms Ω is called
the Hodge–Riemann cone for the bidegree (p, q). We say that Ω is Hodge–
Riemann if it is a Hodge–Riemann form for any bidegree (p, q) with p+ q =
n− k.

Note that the property (∗) for t= 1 is a consequence of the linear version
of the classical hard Lefschetz theorem. The Hodge–Riemann cone is open in

V k,k
R

and a priori depends on the choice of ω. In practice, to check that a

1 There are two other notions of positivity but we will not use them here.
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form is Hodge–Riemann is usually not a simple matter. We have the following
result due to Timorin in [24].

Proposition 2.2. Let k be an integer such that 0≤ k ≤ n. Let ω1, . . . , ωk

be Kähler forms. Then Ω := ω1 ∧ · · · ∧ ωk is a Hodge–Riemann form.

Consider a square matrix M = (αij)1≤i,j≤k with entries in V 1,1. Assume
that M is Hermitian, that is, αij = αji for all i, j. We say that M is Griffiths

positive if for any row vector θ = (θ1, . . . , θk) in C
k \ {0} and its transpose tθ,

θM
t
θ is a Kähler form. We call Griffiths cone the set of (k, k)-forms in V k,k

which can be obtained as the determinant of a Griffiths positive matrix M as
above. We are still unable to answer the following question.

Problem 2.3. Is the Griffiths cone contained in the Hodge–Riemann cone?

The affirmative answer to the question would allow us to obtain a tran-
scendental version of the hyperplane Lefschetz theorem which is known for the
last Chern class associated with a Griffiths positive vector bundle, see Voisin
[25, p. 312]. Another fact which allows us to believe in the affirmative answer
is that the Griffiths cone contains the wedge-products of Kähler forms (case
where M is diagonal) which are Hodge–Riemann according to Proposition 2.2.

Note also that for the above problem it is enough to check the condition
(∗) for t= 0 and r = 0. Indeed, we can consider Ωt, the determinant of the
Griffiths positive matrix Mt := (1− t)M + tIω, where I is the identity matrix.
It is enough to observe that Ωt ∧ ω2r is the determinant of the Griffiths posi-
tive (k + 2r)× (k + 2r) matrix which is obtained by adding to Mt a square
block equal to ω times the identity 2r× 2r matrix.

The following question is also open.

Problem 2.4. Let Ωt, 0≤ t≤ 1, be a continuous family of strictly positive

(k, k)-forms in V k,k
R

with Ω0 = Ω and Ω1 = ωk. Assume the property (∗) in
Definition 2.1 for r = 0 and for this family Ωt. Is Ω always a Hodge–Riemann
form for the bidegree (p, q)?

Note that the strict positivity of Ωt implies the property (∗) for r =
min{p, q}. This is perhaps a reason to believe that the answer to the above
problem is affirmative. An interesting point here is that the cone of all forms
Ω as in Problem 2.4 does not depend on ω. The following result gives a partial
answer to the question.

Proposition 2.5. Let Ωt be as in Problem 2.4. Assume moreover that
min{p, q} ≤ 2. Then Ω is a Hodge–Riemann form for the bidegree (p, q).

Fix a coordinate system (z1, . . . , zn) of E such that ω = idz1 ∧ dz1 + · · ·+
idzn ∧ dzn. So, this Kähler form is invariant under the natural action of the
unitary group U(n). We will need the following lemma.
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Lemma 2.6. Let α be a form in V p,q−1 with q ≥ 2 and p+ q ≤ n. Assume
that for every ϕ ∈ V 0,1 we can write α ∧ ϕ = ω ∧ β for some β ∈ V p−1,q−1.
Then we can write α= ω ∧ γ for some γ ∈ V p−1,q−2.

Proof. Let M denote the set of all forms α ∈ V p,q−1 satisfying the hy-
pothesis of the lemma. Observe that M is invariant under the action of
U(n). So, it is a linear representation of this group. Let Pj denote the prim-
itive subspace of V p−j,q−1−j , that is, the set of φ ∈ V p−j,q−1−j such that
φ∧ωn−p−q+2+2j = 0. It is well-known that the Pj are irreducible representa-
tions of U(n) and they are not isomorphic one to another, see, for example,
Fujiki [13, Proposition 2.2]. Moreover, we have the Lefschetz decomposition

V p,q−1 =
⊕

0≤j≤min{p,q−1}
ωj ∧ Pj .

The space ωj ∧Pj is also a representation of U(n) which is isomorphic to Pj .
Therefore, it is enough to show that M does not contain P0.

Consider the form

α := dz2 ∧ · · · ∧ dzq ∧ dzq+1 ∧ · · · ∧ dzp+q.

A direct computation shows that α is a form in P0. Observe that α∧dz1 does
not contain any factor dzj ∧ dzj . Therefore, α /∈M because α∧ dz1 does not
belong to ω ∧ V p−1,q−1. The lemma follows. �

Given nonnegative integers p, q such that p+ q ≤ n and a real form Ω of
bidegree (n− p− q,n− p− q), define the Hermitian form Q by

Q(α,β) := ip−q(−1)
(p+q)(p+q−1)

2 ∗ (α∧ β ∧Ω) for α,β ∈ V p,q,

where ∗ is the Hodge star operator. Define also the primitive subspace

P p,q :=
{
α ∈ V p,q : α∧Ω∧ ω = 0

}
.

The classical Lefschetz theorem asserts that the wedge-product with ω de-
fines a surjective map from V n−q,n−p to V n−q+1,n−p+1. Its kernel is of dimen-
sion dimV p,q −dimV p−1,q−1. Therefore, if the map α �→Ω∧α is injective on
V p,q , the above primitive space has dimension dimV p,q −dimV p−1,q−1 which
does not depend on Ω.

We also need the following lemma.

Lemma 2.7. Let Ωt be a continuous family of real (k, k)-forms in V k,k
R

with
Ω0 =Ω, Ω1 = ωk and 0≤ t≤ 1. Assume that Ωt is Lefschetz for the bidegree
(p, q) for every 0 ≤ t ≤ 1 and Ωt ∧ ω2 ∧ α is Lefschetz for the bidegree (p −
1, q− 1) for every 0< t≤ 1. Then, for every form α in V p,q−1 (resp. V p−1,q)
satisfying α∧Ω∧ ω = 0, α belongs to ω ∧ V p−1,q−2 (resp. ω ∧ V p−2,q−1).

It is worthy to note here that since α �→ Ωt ∧ ω2 ∧ α is isomorphic from
V p−1,q−1 to V n−q+1,n−p+1 for only 0 < t ≤ 1 (and not for every 0 ≤ t ≤ 1!),
the intersection ω ∧ V p−1,q−1 ∩ P p,q is, in general, non-zero.
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Proof. Let V denote the space of forms β ∈ V p,q such that Q(β,φ) = 0
for every φ in ω ∧ V p−1,q−1 + P p,q . The hypothesis implies that Q is non-
degenerate. Therefore, we obtain

dimω ∧ V p−1,q−1 +dimP p,q = dimV p−1,q−1 +dimV p,q − dimV p−1,q−1

= dimV p,q,

and hence

dimV = dimV p,q − dim
(
ω ∧ V p−1,q−1 + P p,q

)
= dim

(
ω ∧ V p−1,q−1 ∩ P p,q

)
.

On the other hand, by definition of P p,q , the space ω ∧ V p−1,q−1 ∩ P p,q is
contained in V . We deduce that these two spaces coincide.

Let α ∈ V p,q−1 such that α∧Ω∧ω = 0 (the case α ∈ V p−1,q can be treated
in the same way). Fix a form ϕ in V 0,1. By Lemma 2.6 and the above
discussion, we only need to show that α ∧ ϕ belongs to V . It is clear that
Q(α∧ϕ,φ) = 0 for φ ∈ ω ∧V p−1,q−1. It remains to show that Q(α∧ϕ,φ) = 0
for φ ∈ P p,q . For this purpose, it is enough to consider the case where ϕ= dzj
since {dz1, . . . , dzn} is a basis of V 0,1.

Denote by Qt and P p,q
t the Hermitian form and the primitive space asso-

ciated with Ωt which are defined as above. Moreover, since Ωt ∧ ω2 ∧ α is
Lefschetz for the bidegree (p− 1, q − 1), the intersection ω ∧ V p−1,q−1 ∩ P p,q

t

is zero for every 0< t≤ 1. Using the continuous deformation Ωt of Ω, we ob-
tain as in Proposition 2.8 below that Qt is positive-definite on P p,q

t for every
0 < t ≤ 1. Since the dimension of P p,q

t is constant, this space depends con-
tinuously on t. Hence, the restriction of Q to P p,q is semi-positive. Observe
that α∧ dzj is in P p,q . Hence,

Q(α∧ dzj , α∧ dzj)≥ 0.

The sum over j of Q(α ∧ dzj , α ∧ dzj) vanishes since α ∧ Ω ∧ ω = 0. We
deduce that all the above inequalities are in fact equalities. Now, since Q is
semi-positive on P p,q , by Cauchy–Schwarz’s inequality, Q(α ∧ dzj , φ) = 0 for
φ ∈ P p,q . This completes the proof. �

Proof of Proposition 2.5. Assume without loss of generality that q ≤ p.

Observe that for every α non-zero in V n−k−s,0 we have i(n−k−s)2α ∧ α ∧
Ωt ∧ ωs > 0. So, we only have to consider the case q = 2 and to check the
property (∗) for r = 1. We will show that the map α �→Ωt ∧ω ∧α is injective
on V p,1 and the map α �→ Ωt ∧ ω2 ∧ α is injective on V p−1,1. The result will
follow easily.

Let Σ denote the set of t satisfying the above property. By continuity, Σ is
open in [0,1]. Moreover, by the Lefschetz theorem, it contains the point 1.
Assume that Σ is not equal to [0,1]. Let t0 < 1 be the minimal number such
that ]t0,1]⊂ Σ. We will show that t0 ∈ Σ which is a contradiction. Up to a
re-parametrization of the family Ωt, we can assume for simplicity that t0 = 0.
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Consider a form α ∈ V p,1 such that Ω ∧ ω ∧ α = 0. We deduce from
Lemma 2.7 that α= ω ∧ γ with γ ∈ V p−1,0. We have γ ∧ γ ∧Ω∧ω2 = 0. The
positivity of Ω implies that γ = 0 and then α= 0. So, the map α �→Ω∧ω ∧α
is injective on V p,1. By dimension reason, this map is bijective from V p,1 to
V n−1,n−p. So Ωt ∧ ω is Lefschetz for the bidegree (p,1) for every 0 ≤ t ≤ 1.
By the positivity of Ω, the form Ωt∧ω3 is Lefschetz for the bidegree (p−1,0)
for every 0 < t ≤ 1. Consequently, we are in the position to apply again
Lemma 2.7 but to Ωt ∧ω instead of Ωt and (p,1) instead of (p, q). We obtain
as above that the map α �→Ω∧ ω2 ∧ α is injective on V p−1,1. Therefore, 0 is
a point in Σ. This completes the proof. �

We give now fundamental properties of Hodge–Riemann forms that we will
use in the next section. We fix a norm on each space V ∗,∗.

Proposition 2.8. Let Ω be a form satisfying the condition (∗) in Defini-
tion 2.1 for r = 0,1. Then the space V p,q splits into the Q-orthogonal direct
sum

V p,q = P p,q ⊕ ω ∧ V p−1,q−1

and the Hermitian form Q is positive-definite on P p,q . Moreover, for any
constant c1 > 0 large enough, there is a constant c2 > 0 such that

‖α‖2 ≤ c1Q(α,α) + c2‖α∧Ω∧ ω‖2 for α ∈ V p,q.

Proof. The Q-orthogonality is obvious. By the classical Lefschetz theorem,
the wedge-product with ω defines an injective map from V p−1,q−1 to V p,q .
Therefore, we have

dimV p,q = dimP p,q +dimV p−1,q−1 = dimP p,q +dimω ∧ V p−1,q−1.

On the other hand, the property (∗) for r = 1 implies that the intersection of
P p,q and ω ∧ V p−1,q−1 is reduced to 0. We then deduce the above decompo-
sition of V p,q . Of course, this property still holds if we replace Ω with Ωt.

Denote by Qt and P p,q
t the Hermitian form and the primitive space as-

sociated with Ωt which are defined as above. Since the dimension of P p,q
t

is constant, this space depends continuously on t. By the classical Hodge–
Riemann theorem, Q1 is positive-definite on P p,q

1 . If Q is not positive-definite
on P p,q , there is a maximal number t such that Qt is not positive-definite.
The maximality of t implies that Qs is positive-definite on P p,q

s when s > t.
It follows by continuity that there is an element α ∈ P p,q

t , α �= 0, such that
Qt(α,β) = 0 for β ∈ P p,q

t . By definition of P p,q
t , this identity holds also for

β ∈ ω ∧ V p−1,q−1. We then deduce that the identity holds for all β ∈ V p,q . It
follows that α ∧Ωt = 0. This is a contradiction. So, Q is positive-definite on
P p,q .

We prove now the last assertion in the proposition for a fixed constant c1
large enough. Consider a form α ∈ V p,q . The first assertion implies that we
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can write

α= β + ω ∧ γ with β ∈ P p,q and γ ∈ V p−1,q−1

and we have

Q(α,α) =Q(β,β) +Q(ω ∧ γ,ω ∧ γ).

Since the wedge-product with Ω∧ω2 defines an isomorphism between V p−1,q−1

and V n−q+1,n−p+1, there is a constant c > 0 such that

c−1
∥∥γ ∧Ω∧ ω2

∥∥≤ ‖γ‖ ≤ c
∥∥γ ∧Ω∧ ω2

∥∥= c‖α∧Ω∧ ω‖.
Therefore, there is a constant c′ > 0 such that

‖α‖2 ≤ c′
(
‖β‖2 + ‖γ‖2

)
≤ c′‖β‖2 + c′c2‖α∧Ω∧ ω‖2.

Finally, since Q is positive-definite on P p,q and since c1 > 0 is large enough,
we obtain

c′‖β‖2 ≤ c1Q(β,β) = c1
(
Q(α,α)−Q(ω ∧ γ,ω ∧ γ)

)
≤ c1Q(α,α) + c1c‖γ‖2

≤ c1Q(α,α) + c1c
3
∥∥γ ∧Ω∧ ω2

∥∥2
= c1Q(α,α) + c1c

3‖α∧Ω∧ ω‖2.
We then deduce the estimate in the proposition by taking c2 := c′c2+c1c

3. �

Remark 2.9. Consider the following strictly positive forms, exhibited by
Berndtsson and Sibony [4, §9],
Ωε := (idz1 ∧ dz1)∧ (idz2 ∧ dz2) + (idz3 ∧ dz3)∧ (idz4 ∧ dz4) + εω2 ∈ V 2,2,

where ε > 0 and dimE = 4. Ωε is not a Lefschetz form for the bidegree
(1,1) if and only if the determinant of the linear map V 1,1 � α �→Ωε ∧α with
respect to any fixed bases of V 1,1 and V 3,3 vanishes. So by expanding this
determinant it is not difficult to see that Ωε is not a Lefschetz form if and
only if ε is a root of a suitable finite family of polynomials. Moreover, for ε
large enough, the determinant of the linear map associated to ε−1Ωε tends to
that of ω2 which is non-zero since ω2 is a Lefschetz form. So the above family
contains a non-zero polynomial. Consequently, for all but a finite number of
values of ε > 0, Ωε is a Lefschetz form for the bidegree (1,1). In particular,
Ωε is a Lefschetz form for all ε > 0 small enough. By the positivity of Ω,
Ωε ∧ ω2 is clearly a Lefschetz form for the bidegree (0,0). Recall from [4, §9]
that for every ε > 0 small enough, there is γ± = γ±

ε ∈ V 1,1 \ {0} such that
γ± ∧Ωε ∧ ω = 0 and that

γ+ ∧ γ+ ∧Ωε > 0> γ− ∧ γ− ∧Ωε.

So by Proposition 2.8, Ωε is not Hodge–Riemann for the bidegree (1,1). This
example shows that the condition on the existence of a continuous deformation
in Definition 2.1 is necessary.
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3. Lefschetz and Hodge–Riemann theorems

In this section, we prove Theorem 1.1. Corollary 1.2 is then deduced from
that theorem and Proposition 2.2. We will use the results of the last section
for E the complex cotangent space of X at a point and ω the Kähler form
on X . So, we can define at every point of X a Hodge–Riemann cone for
bidegree (p, q). We now use the notation in Theorem 1.1. Let E p,q(X) (resp.
L2
p,q(X)) denote the spaces of smooth (resp. L2) forms on X of bidegree (p, q).

Recall that Ω ∈ E n−p−q,n−p−q(X) is a closed form that takes values only in
the Hodge–Riemann cone.

Proposition 3.1. Assume that p, q ≥ 1. Then, for every closed form f ∈
E p,q(X) such that {f} ∈Hp,q(X,C)prim, there is a form u ∈ L2

p−1,q−1(X) such
that

ddcu∧Ω∧ ω = f ∧Ω∧ ω.

Proof. Consider the subspace H of L2
n−p+1,n−q+1(X) defined by

H :=
{
ddcα∧Ω∧ ω : α ∈ E q−1,p−1(X)

}
and the linear form h on H given by

h
(
ddcα∧Ω∧ ω

)
:= (−1)p+q+1

∫
X

α∧ f ∧Ω∧ ω.

We prove that h is a well-defined bounded linear form with respect to the
L2-norm restricted to H .

We claim that there is a constant c > 0 such that∥∥ddcα∥∥
L2 ≤ c

∥∥ddcα∧Ω∧ ω
∥∥
L2 .

Indeed, recall that Ω(x) is a Hodge–Riemann form for the bidegree (p, q) for
all x ∈X . Therefore, we use the inequality in Proposition 2.8 applied to ddcα
instead of α and the complex cotangent spaces of X instead of E. Since X
is compact, we can find common constants c1 and c2 for all cotangent spaces.
We then integrate over X and obtain∥∥ddcα∥∥2

L2 ≤ c1Q
(
ddcα,ddcα

)
+ c2

∥∥ddcα∧Ω∧ ω
∥∥2
L2 ,

where Q is defined in Section 1. Using Stokes’ formula, we obtain

Q
(
ddcα,ddcα

)
= ip−q(−1)

(p+q)(p+q−1)
2

∫
X

ddcα∧ ddcα∧Ω= 0.

We then deduce easily the claim.
Now, by hypothesis the smooth form f ∧Ω ∧ ω is exact. Therefore, there

is a form g ∈ E n−q,n−p(X) such that

ddcg = f ∧Ω∧ ω,
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see, for example, [5, p. 41]. Using again Stokes’ formula and the above claim,
we obtain∣∣∣∣∫

X

α∧ f ∧Ω∧ ω

∣∣∣∣ = ∣∣∣∣∫
X

α∧ ddcg

∣∣∣∣= ∣∣∣∣∫
X

ddcα∧ g

∣∣∣∣
≤ ‖g‖L2

∥∥ddcα∥∥
L2 ≤ c‖g‖L2

∥∥ddcα∧Ω∧ ω
∥∥
L2 .

It follows that h is a well-defined form whose norm in L2 is bounded by c‖g‖L2 .
By the Hahn–Banach theorem, we can extend h to a bounded linear form

on L2
n−p+1,n−q+1(X). Let u be a form in L2

p−1,q−1(X) that represents h. It
follows from the definition of h that∫

X

u∧ ddcα∧Ω∧ ω = (−1)p+q+1

∫
X

α∧ f ∧Ω∧ ω =−
∫
X

f ∧ α∧Ω∧ ω

for all test forms α ∈ E q−1,p−1(X). The form u satisfies the proposition. �

We have the following result.

Proposition 3.2. Let u be as in Proposition 3.1. Then there is a form
v ∈ E p−1,q−1(X) such that ddcv = ddcu.

Proof. We can assume without loss of generality that p≤ q. The idea is to
use the ellipticity of the Laplacian operator associated with ∂ and a special
inner product on E p,q(X). We first construct this inner product. Fix an
arbitrary Hermitian metric on the vector bundle

∧r,s
(X) of differential (r, s)-

forms on X with (r, s) �= (p, q) and denote by 〈·, ·〉 the associated inner product
on E r,s(X).

Using the first assertion in Proposition 2.8, for any α,α′ ∈ E p,q(X), we can
write in a unique way

α= β + ω ∧ γ and α′ = β′ + ω ∧ γ′

with β,β′ ∈ E p,q(X) and γ, γ′ ∈ E p−1,q−1(X) such that β ∧ Ω ∧ ω = 0 and
β′ ∧Ω∧ ω = 0. Define an inner product 〈·, ·〉 on E p,q(X) by setting〈

α,α′〉 :=Q
(
β,β′)+ 〈

γ, γ′〉=Q
(
α,β′)+ 〈

γ, γ′〉,
where 〈γ, γ′〉 is calculated using the previously fixed Hermitian metric on the

vector bundle
∧p−1,q−1

(X). This inner product is associated with a Hermitian
metric on

∧p,q
(X).

Using the positivity of Q given in Proposition 2.8, we see that 〈·, ·〉 defines a
Hermitian metric on E p,q(X). Consider now the norm ‖α‖ :=

√
〈α,α〉. Then

there is a constant c > 0 such that

c−1
(
‖β‖L2 + ‖γ‖L2

)
≤ ‖α‖ ≤ c

(
‖β‖L2 + ‖γ‖L2

)
.

Consider the (p, q)-current h := ddcu−f which belongs to a Sobolev space.
We have

∂h= 0, ∂h= 0 and h∧Ω∧ ω = 0.



ON THE LEFSCHETZ AND HODGE–RIEMANN THEOREMS 131

The last identity says that if we decompose h as we did above for α,α′,
the second component in the decomposition vanishes. Therefore, 〈∂α,h〉 =
Q(∂α,h) for any form α ∈ E p,q−1(X). Using Stokes’ formula, we obtain

〈∂α,h〉=Q(∂α,h) = ip−q(−1)p+q−1+ (p+q)(p+q−1)
2

∫
X

α∧ ∂h∧Ω= 0.

If ∂
∗
is the adjoint of ∂ with respect to the considered inner products, we

deduce that ∂
∗
h= 0. On the other hand, ∂h= 0. Therefore, h is a harmonic

current with respect to the Laplacian operator ∂∂
∗
+ ∂

∗
∂, see Section 5 in

[26, Chapter IV]. Consequently, by elliptic regularity, h is smooth, see, for
example, Theorem 4.9 in [26, Chapter IV]). Hence, ddcu is smooth. We deduce
the existence of v ∈ E p−1,q−1(X) such that ddcv = ddcu, see, for example, [5,
p. 41]. �

End of the proof of Theorem 1.1. Let f be a closed form in E p,q(X) such
that {f} ∈Hp,q(X,C)prim. We first show that Q({f},{f})≥ 0. Let v be the
smooth (p− 1, q− 1)-form given by Proposition 3.2. Then we have(

f − ddcv
)
∧Ω∧ ω = 0.

Here, we should replace ddcv with 0 when either p= 0 or q = 0. Using Propo-
sition 2.8 at each point of X , after an integration on X , we obtain

ip−q(−1)
(p+q)(p+q−1)

2

∫
X

(
f − ddcv

)
∧
(
f − ddcv

)
∧Ω≥ 0.

Using Stokes’ formula and that f is closed, we obtain∫
X

f ∧ f ∧Ω=

∫
X

(
f − ddcv

)
∧
(
f − ddcv

)
∧Ω.

Therefore, Q({f},{f})≥ 0. The equality occurs if and only if f = ddcv, that
is, {f}= 0. Hence, {Ω} satisfies the Hodge–Riemann theorem for the bidegree
(p, q).

We deduce that the map {α} �→ {α}� {Ω} is injective on Hp,q(X,C)prim.
If {α} is a class in Hp,q(X,C) such that {α} � {Ω} = 0, {α} is a primitive
class and hence {α}= 0. Therefore, {Ω} satisfies the hard Lefschetz theorem
for the bidegree (p, q).

The classical hard Lefschetz theorem implies that {α} �→ {α}� {ω} is an
injective map from Hp−1,p−1(X,C) to Hp,q(X,C). Therefore,

dim{ω}�Hp−1,q−1(X,C) = dimHp−1,q−1(X,C).

This Lefschetz theorem also implies that {α} �→ {α}� {ω} is a surjective map
from Hn−q,n−p(X,C) to Hn−q+1,n−p+1(X,C). This together with the hard
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Lefschetz theorem for {Ω} yield

dimHp,q(X,C)prim = dimHp,q(X,C)− dimHn−q+1,n−p+1(X,C)

= dimHp,q(X,C)− dimHp−1,q−1(X,C)

= dimHp,q(X,C)− dim{ω}�Hp−1,q−1(X,C).

The hard Lefschetz theorem can also be applied to {Ω∧ω2} and to the bide-
gree (p− 1, q − 1). We deduce that the intersection of {ω}�Hp−1,q−1(X,C)
and Hp,q(X,C)prim is reduced to 0. This together with the above dimension
computation gives us the following decomposition into a direct sum

Hp,q(X,C) = {ω}�Hp−1,q−1(X,C)⊕Hp,q(X,C)prim.

Finally, the previous decomposition is orthogonal with respect to Q by defi-
nition of primitive space. So, {Ω} satisfies the Lefschetz decomposition theo-
rem. �

Remark 3.3. In order to obtain the Hodge–Riemann theorem and the
hard Lefschetz theorem (resp. the Lefschetz decomposition), it is enough to
assume the property (∗) in Definition 2.1 for r = 0,1 (resp. r = 0,1,2). When
(∗) is satisfied for all r, we can apply inductively these theorems to Ω ∧ ω2r

and then obtain the signature of Q on Hp,q(X,C).

4. A family of Hodge–Riemann forms

This section contains an experimental study of Hodge–Riemann forms in
the holomorphic symplectic setting. From now on, assume that n= 2m and
we consider on E = C

2m the coordinate system (x1, . . . , xm, y1, . . . , ym), the
standard Kähler form

ω := idx1 ∧ dx1 + · · ·+ idxm ∧ dxm + idy1 ∧ dy1 + · · ·+ idym ∧ dym

and the standard symplectic form

σ := dx1 ∧ dy1 + · · ·+ dxm ∧ dym.

The main purpose of this section is to establish the following result.

Proposition 4.1. The form

Ω :=
(
σσ+ tω2

)
∧ (σσ)m−p−v−1 ∧ ωp−q+2v

is a Hodge–Riemann form for the bidegree (p, q) for q = 0 or 1, q ≤ p≤m/2,
vq < v ≤m− p− 1 and t ∈R+, where v0 :=−1 and

v1 :=

{
p(m−p)
p+1 when p <

√
2(m+ 1)− 1,

2m−p+3
2 −

√
2(m+ 1) when p≥

√
2(m+ 1)− 1.

Note that when t= 0, Proposition 4.1 holds also for v =m− p. As a direct
consequence of Theorem 1.1 and Proposition 4.1 applied to t= 0, we obtain
the following result.
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Theorem 4.2. Let (X,ω,σ) be a compact symplectic Kähler manifold of di-
mension n= 2m, where ω is a Kähler form and σ is a holomorphic symplectic
(2,0)-form on X . Let p, q, v be non-negative integers such that q ≤ p≤m/2,
vq < v ≤m− p and q = 0 or 1, where vq is defined as above. Then the class
of (σ ∧ σ)m−p−v ∧ ωp−q+2v satisfies the Hodge–Riemann theorem, the hard
Lefschetz theorem and the Lefschetz decomposition theorem for the bidegree
(p, q).

Theorem 4.2 may be useful in the study of the automorphism group of
X , see, for example, [9], [11], [18], [21], [28]. Note that by Proposition 2.5
the results still hold if we use the primitive space associated to Ω ∧ ω′ for
another Kähler form ω′. It is worthy to note also that the lower bound on v is
necessary even when p= q = 1, see Remark 4.6 below. However, when X is an
irreducible compact symplectic Kähler manifold and p= q = 1, Theorem 4.2
for v = 0 can be deduced from results by Beauville [1] and Bogomolov [2], [3],
see also Fujiki [13] and Enoki [12], Huybrechts [17]. In this case, we can show
that Theorem 4.2 holds without lower bound for v.

The remaining part is devoted to the proof of Proposition 4.1. In order to
simplify the notation, we often drop the letter d and the sign ∧, for example,
we will write

ω = ix1x1 + · · ·+ ixmxm + iy1y1 + · · ·+ iymym

and

σ = x1y1 + · · ·+ xmym.

The most inconvenience due to this simplification is the identities like x1y1 =
−y1x1 involving in the next computation.

For a Lie group G we use the terminology: a G-module and a representation
of G interchangeably. The unitary symplectic group Sp(m) is identified to
the group of matrices in GL(2m,C) which preserve σ,σ and ω. Its action
on E extends naturally to the vector spaces V p,q :=

∧p
E ⊗

∧q
E and V k :=⊕

p+q=k V
p,q . In the sequel, we give some properties of V p,q and V k which

are seen as such Sp(m)-modules. We refer to Fujiki [13] for details. Let
V p,q
ε be the set of forms α in V p,q such that α{σ,σ,ω}2m−p−q = 0, where

{σ,σ,ω}2m−p−q is the family of monomials of degree 2m− p− q on σ,σ,ω.
This is the universally effective subspaces of V p,q which is also a representation
of Sp(m). We will also consider the set V p,q

0 of forms in V p,q which can be
written as polynomials in σ,σ and ω. This is a representation of Sp(m) which
is isomorphic to a direct sum of copies of the trivial representation since σ,σ
and ω are invariant. Define also V k

ε :=
⊕

p+q=k V
p,q
ε and V k

0 :=
⊕

p+q=k V
p,q
0 .

A representation is said to be isotropic or W -isotropic if it is isomorphic

to a direct sum W ⊕ · · · ⊕W of an irreducible representation W . If V̂ is a
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representation, there is a unique maximal representation V̂W ⊂ V̂ which is W -

isotropic and we call it the W -isotropic component of V̂ . Any representation
is isomorphic to the direct sum of its isotropic components.

Define for all non-negative integers k, ν, s such that ν ≤ s and ν+s≤ k ≤m

Zk,ν,s := x1y1 · · ·xνyν
∑

sign(I, J)xIyJ ,

where the sum is taken over {I, J} such that I ⊂ {ν + 1, . . . , k − ν}, |I| =
k− ν − s, J is the complement of I in {ν +1, . . . , k− ν} and sign(I, J) is the
signature of the permutation {ν + 1, . . . , k − ν} �→ {I, J}. The form Zk,ν,s is
of bidegree (k− s, s) in V k

ε .
Consider the diagonal subgroup of Sp(m)

D(m) :=
{
diag

(
ε1, . . . , εm, ε−1

1 , . . . , ε−1
m

)
, εi ∈C, |εi|= 1

}
,

and the set

Ψ :=
{
(k, r) ∈N

2, k+ r ≤ 2m,k ≥ r and k ≡ r modulo 2
}
.

Fix an arbitrary pair (k, r) ∈ Ψ and let ν := k−r
2 . Observe that for ν ≤ s ≤

k − ν, the eigenvalue ε21 · · ·ε2νεν+1 · · ·εk of Zk,ν,s appears as the highest non-
zero term in the character (Laurent polynomial in ε1, . . . , εm) of the action of
D(m) on the Sp(m)-module V k−s,s with respect to the lexicographical order.
Let Wk,r be the irreducible representation of Sp(m) characterized by this
property. So, given (k, r) ∈Ψ, the smallest Sp(m)-module of V k−s,s spanned
by Zk,ν,s is isomorphic to Wk,r for ν ≤ s≤ k− ν. Let Uk,r be the vector space
of V k

ε spanned by the forms Zk,ν,s.
The following result is deduced from Proposition 2.4 in Fujiki [13] and

its proof. It implies, in particular, that the family of equivalent classes of
irreducible Sp(m)-submodules of V k is naturally in bijective correspondence
to the pairs (k, r) ∈Ψ. As Fujiki mentioned in his paper, it is likely true for
all k ≤ 2m.

Proposition 4.3. Assume that k ≤m. Then V k is the direct sum of the
subspaces V t

0 ∧ V k−t
ε with 0 ≤ t ≤ k. The Wk,r-isotropic component of V k

ε

is isomorphic as Sp(m)-module to Wk,r ⊗ Uk,r , where Uk,r is identified with
{v}×Uk,r for some non-zero vector v ∈Wk,r and Sp(m) acts trivially on the
second factor of Wk,r ⊗Uk,r . Moreover, the other isotropic components of V k

ε

vanish.

For the reader’s convenience, we summarize here Fujiki’s arguments.

Proof. Let H be the real quaternion division algebra. We identify H
m

equipped with the standard quaternion inner product to the underlying real
Euclidean space R

4m. Hence, the natural action of Sp(m) on H
m induces the

natural inclusion Sp(m) ↪→ SO(4m,R). The standard action of SO(4m,R)
on R

4m extends naturally to V k
R

and V k. On the other hand, since H
∗ :=

H \ {0} � Sp(1)×Z2 R
∗, the componentwise quaternionic multiplication H

∗ ×
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H
m → H

m also induces the natural inclusion Sp(1) ↪→ SO(4m,R). Conse-
quently, the Lie algebra sl(2,C) which is the complexification of the Lie alge-
bra sp(1) of Sp(1) acts C-linearly on V k by the Lie derivative.

A H
∗-module W is said to be of weight k, if t ∈R

∗ acts on W via the multi-
plication by tk. The family of equivalent classes of irreducible representations
of H∗ is naturally in bijective correspondence to the set of pairs{

(k, r) ∈N
2, k ≥ r and k ≡ r modulo 2

}
,

where k corresponds to the weight of the representation. Let Vk,r denote the
irreducible representation of H∗ corresponding to the pair (k, r). The char-
acterization of r will be given later on. By the definition of V k

ε we see easily
that it is a H

∗-module of weight k. Consequently, we obtain the following
decomposition

V k
ε =

⊕
r:(k,r)∈Ψ

V k;r
ε ,

where V k;r
ε is the Vk,r-isotropic component of V k

ε . Since Sp(1) is the central-
izer of Sp(m), it follows that the isotropic components of V k

ε (with respect
to a given irreducible representation of Sp(m)) is equal to the direct sum of
those of V k;r

ε .
For W := Vk,r , consider the induced action on WC of the natural action of

sl(2,C) on V k. Let

H :=

(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
be the standard C-basis of sl(2,C). We have the following canonical Hodge
decomposition

W =
⊕

p+q=k

W p,q, W
p,q

=W q,p.

This coincides with the eigenspace decomposition of WC with respect to the
action of H , where W p,q corresponds to the eigenvalue p− q. Moreover,

• W p,q �= 0 if and only if k−r
2 ≤ p, q ≤ k+r

2 ;

• X : W p,q �W p+1,q−1 if p, q satisfy k−r
2 ≤ p, p+ 1, q− 1, q ≤ k+r

2 ;

• X(W
k+r
2 , k−r

2 ) = 0.

Recall from the discussion preceding the proposition that Zk,ν,s ∈ V k
ε with

ν := k−r
2 . Now we will show that X defines a Sp(m) isomorphism from the

smallest Sp(m)-submodule of V k−s,s spanned by Zk,ν,s to that spanned by
Zk,ν,s−1 and that X maps Zk,ν,s to Zk,ν,s−1. Indeed, the properties of X listed
above show that X : V 0,1 � V 1,0 and X(V 1,0) = 0. Arguing as in Lemma 2.8
in [13], we obtain that

X(xi) = yi, X(yi) =−xi, X(xi) = 0, X(yi) = 0.
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Since X acts on V k
ε as a (Lie) derivative, a straightforward computation

implies the above assertion. Next, we deduce from the equality X(Zk,ν,ν) = 0
and the properties of X listed above that Zk,ν,ν ∈ V k;r

ε . Hence, the forms
Zk,ν,s and then the vector space Uk,r are also contained in V k;r

ε .
Consequently, by identifying Zk,ν,s with Wk,r ⊗ Zk,ν,s, we may consider

Wk,r ⊗ Uk,r, in a natural way, as a Sp(m)-submodule of the Wk,r-isotropic
component of V k

ε . Namely, {v}×Uk,r is identified with Uk,r for some non-zero
vector v ∈Wk,r and Sp(m) acts trivially on the second factor of Wk,r ⊗Uk,r .
This is, in fact, an equality, that is, we have that V k;r

ε =Wk,r ⊗ Uk,r, which
implies, in turn, that

V k
ε =

⊕
r:(k,r)∈Ψ

Wk,r ⊗Uk,r.

This, combined with part 4 and part 5 of Proposition 2.4 in [13], gives the
proposition.

The proof of the last identities has been carried out in part 3 of Proposi-
tion 2.4 in [13, pp. 121–122]. However, there is one point in Fujiki’s argument
which needs to be more explicit. Namely, the way Fujiki applies the classical
invariant theory for Sp(m) (see the last lines in [13, p. 121]) should be written
down more concretely for the reader’s convenience. For the sake of simplicity,
we will clarify his argument in a simpler setting. More specifically, we will
prove that a form α ∈ V p,q is Sp(m)-invariant (i.e., A∗α= α for A ∈ Sp(m))
if and only if α is generated by σ, σ, ω (i.e., α = h(σ,σ,ω) for a polyno-
mial h ∈ C[t1, t2, t3]). Note that this proof also works in Fujiki’s context of
Sp(m)-invariant tensors making the obviously necessary changes.

Let α ∈ V p,q be Sp(m)-invariant. Let
(
dx
dy

)
be the 2m× 1 matrix consisting

of the forms dxi, dyi. The matrix
(
dx
dy

)
is defined in a similar way. Let

A ∈ Sp(n). Since A ∈U(2m), we have A= tA−1 and(
A∗dx
A∗dy

)
=A

(
dx
dy

)
,

(
A∗dx
A∗dy

)
=A

(
dx
dy

)
= tA−1

(
dx
dy

)
.

We represent α as a polynomial f in 4m variables (x, y; z,w), where

dxi(x, y; z,w) = xi, dyi(x, y; z,w) = yi,

dxi(x, y; z,w) = zi, dyi(x, y; z,w) =wi.

The above equalities, combined with the assumption A∗α = α, A ∈ Sp(m),
implies the following invariant property of f :

f(x, y; z,w) = f

(
A

(
x
y

)
; tA−1

(
z
w

))
.

Note that Sp(m) = Sp(2m,C) ∩U(2m). Consequently, we deduce from Lem-
ma 7.1.A in [27] that the invariant property of f is also valid for all A ∈
Sp(2m,C). Recall that tAJA = J for A ∈ Sp(2m,C), where J :=

(
0

− id
id
0

)
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and id is the identity matrix in GL(m,C) and that J−1 = −J . Introduce a
new polynomial g ∈C[x, y; z,w] defined by

g(x, y; z,w) := f

(
x, y;J−1

(
z
w

))
.

This, coupled with the invariant property of f and the above mentioned prop-
erties of J , imply that

g(x, y; z,w) := g

(
A

(
x
y

)
;A

(
z
w

))
, A ∈ Sp(2m,C).

So, we are able to apply the First Fundamental Theorem for Sp(2m,C) to
g (see, e.g., Theorem 5.2.2 in [14]). Let σ̂ be the standard skew symmetric
form in C

2m. We infer that f is generated by σ̂(x, y;x, y), σ̂
(
x, y;J

(
z
w

))
,

σ̂
(
J
(
z
w

)
;J

(
z
w

))
. In other words, {σ,ω,σ} is a set of generators for the ring of

all Sp(m)-invariant forms. �

We deduce from this proposition the following lemma that we will use later.

Lemma 4.4. Assume that p+ q ≤m. Then every representation F ⊂ V p,q

contains a non-zero vector in (V p+q−k
0 ∧ Uk,r) ∩ V p,q for some (k, r) ∈Ψ de-

pending on F with k ≤ p+ q.

Proof. Replacing F with a suitable subspace allows us to assume that F
is isomorphic to Wk,r for some (k, r) ∈ Ψ with k ≤ p + q. We only have to

show that F contains a non-zero vector in V p+q−k
0 ∧ Uk,r . Proposition 4.3

implies that the Wk,r-isotropic component of V p+q is isomorphic to Wk,r ⊗
(V p+q−k

0 ∧Uk,r) where V p+q−k
0 ∧Uk,r is identified with {v}× (V p+q−k

0 ∧Uk,r)
for some non-zero vector v ∈Wk,r . The space F is identified with a subspace

of Wk,r ⊗ (V p+q−k
0 ∧Uk,r) which, by Schur’s lemma, is equal to Wk,r ⊗{u} for

some non-zero vector u in V p+q−k
0 ∧Uk,r . It follows that F contains u. �

Now we define

γs := ∗
(
(σσ)m−sω2s

)
,

where ∗ is the Hodge star operator. The following lemma will be used repeat-
edly in our computation.

Lemma 4.5. We have

γs =
m!(2s)!(m− s)!

s!
·

In particular, we have

γs =
m− s

2(2s+ 1)
γs+1.
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Proof. The form (σσ)m−sω2s is of maximal degree. So, we have

(σσ)m−sω2s = γs(ix1x1)(iy1y1) · · · (ixmxm)(iymym).

Write xm+j := yj for 1≤ j ≤m. When we develop the expression σm−sσm−s ×
ω2s any non-zero term has the form

(xj1yj1) · · · (xjm−syjm−s)(xl1yl1) · · · (xlm−sylm−s
)(ixk1xk1) · · · (ixk2sxk2s),

where {j1, . . . , jm−s}, {l1, . . . , lm−s} are two permutations of a set J ⊂ {1, . . . ,
m} with |J |=m− s, K the complement of J in {1, . . . ,m} and {k1, . . . , k2s}
is a permutation of K ∪ (m+K). All these terms are equal to

(ix1x1)(iy1y1) · · · (ixmxm)(iymym).

So, γs is the number of such terms. A simple computation on the number of
J and the numbers of permutations gives

γs =

(
m

m− s

)
(m− s)!(m− s)!(2s)!.

The lemma follows. �

We first take granted the following claim.

Claim. Every form Ω as in Proposition 4.1 is Lefschetz.

End of the proof of Proposition 4.1. The proof uses a decreasing induction
on v. Applying the claim to Ω∧ω2r with 0≤ r ≤ q, we deduce that Ω∧ω2r is a
Lefschetz form for the bidegree (p− r, q− r). Recall that the Hodge–Riemann
cone is open. So, for v =m− p− 1, since ω2m−p−q is Hodge–Riemann, Ω is
Hodge–Riemann when t is large enough. It follows from the claim applied to
Ω∧ ω2r that Ω is Hodge–Riemann for the bidegree (p, q) for every t≥ 0.

Assume now the case where v is replaced with v+ 1, that is,

Ω′ :=
(
σσ+ tω2

)
(σσ)m−p−v−2ωp−q+2v+2

is Hodge–Riemann for the bidegree (p, q) and for every t ≥ 0. Since this is
true for t = 0, we deduce by continuity that Ω is Hodge–Riemann for the
bidegree (p, q) and for t large enough. Therefore, the claim implies that Ω is
Hodge–Riemann for the bidegree (p, q) and for every t≥ 0. This also ends the
proof. �

We now give the proof of the claim. It is divided into two cases.
Case 1. Assume that q = 0. Consider a non-zero form α ∈ V p,0. It is

enough to check that ip
2

ααΩ is a non-zero positive form. For this purpose,
we can assume that Ω = (σσ)rω2m−p−2r with 0≤ r ≤m− p.

By Fujiki’s theorem [13, Proposition 2.6], the map β �→ βσr is injective
on V p,0 when r ≤m− p. Therefore, ασr is a non-zero form in V p+2r,0. So,
we can choose (1,0)-forms βj such that ασrβ1 · · ·β2m−p−2r does not vanish.
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Since this form is of bidegree (2m,0), it is a multiple of x1 · · ·xmy1 · · ·ym.
Therefore, it is not difficult to see that

ip
2

αα(σσ)r(iβ1β1) · · · (iβ2m−p−2rβ2m−p−2r)

is a non-zero positive form. This implies the result because iβjβj ≤ cω for c
a large enough positive constant.

Case 2. Assume that q = 1. Let F ⊂ V p,1 be the set of α such that αΩ= 0.
Suppose in order to get a contradiction that F �= 0. Since Ω is invariant under
Sp(m), F is a representation of Sp(m). By Lemma 4.4, there are integers

k ≤ p+ 1, ν = 0,1 and forms Ps ∈ V p−k+s,1−s
0 for max{ν, k− p} ≤ s≤ 1 such

that

α=
∑
s

PsZk,ν,s

is a non-zero form in F .
If ν �= 0, we can write α = x1y1α

′ with α′ independent of the variables
x1, y1. The equation αΩ = 0 is equivalent to the equation α′Ω′ = 0 where
Ω′ is obtained from Ω by deleting the terms which depend on x1, y1. This
reduces the problem to the case of lower dimension and lower degrees. More
precisely, the last equation contradicts the result obtained in Case 1. Now,
assume that ν = 0. Write for simplicity Zs instead of Zk,ν,s. Observe that
p+ q− k is even.

Using the notation u :=m− p− v− 1 gives m= u+ v+ p+ 1 and

Ω=
(
σσ+ tω2

)
(σσ)uωp−1+2v.

There are three subcases to consider.
Subcase 2(a). Assume that k = p− 1. We have

α= λ1σZ1 + λ2ωZ0 with (λ1, λ2) ∈C
2 \ {0},

where

Z1 =

k∑
j=1

x1 · · ·xj−1yjxj+1 · · ·xk and Z0 = x1 · · ·xk.

We will consider the expansion of αΩ in coordinates xi, yi for i≤ k. Then,
the equation αΩ= 0 induces some equations on forms depending only on the
other coordinates, that is, equations on forms on C

2m−2k. In order to simplify
the notation, in this space σ and ω will denote also the standard symplectic
and Kähler forms. We will consider Ω as a polynomial in σ, σ, ω and we will
also consider derivatives in that variables. The constants γs are defined as in
Lemma 4.5 but for C2m−2k instead of C2m.

Consider the coefficient of (x1y1y1) · · · (xkykyk) in αΩ. This is a form
bidegree (2m− 2k− 1,2m− 2k− 1) in C

2m−2k. Here is the kind of argument
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that we use repeatedly in the computation. In order to obtain the coefficient
of (x1y1y1) · · · (xkykyk), for example, in

σx1 · · ·xj−1yjxj+1 · · ·xk(σσ)
u+1ωk+2v

= x1 · · ·xj−1yjxj+1 · · ·xkσ
u+1σu+2ωk+2v

we have to take xjyj from a factor σ and ylyl with l �= j from a factor ω.
Now, since the coefficient of (x1y1y1) · · · (xkykyk) in αΩ vanishes, we obtain
the following equation on forms on C

2m−2k where the first factor k represents
the number of choices for j and ik−1, ik come from the factors ω, that is,
i= ∂ω/∂(ylyl)

ik−1k
∂k(σΩ)

∂σ ∂k−1ω
λ1 + ik

∂k(ωΩ)

∂kω
λ2 = 0.

Multiplying this equation with ω in order to get forms of maximal degree and
using the ∗-operation, we obtain[

k(u+ 2)
(k+ 2v)!

(2v+ 1)!
γv+1 + k(u+ 1)

(k+ 2v+ 2)!

(2v+ 3)!
γv+2t

]
λ1

+ i

[
(k+ 2v+ 1)!

(2v+ 1)!
γv+1 +

(k+ 2v+ 3)!

(2v+ 3)!
γv+2t

]
λ2 = 0.

Using the last assertion in Lemma 4.5 for C2m−2k, we obtain the equation

a11λ1 + ia12λ2 = 0,

where

a11 := k(u+ 2)(v+ 1)(u+ 1) + k(u+ 1)(k+ 2v+ 1)(k+ 2v+ 2)t

and

a12 := (k+ 2v+ 1)(v+ 1)(u+ 1) + (k+ 2v+ 1)(k+ 2v+ 2)(k+ 2v+ 3)t.

Now, consider the coefficient of x1(x2y2y2) · · · (xkykyk) in αΩ. This is a
form of maximal bidegree in C

2m−2k. Observe that the first term in Z1 does
not contribute to this coefficient. Therefore, we obtain the following equation
where the factor k− 1 represents the number of the other terms in Z1

ik−2(k− 1)
∂k−1(σΩ)

∂σ ∂k−2ω
λ1 + ik−1 ∂

k−1(ωΩ)

∂k−1ω
λ2 = 0.

Using ∗-operation gives[
(k− 1)(u+ 2)

(k+ 2v)!

(2v+ 2)!
γv+1 + (k− 1)(u+ 1)

(k+ 2v+ 2)!

(2v+ 4)!
γv+2t

]
λ1

+ i

[
(k+ 2v+ 1)!

(2v+ 2)!
γv+1 +

(k+ 2v+ 3)!

(2v+ 4)!
γv+2t

]
λ2 = 0.

Using the last assertion in Lemma 4.5 for C2m−2k, we obtain the equation

a21λ1 + ia22λ2 = 0,
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where

a21 := (k− 1)(u+ 2)(v+ 2)(u+ 1) + (k− 1)(u+ 1)(k+ 2v+ 1)(k+ 2v+ 2)t

and

a22 := (k+ 2v+ 1)(v+ 2)(u+ 1) + (k+ 2v+ 1)(k+ 2v+ 2)(k+ 2v+ 3)t.

Since the above equations have a non-trivial solution (λ1, λ2), we have∣∣∣∣a11 a12
a21 a22

∣∣∣∣= 0.

A simple computation gives

At2 +Bt+C = 0,

where

A := (k+ 2v+ 3)(k+ 2v+ 2)2(k+ 2v+ 1)2(u+ 1),

B := (k+ 2v+ 2)(k+ 2v+ 1)(u+ 1)

×
(
4uv2 + 2kuv+ 10uv+ 7u+ ku+ 6v2 + kv+ 17v+ 13− k2

)
,

C := (v+ 2)(v+ 1)(u+ 2)(u+ 1)2(k+ 2v+ 1).

Since m≥ 2p, we have u+ v ≥ k. Therefore, A, B, C are positive. This is a
contradiction since t≥ 0. Hence, Subcase 2(a) cannot happen.

Subcase 2(b). Assume now that k = p+1. Then α= λZ1 with λ ∈C
∗ and

Z1 =

k∑
j=1

x1 · · ·xj−1yjxj+1 · · ·xp+1.

Consider the coefficients of

(x1x1y1)(x2y2y2)(x3y3y3) · · · (xp+1yp+1yp+1)

in αΩ= 0. We obtain

ip+1 ∂
p+1Ω

∂ωp+1
+ ip−1p

∂p+1Ω

∂σ ∂σ ∂ωp−1
= 0.

This gives us

(u+ 1)v(v+ 1) + (p+ 2v)(p+ 2v+ 1)(v+ 1)t

− p(u+ 1)2(v+ 1)− p(p+ 2v)(p+ 2v+ 1)ut= 0.

Define

t′ :=
(p+ 2v)(p+ 2v+ 1)t

(u+ 1)(v+ 1)
.

We obtain

v+ (v+ 1)t′ − p(u+ 1)− put′ = 0.
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Recall that u =m − p − v − 1. So, the above expression is non-zero for all
t ∈R+ if and only if(

v− p(m− p)

p+ 1

)(
v− p(m− p− 1)− 1

p+ 1

)
> 0.

Since the last inequality is true by the hypothesis that

v > v1 ≥
p(m− p)

p+ 1
,

we get the desired contradiction. This completes the proof in this subcase.
Subcase 2(c). Assume now that k < p− 1. If p− 1− k = 2s, then we write

α= σsβ, and replace α,Ω, p, v with β, (σσ)sΩ, p− 2s, v+ s, we can reduce the
problem to the last case with lower degree p. Therefore, it suffices to verify
that last inequality in Subcase 2(b) still holds for the new values of p, v after
this reduction. So, it is enough to check the condition v > v′1, where v′1 is the
maximum of the function[

0,
p

2

]
� s �→ (p− 2s)(m− p+ 2s)

p+ 1− 2s
− s.

Setting x := p+ 1− 2s, the above function can be rewritten as

φ(x) :=
2(x− 1)(m+ 1− x) + x2

2x
− p+ 1

2
, x ∈ [0,∞).

This function attains its maximum at x :=
√

2(m+ 1) and it is not difficult
to check that v′1 = v1. The proof is thereby completed.

Remark 4.6. When p= q = 1 and α= Z1 as in Subcase 2(b) and β = x1y1,
a straighforward computation shows that ααω2m−2 < 0 whereas αα(σσ)m−1 >
0> ββ(σσ)m−1. Consequently, both positive forms ω2m−2 and (σσ)m−1 have
the same primitive space P 1,1, which is, by Proposition 4.3, the Sp(m)-
submodule of V 1,1 spanned by α and β. However, Qω2m−2 is positive-definite
on P 1,1 whereas Q(σσ)m−1 is not semi-definite on P 1,1. Another consequence
is that by continuity, there is an integer v with 0≤ v ≤m−2 and t ∈R+ such
that the corresponding form Ω in Proposition 4.1 is not Hodge–Riemann. In
general (e.g., for tori), the Hodge–Riemann form Qω2m−2 and the Beauville–
Bogomolov form Q(σσ)m−1 do not have the same signature.
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1996. MR 1409818

[6] E. Cattani, Mixed Lefschetz theorems and Hodge–Riemann bilinear relations, Int.

Math. Res. Not. 10 (2008), 1–20. MR 2429243

[7] M. A. de Cataldo and L. Migliorini, The hard Lefschetz theorem and the topology of
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