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COMPOSITION OF q-QUASICONFORMAL MAPPINGS AND
FUNCTIONS IN ORLICZ–SOBOLEV SPACES

STANISLAV HENCL AND LUDĚK KLEPRLÍK

Abstract. Let Ω ⊂ R
n, q ≥ n and α ≥ 0 or 1 < q ≤ n and

α≤ 0. We prove that the composition of q-quasiconfomal map-
ping f and function u ∈ WLq logαLloc(f(Ω)) satisfies u ◦ f ∈
WLq logαLloc(Ω). Moreover, each homeomorphism f which in-
troduces continuous composition operator from WLq logαL to

WLq logαL is necessarily a q-quasiconformal mapping. As a new
tool, we prove a Lebesgue density type theorem for Orlicz spaces.

1. Introduction

Let Ω1,Ω2 ⊂ R
n be domains and let f : Ω1 → Ω2 be a homeomorphism.

Given a function space X we would like to characterize mappings f for which
the composition operator Tf : Tf (u) = u ◦ f maps X(Ω2) into X(Ω1) contin-
uously. This problem has been studied for many function spaces and one the
most important is the following well-known result: The composition operator
Tf : Tf (u) = u ◦ f maps W 1,n

loc (Ω2) into W 1,n
loc (Ω1) continuously if f : Ω1 →Ω2

is a quasiconformal mapping ([21], [24], [17, Lemma 5.13]). Moreover, each

homeomorphism f which maps W 1,n
loc (Ω2) into W 1,n

loc (Ω1) continuously is nec-
essarily a quasiconfomal mapping. Similarly, it is possible to characterize
homeomorphism for which the composition operator is continuous from W 1,q

loc

to W 1,q
loc and we obtain a class of q-quasiconformal mappings [5] (see also [15]).

Here homeomorphism f ∈W 1,1
loc (Ω,R

n) is called a q-quasiconformal map-
ping if there is a constant K ≥ 1 such that

(1.1)
∣∣Df(x)

∣∣q ≤K
∣∣Jf (x)∣∣ for a.e. x ∈Ω.
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For the properties and further applications of n-quasiconformal mappings, see
[1], [13], [17] and [21]. Let us note that we do not assume that Jf ≥ 0 a.e.
as usual, that is, on the right-hand side we have |Jf | and not Jf . This does
not seem to be an essential restriction since all homeomorphisms f that are
regular enough satisfy either Jf ≥ 0 a.e. in Ω or Jf ≤ 0 a.e. in Ω (see [12]
for details). That is up to a simple reflection we have the usually considered
definition.

In general, one could expect that different function spaces have a different
class of morphisms unless the answer is somehow trivial. Surprisingly this
is not the case as many examples indicate. For example n-quasiconformal
mappings serve as the best class of morphisms not only for W 1,n

loc functions

but also for other function spaces that are “close” to W 1,n
loc . Let us mention

for example the stability under quasiconformal mappings for the BMO space
[20], fractional Sobolev spaces Ṁs

n/s,q , s ∈ (0,1], [16, Theorem 1.3] (see also

[22] and [10]), absolutely continuous functions of several variables ACn
λ [7] or

exponential Orlicz space expL(Ω) in the plane [3]. We would like to explore
this in detail and we would like to know if there is some general principle that
“somehow close” spaces have the same class of morphisms.

We show that the same phenomenon occurs for some Orlicz–Sobolev spaces
(see Preliminaries for the definition and basic properties) that are close to
W 1,q and that q-quasiconfomal mappings are the best class of morphisms
also for some of those function spaces. In particular (see Sections 3 and 4 for
the general statement), we prove the following theorem.

Theorem 1.1. Let q ≥ n and α ≥ 0 or 1 < q ≤ n and α ≤ 0 and suppose
that f : Ω1 →Ω2 is a q-quasiconformal mapping. Then the operator Tf maps
WLq logαLloc(Ω2) ∩ C(Ω2) into WLq logαLloc(Ω1) for q > n and Tf maps
WLq logαLloc(Ω2) into WLq logαLloc(Ω1) for q ≤ n.

Moreover, the q-quasiconformal mappings are the best class of homeomor-
phisms for these Orlicz–Sobolev spaces if q ≥ n and α ≥ 0 or in the second
case q ≤ n and α≤ 0.

Theorem 1.2. Let f : Ω1 →Ω2 be a homeomorphism, q ≥ 1 and let α ∈R.
For q ≤ n− 1 we moreover assume that f is differentiable a.e. Suppose that
Tf maps WLq logαL(Ω2) into WLq logαL(Ω1) continuously, that is

‖Du ◦ f‖Lq logα L(Ω1) ≤C‖Du‖Lq logα L(Ω2)

for every u ∈WLq logαL(Ω2)∩C(Ω2). Then f is a q-quasiconfomal mapping.

It follows that also in the remaining cases q < n and α > 0 or q > n and
α < 0 we get that the morphisms of WLq logαL spaces are subclass of q-
quasiconformal mappings.
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On the other hand for each q < n and α > 0 or for each q > n and α < 0,
we give an explicit construction of q-quasiconformal mapping f and a func-
tion u ∈WLq logαL ∩ C such that u ◦ f /∈WLq logαLloc. Thus, an analogy
of Theorem 1.1 does not hold for these values of parameters and the exact
description of the class of morphisms must be different.

Let us note that the assumption that f is differentiable a.e. (for q ≥ n− 1)
or that Tf is continuous in Theorem 1.2 is not necessary as was shown re-
cently in [14]. The general version of the statement is shown there: Let
X be a rearrangement invariant function space somehow close to Lq . Then
each homeomorphism f such that Tf maps W 1X into W 1X (not necessarily
continuously) is q-quasiconformal. It was also shown in [8] that each homeo-
morphism f such that Tf maps the Sobolev–Lorentz space WLn,q into WLn,q

must be bilipschitz. This shows that the characterization of the composition
operator for the spaces WLn,q and WLn logαL is entirely different although
both spaces are close to W 1,n.

For the proof of the Theorem 1.2, we use the usual approach inspired by [5].
We construct a suitable test functions in the small neighborhood of the point
x and after passing to the limit we use a Lebesgue density type theorem to
conclude that the derivative satisfies (1.1). In the proof of the Theorem 1.2,
we use only the simpler conclusion (1.2) but we believe that this Lebesgue
density theorem for Orlicz functions is of independent interest and may find
application elsewhere.

Theorem 1.3. Suppose that Φ is a Young function and let f ∈ LΦ(Ω) be
nonnegative. Then

(1.2) lim inf
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

≥ f(x) for almost every x ∈Ω.

If we moreover assume that our Φ satisfies

(1.3) Φ(ab)≤CΦ(a)Φ(b) for every a, b≥ 0,

then

(1.4) lim
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

= f(x) for almost every x ∈Ω.

Surprisingly, we cannot have (1.4) for general Young functions, because
the term ‖χB(x,r)‖ does not necessarily scale well for small r. For α < 0,
we construct a function f ∈ Lq logαL such that the limit in (1.4) is infinite
everywhere. The additional condition (1.3) is the so called Δ′-condition and
it is known to be important for other properties in the theory of Orlicz spaces
(see [19]).

This paper is organized as follows. In Section 2, we recall some basic prop-
erties of quasiconformal mappings and Orlicz spaces. In Section 3, we prove
Theorem 1.3 and we also give a simple counterexample to such a statement
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for Lq logαL spaces for α < 0. We prove a general version of Theorem 1.1 in
Section 4 and general version of Theorem 1.2 in Section 5. Finally in Sec-
tion 6, we construct examples showing that q-quasiconformal mappings do
not map WLq logαL to WLq logαL for all values of q and α.

2. Preliminaries

We use the usual convention that C denotes a generic positive constant
whose exact value may change from line to line. For two functions g,h : Ω 
→
[0,∞), we write g � h on I , if there is C > 0 such that g(x)≤Ch(x) for every
x ∈Ω. If g � h and h� g, we write g ∼ h.

For a function h : Ω→ R, we denote by supph its support. By A ⊂⊂ Ω
we denote the fact that the closure of A lies inside Ω, that is, A ⊂ Ω. The
Lebesgue measure of a set A is denoted by Ln(A) or for short |A|.

2.1. Orlicz spaces. A function Φ : R+ →R
+ is a Young function if Φ(0) = 0,

Φ is increasing and convex.
Denote by LΦ(A) the corresponding Orlicz space with Young function Φ

on a set A with measure Ln. This space is equipped with the Luxemburg
norm

(2.1) ‖f‖LΦ(A) = inf

{
λ > 0 :

∫
A

Φ
(∣∣f(x)∣∣/λ)

dx≤ 1

}
.

For q ≥ 1 and α ∈R, we denote by Lq logαL(A) the Orlicz space with a Young
function such that

lim
t→∞

Φ(t)

tq logα t
= 1.

For an introduction to Orlicz spaces see, for example, [19].
We define the Orlicz–Sobolev space WLΦ(A) as the set

WLΦ(A) :=
{
u : u, |Du| ∈ LΦ(A)

}
equipped with the norm

‖u‖WLΦ(A) := ‖u‖LΦ(A) + ‖Du‖LΦ(A),

where Du is the weak derivative of u.
Let Φ be a Young function and let us define

(2.2) H(t) =
1

Φ( 1t )
=

(
1

Φ−1( 1t )

)−1

.

The standard computation gives us

(2.3) ‖χE‖LΦ =
1

Φ−1( 1
|E| )

=H−1
(
|E|

)
for any measurable set E ⊂Ω.
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We say that a function Φ satisfies the Δ2-condition, if there is CΔ > 1 such
that

Φ(2t)≤CΔΦ(t) whenever t≥ 0.

Analogously, we say that a function Φ satisfies the ∇2-condition if there is
C∇ > 2 such that

Φ(2t)≥C∇Φ(t) whenever t≥ 0.

It is not difficult to show that if Φ satisfies Δ2 condition, then

(2.4) ‖hk‖LΦ(Ω)
k→∞→ 0 ⇐⇒

∫
Ω

Φ
(
|hk|

)
dx

k→∞→ 0.

2.2. On q-quasiconformal mapping. We will need the following version
of the derivative of composed function (see [15, Theorem 1.3] for special choice
p= q).

Theorem 2.1. Let q ≥ 1 and let f : Ω1 →Ω2 be a homeomorphism of finite
q-distortion. Then the operator Tf is continuous from W 1,q

loc (Ω2) ∩ C(Ω2) to

W 1,q
loc (Ω1) for q > n and continuous from W 1,q

loc (Ω2) to W 1,q
loc (Ω1) for q ≤ n.

Moreover for every u ∈W 1,q
loc (Ω2), we have

(2.5) D(u ◦ f)(x) =Du
(
f(x)

)
Df(x) for a.e. x ∈Ω1

if we use the convention that Du(f(x)) · 0 = 0 even if Du does not exist or it
is infinity at f(x).

It is easy to see from the definition of q-quasiconformal mappings that

(2.6)
∣∣Df(x)

∣∣q ≤K
∣∣Jf (x)∣∣ ≤K

∣∣Df(x)
∣∣n

and therefore each such a map lies in W 1,∞ for q > n. By [15], we know that
q-quasiconformal mapping f for q < n satisfies Luzin (N−1) condition, that
is, f−1 maps sets of zero measure onto sets of zero measure. Therefore for
q < n it cannot happen that Jf = 0 on a set of positive measure and we can
use (2.6) to obtain 1

|Df | ∈ L∞. It is also well known that each quasiconformal

mappings has better integrability (see, e.g., [17]).

Theorem 2.2. Let Ω be an open set. Suppose that f is n-quasiconformal
mapping on Ω. Then there exist p > n and r > 0 such that |Df |p ∈ L1

loc(Ω)
and 1

|Df |r ∈ L1
loc(Ω).

2.3. Volume derivative. Let us denote the volume derivative by

f ′
v(x) = lim

r→0

|f(B(x, r))|
|B(x, r)| .

We shall need the following connection between f ′
v and the Jacobian of f [23,

Theorem 24.2 and Theorem 24.4].
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Theorem 2.3. Let f : Ω→ R
n be a homeomorphism. Then f ′

v is a mea-
surable function and f ′

v < ∞ almost everywhere. Moreover, f ′
v(x) = |Jf (x)|

for every point x where f is differentiable.

2.4. Area formula. We will use the well-known area formula for homeo-
morphisms in W 1,1

loc (Ω). It is known that each f ∈W 1,1
loc (Ω) is approximatively

differentiable almost everywhere [2, Theorem 3.1.4] and that the set of ap-
proximative differentiability can be exhausted up to a set of measure zero by
sets the restriction to which of f is Lipschitz [2, Theorem 3.1.8]. Hence, we
can decompose Ω into pairwise disjoint sets

(2.7) Ω = Z ∪
∞⋃
k=1

Ωk

such that |Z|= 0 and f |Ωi is Lipschitz. Let f ∈W 1,1
loc (Ω;R

n) be a homeomor-
phism and let B ⊂Ω be a Borel set. Let η be a nonnegative Borel measurable
function on R

n. Without any additional assumption, we have

(2.8)

∫
B

η
(
f(x)

)∣∣Jf (x)∣∣dx≤
∫
f(B)

η(y)dy.

This follows from the area formula for Lipschitz mappings and (2.7).

3. Lebesgue density theorem for Orlicz spaces

Let us note that a Young function such that

Φ(t)∼ tn logα(e+ t) for some α≥ 0

clearly satisfies (1.3) since

log(e+ ab)≤ log
(
(e+ a)(e+ b)

)
≤ 2 log(e+ a) log(e+ b) for every a, b≥ 0.

Lemma 3.1. Suppose that a Young function Φ satisfies (1.3). Then

H
(
‖h‖LΦ(Ω)

)
≤C

∫
supph

Φ
(∣∣h(x)∣∣)dx

for every function h ∈ LΦ(Ω).

Proof. Let us denote λ = ‖h‖LΦ(Ω). By the definition of the Luxemburg
norm and (1.3), we obtain

(3.1) 1 =

∫
Ω

Φ

(
|h(x)|
λ

)
dx≤C

∫
supph

Φ
(∣∣h(x)∣∣)Φ(

1

λ

)
dx.

Using (2.2) and (3.1), we get

H(λ) =
1

Φ( 1λ )
≤C

∫
supph

Φ
(∣∣h(x)∣∣)dx. �
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Proof of Theorem 1.3. Let us first prove (1.2) for arbitrary Φ. By the
Jensen’s inequality and the definition of the Luxemburg norm, we obtain

Φ

(
1

|B(x, r)|

∫
B(x,r)

f

‖fχB(x,r)‖LΦ

)
≤ 1

|B(x, r)|

∫
B(x,r)

Φ

(
f

‖fχB(x,r)‖LΦ

)

≤ 1

|B(x, r)| .

By (2.3), we now have

1

|B(x, r)|

∫
B(x,r)

|f | ≤ ‖fχB(x,r)‖LΦΦ−1

(
1

|B(x, r)|

)
=

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

.

Since almost every point is a Lebesgue point of density for L1 we obtain (1.2).
Now assume that our Φ satisfies (1.3) and let us prove (1.4). Let us fix

α> 0. We want to show that the measure of the set

Sα =

{
x ∈Ω : limsup

r→0+

∣∣∣∣‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− f(x)

∣∣∣∣ > 2α

}

is zero. It is easy to see that (1.4) is valid for every continuous function. The
Δ′-condition implies that our Φ satisfies the Δ2-condition (see [19, Chap-
ter 2.2]) and therefore continuous functions are dense in LΦ. Hence, we can
find g continuous such that

f(x) = g(x) + h(x) and ‖h‖LΦ(Ω) < ε.

Clearly,

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− f(x)≤
‖gχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− g(x) +
‖hχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− h(x)

and

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− f(x)≥
‖gχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− g(x)−
‖hχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

− h(x).

Since (1.4) is valid for g it is easy to see that

Sα ⊂Nα ∪Mα,

where

Nα =
{
x ∈Ω :

∣∣h(x)∣∣ ≥ α
}

and

Mα =

{
x ∈Ω : limsup

r→0+

‖hχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

>α

}
.

It is easy to estimate the measure of Nα by

(3.2) |Nα|=
1

Φ(α)

∫
N(α)

Φ(α)dx≤ 1

Φ(α)

∫
Ω

Φ
(
h(x)

)
dx.
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It remains to estimate |Mα|. Using a Besicovitch covering theorem, we
obtain balls Bi(ri) such that

Mα ⊂
⋃
i

Bi(ri),
∑
i

χBi(ri) ≤C and
‖hχBi(ri)‖LΦ

‖χBi(ri)‖LΦ

>α.

From (2.3) and the last inequality, we obtain

αH−1
(∣∣Bi(ri)

∣∣) = α‖χBi(ri)‖LΦ < ‖hχBi(ri)‖LΦ .

Using (2.2) twice and (1.3), we thus get

H
(
‖hχBi(ri)‖LΦ

)
>H

(
αH−1

(∣∣Bi(ri)
∣∣)) = 1

Φ( 1
αH−1(|Bi(ri)|) )

≥ C

Φ( 1
α )Φ(

1
H−1(|Bi(ri)|) )

=
C

Φ( 1
α )

∣∣Bi(ri)
∣∣.

Using Lemma 3.1, we now obtain that

|Mα| ≤
∑
i

∣∣Bi(ri)
∣∣ ≤CΦ

(
1

α

)∑
i

H
(
‖hχBi(ri)‖LΦ

)

≤ CΦ

(
1

α

)∑
i

∫
Bi(ri)

Φ
(∣∣h(x)∣∣)dx≤CΦ

(
1

α

)∫
Ω

Φ
(∣∣h(x)∣∣)dx.

Using this estimate and (3.2), we may use ‖h‖LΦ < ε and (2.4) to obtain

|Sα| ≤ |Nα|+ |Mα| ε→0+→ 0. �

3.1. Counterexample.

Example 3.2. Let q ≥ 1 and α< 0. Then there is f ∈ Lq logαL(0,1) such
that

lim
r→0+

‖fχB(x,r)‖Lq logα L

‖χB(x,r)‖Lq logα L
=∞ for every x ∈ (0,1).

Proof. Let us consider the Young function such that

Φ(t)∼ tq logα(t) for t≥ 2.

Let us fix 0< ε<−α and set

rk = 2−q2k2−k(α+1) 1

k1+ε

and define the function f : [0,1]→R by

f(x) = 22
k

for x ∈
[
j

2k
,
j

2k
+ rk

]
, k ∈N and j ∈

{
0,1, . . . ,2k − 1

}
.
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If the two intervals intersect for different k1 and k2 then we define f as the
bigger number. It is easy to see that f ∈ LΦ([0,1]) since∫ 1

0

Φ(f) ≤
∞∑
k=1

2krkΦ
(
22

k)

≤ C

∞∑
k=1

2k2−q2k2−k(α+1) 1

k1+ε
2q2

k

logα
(
22

k)
=

∞∑
k=1

1

k1+ε
<∞.

Now let us fix x ∈ (0,1) and pick a radius r = 2−k0 . It is not difficult to see

that Φ−1(t)∼ t
1
q log−

α
q t for large t and hence we can use (2.3) to get

(3.3) ‖χB(x,r)‖LΦ =
1

Φ−1( 1
|B(x,r)| )

≤C(2r)
1
q log

α
q

1

2r
≤C2−

k0
q k

α
q

0 .

Let us denote λ = ‖fχB(x,r)‖LΦ and we may assume that r is so small that

λ < 1. For k ≥ k0 we have at most C2k−k0 points of the type j
2k

in the interval
(x− r, x+ r). Using definition of Luxemburg norm and α < 0, we thus get

1 =

∫
B(x,r)

Φ

(
f

λ

)
≤C

∞∑
k=k0

2k−k0rkΦ

(
22

k

λ

)

≤ C

∞∑
k=k0

2−k02−kα 1

k1+ε

1

λq
logα

(
22

k

λ

)

≤ C

∞∑
k=k0

2−k02−kα 1

k1+ε

1

λq
logα

(
22

k)
=

C2−k0

λq

∞∑
k=k0

1

k1+ε
.

This inequality implies an estimate of λ which gives us

(3.4) log

(
22

k

λ

)
≤C log

(
22

k)
for each k ≥ k0.

Moreover for each k ≥ k0 we have at least C2k−k0 points of the type j
2k

in

the interval (x− r, x+ r). Further, the value 22
k

is attained on each interval

[ j
2k
, j
2k

+ rk] on a set of measure at least

rk −
∞∑

j=k+1

2j−krj ≥
rk
2
.

Using all these estimates and the definition of Luxemburg norm, we get

1 =

∫
B(x,r)

Φ

(
f

λ

)
≥C

∞∑
k=k0

2k−k0
rk
2
Φ

(
22

k

λ

)

≥ C

∞∑
k=k0

2−k02−kα 1

k1+ε

1

λq
logα

(
22

k

λ

)
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≥ C

∞∑
k=k0

2−k02−kα 1

k1+ε

1

λq
logα

(
22

k)
=

C2−k0

λq

∞∑
k=k0

1

k1+ε
.

It follows that

‖fχB(x,r)‖LΦ = λ≥C2−
k0
q k

− ε
q

0 .

Now we can use this estimate, (3.3) and ε <−α to obtain

lim
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

≥C lim
k0→∞

2−
k0
q k

− ε
q

0

2−
k0
q k

α
q

0

=C lim
k0→∞

k
− ε+α

q

0 =∞.
�

4. Stability of WLΦ under q-quasiconformal mappings

Theorem 4.1. Let Ω1,Ω2 ⊂R
n be domains, q ≥ n and let f ∈W 1,1

loc (Ω1,Ω2)
be a q-quasiconformal homeomorphism. Suppose that Φ is a Young function
such that Φ(t) = tqα(t) where

(i) α is non-decreasing,

(ii) lim
t→∞

α(t)

tδ
= 0 for every δ > 0,(4.1)

(iii) α
(
tβ

)
≤C(β)α(t) for every β ≥ 1 and t≥ 1.

Then the operator Tf is continuous from WLΦ
loc(Ω2) into WLΦ

loc(Ω1), i.e. for
every open set A⊂⊂Ω1 we have

(4.2) ‖DTfu‖LΦ(A) ≤C‖Du‖LΦ(f(A))

for every u ∈WLΦ(Ω2)∩C(Ω2) or for every u ∈WLΦ(Ω2) for q = n.

Proof. Let u ∈ WLΦ
loc(Ω2) ∩ C(Ω2) and A ⊂⊂ Ω1. By (4.1)(i) we know

u ∈W 1,q
loc (Ω2) and therefore we may use Theorem 2.1 to conclude that u ◦ f ∈

W 1,q
loc (Ω1) and

D(u ◦ f) =
(
(Du) ◦ f

)
·Df.

To obtain (4.2), it is enough to show that the modular of D(u ◦ f) is
bounded for each u such that ‖Du‖LΦ ≤ 1. We have∫

A

|Du ◦ f |qα
(
|Du ◦ f |

)
(4.3)

≤
∫
A

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx.

From Section 2.2, we know that there is p > q such that f ∈W 1,p(A,Rn). Let
us fix q < s < p and we will divide integral into two integrals over sets

U =
{
x ∈A :

∣∣Du
(
f(x)

)∣∣ ≥ ∣∣Df(x)
∣∣ s−q

q
}

and

V =
{
x ∈A :

∣∣Du
(
f(x)

)∣∣ ≤ ∣∣Df(x)
∣∣ s−q

q
}
.
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We use the definition of q-quasiconformal mappings, (4.1) and the area for-
mula (2.8) to bound the left-hand side of (4.3) by∫

U

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx

+

∫
V

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx

≤
∫
U

∣∣Du
(
f(x)

)∣∣qK∣∣Jf (x)∣∣α(∣∣Du
(
f(x)

)∣∣ s
s−q

)
dx

+

∫
V

∣∣Df(x)
∣∣sα(∣∣Df(x)

∣∣ s
q
)
dx

≤CK

∫
f(A)

(
1 +

∣∣Du(y)
∣∣qα(∣∣Du(y)

∣∣))dy+C

∫
A

(∣∣Df(x)
∣∣p + 1

)
dx.

and the result follows. �
The most important step in the proof of Theorem 1.1 and its generalization

is to show that u ◦ f ∈W 1,1
loc . This follows quite easily from known facts in

most of the cases with the exception of the important case q = n and α < 0. In
this case analogously to [9] we need to construct some approximation sequence
with the help of the following lemma.

Lemma 4.2. Let B ⊂ R
n be an open ball and suppose that u ∈W 1,1(3B).

Then for all Lebesgue points x, y ∈B of function u we have∣∣u(x)− u(y)
∣∣ ≤C(n)|x− y|

(
M |Du|(x) +M |Du|(y)

)
,

where Mh(x) denotes the Hardy–Littlewood maximal operator of h : 3B →R

Mh(x) = sup
B(x0,r)⊂3B

1

Ln(B(x0, r))

∫
B(x0,r)

∣∣h(x)∣∣dx.
Lemma 4.3. Let LΦ(A) be an Orlicz space where Φ satisfies Δ2 and ∇2

condition and let h ∈ LΦ(Ω). Then we have

lim
λ→∞

Φ(λ)Ln
({

x : Mh(x)> λ
})

= 0.

Proof. From [4], we know that the maximal operator M is continuous from
LΦ to LΦ and hence we get

Φ(λ)Ln
(
{Mh> λ}

)
=

∫
{Mh>λ}

Φ(λ)≤
∫
{Mh>λ}

Φ(Mh)→ 0. �
Lemma 4.4. Let Φ be an Young function satisfying Δ2 and ∇2 condition

and let u ∈WLΦ(B(x0,3r)). There is a sequence of functions uk with Lips-
chitz constant Ck and sequence of measurable sets Fk such that Fk ⊂ {u= uk},
Fk ⊂ Fk+1

lim
k→∞

Ln
(
B(x0, r) \ Fk

)
= 0 and uk

k→∞→ u in WLΦ
(
B(x0, r)

)
.
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Proof. Let B =B(x0, r) and for k > 0 we set

Fk =
{
x ∈B : M

(
|Du|

)
≤ k and |u| ≤ k

}
∩ {x : x is Lebesgue point of function u}.

It is easy to see that Ln(B \ Fk)
k→∞→ 0.

From Lemma 4.2 we obtain, that the mapping u is Lipschitz continuous
on Fk. By the classical McShane extension theorem, there exists a function
uk : Rn →R with Lipschitz constant Ck such that uk = u on Fk and |u| ≤ k.

Since uk is Lipschitz function, there exists a derivative almost everywhere
and we can estimate |∇uk| ≤ Ck. Additionally for this extension we have
∇uk =Du almost everywhere on Fk. Indeed, if x is a density point of Fk,
where the derivative of uk exists and the approximative differential of u is
equal to the weak derivative, then it is not difficult to show that ∇uk(x) =
Du(x).

First we prove, that the functions ∇uk converge to Du in LΦ(B):∫
B

Φ
(
|∇uk −Du|

)
=

∫
B\Fk

Φ
(
|∇uk −Du|

)
≤ C

∫
B\Fk

Φ
(
|∇uk|

)
+C

∫
B\Fk

Φ
(
|Du|

)
≤ CLn(B \ Fk)Φ(k) +C

∫
B\Fk

Φ
(
|Du|

) k→∞→ 0,

where we have used Lemma 4.3 which together with Chebychev’s inequality

easily implies Φ(k)Ln(B \ Fk)
k→∞→ 0.

Now we want to show that uk converges to u in LΦ(B).∫
B

Φ
(
|uk − u|

)
=

∫
B\Fk

Φ
(
|uk − u|

)
≤C

∫
B\Fk

Φ
(
|uk|

)
+C

∫
B\Fk

Φ
(
|u|

)
≤ C

∫
B\Fk

Φ(k) +C

∫
B\Fk

Φ
(
|u|

) k→∞→ 0,

where we have again used the estimate Φ(k)Ln(B \ Fk)
k→∞→ 0. �

Theorem 4.5. Let Ω1,Ω2 ⊂R
n be domains, 1< q ≤ n and let f ∈W 1,1

loc (Ω1,
Ω2) be a q-quasiconformal homeomorphism. Suppose that Φ is a Young func-
tion such that Φ(t) = tqα(t) where

(i) α is non-increasing,

(ii) lim
t→∞

α(t)tδ =∞ for every δ > 0,(4.4)

(iii) α
(
tβ

)
≤C(β)α(t) for every β ≤ 1 and t≥ 1.
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Then the operator Tf is continuous from WLΦ
loc(Ω2) into WLΦ

loc(Ω1), i.e. for
every open set A⊂⊂Ω1 we have

(4.5) ‖DTfu‖LΦ(A) ≤C‖Du‖LΦ(f(A))

for every u ∈WLΦ(Ω2).

Proof. Let A⊂⊂ Ω2 be an arbitrary. Suppose that we already know that
u ◦ f ∈W 1,1

loc and that

(4.6) D(u ◦ f) =
(
(Du) ◦ f

)
Df

holds. Then we can estimate the modular by∫
A

|Du ◦ f |qα
(
|Du ◦ f |

)
(4.7)

≤
∫
A

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx.

From Section 2.2, we know that there is r > 0 such that 1
|Df |r ∈ L1

loc. Let us

fix 0< s< r and define

U =

{
x ∈A :

∣∣Du
(
f(x)

)∣∣ ≥ 1

|Df(x)|
q+s
q

}
and

V =

{
x ∈A :

∣∣Du
(
f(x)

)∣∣ ≤ 1

|Df(x)|
q+s
q

}
.

We use the definition of q-quasiconformal mappings, (4.4)(iii), (ii) and the
area formula (2.8) to bound the left-hand side of (4.7) by∫

U

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx(4.8)

+

∫
V

∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(∣∣Du

(
f(x)

)∣∣∣∣Df(x)
∣∣)dx

≤
∫
U

∣∣Du
(
f(x)

)∣∣qK∣∣Jf (x)∣∣α(∣∣Du
(
f(x)

)∣∣1− q
q+s

)
dx

+

∫
V

1

|Df |sα
(
|Df |

−s
q

)
≤CK

∫
f(A)

(
1 +

∣∣Du(y)
∣∣qα(∣∣Du(y)

∣∣))dy+C

∫
A

(
1

|Df |r + 1

)

and the result follows once we verify u ◦ f ∈W 1,1
loc and (4.6).

If 1 < q < n, we obtain from Section 2.2 that |Df | > C and thus we can
use the definition of q-quasiconformal mapping to obtain that f is also 1-
quasiconformal. We know that u ∈W 1,1

loc (Ω2) and hence Theorem 2.1 implies

u ◦ f ∈W 1,1
loc (Ω1) and (4.6).



944 S. HENCL AND L. KLEPRLÍK

It remains to treat the case q = n. It is not difficult to see that our Φ
satisfies Δ2 and ∇2 condition. To obtain (4.6), we will approximate u using
the previous lemma. Let x0 ∈Ω1 and fix a ball B and r > 0 such that 3B ⊂⊂
Ω2 and f(B(x0, r)) ⊂ B. We have to show that u ◦ f ∈W 1,1(B(x0, r)). By
applying Lemma 4.4 we find a sequence uk of functions with Lipschitz constant
Ck and a sequence of measurable sets Fk ⊂B such that

uk = u on Fk, Fk ⊂ Fk+1 and lim
k→∞

Ln(Fk) = Ln(B).

Set gj = uj ◦ f for each j ∈ N. Since uj are Lipschitz functions, we obtain
from Theorem 2.1, that gj ∈W 1,1(B(x0, r)).

We will show that ∇gj is a Cauchy sequence in LΦ(B(x0, r),R
n). Let v be

a Lipschitz function. Then (4.6) holds and thanks to (4.7) and (4.8) we get∥∥D(v ◦ f)
∥∥
LΦ(Ω1)

≤C‖Dv‖LΦ(Ω2).

If we apply this estimate to the function v = uj − uk, we easily get, that the
sequence D(uj ◦ f) =Dgj is Cauchy in LΦ(B(x0, r),R

n). Hence there exists
a mapping h ∈ LΦ(B(x0, r),R

n) such that

(4.9) Dgj
j→∞→ h in LΦ

(
B(x0, r),R

n
)
.

By [15], we know that our mapping f satisfies Luzin (N−1) condition, that
is, f−1 maps sets of zero measure onto sets of zero measure. Since Ln(B \Fj)
converge to 0, we obtain, that sets Aj :=B(x0, r)∩ f−1(Fj) satisfy

lim
j→∞

Ln(Aj) = Ln

(
B(x0, r)∩ f−1

( ∞⋃
j=1

Fj

))

= Ln

(
B(x0, r) \ f−1

(
B

∖ ∞⋃
j=1

Fj

))

= Ln
(
B(x0, r)

)
.

Hence, we can find j0 such that Ln(Aj0)≥ 1
2Ln(B(x0, r)). From the definition

of gj we have gj(x) = u ◦ f(x) for all x ∈Aj0 , and hence gj(x)− gi(x) = 0 on
Aj0 for all i, j ≥ j0. Denote g = gi−gj . It follows from the Poincaré inequality,
gAj0

= 0 and Ln(Aj0)≥ 1
2Ln(B(x0, r)) that∫

B(x0,r)

|gi − gj |

=

∫
B(x0,r)

|g|=
∫
B(x0,r)

∣∣g(x)− gAj0

∣∣dx
≤

∫
B(x0,r)

∣∣g(x)− gB(x0,r)

∣∣dx+Ln
(
B(x0, r)

)
|gAj0

− gB(x0,r)|
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≤C(n)r

∫
B(x0,r)

|∇g|+ Ln(B(x0, r))

Ln(Aj0)

∫
Aj0

∣∣g(x)− gB(x0,r)

∣∣dx
≤C(n, r)

∫
B(x0,r)

|∇g|=C(n, r)

∫
B(x0,r)

|∇gj −∇gi|.

Since {∇gj} is a Cauchy sequence in L1(B(x0, r),R
n) we obtain that {gj}

is a Cauchy sequence in L1(B(x0, r)). And due to convergence of gj to u ◦
f in points of

⋃∞
j=1Aj , that is, almost everywhere, we have gj → u ◦ f in

L1(B(x0, r)). The definition of the weak derivative gives us∫
B(x0,r)

∇gj(x)φ(x) =−
∫
B(x0,r)

gj(x)∇φ(x)

for each function φ ∈C∞(B(x0, r)) with compact support. Since ∇gj → h in
L1(B(x0, r),R

n) and gj → u ◦ f in L1(B(x0, r)), by passing j to infinity we
get

(4.10)

∫
B(x0,r)

h(x)φ(x) =−
∫
B(x0,r)

u ◦ f(x)∇φ(x).

This means, that h is the weak gradient of u ◦ f on B(x0, r) and hence u ◦ f ∈
W 1,1

loc .
It remains to show that the familiar formula (4.6) holds a.e. in Ω1. Our

f satisfies Luzin (N−1) condition and hence ∇uk(f(x)) is well defined a.e.
in B(x0, r). Passing to a subsequence (still denoted as uk), we may assume
that ∇uk(x)→Du(x) on B \N , where N is a Borel measurable set of zero
measure. It easily follows that

(4.11) ∇uk

(
f(x)

)
Df(x)

k→∞→ Du
(
f(x)

)
Df(x)

on B(x0, r) \ f−1(N), that is, almost everywhere. From (4.9) and (4.10), we
know that D(uk ◦ f) = ∇uk ◦ f ·Df converges to D(u ◦ f). The condition
(4.6) a.e. now follows easily. �

Remark 4.6. For q > n it is not necessary to assume (iii) in (4.1). In this
case, we know that |Df |<C and hence we may estimate (4.3) by

(4.12)

∫ ∣∣Du
(
f(x)

)∣∣q∣∣Df(x)
∣∣qα(

C
∣∣Du

(
f(x)

)∣∣)dx
and we can finish similarly to the estimate on U .

Analogously for 1< q < n it is not necessary to assume (iii) in (4.4). We
know that |Df |>C and α is nonincreasing so we can again estimate by (4.12).

Proof of Theorem 1.1. The result follows from Theorem 4.1 and Theo-
rem 4.5. �
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5. Necessity of q-quasiconformal mappings

In this section, we will use ideas of Gold’stein, Gurov and Romanov [5].
They proved that a homeomorphism F : Ω → R

n which induces a bounded
operator from W 1,q(Ω2) to W 1,q(Ω1) is a q-quasiconformal mapping (see [5]
for details and [6] for history of similar problems).

Lemma 5.1. Suppose that a homeomorphism f : Ω1 → Ω2 induces the op-
erator Tf : WLΦ(Ω2)→WLΦ(Ω1), then f is in WLΦ

loc(Ω1). If we moreover
assume that LΦ

loc(Ω1) is embedded into Lp
loc(Ω1) for some p > n− 1, then f is

differentiable a.e.

Proof. Fix R> 0. Mapping f is a homeomorphism and therefore the set

AR :=
{
x ∈Ω1 : f(x) ∈B(0,R)

}
= f−1

(
B(0,R)

)
is open. Fix 1≤ i≤ n. Plainly there is a Lipschitz function u : Ω2 → R such
that

u(x) =

{
xi for x ∈Ω2, |x|<R

0 for x ∈Ω2, |x|>R+ 1.

Hence, u ∈ W 1,∞
loc (Ω2) ⊂ WLΦ

loc(Ω2) implies Tf (u) = u ◦ f ∈ WLΦ
loc(Ω1). If

|f(x)|<R, then u ◦ f = fi(x) and thus fi(x) ∈WLΦ(AR).

It is well known that each homeomorphism in the Sobolev space W 1,p
loc is

differentiable a.e. if p > n− 1 (see, e.g., [18]). From the embedding of LΦ
loc

into Lp
loc, we thus obtain that f is differentiable a.e. �

In the proof of Theorem 5.3, we will need the following elementary lemma
[5, Lemma 3.5].

Lemma 5.2. Let f : Ω→R
n be a continuous mapping and G⊂R

k. Suppose
that {Ky}y∈G is a family of pairwise disjoint compact sets such that Ky ⊂
f(Ω). Then Ln(f−1(Ky)) = 0 for all y ∈G except possibly a countable subset
of G.

Theorem 5.3. Let q ≥ 1 and suppose that Φ is a Young function such that

(5.1) lim inf
s→∞

Φ−1(s)

Φ−1(Ks)
≤CK− 1

q for every K > 0.

Suppose that a homeomorphism f : Ω1 → Ω2 induces the bounded operator
Tf : WLΦ(Ω2)→WLΦ(Ω1), then

(5.2)
∣∣Dfj(x0)

∣∣q ≤Cf ′
v(x0) for almost all x0 ∈Ω1.

If we moreover assume that f is differentiable a.e., then f is q-quasiconformal.
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Proof. By Theorem 2.3, we know that f ′
v(x)<∞ a.e. Fix ε > 0 and a point

x0 ∈Ω1 such that f ′
v(x0)<∞. There is r0 such that for all r ∈ (0, r0) we have

(5.3)
∣∣f(

B(x0,2r)
)∣∣ ≤ (

f ′
v(x0) + ε

)∣∣B(x0,2r)
∣∣= (

f ′
v(x0) + ε

)
2n|B(x0, r)|.

Set M = (f ′
v(x0) + ε)2n. Let us call a cube Qh-regular if all its edges are

parallel to the coordinate axes, the length of the edge is h and every vertex
has the form [k1h,k2h, . . . , knh] where k1, k2, . . . , kn are integers. Fix r < r0
and choose h > 0 such that

h <
1

2
√
n
dist

(
f
(
S(x0,2r)

)
, f

(
S(x0, r)

))
.

Let A be the union of all h-regular cubes Q such that Q∩ f(B(x0, r)) �= ∅. It
is evident that

f
(
B(x0, r)

)
⊂A⊂ f

(
B(x0,2r)

)
.

Fix j ∈ {1, . . . , n} and let us focus on the jth coordinate. Denote the hyper-
planes xj = th by Lt. The hyperplanes Lm (m is an integer) divide R

n into
the layers

Zm =
{
x ∈R

n : mh< xj < (m+ 1)h
}
.

Put Am = Zm ∩A.
For every Am , we construct three functions:

ψm,1 = xj −mh, ψm,2 = (m+ 1)h− xj ,

ψm,3 =
h

2
− dist

(
Pj(x), Pj(Am)

)
.

Here Pj : R
n →R

n−1
j is the orthogonal projection of Rn onto R

n−1
j . Consider

the functions

ψm =max
{
0,min{ψm,1, ψm,2, ψm,3}

}
and ψ =

∑
m

ψm.

Put E = {x ∈ G : ψ(x) is not differentiable at the point x}. It follows from
the definition of ψ that

(1) supp(ψ)⊂ f(B(x0,2r));
(2) ψ is Lipschitz with constant 1;
(3) ψ ∈WLΦ(f(Ω));
(4) ψ is differentiable almost everywhere;
(5) ψ(x) =±xj + const in all components of the set f(B(x0, r)) \E.

The set E ∩ f(B(x0, r)) belongs to a union of hyperplanes Lt1 ,Lt2 , . . . ,Lts

where 2ti is an integer. By Lemma 5.2 for almost all small translations τy
parallel to the axis xj , we have∣∣∣∣∣f−1

(
τy

( ∞⋃
i=−∞

L i
2

)
∩ f

(
B(x0, r)

))∣∣∣∣∣ = 0.
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Thus we can assume without loss of generality that

(5.4)
∣∣f−1

(
E ∩ f

(
B(x0, r)

))∣∣ = 0.

Otherwise it is possible to change the jth coordinate of the point [0,0, . . . ,0]
at the beginning of the construction of ψ.

By the assumption of the theorem Tf (ψ) = ψ ◦ f ∈WLΦ(Ω1). It follows
from (5) and (5.4) that

(ψ ◦ f)(x) =±fj(x) + const

for almost all x ∈B(x0, r). This fact and the continuity of Tf give us

‖Dfj‖LΦ(B(x0,r)) =
∥∥D(ψ ◦ f)

∥∥
LΦ(B(x0,r))

≤C‖Dψ‖LΦ(f(B(x0,2r)))

≤ C‖1‖LΦ(f(B(x0,2r))),

because ψ is Lipschitz with constant 1 and supported in f(B(x0,2r)). Hence,
we can use (2.3), (5.3) and (5.1) to obtain

lim inf
r→0+

‖Dfj‖LΦ(B(x0,r))

‖1‖LΦ(B(x0,r))

≤ C lim inf
r→0+

‖1‖LΦ(f(B(x0,2r)))

‖1‖LΦ(B(x0,r))

≤ C lim inf
r→0+

Φ−1( 1
|B(x0,r)| )

Φ−1( 1
|f(B(x0,2r))| )

≤ C lim inf
r→0+

Φ−1( 1
|B(x0,r)| )

Φ−1( 1
M |B(x0,r)| )

≤CM
1
q .

Theorem 1.3 now gives us∣∣Dfj(x0)
∣∣ ≤CM

1
q =C

(
f ′
v(x0) + ε

) 1
q

for almost all x0 ∈ Ω and by letting ε→ 0 we obtain (5.2). If we know that
f is differentiable a.e., we may use Theorem 2.3 to conclude that f is q-
quasiconformal. �

Proof of Theorem 1.2. We know that Φ(t)∼ tq logα(e+ t) for large t and
thus

Φ−1(s)∼ s
1
q log−

α
q (e+ s)

for large values of s. Therefore, we obtain

lim
s→∞

Φ−1(s)

Φ−1(Ks)
≤CK− 1

q lim
s→∞

(
log(e+ s)

log(e+Ks)

)−α
q

=CK− 1
q

and the statement now follows easily from Theorem 5.3. The requirement
that f is differentiable a.e. for q > n− 1 is verified by Theorem 5.1 and for
q ≤ n− 1 we have assumed it. �
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6. Construction of examples

In the theory of n-quasiconformal mappings or their generalization one
often uses a radial stretching f(x) = x

|x|ρ(|x|) as a counterexample. This f

maps spheres of radius r to spheres of radius ρ(r) (or cubes to cubes if | · |
denotes maximum norm). However, these maps are too symmetric and thus
not critical for q-quasiconformal maps. Instead we need to use mappings that
map rectangles to rectangles and are inspired by some construction from [11,
Section 5].

6.1. Canonical transformation. If c ∈R
n, a, b > 0, we use the notation

Q(c, a, b) := [c1 − a, c1 + a]× · · · × [cn−1 − a, cn−1 + a]× [cn − b, cn + b]

for the interval with center at c and halfedges a in the first n− 1 coordinates
and b in the last coordinate. If Q=Q(c, a, b), the affine mapping

ϕQ(y) = (c1 + ay1, . . . , cn−1 + ayn−1, cn + byn)

is called the canonical parametrization of the interval Q. Let P , P ′ be concen-
tric intervals, P =Q(c, a, b), P ′ =Q(c, a′, b′), where 0< a< a′ and 0< b < b′.
We set

ϕ
P,P ′(t, y) = (1− t)ϕ

P
(y) + tϕ

P ′(y), t ∈ [0,1], y ∈ ∂[−1,1]n.

This mapping is called the canonical parametrization of the rectangular an-
nulus P ′ \ P ◦, where P ◦ is the interior of P .

Now, we consider two rectangular annuli, P ′ \P ◦, and P̃ ′ \ P̃ ◦, where P =

Q(c, a, b), P ′ =Q(c, a′, b′), P̃ =Q(c̃, ã, b̃) and P̃ ′ =Q(c̃, ã′, b̃′), The mapping

h= ϕ
P̃ ,P̃ ′ ◦ (ϕP,P ′)

−1

is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦.
We will need the estimate of the derivate of h on P ′ \ P ◦. Let us assume

that

(6.1) a′ ≤C0a, ã′ ≤C0ã, b′ ≤C0b and b̃′ ≤C0b̃.

It can be computed (see [11, Section 5] for details) that

(6.2)
∣∣Dh(x)

∣∣ ∼max

{
ã′

a′
,
b̃′ − b̃

b′ − b

}
and Jh(x)∼

(
ã′

a′

)n−1
b̃′ − b̃

b′ − b

for a.e. x in parts A of Figure 1 and similarly we get that

∣∣Dh(x)
∣∣ ∼max

{
(n− 2)

ã′

a′
,
ã′ − ã

a′ − a
,
b̃′

b′

}
and

(6.3)

Jh(x) ∼
(
ã′

a′

)n−2
ã′ − ã

a′ − a

b̃′

b′
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�
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�

�
� P ′

PA A

B

B

�h

�
�

�
�

�
�

�
� P̃ ′

P̃

Figure 1. The canonical transformation of P ′ \P ◦ onto P̃ ′ \
P̃ ◦ for n= 2.

for a.e. x in parts B of Figure 1. All the constants involved depend only on
the dimension n and the constant C0 from (6.1). Moreover, we can easily
estimate the volume of these sets as

(6.4) Ln(A)∼
(
a′

)n−1(
b′ − b

)
and Ln(B)∼

(
a′

)n−2(
a′ − a

)
b′.

Example 6.1. Let q < n and α > 0. Then there is a q-quasiconformal
homeomorphism f ∈W 1,q((−1,1)n, (−1,1)n) such that f /∈WLq logαLloc. It
follows that the composition with the identity mapping u(x) = x satisfies
u ◦ f /∈WLq logαLloc.

Proof. If q = 1, then we set

f(x1, x2, . . . , xn) =

(
g(|x1|) sgnx1

g(1)
, x2, . . . , xn

)
,

where

g(s) =

∫ s

0

1

t log1+
α
2 t

2

dt.

It is easy to see that f is 1-quasiconformal and |Df | /∈ L1 logαLloc.
Suppose now that 1< q < n. Set

β = 1, γ =
q− 1

n− 1
, δ =

α

2
,

(6.5)

ζ =
1+ α− qδ

n− 1
, η =

δ(q− 1)− 1

n− 1
+ ζ.

With the help of (6.5), it is not difficult to verify that

β(q− 1)− γ(n− 1) = 0,

δ(q− 1) + (ζ − η)(n− 1)− 1 = 0,(6.6)

δq+ ζ(n− 1)− α = 1.
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Let us set

ak =
1

(k+ 1)γ logζ(e+ k)
, bk =

1

(k+ 1)β
,

ãk =
1

logη(e+ k)
and b̃k =

1

logδ(e+ k)
.

Our mapping f will be defined as the corresponding canonical transformation
from

Pk :=Q(0, ak, bk) \Q(0, ak+1, bk+1) onto Q(0, ãk, b̃k) \Q(0, ãk+1, b̃k+1)

for every k ∈ N0. It is easy to check that f is a homeomorphism, absolutely
continuous on almost all lines parallel to coordinate axes and differentiable
a.e. To get our conclusion, it is now enough to show that the corresponding
integrals of the derivative are finite or infinite.

Clearly,

1

(k+ 1)ω logη(e+ k)
− 1

(k+ 2)ω logη(e+ k+ 1)
∼ 1

(k+ 1)ω+1 logη(e+ k)

and
1

logω(e+ k)
− 1

logω(e+ k+ 1)
∼ 1

(k+ 1) logω+1(e+ k)

for every ω > 0. From (6.5), we obtain that γ < β and hence we can use (6.2)
and (6.3) to estimate

(6.7)
∣∣Df(x)

∣∣ � (k+ 1)β

logδ(e+ k)
and Jf ∼

(
(k+ 1)γ

logη−ζ(e+ k)

)n−1
(k+ 1)β

logδ+1(e+ k)

for a.e. x ∈ Pk. Note that the value of constant C0 in (6.1) does not depend
on k and thus the constants in � and ∼ above are independent of k. Now we
may use (6.6) to obtain

(6.8) Kq(x) =
|Df(x)|q
Jf (x)

� (k+ 1)β(q−1)−γ(n−1)

logδ(q−1)+(ζ−η)(n−1)−1(e+ k)
= 1.

From (6.4), we know that

(6.9) Ln(Pk)∼
1

(k+ 1)(n−1)γ+β+1 logζ(n−1)(e+ k)

and thus we use (6.7) and (6.6) to obtain∫
Q(0,a1,b1)

|Df |q dx �
∞∑
k=0

∫
Pk

|Df |p dx

�
∞∑
k=0

1

(k+ 1)(n−1)γ+β+1 logζ(n−1)(e+ k)

(k+ 1)βq

logδq(e+ k)

�
∞∑
k=0

1

(k+ 1) log1+α(e+ k)
<∞.
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It follows that f ∈ W 1,q and by (6.8) we know that f is q-quasiconformal
mapping. Note that in (6.7) we have not only � (on both parts A and B in
Figure 1) but also ∼ on a set of measure comparable to (6.9) (on part A).
Hence, analogously as above we may use (6.6) to get∫

Q(0,a1,b1)

|Df |q logα
(
e+ |Df |

)
∼

∑
k∈N0

logα(e+ k)

(k+ 1) logδq+ζ(n−1)(e+ k)

=
∑
k∈N0

1

(k+ 1) log(e+ k)
=∞.

�

Example 6.2. Let q > n and α < 0. There are q-quasiconformal homeo-
morphism f ∈W 1,1((−1,1)n, (−1,1)n) and u ∈WLq logαL((−1,1)n, (−1,1)n)
such that u ◦ f /∈WLq logαLloc.

Proof. Set

A =
1

n− 1
, B =

1− α

q− 1
, H =

q− 1− α

q− 1
,

(6.10)
E =

−α

2q
, γ = q− 1 and δ = n− 1.

With the help of (6.10) and it is not difficult to verify that

(n− 1)γ − (q− 1)δ = 0,

q− 1−H(q− 1)−A(n− 1) +B(q− 1) = 0,
(6.11)

A(n− 1)−B(q− 1) + qE < 0,

qE −H(q− 1) + q− α > 1.

Let us set

ak =
1

logA(e+ k)
, bk =

1

logB(e+ k)
,

(6.12)
ãk =

1

(k+ 1)γ
and b̃k =

1

(k+ 1)δ logH(e+ k)
.

Our mapping f will be defined as the corresponding canonical transformation
from

Pk :=Q(0, ak, bk) \Q(0, ak+1, bk+1)

onto

P̃k :=Q(0, ãk, b̃k) \Q(0, ãk+1, b̃k+1)

for every k ∈ N0. It is easy to check that f is a homeomorphism, absolutely
continuous on almost all lines parallel to coordinate axes and differentiable
a.e.
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From (6.10), we obtain γ > δ and hence analogously to the previous exam-
ple we can use (6.2) and (6.3) to estimate

∣∣Df(x)
∣∣ � logB+1−H(e+ k)

(k+ 1)δ
and

(6.13)

Jf ∼
(
logA(e+ k)

(k+ 1)γ

)n−1
logB+1−H(e+ k)

(k+ 1)δ

for a.e. x ∈ Pk. In fact it is easy to see that for every x ∈ (−ak+1, ak+1)
n−1 ×

(bk+1, bk) we have

(6.14)

∣∣∣∣∂f(x)∂xn

∣∣∣∣∼ logB+1−H(e+ k)

(k+ 1)δ
.

Now we may use (6.11) to obtain

(6.15) Kq(x) =
|Df(x)|q
Jf (x)

� logq−1−H(q−1)−A(n−1)+B(q−1)(e+ k)

(k+ 1)δ(q−1)−γ(n−1)
= 1.

By (6.4) we get

(6.16) Ln(Pk)∼
1

(k+ 1) log1+(n−1)A+B(e+ k)

and thus we use (6.13) and (6.11) to obtain∫
Q(0,a1,b1)

|Df |q dx

�
∞∑
k=0

1

(k+ 1) log1+(n−1)A+B(e+ k)

log(B+1−H)q(e+ k)

(k+ 1)δq
<∞.

It follows that f ∈W 1,q and by (6.15) we know that f is q-quasiconformal
mapping.

It is easy to see that for every k ∈ N we can construct a function uk such
that

(i) uk ∈W 1,∞
0

(
[−2ãk,2ãk]

n−1 × [b̃k+1, b̃k]
)
,

(ii) |Duk| ≤
(k+ 1)δ

logE−H+1(e+ k)
,

(6.17)

(iii)
∂u

∂xn
=± (k+ 1)δ

logE−H+1(e+ k)
a.e. on [−ãk, ãk]

n−1 × [b̃k+1, b̃k],

(iv)
∂u

∂xj
= 0, j = 1, . . . , n− 1 on [−ãk, ãk]

n−1 × [b̃k+1, b̃k].

We set

u=

∞∑
k=1

uk(x).
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With the help of (6.11) and (6.12) this implies that u ∈WLq logαL since∫
Rn

|Du|q logα |Du|

=

∞∑
k=1

∫
[−2ãk,2ãk]n−1×[b̃k+1,b̃k]

|Du|q logα
(
|Du|

)

�
∞∑
k=1

1

k(n−1)γ+δ+1 logH(e+ k)

(k+ 1)qδ

logq(E−H+1)(e+ k)
logα(e+ k)

=
∞∑
k=1

1

k logH+(E−H+1)q−α(k)
<∞.

It is easy to see that

[−ãk, ãk]
n−1 × [b̃k+1, b̃k]⊃ f

(
[−ak+1, ak+1]

n−1 × [bk+1, bk]
)

and on [−ak+1, ak+1]
n−1 × [bk+1, bk] we have with the help of (6.14) and

(6.17)(iii) that∣∣∣∣ ∂

∂xn
(u ◦ f)(x)

∣∣∣∣ =
∣∣∣∣∂u(f(x))∂xn

· ∂f(x)
∂xn

∣∣∣∣∼ logB−E(e+ k).

Together with (6.12), this gives us∫ ∣∣D(u ◦ f)
∣∣q logα∣∣D(u ◦ f)

∣∣
≥

∞∑
k=1

∫
[−ak+1,ak+1]n−1×[bk+1−bk]

∣∣∣∣∂u ◦ f
∂xn

∣∣∣∣
q

logα
(∣∣∣∣∂u ◦ f

∂xn

∣∣∣∣
)

�
∞∑
k=1

1

(k+ 1) log1+(n−1)A+B(e+ k)
log(B−E)q(e+ k) logα

(
log(e+ k)

)
.

From (6.11), we easily see that this sum diverges. �

References

[1] K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and qua-

siconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton
University Press, Princeton, NJ, 2009. MR 2472875

[2] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wis-
senschaften, vol. 153, Springer-Verlag, New York, 1969 (Second edition 1996).
MR 0257325

[3] F. Farroni and R. Giova, Quasiconformal mappings and exponentially integrable func-
tions, Studia Math. 203 (2011), 195–203. MR 2784024

[4] D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal
operator, Israel J. Math. 67 (1989), no. 1, 95–108. MR 1021364

[5] V. Gold’stein, L. Gurov and A. Romanov, Homeomorphisms that induce monomor-

phisms of Sobolev spaces, Israel J. Math. 91 (1995), 31–60. MR 1348304

http://www.ams.org/mathscinet-getitem?mr=2472875
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2784024
http://www.ams.org/mathscinet-getitem?mr=1021364
http://www.ams.org/mathscinet-getitem?mr=1348304


COMPOSITION AND ORLICZ–SOBOLEV SPACES 955

[6] V. Gold’stein and Y. G. Reshetnyak, Quasiconformal mappings and Sobolev spaces,
Kluwer Academic Publishers, Dordrecht, 1990. MR 1136035

[7] S. Hencl, Absolutely continuous functions of several variables and quasiconformal map-
pings, Z. Anal. Anwendungen 22 (2003), no. 4, 767–778. MR 2036929
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