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A NOTE ON UNITAL FULL AMALGAMATED FREE
PRODUCTS OF RFD C*-ALGEBRAS

QIHUI LI AND JUNHAO SHEN

Abstract. In the paper, we consider the question whether a uni-
tal full amalgamated free product of RFD (residually finite di-
mensional) C*-algebras is RFD again. One example shows that

the answer to the general case is no. We give a necessary and suf-
ficient condition such that a unital full amalgamated free product

of RFD C*-algebras with amalgamation over a finite dimensional

C*-algebra is RFD. Applying this result, we conclude that a uni-
tal full free product of two same RFD C*-algebras with amalga-
mation over a finite-dimensional C*-algebra is always RFD.

1. Introduction

A C*-algebra is said to be residually finite-dimensional (RFD) if it has a
separating family of finite-dimensional representations. Also this property is
inherited by subalgebras. Choi [6] showed that the full C*-algebra of the free
group on two generators is RFD. Later Exel and Loring showed that the uni-
tal full free product of two unital RFD C*-algebras is RFD [8]. In the same
paper, they gave several equivalent conditions for the RFD property. Arm-
strong, Dykema, Exel and Li [1] characterized the RFD property of unital full
amalgamated free products of finite dimensional C*-algebras, which extends
an earlier result by Brown and Dykema [4].

In this paper, we are interested in the question whether a unital full free
product of two RFD C*-algebras with amalgamation over a common C*-
algebra is, again, an RFD C*-algebra. One example (see Example 2.1) is
given to show that the answer to this general question is no. But an affirmative
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answer was given by Exel and Loring [8] when the common C*-subalgebra in a
unital full amalgamated free product of RFD algebras is *-isomorphic to a full
matrix algebra. In fact, a similar result holds when we consider MF algebras
and quasidiagonal C*-algebras (for more information about MF algebras and
quasidiagonal C*-algebras, we refer the reader to [2], [5]).

When the common C*-subalgebra is a finite-dimensional C*-algebra, we
are able to provide a necessary and sufficient condition such that a unital full
amalgamated free product of RFD C*-algebras is RFD again. More specifi-
cally, we conclude that a unital full free product of two same RFD C*-algebras
with amalgamation over a finite-dimensional C*-algebra is always RFD.

A brief overview of this paper is as follows. In Section 2, we recall the
definition of unital full amalgamated free product of unital C*-algebas. We
show that a unital full amalgamated free product of unital RFD (or MF,
quasidiagonal) C*-algebras is RFD (or MF, quasidiagonal) when the overlap
C*-algebra is *-isomorphic to a full matrix algebra. One example is given at
the end of the section to show that a unital full amalgamated free product of
RFD (or MF, quasidiagonal) C*-algebras may not be RFD (or MF, quasidi-
agonal) again. Section 3 is devoted to results on unital full free products of
RFD C*-algebras with amalgamation over finite-dimensional C*-algebras.

2. Definitions and preliminaries

Recall the definition of full amalgamated free product of unital C*-algebras
as follows.

Definition 1. Given C*-algebras A, B and D with unital embeddings
(injective ∗-homomorphisms) ψA : D→A and ψB : D→B, the corresponding
full amalgamated free product C*-algebra is the C*-algebra C, equipped with
unital embeddings σA : A→C and σB : B→ C such that σA ◦ ψA = σB ◦ ψB,
such that C is generated by σA(A)∪ σB(B) and satisfying the universal prop-
erty that whenever E is a C*-algebra and πA : A→E and πB : B→ E are
∗-homomorphisms satisfying πA ◦ ψA = πB ◦ ψB, there is a ∗-homomorphism
π : C → E such that π ◦ σA = πA and π ◦ σB = πB. The full amalgamated free
product C*-algebra C is commonly denoted by A ∗

D
B.

When D =CI , the above definition is the unital full free product A ∗
C

B of

A and B. The following result can be found in [11]. But we offer a new proof,
which is perhaps more elementary.

Theorem 1. Suppose that A, B and D are unital C*-algebras. Then

(A⊗maxD) ∗
D
(B⊗maxD)∼=

(
A∗

C

B
)
⊗max D.

Proof. Let IA and IB be the identity in A and B, respectively. From the
definition of unital full free product, we can get two natural unital embeddings

π1 : A⊗maxD→
(
A∗

C

B
)
⊗max D
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and
π2 : B⊗maxD→

(
A∗

C

B
)
⊗max D

from A⊗maxD and B⊗maxD into (A∗
C

B) ⊗max D, respectively. It is clear

that the restrictions of π1 on IA ⊗D and π2 on IB ⊗D agree, i.e., π1|IA⊗D =
π2|IB⊗D. Suppose K is a C*-algebra acting on a Hilbert space H such that
there are two *-homomorphisms q1 : A⊗maxD→K and q2 : B⊗maxD→K
satisfying q1|IA⊗D = q2|IB⊗D. Then q1(A⊗ ID) commutes with q1(IA ⊗D) in
K and q2(B⊗ ID) commutes with q2(IB ⊗D) in K. Let

M=K∩
(
q1(IA ⊗D)

)′
=K∩

(
q2(IB ⊗D)

)′
.

Since q1(A⊗ ID) and q2(B⊗ ID) are both subalgebras of C*-algebra M, there
is a *-homomorphism q̃ : A∗

C

B→M by the definition of unital full free prod-

uct. Moreover, the image q̃(A ∗
C

B) of A ∗
C

B under q̃ commutes with q1(IA⊗D)

in K. From the definition of maximal C*-norm on tensor product of two C*-
algebras, there is a *-homomorphism

q :
(
A∗

C

B
)
⊗max D→K.

such that q ◦π1 = q1 and q ◦π2 = q2. The desired conclusion now follows from
the definition of full amalgamated free products of unital C*-algebras. �

Combining the following lemma and preceding result, we are able to obtain
a result about unital full amalgamated free products of RFD C*-algebras,
which can be also found in [8].

Lemma 1 (Theorem 3.2, [8]). Suppose A1 and A2 are unital C*-algebras.
Then the unital full free product A=A1 ∗

C

A2 is RFD if and only if A1 and

A2 are both RFD.

Proposition 1 (Corollary 3.3, [8]). Let A and B be unital C*-algebras. If
D can be embedded as a unital C*-subalgebra of A and B respectively, and D
is *-isomorphic to a full matrix algebra Mn(C) for some integer n, then the
unital full amalgamated free product A ∗

D
B is RFD if and only if A and B are

both RFD.

Proof. If A ∗
D
B is a unital RFD algebra, then it is easy to see that A and

B are both RFD. On the other hand, since D is *-isomorphic to a full matrix
algebra, from Lemma 6.6.3 in [10], it follows that A∼=A′ ⊗D and B ∼= B′ ⊗D
where A′ and B′ are C*-subalgebras of A and B, respectively. Therefore, A′

and B′ are RFD as well. Then the desired conclusion follows from Theorem 1
and Lemma 1. �

If a separable C*-algebra A can be embedded into C*-algebra∏
k

Mnk
(C)

/∑
k

Mnk
(C)
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for a sequence of positive integers {nk}∞k=1, then A is called an MF algebra.
This concept was first introduced by Blackadar and Kirchberg in [2]. The
class of MF algebras contains all separable RFD C*-algebras and separable
quasidiagonal C*-algebras. Note that a separable C*-algebra is RFD if and
only if it can be embedded into

∏
kMnk

(C) for a sequence of positive integers
{nk}∞k=1.

Remark 1. Since a unital full free product of quasidiagonal C*-algebras
(or MF algebras) is quasidiagonal (or MF) (see [3], [9]), Proposition 1 can be
stated and proved when we consider unital MF algebras or unital quasidiag-
onal C*-algebras.

Remark 2. Armstrong, Dykema, Exel and Li [1] showed that, for unital
inclusions of C*-algebras A⊇D ⊆B with A and B finite dimensional, A ∗

D
B

is RFD if and only if there are faithful tracial states τA on A and τB on B
whose restrictions on D agree. Combining this result and the fact that each
RFD C*-algebra has a faithful tracial state, it is not hard to see that A ∗

D
B

is RFD if and only if A ∗
D
B has a faithful tracial state in this case.

The following example shows that a full amalgamated free product of two
RFD (or MF, quasidiagonal) algebras may not be RFD (or MF, quasidiagonal)
again, even for a unital full free product of two full matrix algebras with
amalgamation over a two dimensional C*-algebra which is *-isomorphic to
C⊕C.

Example 1. Let C*-algebra D =C⊕C. Suppose that ϕ1 : D→M2(C)
and ϕ2 : D→M3(C) are unital embeddings such that

ϕ1(1⊕ 0) =

(
1 0
0 0

)
and ϕ2(1⊕ 0) =

⎛
⎝1 0 0
0 0 0
0 0 0

⎞
⎠ .

Then M2(C) ∗DM3(C) is not MF algebra (therefore it is not RFD or qua-

sidiagonal). Actually, if we assume that M2(C) ∗DM3(C) is an MF algebra,

then there exists a tracial state τ on M2(C) ∗DM3(C). So the restrictions of

τ on M2(C) and M3(C) are the unique tracial states on M2(C) and M3(C)
,respectively. It follows that τ(ϕ1(1⊕ 0)) = 1

2 �= τ (ϕ2(1⊕ 0)) = 1
3 which con-

tradicts to the fact that ϕ1(1⊕ 0) = ϕ2(0⊕ 1) in M2(C) ∗DM3(C). Therefore,

M2(C) ∗DM3(C) is not MF.

3. Full amalgamated free products of RFD C*-algebras

Throughout this section, we will only be concerned with separable C*-
algebras and representations on separable Hilbert spaces. First, we will give
the following well-known lemma. For completeness, we include the proof.
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Lemma 2. Given 0< ε< 1 and n ∈N. For any two families of n pairwise
orthogonal projections {P1, . . . , Pn} and {Q1, . . . ,Qn} in n-dimensional unital
abelian C*-subalgebras A and B in B(H) with ‖Pi −Qi‖< ε

n+1 (i= 1, . . . , n),

there is a unitary U ∈ B(H) with ‖U − I‖ < ε such that UPiU
∗ = Qi for

1≤ i≤ n.

Proof. Define X =
∑n

i=1QiPi. Let δ =
ε

n+1 . It is clear that

n∑
i=1

Pi =
∑
i=1

Qi = I.

Since ‖Pi −Qi‖< δ and Pi −Qi is self-adjoint for each i, we have that Qi −
Pi + δ ≥ 0. It follows that Qi ≥ Pi − δ and

X∗X =
n∑

i=1

PiQiPi ≥
n∑

i=1

Pi(Pi − δ)Pi

=

n∑
i=1

Pi −
n∑

i=1

δPi = (1− δ)I > 0.

Therefore, X is invertible and ‖X∗X‖ ≥ 1− δ. Assume that X = U |X| is the
polar decomposition of X where |X|= (X∗X)

1
2 and U is a partial isometry.

Since X is invertible, U is a unitary. So it is not hard to see that

∥∥|X|−1 − I
∥∥≤

(
1

1− δ

)1/2

− 1.

Meanwhile, we have ‖X∗X‖ ≤ 1 from the construction of X and the fact
that {P1, . . . , Pn} and {Q1, . . . ,Qn} are two families of n pairwise orthogonal
projections, respectively. Therefore, we have that

‖U − I‖ ≤ ‖U −X‖+ ‖X − I‖

≤ ‖X‖
∥∥|X|−1 − I

∥∥+

∥∥∥∥∥
n∑

i=1

(Qi − Pi)Pi.

∥∥∥∥∥
≤

((
1

1− δ

)1/2

− 1

)
+ nδ < (n+ 1)δ = ε.

Since X =
∑n

i=1QiPi, it is easy to see QiX =XPi for 1≤ i≤ n, then Pi|X|=
|X|Pi as well. So

UPi =X|X|−1Pi =XPi|X|−1 =QiX|X|−1 =QiU.

Therefore, UPiU
∗ =Qi for 1≤ i≤ n as desired. �

The following lemma is a useful result concerning the representations of
separable C*-algebras. First, we need to recall that the rank of an operator
T ∈ B(H), denoted by rank(T ), is the dimension of the closure of the range
of T .
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Lemma 3 (Theorem II.5.8, [7]). Let A be a separable unital C*-algebra
and πi : A→B(Hi) be unital *-representations for i= 1,2. Then there exists
a sequence of unitaries Um : H1 → H2 such that ‖π2(a) − Umπ1(a)U

∗
m‖ →

0(m→∞) for all a ∈A if and only if rank(π1(a)) = rank(π2(a)) for all a ∈A.

Definition 2. Suppose H is a separable Hilbert space and F ⊆ H. For
given ε > 0, we say that

{x1, . . . , xn} ⊆ε F

for {x1, . . . , xn} ⊆H if there are y1, . . . , yn ∈ F such that

max
1≤i≤n

‖xi − yi‖ ≤ ε.

The following lemma is a technical result.

Lemma 4. Let A⊇D ⊆B be unital inclusions of separable C*-algebras and
D be a unital finite-dimensional Abelian C*-algebra. Suppose ρA : A→B(H)
and ρB : B→B(H) are representations of A and B with ρA|D = ρB|D on
a separable Hilbert space H, respectively. If there are two finite-dimensional
subspaces F , G of H satisfying F is ρA(A) invariant and G is ρB(B) invariant
as well as dimF = dimG, then there are a finite-dimensional subspace H̃ of

H and representations ρ̃A, ρ̃B of A and B on H̃ such that the restriction of
ρ̃A on subspace F equals the restriction of ρA on F , the restriction of ρ̃B on
subspace G equals the restriction of ρB on G, that is,

ρ̃A|F = ρA|F , ρ̃B|G = ρB|G
and the restrictions of ρ̃A and ρ̃B on D agree, that is, ρ̃A|D = ρ̃A|D.

Proof. Suppose that D =C∗(p1, . . . , pt) where p1, . . . , pt are orthogonal pro-

jections with
∑t

i=1pi = I . Let E = F +G. Note that E is ρA(D) (= ρB(D))

invariant. Let d= dim(E), P̃i = ρA(pi)|E and ri = rank(P̃i). Let E′ be any
finite dimensional subspace of H that is orthogonal to E and has dimension

d′ = dim(E′
k) so that d+ d′ = l · dimF = l · dimG and rank(ρA(pi)|F )

dim(F ) (d+ d′) =

rank(ρA(pi)|F ) · l ≥ ri for i ∈ {1, . . . , t}, l ∈ N. Then we can find projec-

tions Q̃1, . . . , Q̃t ∈ B(E′
k) such that Q̃1 + · · ·+ Q̃t = I ∈ B(E′), and ri + r′i =

rank(ρA(pi)|F ) · l where r′i = rank(Q̃i). Assume that H̃=E +E′. Since

dim(H̃ � F ) = (l− 1) · dimF

and

rank
(
(P̃i + Q̃i)|H̃�F

)
= ri + r′i − rank

(
ρA(pi)|F

)
= rank

(
ρA(pi)|F

)
(l− 1).

We can construct a representation ρ′A : A→B(H̃ � F ) with ρ′A(pi) = (P̃i +

Q̃i)|H̃�F such that ρ′A is unitarily equivalent to the direct sum of l−1 copies of

the restriction of ρA on F , that is, ρA|F . Putting ρ̃A(x) = ρA(x)|F + ρ′A(x) ∈
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B(H̃). Then ρ̃A(pi) = P̃i + Q̃i. Similarly, we can construct a representation

ρ̃B by the same way such that ρ̃B(pi) = P̃i + Q̃i. This implies that there are
*-representations ρ̃A and ρ̃B satisfying

ρ̃A|F = ρA|F , ρ̃B|G = ρB|G
and ρ̃A|D = ρ̃B|D. �

We need one more technical result for showing our main result. Recall that
a faithful representation π : A→B(H) is called essential if π(A) contains no
nonzero finite rank operators.

Lemma 5. Let A and B be unital separable C*-algebras in
∏∞

n=1Mkn(C)
and D be a common unital C*-subalgebra of A and B in

∏∞
n=1Mkn(C) which

is finite-dimensional and Abelian. Suppose Φ : A ∗
D
B→B(H) is a faithful

essential representation on a separable Hilbert space H. Then there are se-
quences {ρAm}∞m=1 and {ρBm}∞m=1 of representations of A and B on H such
that ρBm|D = ρAm|D and∥∥ρAm(a)−ΦA(a)

∥∥→ 0 for all a ∈A as m→∞,∥∥ρBm(b)−ΦB(b)
∥∥→ 0 for all b ∈ B as m→∞.

Moreover, for each m ∈N, we can find chains of finite-dimensional subspaces
Fm
1 ⊆ Fm

2 ⊆ · · · and Gm
1 ⊆Gm

2 ⊆ · · · of H with dimFm
k = dimGm

k such that
each Fm

k is ρAm(A) invariant, each Gm
k is ρBm(B) invariant and

⋃∞
k=1F

m
k ,⋃∞

k=1G
m
k are both dense in H.

Proof. Suppose D =C∗(p1, . . . , pt) where p1, . . . , pt are orthogonal projec-

tions with
∑t

i=1pi = I . There are natural *-homomorphisms πA
n : A →

Mkn(C) and πB
n : B→Mkn(C) for each n ∈ N such that the direct sums

of {πA
n } and {πB

n} are faithful, respectively. We may assume that each πA
k

and πB
k appear infinitely often in the lists {πA

1 , πA
2 , . . .} and {πB

1 , π
B
2 , . . .}, re-

spectively so that we have an increasing sequence N0 = 0 < N1 < N2 < · · ·
such that πA

k and πB
k appear at Nk position in {πA

1 , πA
2 , . . .} and {πB

1 , π
B
2 , . . .},

respectively. It is clear that direct sums of them are faithful essential repre-
sentations, respectively. Then there are representations πA : A→B(H) and
πB : B→B(H) with a projection PNk

for each k ∈ N such that PNk
reduces

πA and πB, the restrictions of πA and πB to (PNk
− PNk−1

)(H) are unitarily

equivalent to πA
k and πB

k respectively, and PNk
→ I in SOT as k→∞. Since

πA, πB,Φ are all essential representations, we have

rankπA(a) = rankΦA(a) and rankπB(b) = rankΦB(b)

for each a ∈ A and b ∈ B, where ΦA and ΦB are the restriction of Φ on A
and B, respectively. Hence, we can find sequences {Um}∞m=1 and {Wm}∞m=1
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of unitaries in B(H) by Lemma 3 such that, for every a ∈ A and b ∈ B, we
have ∥∥UmπA(a)U

∗
m −ΦA(a)

∥∥→ 0 as m→∞,∥∥WmπB(b)W
∗
m −ΦB(b)

∥∥→ 0 as m→∞.

By the fact that ΦA(pi) = ΦB(pi) for every i ∈ {1, . . . , t}, it follows that∥∥UmπA(pi)U
∗
m −WmπB(pi)W

∗
m

∥∥→ 0 as m→∞.

From Lemma 2, there is M0 ∈N such that for every m≥M0, there is a unitary
Vm and εm satisfying ‖Vm − I‖< εm, εm → 0 (m→∞) and

V ∗
mWmπB(pi)W

∗
mVm = UmπA(pi)U

∗
m

for each i ∈ {1, . . . , t}. Without loss of generality we can assume that, for each
m ∈N, there is a Vm and εm such that ‖Vm − I‖< εm and

V ∗
mWmπB(pi)W

∗
mVm = UmπA(pi)U

∗
m.

Meanwhile, we still have∥∥V ∗
mWmπB(b)W

∗
mVm −ΦB(b)

∥∥→ 0 as m→∞.

Let ρAm(a) = UmπA(a)U
∗
m and ρBm(b) = V ∗

mWmπB(b)W
∗
mVm for each m ∈N. It

is clear that ρBm|D = ρAm|D and∥∥ρAm(a)−ΦA(a)
∥∥→ 0 as m→∞,∥∥ρBm(b)−ΦB(b)
∥∥→ 0 as m→∞.

Putting Fm
k = UmPNk

U∗
m(H) and Gm

k = V ∗
mWmPNk

W ∗
mVm(H). Note that

dimFm
k = dimGm

k . We also have Fm
1 ⊆ Fm

2 ⊆ · · · and Gm
1 ⊆ Gm

2 ⊆ · · · are
chains of finite dimensional subspaces of H, and each Fm

k is ρAm(A) invariant,
each Gm

k is ρBm(B) invariant. Since PNk
→ I in SOT as k → ∞, we have⋃∞

k=1F
m
k and

⋃∞
k=1G

m
k are both dense in H. This completes the proof. �

From Lemmas 4 and 5, we are able to obtain a proposition below which is
a key for giving our main result.

Proposition 2. Let A and B be unital separable C*-algebras in∏∞
n=1Mkn(C) and D be a common unital C*-subalgebra of A and B in∏∞
n=1Mkn(C) which is finite-dimensional and abelian. Then A ∗

D
B is RFD.

Proof. Suppose that D =C∗(p1, . . . , pt) where p1, . . . , pt are orthogonal pro-

jections with
∑t

i=1pi = I . Let Φ : A ∗
D
B→B(H) be a faithful essential rep-

resentation on a separable Hilbert space H. Then by Lemma 5, there are
sequences {ρAm} and {ρBm} of representations of A and B on H such that
ρBm|D = ρAm|D and ∥∥ρAm(a)−ΦA(a)

∥∥→ 0 as m→∞,∥∥ρBm(b)−ΦB(b)
∥∥→ 0 as m→∞.
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Moreover, for each m ∈N, we can find chains of finite-dimensional subspaces
Fm
1 ⊆ Fm

2 ⊆ · · · and Gm
1 ⊆Gm

2 ⊆ · · · of H with dimFm
k = dimGm

k such that
each Fm

k is ρAm(A) invariant, each Gm
k is ρBm(B) invariant, and

⋃∞
k=1F

m
k ,⋃∞

k=1G
m
k are both dense in H. Then, for each m ∈ N, there are sequences of

representations {ρ̃Am,k}∞k=1 and {ρ̃Bm,k}∞k=1 of A and B on a finite-dimensional
Hilbert space Hm,k by Lemma 4, such that

ρ̃Am,k|Fm
k

= ρAm|Fm
k
, ρ̃Bm,k|Gm

k
= ρBm|Gm

k

and ρ̃Am,k|D = ρ̃Bm,k|D for each k ∈ N. We first take representations ρ̃B1,1, ρ̃
A
1,1

of A and B on H1
1 , respectively. Then ρ̃B1,1(pi) = ρ̃A1,1(pi) and

ρ̃A1,1|F 1
1
= ρA1 |F 1

1
, ρ̃B1,1|G1

1
= ρB1 |G1

1
.

Using the notation in Definition 2 and the fact that
⋃∞

k=1F
m
k ,

⋃∞
k=1G

m
k are

both dense in H for each m, we can find F 2
l2

and G2
l2

such that{
η11 , . . . , η

1
t1

}
⊆1 G

2
l2 ,{

ξ11 , . . . , ξ
1
t1

}
⊆1 F

2
l2,

where {ξ11 , . . . , ξ1t1} and {η11 , . . . , η1t1} are linear bases of F 1
1 and G1

1 respectively.

Moreover, we have representations ρ̃A2,l2 , ρ̃
B
2,l2

of A and B on H2
l2

such that

ρ̃B2,l2(pi) = ρ̃A2,l2(pi) and

ρ̃A2,l2 |F 2
l2
= ρA2 |F 2

l2
, ρ̃B2,l2 |G2

l2
= ρB2 |G2

l2
.

Sequentially, we can find F 3
l3

and G3
l3

satisfying{
ξ11 , . . . , ξ

1
t1 , ξ

2
1 , . . . , ξ

2
tm

}
⊆ 1

2
F 3
l3 ,{

η11 , . . . , η
1
t1 , η

2
1 , . . . , η

2
tm

}
⊆ 1

2
G3

l3 ,

where {ξ21 , . . . , ξ2t2} and {η21 , . . . , η2t2} are linear bases of F 2
l2

and G2
l2

, respec-

tively. Meanwhile, representations ρ̃A3,l3 , ρ̃
B
3,l3

of A and B are both on H3
l3
with

ρ̃B3,l3 |D = ρ̃A3,l3 |D and

ρ̃A3,l3 |F 3
l3
= ρA3 |F 3

l3
, ρ̃B3,l3 |G3

l3
= ρB3 |G3

l3
.

So from the above construction, we can find a sequence {ρ̃Bm,lm
}∞m=1 of repre-

sentations and a sequence {ρ̃Am,lm
}∞m of representations satisfying ρ̃Bm,lm

(pi) =

ρ̃Am,lm
(pi) for each m ∈ N. We still have that

⋃∞
m=1F

m
lm
,
⋃∞

m=1G
m
lm

are both

dense in H. Let ρ̃m,lm : A ∗
D
B→B(Hm

lm
) be the *-representation such that

ρ̃m,lm |A = ρ̃Am,lm
and ρ̃m,lm |B = ρ̃Bm,lm

. We want to show that, for a given
x ∈A ∗

D
B and any ε > 0, there is k ∈N such that∥∥ρ̃k,lk(x)∥∥≥ ‖x‖ − ε.
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This will suffice to show that A ∗
D
B is RFD. Write x= w1 + · · ·+wM as the

sum of finitely many words wi in A and B. Assume ξ ∈H is a unit vector such
that ‖Φ(x)ξ‖ ≥ ‖ξ‖ − ε

2 . We will show that for every i ∈ {1, . . . ,M}, there is
k(i) such that if k ≥ k(i), then∥∥ρ̃k,lk(wi)ξ −Φ(wi)ξ

∥∥< ε/2M.

Taking k ≥max1≤i≤M k(i), this will imply ‖ρ̃k,lk(x)ξ − Φ(x)ξ‖ < ε/2, which
will yield what we want. To show it, write

wi = alal−1 · · ·a2a1
for some l ∈ N and a1, . . . , al ∈ A∪B. Let ξ0 = ξ, ξj = Φ(aj)ξj−1 (1≤ j ≤ l)
and N =max1≤j≤l ‖aj‖. Choose k large enough to ensure that

max
(
dist

(
ξj−1, F

k
lk

)
,dist

(
ξj−1,G

k
lk

))
≤ ε/

(
8lMN l−j

)
and ∥∥Φ(aj)− ρAk (aj)

∥∥<
ε

8lMN l−1
if aj ∈A

or ∥∥Φ(aj)− ρBk (aj)
∥∥<

ε

8lMN l−1
if aj ∈ B

for any j ∈ {1, . . . , l}. Let η ∈H. If aj ∈A, let ηk = PFk
lk

(η) ∈ F k
lk
, then∥∥Φ(aj)η− ρ̃k,lk(aj)η

∥∥
≤
∥∥Φ(aj)η− ρ̃k,lk(aj)ηk

∥∥+ ∥∥ρ̃k,lk(aj)ηk − ρ̃k,lk(aj)η
∥∥

≤
∥∥Φ(aj)η−Φ(aj)ηk +Φ(aj)ηk − ρ̃k,lk(aj)ηk

∥∥
+
∥∥ρ̃k,lk(aj)ηk − ρ̃k,lk(aj)η

∥∥
≤ 2‖aj‖dist

(
η,F k

lk

)
+
∥∥Φ(aj)ηk − ρAk (aj)ηk

∥∥
≤ 2‖aj‖dist

(
η,F k

lk

)
+

ε

4lMN l−1
‖ηk‖.

Similarly, if aj ∈ B, then let ηk = PGk
lk

(η) ∈Gk
lk
, then

∥∥Φ(aj)η− ρ̃k,lk(aj)η
∥∥≤ 2‖aj‖dist

(
η,Gk

lk

)
+

ε

4lMN l−1
‖ηk‖.

Therefore,∥∥Φ(wi)ξ − ρ̃k,lk(wi)ξ
∥∥

=
∥∥Φ(alal−1 · · ·a2)Φ(a1)ξ0 − ρ̃k,lk(alal−1 · · ·a2)ρ̃k(a1)ξ0

∥∥
≤
∥∥Φ(alal−1 · · ·a2)Φ(a1)ξ0 − ρ̃k,lk(alal−1 · · ·a2)Φ(a1)ξ0
+ ρ̃k(alal−1 · · ·a2)Φ(a1)ξ0 − ρ̃k,lk(alal−1 · · ·a2)ρ̃k(a1)ξ0

∥∥
≤
∥∥Φ(alal−1 · · ·a2)ξ1 − ρ̃k,lk(alal−1 · · ·a2)ξ1

∥∥
+
∥∥ρ̃k,lk(alal−1 · · ·a2)

∥∥∥∥Φ(a1)ξ0 − ρ̃k,lk(a1)ξ0
∥∥
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≤
l−1∑
j=1

∥∥ρ̃k,lk(al · · ·aj+1)
∥∥∥∥Φ(aj)ξj−1 − ρ̃k,lk(aj)ξj−1

∥∥

<

l−1∑
j=1

N l−j+1 · 2N

×
(
max

(
dist

(
ξj−1, F

k
lk

)
,dist

(
ξj−1,G

k
lk

))
+

ε

4lMN l
N j−1‖ξ0‖

)

=
ε

2M
.

It follows that A ∗
D
B is RFD. �

The following lemma can be found in [4]. Combining previous lemmas and
proposition as well as the lemma below, we will be ready to state and prove
our main result.

Lemma 6 (Lemma 2.2, [4]). Let A and B be unital C*-algebras having D
embedded as a unital C*-subalgebra of each of them. Let

C =A ∗
D
B

be the full amalgamated free product of A and B over D. If there is a projection
p ∈ D and there are partial isometries v1, . . . , vn ∈ D such that v∗i vi ≤ p and∑n

i=1 viv
∗
i = 1− p, then

pCp∼= (pAp) ∗
pDp

(pBp).

Theorem 2. Let A, B be separable unital C*-algebras and D be a finite-
dimensional C*-algebra. Suppose ψA : D→A and ψB : D→B are unital
embeddings. Then A ∗

D
B is RFD if and only if there are unital embeddings

q1 : A→
∏∞

n=1Mkn(C) and q2 : B→
∏∞

n=1Mkn(C) for a sequence {kn}∞n=1

of integers such that the following diagram commutes

D ψA
↪→ A

ψB ↓ ↓q1

B q2
↪→

∞∏
m=1

Mkm(C).

Proof. If A ∗
D
B is RFD, then there is a unital embedding

Φ : A ∗
D
B→

∞∏
n=1

Mkn(C)

for a sequence {kn}∞n=1 of integers. Let q1 and q2 be the restrictions of Φ
on A and B respectively. Then the above diagram is commutative. Con-
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versely, we may assume that A, B are unital subalgebras of
∏∞

n=1Mkn(C)
for a sequence {kn}∞n=1 of integers and A ⊇ D ⊆B are unital inclusions of
C*-algebras. Since D is a finite-dimensional C*-subalgebra, we can find a
projection p ∈D and partial isometries v1, . . . , vn ∈D such that v∗i vi ≤ p and∑n

i=1 viv
∗
i = 1−p. Therefore, for showing A ∗

D
B is RFD, it is sufficient to show

that PAP ∗
PDP

PBP is RFD by Lemma 6 and Lemma 2.1 in [4]. Since PDP is

a finite-dimensional abelian C*-algebra. Then the desired result follows from
Proposition 2. �

Corollary 1. Let A⊇D ⊆B be unital C*-inclusions of C*-algebras in the
C*-algebra

∏∞
n=1Mkn(C) and D is a unital finite-dimensional C*-subalgebra.

Then A ∗
D
B is RFD.

Corollary 2. Suppose that A is a separable unital RFD C*-algebra and
D is a unital finite-dimensional C*-subalgebra of A. Then A ∗

D
A is RFD.

Corollary 3. For unital C*-inclusions D ⊆B ⊆A and D ⊆ C ⊆A, if A
is a separable unital RFD algebra and D is finite-dimensional, then B ∗

D
C is

RFD.

Example 2. Let Mk(C)⊇ D ⊆Ml(C) be unital inclusions of unital C*-
algebras. If trk |D = trl |D where trk and trl are tracial states on Mk(C)
and Ml(C) respectively, then there exists an integer n and there are two
unital embeddings q1 : Mk(C)→Mn(C) and q2 : Ml(C)→Mn(C) such that
q1|D = q2|D. It implies that there is a commutative diagram which is same as
the one in Theorem 2. Therefore, Mk(C) ∗DMl(C) is RFD. In fact, this result

has been proved in [4].

Remark 3. From the previous example and the fact that every MF algebra
has a tracial state, it is not hard to see that Mk(C) ∗DMl(C) is RFD if and

only if Mk(C) ∗DMl(C) is an MF algebra.
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