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THE HOMOTOPY TYPES OF GAUGE GROUPS OF
NONORIENTABLE SURFACES AND APPLICATIONS TO

MODULI SPACES

STEPHEN THERIAULT

Abstract. We determine the homotopy types of gauge groups
of principle G-bundles over closed, connected nonorientable sur-
faces for G= U(n) and G a simply-connected, compact Lie group.
Applications are made to moduli spaces of stable vector bundles.

1. Introduction

In their seminal paper [AB], Atiyah and Bott studied the moduli space
of stable vector bundles over a compact Riemann surface. This led to a
great deal of work to better understand these moduli spaces by studying their
cohomology [AB], [HN], [JK] and their homotopy groups [DU]. Recently, a
great deal of attention has been paid to establishing analogues of Atiyah and
Bott’s results for nonorientable surfaces, such as in [HL1], [HL2], [R].

In [T2], the author used decomposition methods in homotopy theory to
determine the homotopy types of the gauge groups of principle U(n)-bundles
over a compact Riemann surface for certain n. This allowed for informa-
tion to be deduced about the homotopy groups of the moduli space of stable
vector bundles over a compact Riemann surface, through an appropriate di-
mensional range. In this paper we apply the same approach to study the case
of nonorientable surfaces.

Let M be a closed, connected surface and let G be a compact, connected
Lie group. Let P be a principle G-bundle over M . The gauge group of P is
the group G(P ) of G-equivariant automorphisms of P which fix M . By the
classification of surfaces, if M is nonorientable then it is homeomorphic to a
connected sum of m copies of RP 2 for some m> 0, which we denote by Mm.
It is straightforward to see (a calculation is included in Section 3) that if G
is simply-connected then any principle G-bundle over Mm must be trivial,
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and if G is U(n) for n≥ 1 then there are two distinct equivalence classes of
principle G-bundles over Mm, one represented by the trivial bundle and the
other by a nontrivial bundle. In either option for G, let G0(Mm) be the gauge
group of the trivial principle G-bundle over Mm, and let G1(Mm) be the gauge
group of the nontrivial principle U(n)-bundle.

We begin by decomposing G0(Mm) and G1(Mm). Let G{2} be the homo-
topy fibre of the 2nd-power map on G. Let S3〈3〉 be the three-connected cover
of S3.

Theorem 1.1. Let Mm be the connected sum of m copies of RP 2 and let
P be a principle G-bundle over Mm, where G is either U(n) or a simply-
connected, compact Lie group. The following hold:

(a) if P is the trivial bundle, then there is a homotopy decomposition

G0(Mm)�G×ΩG{2} ×
(

m∏
i=2

ΩG

)
;

(b) if G = U(n) for n ≥ 1 and P is the nontrivial bundle, then there is a
homotopy decomposition

G1(Mm)� G1

(
RP 2

)
×

(
m∏
i=2

ΩU(n)

)

and a nontrivial fibration ΩU(n){2} −→G1(RP
2)−→ U(n);

(c) in dimensions ≤ 2n− 3 the nontrivial fibration in part (b) splits as

G1

(
RP 2

)
� U(n)×ΩU(n){2},

and if n≥ 3 there is a splitting of homotopy groups

πm

(
G1

(
RP 2

)) ∼= πm

(
U(n)

)
⊕ πm

(
ΩU(n){2}

)
for m≤ 2n− 1 if n is odd and for m≤ 2n− 2 if n is even;

(d) if the nontrivial fibration in part (b) is localized at an odd prime or ra-
tionally, then there is a homotopy equivalence G1(RP

2)� U(n);
(e) if the nontrivial fibraiton in part (b) is localized at 2 and n= 2, then there

is a homotopy decomposition

ΩG1

(
RP 2

)
� Z/2Z× S1 ×Ω2S3〈3〉 ×Ω3S5.

The decompositions in Theorem 1.1 express the gauge groups in terms
of simpler spaces which are easier to analyze. For example, the homotopy
groups of the Lie groups G have been determined through a range, and by [N]
the homotopy groups of ΩG{2} are all Z/2Z-summands. Consequently, the
homotopy groups of G0(Mm) are known to the same extent as those of G,
the homotopy group calculations for G1(Mm) are reduced to studying the
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2-primary effect in the twisted fibration ΩU(n){2} −→ G1(RP
2) −→ U(n)—

which is trivial in dimensions ≤ 2n− 2 for n≥ 3, and in the case of U(2) the
homotopy groups of G1(RP

2) are known to the same extents as those of S3

and S5.
We now turn to moduli spaces. Let P be a principle U(n)-bundle over

Mm, where m,n > 1. Let N0(P ) be the space of flat connections on P . Ram-
ras [R] showed that N0(P ) is ((m− 1)(n− 1)− 1)-connected. Let M(P ) =
N0(P )/G(P ) be the moduli space of gauge equivalence classes of flat con-
nections on P . The connectivity property of N0(P ) implies that M(P )
is homotopy equivalent to the classifying space BG(P ) of G(P ) in dimen-
sions ≤ (m − 1)(n − 1) − 1. Thus, there is an isomorphism of homotopy
groups πt(M(P )) ∼= πt−1(G(P )) for t ≤ (m − 1)(n − 1) − 1. Consequently,
if P is trivial then the homotopy groups of M(P ) can be determined explic-
itly in dimensions ≤ (m− 1)(n− 1)− 1. The same holds if P is nontrivial and
n= 2. If P is nontrivial, n≥ 3 and n is even, then the homotopy groups of
M(P ) can be determined explicitly in dimensions ≤ n−2 if m= 2, ≤ 2n−3 if
m= 3, and ≤ 2n− 1 if m> 3. If P is nontrivial, n≥ 3 and n is odd, then the
homotopy groups of M(P ) can be determined explicitly in the same range
if m ∈ {2,3} and in dimensions ≤ 2n if m > 3. This improves significantly
on [R], where K-theory was used to calculate π1 of M(P ).

The author would like to thank the referee for a careful reading of the paper
and many useful comments.

2. A decomposition of ΣMm and consequences

Since Mm is a connected sum of m copies of RP 2, there is a homotopy
cofibration sequence

S1 f−→
m∨
i=1

S1 i−→Mm
q−→ S2,

where f is the attaching map of the top cell of Mm, i is the inclusion of the 1-
skeleton, and q is the pinch map to the top cell. Further, if pi :

∨m
i=1 S

1 −→ S1

is the pinch map to the ith-wedge summand, then the composite pi ◦ f is of
degree 2. In Lemma 2.1, we give a decomposition of the suspension of Mm.

For m ≥ 1, let 2 : Sm −→ Sm be the map of degree 2. Notice that the
degree 2 map on Sm is homotopic to the suspension of the degree 2 map on
Sm−1. Thus, as RP 2 is the cofiber of the degree 2 map on S1, for m≥ 1 there

is a homotopy cofibration Sm 2−→ Sm −→Σm−1
RP 2.

Focus on the pinch map
∨m

i=1 S
1 p1−→ S1 onto the first wedge summand.

Note that it is the cofibre of the map
∨m

i=2 S
1 −→

∨m
i=1 S

1 which includes the
2nd through mth wedge summands. Since p1 ◦ f has degree 2, we obtain a



62 S. THERIAULT

homotopy pushout diagram

(1)

m∨
i=2

S1
m∨
i=2

S1

S1 f
m∨
i=1

S1

p1

Mm

θ

S1 2
S1

RP 2

which defines the map θ.

Lemma 2.1. The map ΣMm
Σθ−→ΣRP 2 has a right homotopy inverse. Con-

sequently, the homotopy cofibration
∨m

i=2 S
2 −→ ΣMm

Σθ−→ ΣRP 2 splits, in-
ducing a homotopy equivalence

ΣMm �ΣRP 2 ∨
(

m∨
i=2

S2

)
.

Proof. By the Hilton–Milnor theorem, π2(
∨m

i=1 S
2) ∼=

⊕m
i=1Z, where the

ith-generator is determined by the pinch map
∨m

i=1 S
2 Σpi−→ S2 onto the ith-

wedge summand. Thus, any map S2 g−→
∨m

i=1 S
2 is homotopic to the com-

posite

S2 σ−−−−−−→
m∨
i=1

S2
∨m

i=1 Σpi ◦g−−−−−−→
m∨
i=1

S2,

where σ is the suspension of the m-fold iteration of the equatorial pinch

map S1 −→ S1 ∨ S1. In our case, consider S2 Σf−→
∨m

i=1 S
2. Since pi ◦ f has

degree 2 for each 1≤ i≤m, we have Σpi ◦ Σf � 2. Thus, Σf is homotopic to
the composite

S2 σ−−−−→
m∨
i=1

S2
∨m

i=1 2−−−−→
m∨
i=1

S2.

Since σ is a suspension it commutes with degree maps, so Σf is homotopic
to the composite

S2 2−→ S2 σ−→
m∨
i=1

S2.



HOMOTOPY TYPES OF GAUGE GROUPS OF NONORIENTABLE SURFACES 63

From this homotopy, we obtain a homotopy pushout diagram

S2 2
S2

σ

ΣRP 2

h

S2 Σf
m∨
i=1

S2 ΣMm

which defines the map h. Juxtaposing this diagram with (1), we obtain a
homotopy cofibration diagram

(2)

S2 2
S2

σ

ΣRP 2

h

S2 Σf
m∨
i=1

S2

Σp1

ΣMm

Σθ

S2 2
S2 ΣRP 2.

Observe that in the middle column, Σp1 ◦ σ is homotopic to the identity
map. Since the top row of (2) maps to the bottom row by a morphism of
cofibration sequences, we obtain an induced morphism of long exact sequences
in homology. As the left and middle columns induce the identity map in
homology, the five-lemma implies that (Σθ ◦ h)∗ is an isomorphism. Thus,
Σθ ◦ h is a homotopy equivalence. The lemma now follows. �

Consider the cofibration sequence
∨m

i=2 S
2 −→ΣMm

Σθ−→ΣRP 2 induced by
suspending the right column in (1). For any pointed, path-connected space X ,
applying Map∗(·,X) to this homotopy cofibration we obtain a fibration

(3) Map∗
(
ΣRP 2,X

) (Σθ)∗−→ Map∗(ΣMm,X)−→Map∗
(

m∨
i=2

S2,X

)
.

By Lemma 2.1, Σθ has a right homotopy inverse φ : ΣRP 2 −→ΣMm. Thus,
the induced map

φ∗ : Map∗(ΣMm,X)−→Map∗
(
ΣRP 2,X

)
is a left homotopy inverse for (Σθ)∗.

We now rewrite the fibration (3) and the left inverse for (Σθ)∗ in an equiv-
alent way. The pointed exponential law implies that there is a homotopy
equivalence Map∗(ΣM,X) � ΩMap∗(M,X), and under this equivalence a

map ΣM
Σf−→ ΣN has the property that (Σf)∗ � Ωf∗. As well, there is a
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homotopy equivalence Map∗(M ∨ N,X) � Map∗(M,X) × Map∗(N,X). So
(3) can be rewritten as a fibration

(4) ΩMap∗
(
RP 2,X

) Ωθ∗
−→ΩMap∗(Mm,X)−→

m∏
i=2

Map∗
(
S2,X

)
and Ωθ∗ has a left homotopy inverse

φ∗ : ΩMap∗(Mm,X)−→ΩMap∗
(
RP 2,X

)
.

The existence of such a left inverse in (4) implies the following.

Lemma 2.2. Let X be a pointed, path-connected space. Then there is a
homotopy equivalence

ΩMap∗(Mm,X)�ΩMap∗
(
RP 2,X

)
×

m∏
i=2

Map∗
(
S2,X

)
.

Next, we turn from a decomposition of ΩMap∗(Mm,X) to a decomposi-
tion of ΩMap(Mm,X). Observe that there is a fibration Map∗(Mm,X)−→
Map(Mm,X)

ev−→X where ev evaluates a map at the basepoint of Mm. By

naturality, the map Mm
θ−→RP 2 induces a pullback diagram

Y Y

Map∗
(
RP 2,X

)
θ∗

Map
(
RP 2,X

) ev

Θ∗

X

Map∗(Mm,X) Map(Mm,X)
ev

X

which defines the space Y . Continuing the fibration sequences vertically, we
obtain a homotopy pullback

(5)

ΩMap∗
(
RP 2,X

)
Ωθ∗

ΩMap
(
RP 2,X

) Ωev

ΩΘ∗

ΩX

ΩMap∗(Mm,X) ΩMap
(
Mm,X

) Ωev
ΩX

Y Y.

First, since Ωθ∗ has a left homotopy inverse, there is a homotopy equivalence
ΩMap∗(Mm,X)�ΩMap∗(RP 2,X)× Y . The bottom square in (5) therefore
implies that Y retracts off ΩMap(Mm,X). Thus, the fibration in the middle
column of (5) splits, so we can use the loop multiplication on ΩMap(Mm,X) to
obtain a homotopy equivalence ΩMap(Mm,X)� ΩMap(RP 2,X)× Y . Next,
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by (4) and (5), there are fibrations ΩMap∗(RP 2,X)
Ωθ∗
−→ΩMap∗(Mm,X)−→∏m

i=2Map∗(S2,X) and ΩMap∗(RP 2,X)
Ωθ∗
−→ΩMap∗(Mm,X)−→ Y . The left

homotopy inverse for Ωθ∗ therefore implies that Y �
∏m

i=2Map∗(S2,
X). Combining this with the decomposition for ΩMap(Mm,X) above, we
obtain the following.

Lemma 2.3. Let X be a pointed, path-connected space. Then there is a
homotopy equivalence

ΩMap(Mm,X)�ΩMap
(
RP 2,X

)
×

m∏
i=2

Map∗
(
S2,X

)
.

Now we specialize to X =BG, where G is a connected, compact Lie group.
We wish to identify the space Map∗(RP 2,BG) appearing in Lemma 2.2.

Lemma 2.4. If G is a connected, compact Lie group then Map∗(RP 2,BG)�
G{2}.

Proof. Consider the cofibration S1 2−→ S1 −→RP 2. Applying Map∗(·,BG)

we obtain a homotopy fibration Map∗(RP 2,BG) −→ Map∗(S1,BG)
2∗−→

Map∗(S1,BG). We have Map∗(S1,BG) = ΩBG�G. As 2∗ induces the mul-
tiplication by 2 on the loop structure, the previous fibration is equivalent to

the homotopy fibration G{2} −→G
2−→G. In particular, Map∗(RP 2,BG)�

G{2}. �
By definition, Map∗(S2,BG) = Ω2BG�ΩG. So Lemmas 2.2 and 2.4 com-

bine to imply the following.

Lemma 2.5. Let G be a connected, compact Lie group. There is a homotopy
equivalence

ΩMap∗(Mm,BG)�ΩG{2} ×
(

m∏
i=2

ΩG

)
.

In what follows, we will be considering G= U(n) or G a simply-connected,
compact Lie group. If G is simply-connected and compact then it is actually
2-connected, so ΩG{2} is connected. If G= U(n), there are potentially dif-
ferent components in ΩU(n){2}. However, we will show in Corollary 2.8 that
ΩU(n){2} is also connected.

Lemma 2.6. There is a homotopy fibration Z/2Z−→ S1 2−→ S1.

Proof. One way to see this is to observe that S1 is the Eilenberg–MacLane
space K(Z,1) and classify the fibration of interest. Consider the 2nd-power

map on CP∞ =K(Z,2). Define F by the homotopy fibration F −→CP∞ 2−→
CP∞. Since πm(CP∞) is Z if m= 2 and 0 if m 
= 2, the long exact sequence
of homotopy groups induced by the fibration defining F implies that πm(F ) is
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Z/2Z ifm= 1 and 0 ifm 
= 1. That is, F �K(Z/2Z,1). Therefore, looping the

fibration defining F , we obtain a homotopy fibration Z/2Z−→ S1 2−→ S1. �

Lemma 2.7. For each n≥ 1, there is a homotopy fibration SU(n){2} −→
U(n){2} −→ Z/2Z.

Proof. Consider the fibration of groups SU(n)−→ U(n)
d−→ S1, where d is

the determinant homomorphism. As this is a sequence of groups and group
homomorphisms, the 2nd-power map induces a fibration diagram

SU(n){2} SU(n)
2

SU(n)

U(n){2} U(n)
2

d

U(n)

d

Z/2Z S1 2
S1,

where Lemma 2.6 has been used to identify the homotopy fibre along the
bottom row. The left column of this fibration diagram is the fibration asserted
by the lemma. (Note also that if n= 1 then SU(1)� ∗, so SU(1){2} � ∗, and
therefore U(1){2} � Z/2Z.) �

Corollary 2.8. For each n ≥ 1, there is a homotopy equivalence
ΩU(n){2} �ΩSU(n){2}.

3. Classification of principal G-bundles over Mm

We classify the principle G-bundles over Mm, so we know for which bundles
we will be taking gauge groups. These results are surely well known, but we
include them for the sake of completeness. Let BG be the classifying space
of G.

Lemma 3.1. Let Mm be the connected sum of m copies of RP 2. The
following hold:

(a) if G is simply-connected, then [Mm,BG]∼= 0;
(b) if G= U(n) for n≥ 1, then [Mm,BG]∼= Z/2Z.

Proof. If G is simply-connected then BG is 2-connected. Therefore, as Mm

is 2-dimensional, we have [Mm,BG]∼= 0.

Next, consider the cofibration sequence
∨m

i=2 S
1 −→ Mm

θ−→ RP 2 δ−→∨m
i=2 S

2 from (1). If X is a pointed, path-connected space, this cofibration se-

quence induces an exact sequence [
∨m

i=2 S
2,X]

δ∗−→ [RP 2,X]
θ∗
−→ [Mm,X]−→

[
∨m

i=2 S
1,X]. Since Σθ has a right homotopy inverse, the map δ is null ho-

motopic. Thus δ∗ = 0. If we also assume that X is simply-connected, then
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[
∨m

i=2 S
1,X] ∼= 0, so θ∗ induces an isomorphism [RP 2,X] ∼= [Mm,X]. So to

prove part (b) we are reduced to showing that [RP 2,BU(n)]∼= Z/2Z.
Observe that the 3-skeleton of BU(n) is homotopy equivalent to S2. Since

RP 2 is 2-dimensional, the inclusion S2 −→BU(n) of the bottom cell induces
an isomorphism [RP 2, S2]∼= [RP 2,BU(n)]. So we are reduced to calculating

[RP 2, S2]. The cofibration sequence S1 −→RP 2 −→ S2 2−→ S2 induces an ex-

act sequence [S2, S2]
(2)∗−→ [S2, S2]−→ [RP 2, S2]−→ [S1, S2], that is, an exact

sequence Z
2−→ Z −→ [RP 2, S2] −→ 0. Thus [RP 2, S2] is isomorphic to the

cokernel of Z
2−→ Z, which is Z/2Z. �

Since [Mm,BG] classifies the equivalence classes of principle G-bundles
over Mm, Lemma 3.1 immediately implies the following.

Corollary 3.2. Let Mm be the connected sum of m copies of RP 2. The
following hold:

(a) if G is simply-connected, then there is one equivalence class of principle
G-bundles over Mm, that of the trivial bundle;

(b) if G = U(n) for n ≥ 1, then there are two distinct equivalence classes
of principle G-bundles over Mm, represented by the trivial bundle and a
nontrivial bundle.

4. Gauge groups

Recall from the Introduction that the gauge group G(P ) of a principle
G-bundle P −→M is the group of G-equivariant automorphisms of P that
fix M . The based gauge group G∗(P ) of P −→M is the subgroup of G(P )
which fixes the fibre over the basepoint of M . Let BG(P ) and BG∗(P ) be
the classifying spaces of G(P ) and G∗(P ), respectively. By [AB], there is a
homotopy commutative diagram

BG∗(P )

�

BG(P )

�

Map∗P (M,BG) MapP (M,BG),

where BG is the classifying space of G, and MapP (M,BG) and Map∗P (M,BG)
are the components of Map(M,BG) and Map∗(M,BG) respectively which
contain the map inducing P . Consider the fibration Map∗P (M,BG) −→
MapP (M,BG)

ev−→BG where ev is the map which evaluates at the basepoint
of M . The previous diagram implies that we obtain a homotopy fibration
sequence

(6) G
∂P−→BG∗(P )−→BG(P )−→BG,

where ∂P is the fibration connecting map.
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In our case, we have M =Mm. Let P −→Mm be a principal G-bundle.
If P is the trivial bundle, let G0(Mm) be its gauge group. If G = U(n),
then Corollary 3.2 states that there is a unique class of nontrivial principal
G-bundles. Choosing a representative nontrivial bundle, let G1(Mm) be its
gauge group. By (6), for k ∈ {1,2} there are homotopy fibration sequences

G
∂k−→BG∗

k(Mm)−→BGk(Mm)−→BG.

By Lemma 3.1, there is a one-to-one correspondence between the components
of Map∗(Mm,BG) and Map∗(RP 2,BG). This correspondence passes to a
one-to-one correspondence between the components of Map(Mm,BG) and
Map(RP 2,BG) since BG is simply-connected. Thus, the decompositions in
Lemmas 2.2, 2.3, and 2.5 imply the following.

Proposition 4.1. For k ∈ {0,1}, there are homotopy equivalences

G∗
k(Mm) � G∗

k

(
RP 2

)
×

(
m∏
i=2

ΩG

)
,

Gk(Mm) � Gk

(
RP 2

)
×

(
m∏
i=2

ΩG

)

and for k = 0 there is a homotopy equivalence

G∗
0 (Mm)�ΩG{2} ×

(
m∏
i=2

ΩG

)
.

Further, when G= U(n) then Lemma 3.1 implies that Map∗(RP 2,BU(n))
has two components. By Lemma 2.4, Map∗(RP 2,BU(n))� U(n){2}, and by
Lemma 2.7, each component of U(n){2} is homotopy equivalent to SU(n){2}.
Thus, for k ∈ {0,1} we have BG∗

k(RP
2)� SU(n){2}. Corollary 2.8 states that

after looping we have G∗
k(RP

2) � ΩSU(n){2} � ΩU(n){2}. Thus from the
fibrations BG∗

k(RP
2)−→BGk(RP

2)−→BU(n), we obtain the following.

Lemma 4.2. For k ∈ {0,1}, there is a homotopy fibration

ΩU(n){2} −→Gk

(
RP 2

)
−→ U(n).

5. A decomposition of the gauge group of the trivial bundle

In this section, we refine the decomposition of G0(Mm) in Proposition 4.1.
We begin with some general observations regarding gauge groups of trivial
bundles.

Lemma 5.1. Let G be a connected topological group and M a connected
space. Let P0 −→M be the trivial principle G-bundle. Then there is a home-
omorphism

G0(M)�Map(M,G).
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Proof. The given principle G-bundle P0 −→M is the trivial bundle M ×
G

π1−→ M where π1 is the projection. Let f : M × G −→ M × G be a G-
equivariant automorphism which fixes M , that is, f ∈ G0(M). The action
of G on M × G is given by its action on G, so as f is G-equivariant it is
determined by how it acts on M × 1, where 1 is the identity element of G.

That is, f is determined by the composite f ′ : M
i1−→ M × G

f−→ M × G
where i1 is the inclusion of the first factor. Since f fixes M , f ′ is the identity
when projected to M , so f ′ is determined by its projection onto G. Hence,

f is determined by the composite f ′′ : M
i1−→M ×G

f−→M ×G
π2−→G where

π2 is the projection onto the second factor. Therefore, we obtain a map
F : G0(M) −→Map(M,G). Each step in producing φ is continuous so φ is
continuous.

On the other hand, given a map h : M −→ G we obtain a G-equivariant
automorphism h′ : M × G −→ M × G that fixes M by letting h′(m,g) =
(m, (h(m))g), where (h(m))g is g acting on h(m). Thus, we obtain a contin-
uous map H : Map(M,G) −→ G0(M). Since h′(m,1) = (m,h(m)), we have
F ◦ H equal to the identity map, and by the constructions in the first para-
graph we have f(m,g) = (m, (f ′′(m))g), so we also have H ◦ F equal to the
identity map. Thus, G0(M) is homeomorphic to Map(M,G). �

Proposition 5.2. With hypotheses as in Lemma 5.1, there is a homotopy
equivalence

G0(M)�G×G∗
0 (M).

Proof. Consider the fibration Map∗(M,G)
h−→ Map(M,G)

ev−→ G, where
ev evaluates a map at the basepoint of M . Restricting to the compo-

nent containing the constant map, we obtain a fibration Map∗0(M,G)
h0−→

Map0(M,G)
ev−→ G. In this fibration, the map ev has a section s : G −→

Map(M,G) defined by sending g ∈G to the constant map which takes every
element of M to g. Since G is a group, there is an induced multiplication
m on Map0(M,G) given by taking two maps f, g ∈Map0(M,G) and defining
m(f, g) pointwise, m(f, g)(x) = f(x) · g(x). Thus the existence of a section

for the evaluation fibration implies that the composite G×Map∗0(M,G)
s×h0−→

Map0(M,G)×Map0(M,G)
m−→Map0(M,G) is a homotopy equivalence.

Next, since G is a topological group it has a classifying space BG. Observe
that the pointed exponential law implies that there are homotopy equiva-
lences Map∗0(M,G) � Map∗0(ΣM,BG) � ΩMap∗0(M,BG). As well, we have
Map∗0(M,BG) = BG∗

0 so ΩMap∗0(M,BG) � G∗
0 (M). Thus, Map0(M,G) �

G ×Map∗0(M,G) � G × G∗
0 (M). But Map0(M,G) � G0(M) by Lemma 5.1,

so we obtain the decomposition asserted by the proposition. �

Combining the decompositions in Propositions 5.2 and 4.1, we obtain the
following.
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Proposition 5.3. Let G be a connected, compact Lie group. Let P0 −→
Mm be the trivial principle G-bundle over Mm. Then there is a homotopy
equivalence

G0(Mm)�G×ΩG{2} ×
(

m∏
i=2

ΩG

)
.

6. The gauge group of the nontrivial U(n)-bundle

In this section, we consider the nontrivial principal U(n)-bundle P −→Mm,
with gauge group G1(Mm). By Proposition 4.1, there is a homotopy equiva-
lence G1(Mm)� G1(RP

2)× (
∏m

i=2ΩU(n)). We will show that the homotopy
type of G1(Mm) is distinct from the gauge group G0(Mm) of the trivial bundle
by showing that the fibration ΩU(n){2} −→G1(RP

2)−→ U(n) in Lemma 4.2
does not split.

To set this up, observe that Map∗(S2,BU(n))�ΩU(n)� Z×ΩSU(n) has
components indexed by the integers. Specifically, if f : S2 −→ BU(n) has
degree k in homology, let Map∗k(S

2,BU(n)) be the component of Map∗(S2,
BU(n)) containing f . For each k ∈ Z, there is a fibration sequence

U(n)
∂k−→Map∗k

(
S2,BU(n)

)
−→Mapk

(
S2,BU(n)

) ev−→BU(n),

where ev evaluates a map at the basepoint, and the fibration defines the
connecting map ∂k. On the other hand, Lemmas 2.4 and 2.7 imply that
Map∗(RP 2,BU(n)) � U(n){2} has two components. Specifically, if f :
RP 2 −→ BU(n) has degree k in homology then either k = 0 or k = 1. In
either case, let Map∗k(RP

2,BU(n)) be the component of Map∗(RP 2,BU(n))

containing f . Then we obtain a fibration sequence U(n)
∂k−→ Map∗k(RP

2,

BU(n))−→Mapk(RP
2,BU(n))

ev−→BU(n) which defines the map ∂k. Since
the pinch map q : RP 2 −→ S2 to the top cell is degree one in H2(·), if we
restrict to the k = 1 components, we obtain a diagram of fibration sequences

(7)

U(n)
∂1

Map∗1
(
S2,BU(n)

)
q∗

Map1
(
S2,BU(n)

) ev
BU(n)

U(n)
∂1

Map∗1
(
RP 2,BU(n)

)
Map1

(
RP 2,BU(n)

) ev
BU(n).

We want to analyze the left square of (7) more closely.

The pinch map q is the connecting map for the cofibration S1 2−→ S1 −→
RP 2. Thus, there is an induced fibration sequence Map∗(S2,BU(n))

q∗−→
Map∗(RP 2,BU(n)) −→ Map∗(S1,BU(n))

2∗−→ Map∗(S1,BU(n)). We have
Map∗(S1,BU(n))� U(n) and the map 2∗ induces multiplication by 2 on the
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loop structure of U(n) � ΩBU(n). Thus, this fibration sequence is equiv-

alent to the fibration sequence ΩU(n)
ρ−→ U(n){2} −→ U(n)

2−→ U(n). In
particular, the map q∗ in (7) can be identified with the restriction of ρ to the
1-components of ΩU(n) and U(n){2}. To identify this more precisely, the
inclusion of the subgroup SU(n) into U(n) induces a fibration diagram

(8)

ΩSU(n)
ρ

SU(n){2} SU(n)
2

SU(n)

ΩU(n)
ρ

U(n){2} U(n)
2

U(n).

By Lemma 2.7, the connected cover of U(n){2} is SU(n){2} and as ΩU(n)�
Z × ΩSU(n), the connected cover of ΩU(n) is ΩSU(n). Thus, (8) implies
that the restriction of ρ to the 1-components is ρ. Summarizing, we have the
following.

Lemma 6.1. There is a homotopy commutative diagram

U(n)
∂1

ΩSU(n)

ρ

U(n)
∂1

SU(n){2}.

We aim to show that ∂1 is nontrivial. Let ı : ΣCPn−1 −→ SU(n) be the
canonical map which induces a projection onto the generating set in coho-
mology. Compose with the standard map SU(n) −→ U(n) to obtain a map
ı′ : ΣCPn−1 −→ U(n). We will show that ∂1 is nontrivial by showing in Corol-
lary 6.6 that ∂1 ◦ ı′ is nontrivial. We begin with some preliminary lemmas.

Lemma 6.2. Let X be a CW -complex of dimension ≤ 2n−3 with cells only

in odd dimensions. Then any map X
g−→ΩSU(n) is null homotopic.

Proof. The map SU(n) −→ SU(∞) is (2n − 1)-connected. So by Bott
periodicity π2m(SU(n))∼= 0 for 2m≤ 2n−2. Equivalently, π2m−1(ΩSU(n))∼=
0 for 2m− 1≤ 2n− 3. We induct on the number of odd dimensions in which
the cells of X appear. If there is only one dimension, say 2m+ 1, then X �∨
S2m+1. As X has dimension ≤ 2n− 3, the map X �

∨
S2m+1 g−→ΩSU(n)

is null homotopic.
Now suppose that the lemma holds for any space with cells only in l − 1

distinct odd dimensions. Suppose the cells of X are in dimensions {2m1 +
1, . . . ,2ml+1} where m1 < · · ·<ml. Since the dimension of X is ≤ 2n−3, we
have 2m1 + 1≤ 2n− 3, so including the bottom cells into X , the composite∨
S2m1+1 −→ X

g−→ ΩSU(n) is null homotopic. Thus, g factors through a
map g′ : Y −→ΩSU(n) where Y =X/(

∨
S2m1+1). Since Y is a CW -complex
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of dimension ≤ 2n− 3 and has cells only in the l− 1 odd dimensions {2m2 +
1, . . . ,2ml + 1}, by inductive hypothesis the map g′ is null homotopic. Since
g factors through g′, we have g null homotopic. Hence, the lemma holds by
induction. �

For example, let X = ΣCPn−2. This has dimension 2n− 3 and has cells
only in odd dimensions. So Lemma 6.2 implies that [ΣCPn−2,ΩSU(n)]∼= 0.
We now draw two consequences of this fact. Let p : ΣCPn−1 −→ S2n−1 be
the pinch map to the top cell.

Corollary 6.3. Any map h : ΣCPn−1 −→ΩSU(n) factors as a composite

ΣCPn−1 p−→ S2n−1 h′
−→ΩSU(n) for some map h′.

Proof. Consider the homotopy cofibration ΣCPn−2 −→ ΣCPn−1 p−→
S2n−1. The isomorphism [ΣCP 2n−2,ΩSU(n)]∼= 0 implies that the composite

ΣCPn−2 −→ΣCPn−1 h−→ΩSU(n)

is null homotopic. Thus h factors through p, as asserted. �

Corollary 6.4. The map ΣCPn−1 p−→ S2n−1 induces an epimorphism[
S2n−1,ΩSU(n)

] p∗

−→
[
ΣCPn−1,ΩSU(n)

]
.

So if f : S2n−1 −→ ΩSU(n) represents a generator of π2n−1(ΩSU(n)) ∼=
Z/n!Z, then the composite ΣCPn−1 p−→ S2n−1 f−→ΩSU(n) represents a gen-
erator of [ΣCPn−1,ΩSU(n)].

Proof. The homotopy cofibration ΣCPn−2 −→ΣCPn−1 p−→ S2n−1 induces
an exact sequence[

S2n−1,ΩSU(n)
] p∗

−→
[
ΣCPn−1,ΩSU(n)

]
−→

[
ΣCPn−2,ΩSU(n)

]
.

Since [ΣCPn−2,ΩSU(n)] ∼= 0 and [S2n−1,ΩSU(n)] ∼= π2n−1(ΩSU(n)) ∼=
Z/n!Z, the assertions of the corollary follow. �

Proposition 6.5. The composite ΣCPn−1 ı′−→ U(n)
∂1−→ ΩSU(n)

ρ−→
SU(n){2} is nontrivial.

Proof. In [T1], it was shown that there is a homotopy commutative diagram

(9)

ΣCPn−1 ı′

q

U(n)
∂1

ΩSU(n)

S2n−1 f
ΩSU(n),
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where f represents the generator of π2n(SU(n))∼= Z/n!Z. Corollary 6.4 there-
fore implies that ∂1 ◦ ı′ represents a generator of [ΣCPn−1,ΩSU(n)]. In par-

ticular, ∂1 ◦ ı′ is not divisible by 2. That is, there is no map ΣCPn−1 λ−→
ΩSU(n) with the property that ∂1 ◦ ı′ � 2 ◦ λ. Hence, there is no lift

ΩSU(n)

2

ΣCPn−1 ı′

λ

U(n)
∂1

ΩSU(n).

In other words, the composite ΣCPn−1 ı′−→ U(n)
∂1−→ ΩSU(n)

ρ−→ SU(n){2}
is nontrivial. �

Corollary 6.6. The map ∂1 � ρ ◦ ∂1 is nontrivial.

As ∂1 fits in the homotopy fibration sequence

ΩSU(n){2} −→G1

(
RP 2

)
−→ U(n)

∂1−→ SU(n){2}
and Lemma 2.8 lets us identify ΩSU(n){2} with ΩU(n){2}, the nontriviality
of ∂1 immediately implies the following.

Proposition 6.7. The homotopy fibration ΩU(n){2} −→ G1(RP
2) −→

U(n) is nontrivial.

7. A partial decomposition for the gauge group of
nontrivial bundles

In Proposition 6.7, we showed that the homotopy fibration ΩU(n){2} −→
G1(RP

2)−→ U(n) does not split as G1(RP
2)� U(n)×ΩU(n){2}. This makes

determining the homotopy groups of G1(RP
2) more difficult. However, in

this section we will show that there is a splitting through an appropriate
dimensional range, and a splitting on the level of homotopy groups through a
slightly higher range. Thus, even though the fibration does not split, we can
still determine the homotopy groups of G1(RP

2) through a range.
We are considering the homotopy fibration sequence

ΩSU(n){2} −→G1

(
RP 2

)
−→ U(n)

∂1−→ SU(n){2},
where Lemma 2.8 lets us identify ΩSU(n){2} with ΩU(n){2}. By Lemma 6.1,

the map ∂1 factors as the composite U(n)
∂1−→ ΩSU(n)

ρ−→ SU(n){2}. We
first consider properties of ∂1.

Recall that we regard ΩSU(n) as being homotopy equivalent to the com-
ponent of ΩU(n) containing the continuous, pointed, degree one maps from

the circle to U(n), so ∂1 can be written as U(n)
∂1−→Ω1U(n). Lang [L] showed

that the adjoint of ∂1, the map S1 ∧ U(n) −→ U(n), is homotopic to the
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Samelson product 〈i,1〉 of the inclusion i : S1 −→ U(n) and the identity map
1 : U(n)−→ U(n). Let U = U(∞) be the infinite unitary group and consider
the homotopy fibration Ω(U/U(n)) −→ U(n) −→ U , where the right map is
the group inclusion. Since U is an infinite loop space, it is a homotopy associa-
tive, homotopy commutative H-space. So the Samelson product 〈i,1〉 on U(n)
composes trivially to U . Therefore, 〈i,1〉 lifts through the map Ω(U/U(n))−→
U(n). Adjointing back, ∂1 lifts through the map Ω2(U/U(n)) −→ Ω1U(n).
Rewriting this, as Ω(U/U(n)) � Ω(SU/SU(n)), where SU = SU(∞) is the
infinite special unitary group, and the fibration Ω(SU/SU(n))−→ SU(n)−→
SU is the connected cover of the fibration Ω(U/U(n))−→ U(n)−→ U , when
we adjoint back we obtain a lift

(10)

Ω2
(
SU/SU(n)

)

U(n)
∂1

λ

ΩSU(n)

for some map λ. Observe that as a CW -complex, Ω2(SU/SU(n)) is (2n− 2)-
connected, and its (2n+ 1)-skeleton is a two-cell complex S2n−1 ∪ e2n+1.

Lemma 7.1. The map U(n)
∂1−→ΩSU(n) is null homotopic in dimensions ≤

2n− 2.

Proof. Since Ω2(SU/SU(n)) is (2n − 2)-connected, the map λ in (10) is
null homotopic in dimensions ≤ 2n− 2. The homotopy commutativity of (10)
therefore implies that ∂1 is null homotopic in dimensions ≤ 2n− 2. �

Since ∂1 factors through ∂1, Lemma 7.1 immediately implies the following.

Corollary 7.2. The map U(n)
∂1−→ SU(n){2} is null homotopic in di-

mensions ≤ 2n− 2.

This null homotopy through a dimensional range lets us decompose
G1(RP

2) through a dimensional range.

Proposition 7.3. In dimensions ≤ 2n− 3, the fibration

ΩU(n){2} −→G1

(
RP 2

)
−→ U(n)

splits to give a homotopy equivalence G1(RP
2)� U(n)×ΩU(n){2}.

Proof. Consider the homotopy fibration sequence

ΩSU(n){2} −→G1

(
RP 2

)
−→ U(n)

∂1−→ SU(n){2}.

By Corollary 7.2, ∂1 is null homotopic in dimensions ≤ 2n− 2. Therefore the
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(2n− 2)-skeleton U(n)2n−2 of U(n) lifts through the map G1(RP
2)−→ U(n).

This lets us define the composite

ψ : U(n)2n−2 ×ΩSU(n){2} −→G1

(
RP 2

)
×G1

(
RP 2

) μ−→G1

(
RP 2

)
,

where μ is the loop multiplication on G1(RP
2)� ΩMap(RP 2,BU(n)). Since

the skeletal inclusion U(n)2n−2 −→ U(n) induces an isomorphism on homo-
topy groups in dimensions ≤ 2n− 3, the map ψ induces an isomorphism on
homotopy groups in dimensions ≤ 2n − 3. Thus, ψ is a (weak) homotopy
equivalence in dimensions ≤ 2n− 3. Finally, in the composition defining ψ,
we can use Lemma 2.8 to identify ΩSU(n){2} as ΩU(n){2}. �

The dimensional range in Proposition 7.3 is optimal. For by Proposi-

tion 6.5, the composite ΣCPn−1 ι′−→ U(n)
∂1−→ΩSU(n)

ρ−→ SU(n){2} is non-
trivial. Therefore, ∂1 � ρ ◦ ∂1 cannot be null homotopic in dimensions ≤
2n− 1, implying that the fibration ΩU(n){2} −→G1(RP

2)−→ U(n) does not
split in dimensions ≤ 2n− 2.

However, if we only care about a splitting on the level of homotopy groups
rather than spaces, then we can show that ∂1 induces the zero map on homo-
topy groups in dimension 2n− 1 and does the same in dimension 2n provided
n is odd. To see this, we first require some information about the homotopy
groups of unitary groups. Let q : U(n)−→ S2n−1 be the quotient map, where
S2n−1 ∼= U(n)/U(n− 1). Let j : S2n−1 −→Ω(SU/SU(n)) be the inclusion of
the bottom cell. For m ≥ 3, let η : Sm+1 −→ Sm represent the generator of
the stable homotopy group πm+1(S

m) : Z/2Z. The statements in Lemma 7.4
are a combination of results proved in [BH], [K].

Lemma 7.4. The following hold:

(a) π2n−1(U(n)) ∼= Z, and a representative c : S2n−1 −→ U(n) of the gener-

ator can be chosen so that the composite S2n−1 c−→ U(n)
q−→ S2n−1 has

degree (n− 1)!;
(b) π2n(U(n)) ∼= Z/n!Z, a representative of the generator is the composite

d : S2n j−→ Ω(SU/SU(n)) −→ SU(n) −→ U(n), and this generator has

the property that the composite S2n d−→ U(n)
q−→ S2n−1 is null homotopic

if n is odd and is homotopic to η if n is even;
(c) π2n+1(U(n)) ∼= 0 if n is odd and is isomorphic to Z/2Z if n is even,

and in the even case a representative of the generator is the composite

S2n+1 η−→ S2n d−→ U(n).

Next, we relate these homotopy groups to the map U(n)
∂1−→ ΩSU(n).

These arguments will hold integrally, that is, before any localization. First
note that U(n)� S1 × SU(n) so for m> 1 we have πm(SU(n))∼= πm(U(n)),
implying that the homotopy group calculations in Lemma 7.4 are equally valid
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for SU(n). Let i : S2n−1 −→ Ω2(SU/SU(n)) be the inclusion of the bottom
cell, which is adjoint to the map j above. Consider the diagrams

(11)

S2n−1 i
Ω2

(
SU/SU(n)

)
S2n−1 i

Ω2
(
SU/SU(n)

)

S2n−1 c

a

U(n)
∂1

λ

ΩSU(n) S2n d

b

U(n)
∂1

λ

ΩSU(n),

where the maps a and b will be defined momentarily. The right triangle in
each diagram homotopy commutes by (10). By connectivity, the composites
λ ◦ c and λ ◦ d factor through the 2n-skeleton of Ω2(SU/SU(n)), which is

homotopy equivalent to S2n−1. That is, λ ◦ c factors as S2n−1 a−→ S2n−1 i−→
Ω2(SU/SU(n)) for some map a, and λ ◦ d factors as S2n b−→ S2n−1 i−→
Ω2(SU/SU(n)) for some map b. Thus, both diagrams in (11) homotopy com-
mute.

Observe in the left diagram in (11) that as the map U(n)
q−→ S2n−1 is

degree 1 in integral homology, the fact that q ◦ c has degree (n− 1)! implies
that the map c has degree (n−1)! in integral homology. Thus λ ◦ c has degree
dividing (n− 1)!, so as i is degree 1, a has degree dividing (n− 1)!. Observe
in the right diagram in (11) that as π2n(S

2n−1) ∼= Z/2Z is generated by η,
that b� t · η for some t ∈ Z/2Z.

Lemma 7.5. If n ≥ 3, then the map U(n)
∂1−→ SU(n){2} induces the zero

map on π2n−1.

Proof. Since the map a in (11) has degree dividing (n− 1)!, if n≥ 3 then
the degree of a is divisible by 2. Thus, the homotopy commutativity of the
left diagram in (11) implies that ∂1 ◦ c is divisible by 2. That is, ∂1 ◦ c� g ◦ 2
for some map g, where 2 is the degree 2 map on S2n−1.

In general, for spaces A and B the homotopy classes of maps [ΣA,ΩB] has
two group structures, one induced from the co-H-structure on ΣA and the
other from the loop structure on ΩB. It is well known that these two group
structures coincide. Therefore, in [S2n−1,ΩSU(n)] we have g ◦ 2 � 2 ◦ g,
where 2 is the 2nd-power map on ΩSU(n). Thus ∂1 ◦ c� 2 ◦ g.

As ∂1 � ρ ◦ ∂1, we obtain ∂1 ◦ c� ρ ◦ 2 ◦ g. But the composite ΩSU(n)
2−→

ΩSU(n)
ρ−→ SU(n){2} is two consecutive maps in a homotopy fibration and

so is null homotopic. Thus ∂1 ◦ c is null homotopic. As c represents the
generator of π2n−1(U(n)), we see that ∂1 induces ther zero map on π2n−1. �

Lemma 7.6. If n≥ 3, then the map U(n)
∂1−→ΩSU(n) induces the zero map

on π2n if n is odd and is nontrivial on π2n if n is even.
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Proof. If n is odd then π2n(ΩSU(n)) ∼= π2n+1(SU(n)) ∼= π2n+1(U(n)), so
by Lemma 7.4(c), π2n(ΩSU(n)) ∼= 0. Thus in this case ∂1 induces the zero
map on π2n.

If n is even, we will show that the map b in (11) is homotopic to η.
Granting this, by Lemma 7.4(b) and the fact that π2n(U(n))∼= π2n(SU(n)),

the composite S2n j−→ Ω(SU/SU(n)) −→ SU(n) represents the generator of

π2n(SU(n)). The adjoint of this generator is the composite ε : S2n−1 i−→
Ω2(SU/SU(n)) −→ ΩSU(n) appearing in (11). By Lemma 7.4(c), the com-
posite ε ◦ η represents the generator of π2n(ΩSU(n))∼= Z/2Z. Therefore, as
∂1 ◦ d� ε ◦ b by (11) and b� η by assumption, we see that ∂1 ◦ d is nontrivial
and the statement of the lemma follows.

To see that b� η, consider the homotopy cofibration diagram

S2n d
U(n)

λ

C

f

S2n i◦ b
Ω2

(
SU/SU(n)

)
D,

where the left square homotopy commutes by (11), and the spaces C and D
and the map f are defined by the homotopy pushout. Take cohomology with
mod-2 coefficients. Observe that for dimensional reasons, the two horizontal
arrows in the right square induce isomorphisms in H2n−1. As well, by [T1], λ∗
induces an isomorphism in H2n−1. The homotopy commutativity of the right
square above then implies that f∗ induces an isomorphism in H2n−1. Observe
next that as d represents the generator of π2n(U(n)), it attaches the cell to
U(n+1) that represents the ring generator x ∈H2n+1(U(n+1)). As n is even,
x= Sq2(y), where y is the ring generator in H2n−1(U(n+ 1)). Note that we
may regard y as the ring generator of H2n−1(U(n)) as well. This information
about d implies that the cofibre C of d has the property that there is a
generator x̄ ∈H2n+1(C) such that x̄ = Sq2(ȳ) for ȳ ∈H2n−1(C), where the
map U(n)−→C sends ȳ to the ring generator y ∈H2n−1(U(n)). Now consider

the map C
f−→D. We have already seen that f∗ is an isomorphism in H2n−1,

so if z ∈H2n−1(D) represents the generator, then f∗(z) = x̄. The naturality
of the Steenrod operation Sq2 then implies that f∗(Sq2(z)) = Sq2(f∗(z)) =
Sq2(x̄) = ȳ. Thus Sq2(z) 
= 0.

Next, since D is the homotopy cofibre of i ◦ b, if B is the homotopy cofi-

bre of S2n b−→ S2n−1 then there is an induced map B −→D which induces
isomorphisms in H2n−1 and H2n+1. The fact that Sq2 acts nontrivially on
H2n−1(D) therefore implies that the same is true of H2n−1(B). Since Sq2

detects the map η, we must therefore have b� η. �
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Corollary 7.7. If n ≥ 3, then the map U(n)
∂1−→ SU(n){2} induces the

zero map on π2n if n is odd and is nontrivial on π2n if n is even.

Proof. We have ∂1 � ρ ◦ ∂1. If n is odd then Lemma 7.6 states that ∂1
induces the zero map on π2n, and therefore so does ∂1 since it factors through
∂1. If n is even then Lemma 7.6 states that ∂1 is nontrivial on π2n. To be
concrete, let x ∈ π2n(ΩSU(n)) be the image of (∂1)∗ applied to π2n(U(n)).
By Lemma 7.4(c), π2n(ΩSU(n))∼= π2n(ΩU(n))∼= Z/2Z, so the fact that x is
nontrivial implies it is a generator of this homotopy group. In particular, x is
not divisible by 2, so in the long exact sequence of homotopy groups induced

by the fibration ΩSU(n)
2−→ ΩSU(n)

ρ−→ SU(n){2}, a representative for x
cannot lift through 2. In other words, ρ∗(x) is nontrivial in π2n(SU(n){2}).

�

The homotopy group results in Lemma 7.5 and Corollary 7.7 have the
following consequences for the gauge group G1(RP

2).

Proposition 7.8. The fibration ΩSU(n){2} −→ G1(RP
2) −→ U(n) in-

duces a splitting of homotopy groups

πm

(
G1

(
RP 2

)) ∼= πm

(
U(n)

)
⊕ πm

(
ΩSU(n){2}

)
for m≤ 2n− 1 if n is odd and for m≤ 2n− 2 if n is even.

Proof. If m≤ 2n− 3, then the statement of the lemma is a consequence of
Proposition 7.3. Otherwise, the homotopy fibration

ΩSU(n){2} −→G1

(
RP 2

)
−→ U(n)

induces a long exact sequence of homotopy groups with connecting map in-

duced by U(n)
∂1−→ SU(n){2}. By Proposition 7.3 and Lemma 7.5, ∂1 in-

duces the zero map on π2n−2 and π2n−1, respectively. Thus, there is a
split short exact sequence of homotopy groups 0−→ π2n−2(ΩSU(n){2})−→
π2n−2(G1(RP

2))−→ π2n−1(U(n))−→ 0. The same reasoning gives a splitting
in π2n−1 if n is odd using Lemma 7.5 and Corollary 7.7. �

8. Localizing the gauge groups of nontrivial bundles

In this section, we consider the homotopy type of G1(RP
2) when G =

U(n) after localizing at a prime or rationally. We first dispense with the
straightforward odd primary and rational cases.

Lemma 8.1. Localize at an odd prime or the rationals. Then the evalua-

tion map BG1(RP
2)�Map1(RP

2,BU(n))
ev−→BU(n) is a homotopy equiva-

lence.
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Proof. If localization at p is denoted by a subscript (p) (use (0) for the ratio-

nals), then by [HMR] there is a homotopy equivalence Map∗1(RP
2,BU(n))(p) �

Map∗1(RP
2
(p),BU(n)(p)). But if p is odd or p= 0 then RP 2

(p) is homotopy equiv-

alent to a point. Thus, Map∗1(RP
2,BU(n))(p) is contractible. Consequently,

in the evaluation fibration

Map∗1
(
RP 2,BU(n)

)
−→Map1

(
RP 2,BU(n)

) ev−→BU(n)

the map ev induces a homotopy equivalence when localized at an odd prime

or rationally. �

Lemma 8.1 implies that the nontrivial homotopy fibration G∗
1 (RP

2) −→
G1(RP

2) −→ U(n) in Proposition 6.7 is trivial after localization at an odd

prime or rationally. Thus, the nontriviality of the fibration is a 2-primary

phenomenon. In Propositions 7.3 and 7.8, we showed that the fibration splits

in a certain dimensional range, and splits on the level of homotopy groups

in a slightly higher range. In general, it is difficult to say more, but when

n = 2 we can give an explicit 2-local homotopy decomposition of G1(RP
2)

after looping. To show this, we begin with some general arguments that do

not require localization.

By Lemma 6.1 and (7), there is a homotopy fibration G1(RP
2)−→ U(2)

∂1−→
SU{2} where ∂1 factors as the composite U(2)

∂1−→ΩSU(2)
ρ−→ SU{2}. Ob-

serve that SU(2) � S3, so SU{2} � S3{2}, and therefore we can rewrite ∂1

as U(2)
∂1−→ΩS3 ρ−→ S3{2}, and we have a homotopy fibration

G1

(
RP 2

)
−→ U(2)

∂1−→ S3{2}.

As well, consider the fibration U(2)
∂1−→ ΩS3 � Map∗1(S

2,BU(2)) −→
Map1(S

2,BU(2)) from (7). By Atiyah and Bott’s result stated in Section 4,

we have Map1(S
2,BU(n))�BG1(S

2), where G1(S
2) is the gauge group of the

principal U(2)-bundle over S2 classified by the degree one map S2 −→BU(2).

Thus, there is a homotopy fibration

G1

(
S2

)
−→ U(2)

∂1−→ΩS3.

We aim to identify the homotopy type of ΩG1(RP
2). This will involve first

identifying the homotopy type of G1(S
2), relating this to G1(RP

2), and then

describing why looping yields more information.



80 S. THERIAULT

The factorization ∂1 � ρ ◦ ∂1 in Lemma 6.1 induces a homotopy fibration
diagram

(12)

G1

(
S2

)
G1

(
RP 2

)
ΩS3

2

G1

(
S2

)
U(2)

∂1

∂1

ΩS3

ρ

S3{2} S3{2}.

We have U(2) � S1 × SU(2) � S1 × S3. Let π : U(2) −→ S3 be the projec-
tion.

Lemma 8.2. The map U(2)
∂1−→ ΩS3 factors as the composite U(2)

π−→
S3 η−→ΩS3 where η represents a generator of π4(S

3)∼= Z/2Z.

Proof. Observe that by connectivity, the restriction of ∂1 to S1 is null

homotopic. In general, for a fibration sequence ΩB
∂−→ F −→E −→B, there

is a homotopy action θ : F × ΩB −→ F with the property that there is a
homotopy commutative diagram

ΩB ×ΩB
μ

∂×1

ΩB

∂

F ×ΩB
θ

F,

where μ is the loop multiplication on ΩB. In our case, combining the fact
that ∂1 is a fibration connecting map with the property that its restriction to
S1 is null homotopic, we obtain a homotopy commutative diagram

S1 × S3

∗×1

U(2)×U(2)
μ

∂1×1

U(2)

∂1

∗ × S3 ΩS3 ×U(2)
θ

ΩS3.

Observe that the top row in this diagram is a homotopy equivalence. Thus the

diagram implies that U(2)
∂1−→ ΩS3 factors as a composite U(2)

π−→ S3 η−→
ΩS3 for some map η. By [Su], ∂1 is nontrivial, so η must be nontrivial. As
π4(S

3)∼= Z/2Z, η must represent this generator. �
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Next, we use the factorization in Lemma 8.2 to identify the homotopy type

of G1(S
2). At this point, we need to localize all spaces and maps at 2. By

[J], there is a 2-local homotopy fibration S2 E−→ΩS3 H−→ΩS5, where H is the

James–Hopf invariant and E is the suspension map. The map E sends the

Hopf-invariant one map S3 −→ S2 to η. Thus, there is a homotopy fibration

diagram

(13)

S1 s
X Ω2S5

S1 S3

η

S2

E

ΩS3 ΩS3

which defines the space X and the map s. Let ϕ : Ω2S3 −→X be the con-

necting map for the fibration in the middle column.

Recall that S3〈3〉 is the three-connected cover of S3. Using the fact that

S1 � K(Z,1), let r : Ω2S3 −→ S1 be the map representing H1(Ω2S3) ∼= Z.

Including the bottom cell into Ω2S3 gives a right homotopy inverse for r, so

there is a homotopy equivalence Ω2S3 � S1 ×Ω2S3〈3〉.

Lemma 8.3. Localize at 2. The map s in (13) has a left homotopy inverse.

Consequently, there is a homotopy decomposition X � S1 × Ω2S5. Further,

under this equivalence, the connecting map ϕ is homotopic to Ω2S3 r×ΩH−−−−→
S1 ×Ω2S5.

Proof. Apply π1 to the fibration along the top row of (13). Since Ω2S5

is 2-connected, we have π1(S
1) ∼= π1(X). Thus the map g : X −→ K(Z,1),

representing the generator of H1(X;Z) is a left homotopy inverse of s. The

decomposition of X follows immediately.

Further, since the S3 in the homotopy fibration Ω2S3 ϕ−→ X −→ S3 is

simply-connected, there is an isomorphism π1(Ω
2S3) ∼= π1(X), so the com-

posite Ω2S3 ϕ−→ X
g−→ K(Z,1) represents the generator of H1(X;Z). But

this generator is also represented by r, so g ◦ ϕ � r. As well, by (13), the

composite Ω2S3 ϕ−→X −→ Ω2S5 is ΩH . Hence, using the homotopy equiv-

alence in the first paragraph, the composite Ω2S3 ϕ−→ X
�−→ S1 × Ω2S5 is

homotopic to r×ΩH . �
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By Lemma 8.2, ∂1 � η ◦ π, so using the decomposition of X in Lemma 8.3
we obtain a homotopy fibration diagram

S1 t G1

(
S2

)
S1 ×Ω2S5

S1 U(2)
π

∂1

S3

η

ΩS3 ΩS3

which defines the map t. Since the inclusion of S1 into U(2) has a left homo-
topy inverse, the homotopy commutativity of the upper left triangle in this
diagram implies that t has a left homotopy inverse. Thus we immediately
obtain the following, reproducing a result from [T2].

Lemma 8.4. There is a 2-local homotopy decomposition G1(S
2)� S1×S1×

Ω2S5.

Now turn to G1(RP
2). Let γ be the composite γ : S3 η−→ ΩS3 ρ−→ S3{2}.

Define the space Y by the homotopy fibration diagram

(14)

S1 ×Ω2S5 Y ΩS3

2

S1 ×Ω2S5 S3 η

γ

ΩS3

ρ

S3{2} S3{2}.

Lemma 8.5. There is a 2-local homotopy decomposition G1(RP
2)� S1×Y .

Proof. The factorization of ∂1 in Lemma 8.2 and the factorization of ∂1 in
(12) implies that ∂1 � γ ◦ π. Thus, there is a homotopy fibration diagram

S1 u G1

(
RP 2

)
Y

S1 U(2)
π

∂1

S3

γ

S3{2} S3{2}
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which defines the map u. Since the inclusion S1 −→ U(2) has a left homotopy
inverse, the homotopy commutativity of the upper left square above implies
that u also has a left homotopy inverse. Hence, G1(RP

2)� S1 × Y . �

This is as far as we can go in identifying the homotopy type of G1(RP
2) at 2.

However, after looping more can be said. Continuing the fibration sequences
in (14) horizontally and using Lemma 8.3 to identify the connecting map in
the lower fibration, we obtain a homotopy fibration diagram

ΩY Ω2S3

2

S1 ×Ω2S5

ΩS3 Ωη
Ω2S3 r×ΩH

S1 ×Ω2S5.

By [C], the composite Ω2S3 2−→ Ω2S3 ΩH−→ Ω2S5 is null homotopic. Thus

ΩY � F × Ω3S5, where F is the homotopy fibre of the composite Ω2S3 2−→
Ω2S3 r−→ S1. Since the 2nd-power map on Ω2S3 is degree 2 on the bottom
cell (in dimension 1), the latter composite is homotopic to the composite

Ω2S3 r−→ S1 2−→ S1. Thus, there is a homotopy fibration diagram

Ω2S3〈3〉 F S1{2}

Ω2S3〈3〉 Ω2S3 r

2◦ r

S1

2

S1 S1.

Since Ω2S3〈3〉 retracts off Ω2S3, the homotopy commutativity of the up-
per left square in this diagram implies that it retracts off F as well. Thus,
from the fibration along the top row, we obtain a homotopy equivalence
F � S1{2} × Ω2S3〈3〉. Note that a check of homotopy groups shows that
S1{2} ∼=K(Z/2Z,0), that is, S1{2} � Z/2Z. Hence, we obtain the following.

Lemma 8.6. There is a 2-local homotopy decomposition ΩY � Z/2Z ×
Ω2S3〈3〉 ×Ω3S5.

Remark 8.7. The decomposition of ΩY relied on the fact that ΩH ◦ 2 is
null homotopic. The loop is necessary, as the composite H ◦ 2 is nontrivial.
It is the nontriviality of this composite that acts as an obstruction to a finer
decomposition of Y , and hence of G1(RP

2)� S1 × Y .

Combining Lemmas 8.5 and 8.6, we obtain a precise description of the
homotopy type of G1(RP

2).
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Proposition 8.8. For G= U(2), there is a 2-local homotopy decomposition

ΩG1

(
RP 2

)
� Z/2Z× S1 ×Ω2S3〈3〉 ×Ω3S5.

To conclude, we combine all our results to prove Theorem 1.1.

Proof of Theorem 1.1. Parts (a), (b), (c), (d) and (e) are the statements
of Proposition 5.3, Proposition 6.7, Propositions 7.3 and 7.8, Lemma 8.1 and
Proposition 8.8, respectively. �
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