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POWERS OF LEXSEGMENT IDEALS WITH
LINEAR RESOLUTION

VIVIANA ENE AND ANDA OLTEANU

Abstract. All powers of lexsegment ideals with linear resolution
(equivalently, with linear quotients) have linear quotients with

respect to suitable orders of the minimal monomial generators.

For a large subclass of lexsegment ideals, the corresponding Rees

algebra has a quadratic Gröbner basis, thus it is Koszul. We also

find other classes of monomial ideals with linear quotients whose
powers have linear quotients too.

Introduction

Let S =K[x1, . . . , xn] be the polynomial ring in n variables over a field K.
For an integer d ≥ 2, we denote by Md the set of all the monomials of S
of degree d. A lexsegment ideal of S is a monomial ideal generated by a
lexsegment set, that is a set of the form L(u, v) = {w ∈Md : u≥lex w ≥lex v}
where u≥lex v are two given monomials of Md.

Lexsegment ideals were introduced in [8]. Their homological properties and
invariants have been studied in several papers. We refer the reader to [1], [2],
[4], [5], [6], [8], [9], [10].

In [1], lexsegment ideals with linear resolution are characterized in numeri-
cal terms on the ends of the generating lexsegment set. In [6] it is shown that,
for a lexsegment ideal, having a linear resolution is equivalent to having linear
quotients with respect to a suitable order of the elements in the generating
lexsegment set. There are known examples [3] which show that, in general,
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powers of monomial ideals with linear quotients may have no longer linear
quotients, or even more, they do not have a linear resolution.

In this paper, we show that the lexsegment ideals have a nice behavior
with respect to taking powers, namely all powers of a lexsegment ideal with
linear quotients (equivalently, with linear resolution) have linear quotients
too (Theorem 2.11 and Corollary 3.9). Therefore, by collecting all the known
results, we may now state the following theorem.

Theorem 1. Let u= xa1
1 · · ·xan

n with a1 > 0 and v = xb1
1 · · ·xbn

n be monomi-
als of degree d with u≥lex v and let I = (L(u, v)) be a lexsegment ideal. Then
the following statements are equivalent:

(1) I has a linear resolution.
(2) I has linear quotients.
(3) All the powers of I have linear quotients.
(4) All the powers of I have a linear resolution.

In order to prove (2)⇒ (3) in the above theorem, we are going to study
in the first place (Section 2) the completely lexsegment ideals, that is, those
whose generating lexsegment set has the property that its shadows are again
lexsegment sets, and, secondly (Section 3), those which are not completely
lexsegment ideals. For the first class of ideals, we need to use and develop
some of the techniques introduced in [4]. For the second class, we extend some
results of [7].

It will turn out that the Rees algebras of the lexsegment ideals which
are not completely lexsegment have quadratic Gröbner bases, therefore they
are Koszul (Corollary 3.11). For showing this property, we need to slightly
extend the notion of �-exchange property which was defined in [7] to the
notion of σ-exchange property. By exploiting this extension, we show in the
last section that one may find larger classes of monomial ideals for which the
Gröbner basis of the relation ideal of the Rees algebra R(I) can be determined
(Theorem 3.4). Moreover, any monomial ideal I ⊂ S whose minimal monomial
generating set satisfies a σ-exchange property is of fiber type, that is the
relations of its Rees algebra R(I) consist of the relations of the symmetric
algebra S(I) and of the fiber relations (Corollary 3.5). We also show that
the equigenerated monomial ideals whose minimal monomial generating set
satisfies a σ-exchange property have the nice property that all their powers
have linear quotients (Theorem 3.6).

1. Preliminaries

In this section, we recall the basic definitions and known results needed for
the other sections.

Let K be a field and S =K[x1, . . . , xn] the polynomial ring in n variables
over K. For an integer d ≥ 2, we denote by Md the set of the monomials
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of degree d in S ordered lexicographically with x1 > x2 > · · · > xn. For two
monomials u, v ∈Md such that u≥lex v, we denote by L(u, v) the lexsegment
set bounded by u and v, that is,

L(u, v) = {w ∈Md : u≥lex w ≥lex v}.
If u= xd

1, then L(u, v) is denoted Li(v) and is called the initial lexsegment
determined by v. Similarly, if v = xd

n, then L(u, v) is denoted by Lf (u) and
is called the final lexsegment determined by u. An (initial, final) lexsegment
ideal of S is a monomial ideal generated by an (initial, final) lexsegment set.
According to [4], we denote by Lu,v the K-subalgebra of S generated by the
monomials of L(u, v). In [4] it is proved that Lu,v is a Koszul algebra. More
precisely, it is shown that the presentation ideal of Lu,v has a Gröbner basis
of quadratic binomials. We briefly recall the basic tools used in [4] in proving
this result, since they will be also useful in the next section.

Let Vn,d be the Veronese subring of S, that is, Vn,d =K[Md]. Let w be a
monomial in Md. One can write w = xa = xa1 · · ·xad

, where 1 ≤ a1 ≤ · · · ≤
ad ≤ n. Consider the set of variables

T=
{
Ta : a= (a1, . . . , ad) ∈Nd,1≤ a1 ≤ · · · ≤ ad ≤ n

}
,

and let ϕ : K[T]→ Vn,d be the K-algebra homomorphism defined by

ϕ(Ta) = xa = xa1 · · ·xad
.

Then Vn,d
∼=K[T]/kerϕ and P = kerϕ is called the toric or the presentation

ideal of Vn,d.
If a= (a1, . . . , ad) and b= (b1, . . . , bd) are vectors with 1≤ a1 ≤ · · · ≤ ad ≤ n

and 1 ≤ b1 ≤ · · · ≤ bd ≤ n, we say that a > b if xa >lex xb, that is, if there
exists s≥ 1 such that ai = bi for i≤ s− 1 and as < bs. In this way, one gets
a total order on the variables of T by setting Ta > Tb if a> b. Let >lex be
the lexicographic order on K[T] induced by this order of the variables of T.
Namely, we have Ta(1) · · ·Ta(N) >lex Tb(1) · · ·Tb(N) if there exists 1 ≤ t ≤ N
such that Ta(i) = Tb(i) for i≤ t− 1 and Ta(t) > Tb(t).

A tableau is an N×d-matrix A= [a(1), . . . ,a(N)] with entries in {1, . . . , n},
with the property that in every row a(i) = (ai1, . . . , aid) we have ai1 ≤ · · · ≤
aid and the row vectors are in decreasing lexicographic order, that is a(1)>
a(2) > · · · > a(N) or, equivalently, Ta(1) > Ta(2) > · · · > Ta(N). The support
of A is the collection supp(A) of the integers which appear in the tableau
with their occurrences. It is clear that one may associate to each tableau
A its corresponding monomial TA := Ta(1) · · ·Ta(N) in K[T]. A tableau A =
[a(1), . . . ,a(N)] is standard if, for every tableau B = [b(1), . . . ,b(N)] with the
same support, B 	=A, one has

TA = Ta(1) · · ·Ta(N) <lex Tb(1) · · ·Tb(N) = TB .

As follows from [4, Proposition 2.10], this is equivalent to saying that for
any 1 ≤ i < j ≤ N , the quadratic monomial Ta(i)Ta(j) is standard. In [4,
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Lemma 2.9] it is shown that a quadratic monomial TaTb it is standard if
and only if a= b or there exists 1≤ i≤ d such that a1 = b1, . . . , ai−1 = bi−1,
ai < bi, and, if i < d, then bi+1 ≤ · · · ≤ bd ≤ ai+1 ≤ · · · ≤ ad. If A is a standard
tableau, then the monomial TA = Ta(1) · · ·Ta(N) is called standard. Given a
set A of Nd indices in the set {1, . . . , n}, then there exists a unique standard
tableau A of size N × d with supp(A) =A.

We recall the recursive procedure given in [4] to construct a standard
tableau A with a given supportA= {b1, . . . , bNd} where 1≤ b1 ≤ · · · ≤ bNd ≤ n.
Namely, if A= [a(1), . . . ,a(N)], where a(i) = (ai1, . . . , aid) for 1≤ i≤N , then
we proceed as follows. We put b1, . . . , bN on the first column of A, that is,

a11 = b1, a21 = b2, . . . , aN1 = bN .

Now we consider the decomposition of (b1, . . . , bN ) in blocks of equal integers
and fill in each sub-tableau determined by each block from the bottom to the
top in an inductive way. We illustrate this procedure by a concrete example.

Let N = 5, d= 3, n= 8 and

A= {1,1,2,3,3,4,4,4,5,5,6,6,6,7,8}.

We indicate each step of the standard tableau of support A.

1
1
2
3
3

−→

1
1
2
3 4 4
3 4 5

−→

1
1
2 5 6
3 4 4
3 4 5

−→

1 6 7
1 6 8
2 5 6
3 4 4
3 4 5

We have the following proposition.

Proposition 1.1 ([4, Proposition 2.11]). The set G = {TqTr−TaTb : TaTb

is a standard monomial and supp[a,b] = supp[q,r]} is a Gröbner basis of the
presentation ideal of Vn,d with respect to <lex.

Moreover, in [4, Lemma 2.12], it was proved that if [a,b] is a standard
tableau and [q,r] is a non-standard tableau such that supp[a,b] = supp[q,r],
then q> a≥ b> r. Consequently, if TaTb is a standard monomial and TqTr

is such that supp[a,b] = supp[q,r], then xa, xb ∈ L(u, v) if xq and xr belong
to L(u, v). Therefore, the set

G′ = {TqTr − TaTb : TaTb is a standard monomial,

supp[a,b] = supp[q,r], and xq, xr ∈ L(u, v)}

is a Gröbner basis of the presentation ideal JLu,v of the toric ring Lu,v .
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2. Powers of completely lexsegment ideals with linear resolution

In order to study the powers of the completely lexsegment ideals with linear
quotients, we need to prove some preparatory results.

Definition 2.1. Let w1, . . . ,wN be monomials in Md, N ≥ 2. We call the
product w1 · · ·wN standard if Tw1 · · ·TwN

is a standard monomial, that is, the
corresponding tableau is standard.

Definition 2.2. If w1, . . . ,wN ∈ Md, and w1 · · ·wN = w′
1 · · ·w′

N , where
w′

1, . . . ,w
′
N ∈Md and w′

1 · · ·w′
N is a standard product, we call w′

1 · · ·w′
N the

standard representation of w1 · · ·wN .

Remark 2.3. Let u1, . . . , uN ∈ L(u, v), where L(u, v)⊂Md is a lexsegment
set. If w1 · · ·wN is a standard representation of u1 · · ·uN , then w1, . . . ,wN ∈
L(u, v). Indeed, let us assume that Tu1 · · ·TuN

is not a standard monomial,
that is Tu1 · · ·TuN

∈ in<(P ), where P ⊂K[T] is the presentation ideal of Vn,d.
Then there exists 1≤ i < j ≤N and vi, vj ∈ L(u, v) with ui > vi ≥ vj > uj such
that TuiTuj − TviTvj ∈ G′. Note that Tu1 · · ·TuN

>lex Tu1 · · ·Tui−1TviTui+1 · · ·
Tuj−1TvjTuj+1 · · ·TuN

. If the product Tu1 · · ·Tui−1Tvi Tui+1 · · ·Tuj−1Tvj ×
Tuj+1 · · ·TuN

is standard, we finished. Otherwise we continue the reduction.
After a finite number of steps, we reach a standard product whose factors
belong to the lexsegment set L(u, v).

Before stating the preliminary results, we fix some notation. For a mono-
mial u of S, we denote by νi(u) the exponent of the variable xi in u, that is,
νi(u) = degxi

(u) for all 1 ≤ i ≤ n. We denote supp(u) = {i : νi(u) > 0} and
set max(u) =maxsupp(u), min(u) =min supp(u).

Lemma 2.4. Let w1 · · ·wN be a standard monomial and let xd
1w1 · · ·wN =

w′
1 · · ·w′

N+1 be the standard representation of xd
1w1 · · ·wN . Then w′

1 ≥lex w1.

Proof. We use induction on the number of variables. The case n = 2 is
straightforward. Let n > 2. One may assume, by induction on the degree
d of the monomials, that ν1(wN ) = 0. If ν1(w1) = 0, then x1 | w′

1, hence
w′

1 >lex w1. Let ν1(w1) = 1. Therefore, there exists 0 < s < N such that
x1 |ws and x1 �ws+1. If s+ d≥N + 2, then we finished, since x2

1 |w′
1 by the

construction of the standard monomials, and ν1(w1) = 1. Now, let us consider
s+ d≤N + 1. Let

q =min

(
w1

x1
· · · ws

x1

)
and q′ =min

(
w′

1

x1
· · ·

w′
s+d

x1

)
.

Then, since w1 · · ·wN and w′
1 · · ·w′

N+1 are standard products, we have q =
min(w1/x1), q

′ =min(w′/x1), max(wj) ≤ q ≤min(wi/x1) for all 1 ≤ i ≤ s <
j ≤N , and max(w′

j) ≤ q′ ≤min(w′
i/x1) for all 1 ≤ i ≤ s+ d < j ≤N + 1. If
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q < q′, then we get

ν1<m≤q(w1 · · ·wN ) :=
∑

1<m≤q

νm(w1 · · ·wN )≥ deg(ws+1 · · ·wN ) = (N − s)d

> (N + 1− s− d)d≥ ν1<m≤q

(
w′

1 · · ·w′
N+1

)
:=

∑
1<m≤q

νm
(
w′

1 · · ·w′
N+1

)
,

which is impossible since νm(w1 · · ·wN ) = νm(w′
1 · · ·w′

N+1) for all m > 1.
Therefore, we must have q ≥ q′. If q > q′, then we finished since w′

1/x1 >lex

w1/x1, whence w′
1 >lex w1. What is left to consider is the case q = q′. In this

case we have

ν1<m≤q(w1 · · ·wN ) = (N − s)d+ νq(w1) + · · ·+ νq(ws)

and

ν1<m≤q

(
w′

1 · · ·w′
N+1

)
= (N + 1− s− d)d+ νq

(
w′

1

)
+ · · ·+ νq

(
w′

s+d

)
.

Since ν1<m≤q(w1 · · ·wN ) = ν1<m≤q(w
′
1 · · ·w′

N+1), we obtain

νq
(
w′

1

)
+ · · ·+ νq

(
w′

s+d

)
= d(d− 1) + νq(w1) + · · ·+ νq(ws).

This implies that

w′
1

x1
· · ·

w′
s+d

x1
= xd(d−1)

q

(
w1

x1
· · · ws

x1

)
.

Note that w1

x1
· · · ws

x1
is a standard product in the variables xq, . . . , xn. Applying

induction on the number n of variables, we have, after d steps, that

xd(d−1)
q

(
w1

x1
· · · ws

x1

)
= w̄1 · · · w̄s+d,

where w̄1 · · · w̄s+d, is a standard product and w̄1 ≥lex w1/x1. But
w′

1

x1
· · · w

′
s+d

x1

is a standard product as well, hence we have w̄1 =w′
1/x1 ≥lex w1/x1, whence

w′
1 ≥lex w1. �

Lemma 2.5. Let u1 · · ·uN and w1 · · ·wN be standard products and u1 · · ·
uNxn = x1w1 · · ·wN . Then we have u1 ≥lex w1.

Proof. We use induction on N . If N = 1, the inequality u1 ≥lex w1 is
obvious. Now we assume N > 1 and let u1 · · ·uN = xb1 · · ·xbNd

, where 1 =
b1 ≤ · · · ≤ bNd ≤ n and min(uj) = bj for all 1 ≤ j ≤ N . We first notice that
we may assume without loss of generality that ν1(ui) ≤ 1 for all 1 ≤ i ≤ N .
If b2 > b1, we obviously have w1 ≤lex u1 since min(w1) = b2. Therefore, we
may assume b1 = b2 = 1. If b1 < bN , let k ≤N be the largest integer such that
bk−1 < bk = · · ·= bN . We have k ≥ 3. Since u1 · · ·uN is a standard product,
we get

u1 · · ·uk−1 = xb1 · · ·xbk−1
xbN+(d−1)(N−k+1)+1

· · ·xNd.
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Similarly, since w1 · · ·wN is a standard product, we get

w1 · · ·wk−2 = xb2 · · ·xbk−1
xbN+(d−1)(N−k+2)+2

· · ·xNdxn.

Therefore, there exists a monomial w ∈Md, namely

w = xbN+(d−1)(N−k+1)+1
· · ·xbN+(d−1)(N−k+2)+1

such that
x1w1 · · ·wk−2w = u1 · · ·uk−1xn.

One observes that w1 · · ·wk−2w and u1 · · ·uk−1 are standard products. Then,
by induction on N , it follows that w1 ≤lex u1.

It remains to consider b1 = · · ·= bN = 1< bN+1 ≤ · · · ≤ bNd, since, by our
assumption on u1, . . . , uN , we cannot have bN+1 = 1. If bN+1 < bN+d+1, then,
by the construction of standard products, we get w1 <lex u1. Let bN+1 =
bN+2 = · · ·= bN+d+1. Then we obtain

xn · u1

x1
· · · uN

x1
=

w1

x1
· · · wN−1

x1
(xbN+1

· · ·xbN+d
),

whence

xn

(
u1

x1
· · · uN

x1

)
= xbN+1

(
xd−1
bN+1

w1

x1
· · · wN−1

x1

)
.

Let w′
1 · · ·w′

N be the standard representation of xd−1
bN+1

w1

x1
· · · wN−1

x1
. By

Lemma 2.4, we have w′
1 ≥lex w1/x1. On the other hand, we have

xn

(
u1

x1
· · · uN

x1

)
= xbN+1

(
w′

1 · · ·w′
N

)
,

with u1

x1
· · · uN

x1
and w′

1 · · ·w′
N standard monomials in a number of variables

smaller than n. By induction on n, we get u1/x1 ≥lex w
′
1 whence u1/x1 ≥lex

w1/x1, which yields u1 ≥lex w1. �

Lemma 2.6. Let u1 ≥lex · · · ≥lex uN ≥lex uN+1 be monomials of degree d
with ν1(ui) ≤ 1 for all 1 ≤ i ≤ N , such that u1 · · ·uN is a standard product
and max(supp(u1 · · ·uN ))≤min(supp(uN+1)). Let v1 · · ·vN+1 be the standard
representation of u1 · · ·uNuN+1. Then vN+1 ≤lex uN .

Proof. We use induction on N . For N = 1, since v1v2 = u1u2 and v1v2 is a
standard product, then we have u1 >lex v1 ≥lex v2 >lex u2.

Let N > 1 and assume that u1 · · ·uN = xb1 · · ·xbNd
and

uN+1 = xbNd+1
· · ·xb(N+1)d

with
b1 ≤ · · · ≤ bNd ≤ bNd+1 ≤ · · · ≤ b(N+1)d.

Since u1 · · ·uN is a standard product, we have min(uj) = bj for all 1≤ j ≤N .
Since v1 · · ·vNvN+1 is standard, we have min(vj) = bj for all 1 ≤ j ≤N + 1.
If bN+1 > bN , we obviously have vN+1 ≤lex uN . Therefore, it remains to
consider that bN = bN+1. Let 1 ≤ k ≤ N be the largest integer such that
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bk−1 < bk = · · · = bN . We have k > 1 since otherwise ν1(u1) ≥ 2. Since
u1 · · ·uN is standard, we get that

uk · · ·uN = xbk · · ·xbNxbN+1
· · ·xbN+(d−1)(N−k+1)

.

Similarly, since v1 · · ·vN+1 is standard, we get

vk · · ·vN+1 = xbk · · ·xbNxbN+1
· · ·xbN+(d−1)(N−k+2)+1

.

Therefore, there exists a monomial w ∈Md, namely

w = xbN+(d−1)(N−k+1)+1
· · ·xbN+(d−1)(N−k+2)+1

,

such that vk · · ·vN+1 = uk · · ·uNw and max(supp(uk · · ·uN ))≤min(supp(w)).
One may note that uk · · ·uN and vk · · ·vN+1 are standard products as well.
By the induction hypothesis, we get vN+1 ≤lex uN . �

Lemma 2.7. Let u1, . . . , uN ,w1, . . . ,wN be monomials of degree d in S such
that xnu1 · · ·uN = x1w1 · · ·wN , where u1 · · ·uN , w1 · · ·wN are standard prod-
ucts. Then uN ≥lex wN .

Proof. We may assume that ν1(wN ) = 0 which implies that ν1(ui) ≤ 1
for all 1 ≤ i ≤ N . Let u1 · · ·uN = xb1 · · ·xbNd

with 1 = b1 ≤ · · · ≤ bNd and
min(uj) = bj for all 1≤ j ≤N . We have min(wj) = bj+1 for all 1≤ j ≤N . If
bN+1 > bN , then wN ≤lex uN . Let bN+1 = bN and 1 ≤ k ≤N be the largest
integer such that bk−1 < bk = · · · = bN . If k = 1, then b1 = · · · = bN = bN+1.
Since w1 · · ·wN is a standard product, we get ν1(wN )> 0, which is impossi-
ble by our assumption. Therefore, it follows that k > 1. Since u1 · · ·uN is a
standard product, we have

uk · · ·uN = xbk · · ·xbNxbN+1
· · ·xbN+(d−1)(N−k+1)

.

Similarly, since w1 · · ·wN is a standard product, we get

wk−1 · · ·wN = xbk · · ·xbNxbN+1
· · ·xbN+(d−1)(N−k+2)+1

.

Therefore, if

w = xbN+(d−1)(N−k+1)+1
· · ·xbN+(d−1)(N−k+2)+1

,

we have
wk−1 · · ·wN = uk · · ·uNw

and max(supp(uk · · ·uN ))≤min(w). Since uk · · ·uN and wk−1 · · ·wN are also
standard products, by using the previous lemma, we get wN ≤lex uN . �

In order to state the main theorem of this section we need to recall the
following theorem.

Theorem 2.8 ([2], [6]). Let u= xa1
1 · · ·xan

n , with a1 > 0, and v = xb1
1 · · ·xbn

n

be monomials of degree d with u≥lex v and let I = (L(u, v)) be a completely
lexsegment ideal. The following statements are equivalent:

(1) u and v satisfy one of the following conditions:
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(i) u= xa
1x

d−a
2 , v = xa

1x
d−a
n for some a with 0< a≤ d;

(ii) b1 < a1 − 1;
(iii) b1 = a1−1 and, for the largest monomial w of degree d with w <lex v,

one has x1w/xmax(w) ≤lex u.
(2) I has linear quotients.
(3) I has a linear resolution.

Remark 2.9. It is obvious that, if a completely lexsegment ideal is deter-
mined by u and v satisfying condition (i) in the above theorem, then all its
powers have linear quotients. Therefore, we only need to study the powers
of completely lexsegment ideals which are determined by monomials u and v
satisfying condition (ii) or (iii) in Theorem 2.8.

Theorem 2.10. Let u= xa1
1 · · ·xan

n with a1 > 0 and v = xb1
1 · · ·xbn

n be mono-
mials of degree d with u≥lex v and let I = (L(u, v)) be a completely lexsegment
ideal with linear quotients. Then all the powers of I have linear quotients.

Proof. By using Remark 2.9, we have to consider only the cases when u
and v satisfy one of the following conditions:

(a) b1 < a1 − 1;
(b) b1 = a1− 1 and for the largest monomial w of degree d with w <lex v, one

has x1w/xmax(w) ≤lex u.

We recall (see [6, Theorem 1.2]) that in these cases, I has linear quotients
with respect to the following order on Md. For w,w

′ ∈Md, we set w 
w′ if
ν1(w)< ν1(w

′) or ν1(w) = ν1(w
′) and w >lex w

′.
Let N > 1. We show that IN has linear quotients with respect to the order


 on the set MNd. Let u1 · · ·uN , v1 · · ·vN ∈ IN be two standard products
such that v1 · · ·vN 
 u1 · · ·uN . We have to show that there exists a monomial
w ∈ IN such that w 
 u1 · · ·uN , w/gcd(w,u1 · · ·uN ) = xi and xi divides the
monomial v1 · · ·vN/gcd(v1 · · ·vN , u1 · · ·uN ). We have to analyze two cases.

Case I : ν1(v1 · · ·vN ) = ν1(u1 · · ·uN ). By the definition of the order 
, we
must have v1 · · ·vN >lex u1 · · ·uN . Let i≥ 2 be the smallest index such that
νi(v1 · · ·vN )> νi(u1 · · ·uN ). We claim that there exists 1≤ q ≤N such that
i <max(uq). Indeed, otherwise we have i≥max(u1 · · ·uN ) and obtain

Nd= deg(u1 · · ·uN ) =

i∑
k=1

νk(u1 · · ·uN )<

i∑
k=1

νk(v1 · · ·vN )≤Nd,

a contradiction.
Let, therefore, 1≤ q ≤N be such that i <max(uq). Then we get

xiuq

x1
∈ L(u, v) or

xiuq

xmax(uq)
∈ L(u, v)

(see also the proof of [6, Theorem 1.2]). We recall the argument which
was used in [6, Theorem 1.2] and will be also used in this proof several
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times. We have xiuq/x1 <lex uq ≤lex u and xiuq/xmax(uq) >lex uq ≥lex v. If
we assume that xiuq/x1 <lex v and x1uq/xmax(uq) >lex u, we get b1 = a1 − 1
and xiuq/x1 ≤lex w, where w is the largest monomial of degree d such that
w <lex v. We get

xiuq

x1xmax(xiuq/x1)
≤lex

w

xmax(w)
,

which, by using condition (b), leads to

xiuq

xmax(uq)
≤lex

x1w

xmax(w)
≤lex u,

a contradiction. Therefore, one of the monomials u′
q = xiuq/x1 or u′′

q =
xiuq/xmax(uq) belongs to L(u, v). Note that u′

q 
 uq and u′′
q 
 uq . Then we

may take w = u1 · · ·uq−1u
′
quq+1 · · ·uN or w = u1 · · ·uq−1u

′′
quq+1 · · ·uN . In each

case it follows that w 
 u1 · · ·uN , w/gcd(w,u1 · · ·uN ) = xi and xi|v1 · · ·vN/
gcd(v1 · · ·vN , u1 · · ·uN ).

Case II : ν1(u1 · · ·uN ) > ν1(v1 · · ·vN ). Then there exist two monomials
m,m′ ∈ S of same degree, let us say p, such that gcd(m,m′) = 1 and

mu1 · · ·uN =m′v1 · · ·vN .(2.1)

Since ν1(u1 · · ·uN ) > ν1(v1 · · ·vN ), we get x1|m′ and x1 � m. Let i =
min(supp(m)).

If there exists 1 ≤ q ≤ N such that i < max(uq), then, as in the proof
of Case I, we may take w = u1 · · ·u′

q · · ·uN where u′
q = xiuq/x1 or u′

q = xiuq/
xmax(uq). Then we have w 
 u1 · · ·uN , w/gcd(w,u1 · · ·uN ) = xi and xi divides
the monomial v1 · · ·vN/(gcd(v1 · · ·vN , u1 · · ·uN )).

Now let max(uq)≤ i for all 1≤ q ≤N , that is, supp(u1 · · ·uN )⊂ {1, . . . , i}.
We show by induction on p= deg(m) that there exists j > 1 such that xj |m
and

xju1 · · ·uN = x1w1 · · ·wN ,(2.2)

where w1, . . . ,wN ∈ L(u, v) and w1 · · ·wN is a standard product. If p= 1, there
is nothing to prove. Let p > 1 and assume that there exists 1< j < i such that
xj |m′. There exists 1 ≤ q ≤ N such that j < i ≤max(vq) since xi|v1 · · ·vN .
As j < max(vq), it follows that one of the monomials xjvq/x1 ∈ L(u, v) or
xjvq/xmax(vq) ∈ L(u, v). Let us consider that v′q = xjvq/x1 ∈ L(u, v). By
using (2.1), we get the relation

mu1 · · ·uN =
(
x1m

′/xj

)(
v1 · · ·v′q · · ·vN

)
.

If v′′q = xjvq/xmax(vq) ∈ L(u, v), then, by using again (2.1), we get the relation

mu1 · · ·uN =
(
xmax(vq)m

′/xj

)(
v1 · · ·v′′q · · ·vN

)
.

These last two relations show that either there exists a relation of the form
mu1 · · ·uN = xp

1w1 · · ·wN where w1 · · ·wN is a standard product of monomials
of L(u, v), with deg(m) = p and x1 �m, or we may apply induction on p and
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reach the desired conclusion. In the first case, let m = xi1xi2 · · ·xip , with

i= i1 ≤ i2 ≤ · · · ≤ ip ≤ n. For j = 1, p, let wj1 · · ·wjN be the standard product
such that

xi1u1 · · ·uN = x1w11w12 · · ·w1N ,

xi2w11w12 · · ·w1N = x1w21w22 · · ·w2N ,

xi3w21w22 · · ·w2N = x1w31w32 · · ·w3N ,

...

xipwp−1,1wp−1,2 · · ·wp−1,N = x1wp1wp2 · · ·wpN .

Multiplying these equalities, we get

mu1 · · ·uN = xp
1wp1wp2 · · ·wpN ,

hence wpi = vi, for 1≤ i≤N , since wp1wp2 · · ·wpN and v1 · · ·vN are standard
products.

It is easily seen that supp(wj1 · · ·wjN )⊂ {1, . . . , ij} for all 1≤ j ≤ p. There-
fore, we may apply Lemmas 2.5 and 2.7 and get

u≥lex u1 ≥lex w11 ≥lex w21 ≥lex · · · ≥lex wp1 = v1 ≥lex v

and
u≥lex uN ≥lex w1N ≥lex w2N ≥lex · · · ≥lex wpN = vN ≥lex v.

In particular, we have

u≥lex w11 ≥lex · · · ≥lex w1N ≥lex v,

whence
xi1u1 · · ·uN = x1w11 · · ·w1N ,

and w11, . . . ,w1N ∈ L(u, v). Therefore, we have an equality of the form xju1 · · ·
uN = x1w1 · · ·wN , where w1 · · ·wN ∈ IN is a standard product and j ≥ 2.
Let w = w11 · · ·w1N = (xju1 · · ·uN )/x1. Then the following conditions hold:
w 
 u1 · · ·uN ,w/gcd(w,u1 · · ·uN ) = xj and xj divides the monomial v1 · · ·vN/
gcd(v1 · · ·vN , u1 · · ·uN ), which ends our proof. �

Combining the above theorem with [1, Theorem 1.3] and [6, Theorem 1.2],
we get the following equivalent statements.

Theorem 2.11. Let u= xa1
1 · · ·xan

n with a1 > 0 and v = xb1
1 · · ·xbn

n be mono-
mials of degree d with u≥lex v and let I = (L(u, v)) be a completely lexsegment
ideal with linear quotients. The following statements are equivalent:

(1) u and v satisfy one of the following conditions:

(i) u= xa
1x

d−a
2 , v = xa

1x
d−a
n for some a with 0< a≤ d;

(ii) b1 < a1 − 1;
(iii) b1 = a1 − 1 and, for the largest monomial of degree d with w <lex v,

one has x1w/xmax(w) ≤lex u.
(2) I has a linear resolution.
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(3) I has linear quotients.
(4) All the powers of I have linear quotients.
(5) All the powers of I have a linear resolution.

3. Exchange properties and applications

We first fix some notation. As in the previous section, let S =K[x1, . . . , xn]
be the ring of polynomials in n variables over a field K and Md the set of
all monomials of degree d in S. If B ⊂ Md is a nonempty set, we denote
by K[B] the K-subalgebra of S generated by the monomials of B. Let R=
K[{Tu}u∈B ] be the polynomial ring in a set of variables indexed over B and
π : R→K[B] the surjective K-algebra homomorphism defined by π(Tu) = u,
for all u ∈ B. JK[B] := kerπ is called the toric ideal of K[B]. Let < be a
monomial order on R and in<(JK[B]) the initial ideal of JK[B] with respect
to <. A monomial Tu1 · · ·TuN

∈ R is a standard monomial of JK[B] with
respect to < if Tu1 · · ·TuN

/∈ in<(JK[B]). We recall the following definition
which was given in [7].

Definition 3.1 ([7, Definition 4.1]). We say that a nonempty set B ⊂Md

satisfies the �-exchange property with respect to a monomial order < on R if
B possesses the following property: if Tu1 · · ·TuN

and Tv1 · · ·TvN are standard
monomials of JK[B] with respect to < such that

(a) νi(u1 · · ·uN ) = νi(v1 · · ·vN ) for 1≤ i≤ q− 1 (with q ≤ n− 1),
(b) νq(u1 · · ·uN )< νq(v1 · · ·vN ),

then there exist 1≤ δ ≤N , and q < j ≤ n with j ∈ supp(uδ) and xquδ/xj ∈B.

Inspired by this definition, we consider the following slight generalization.
Let <σ be a monomial order on S.

Definition 3.2. We say that B satisfies the σ-exchange property with
respect to < if B has the following property: if Tu1 · · ·TuN

and Tv1 · · ·TvN

are standard monomials of JK[B] with respect to < such that u1 · · ·uN <σ

v1 · · ·vN , then there exist 1 ≤ δ ≤ N , q ∈ supp(v1 · · ·vN ), and j ∈ supp(uδ)
such that

(i) νq(u1 · · ·uN )< νq(v1 · · ·vN ),
(ii) xj <σ xq ,
(iii) xquδ/xj ∈B.

It is straightforward to show that if B satisfies the �-exchange property
with respect to a monomial order < on R, then B satisfies the σ-exchange
property with respect to < for <σ =<lex on S with x1 >lex · · ·>lex xn.

Example 3.3. Let <σ be a monomial order on S defined as follows. For
m,m′ monomials in S, we set m <σ m′ if deg(m) < deg(m′) or deg(m) =

deg(m′) and m >revlex m′, that is, if m = xa1
1 · · ·xan

n , m′ = xb1
1 · · ·xbn

n , then
there exists some 1≤ s≤ n such that an = bn, an−1 = bn−1, . . . , as+1 = bs+1,
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and as < bs. In particular, we have xn >σ xn−1 >σ · · · >σ x1. We call this
monomial order the decreasing revlexicographical order on S.

Any final lexsegment set Lf (v), v ∈Md, satisfies the σ-exchange property
for <σ as above, with respect to any monomial order < on R=K[{Tw : w ∈
Lf (v)}]. In order to prove this claim, let Tu1 · · ·TuN

and Tv1 · · ·TvN be
two standard monomials of JK[B] with respect to < such that u1 · · ·uN <σ

v1 · · ·vN , that is
u1 · · ·uN >revlex v1 · · ·vN .

Then there exists 1≤ q ≤ n such that νi(u1 · · ·uN ) = νi(v1 · · ·vN ) for all i≥
q + 1 and νq(u1 · · ·uN ) < νq(v1 · · ·vN ). Since deg(u1 · · ·uN ) = deg(v1 · · ·vN ),
we must have at least an index j < q such that νj(u1 · · ·uN )> νj(v1 · · ·vN ).
Let 1≤ δ ≤N be such that j ∈ supp(uδ). Then the following conditions hold:
xj >revlex xq , that is xj <σ xq and xquδ/xj <lex uδ , whence xquδ/xj ∈ Lf (v).

We also notice that, if we choose < on R to be the monomial order given
in the previous section, that is the lexicographical order on the monomi-
als {Tw : w ∈ Lf (v)} induced by Tw1 > Tw2 if w1 >lex w2, then Lf (v) does
not satisfy the �-exchange property with respect to <. For example, let
v = x1x3x4 ∈K[x1, x2, x3, x4]. Let u1 = x3

2 and v1 = x1x3x4, u1, v1 ∈ Lf (v).
Then (Tu1)

2 and (Tv1)
2 are standard monomials with respect to < on R =

K[{Tw : w ∈ Lf (v)}] and u2
1 <lex v

2
1 . In the �-exchange property, we have to

take q = 1. Since supp(u1) = {2}, we should have x1u1/x2 = x1x
2
2 ∈ Lf (v),

which is not possible.
Following closely the ideas from the last section in [7], we may prove a

slight generalization of [7, Theorem 5.1].
Let I ⊂ S be a monomial ideal generated in degree d and let B =G(I) its

minimal monomial generating set. Let T = S[{Tu}u∈B ] = K[x1, . . . , xn, Tu :
u ∈ B] be the polynomial ring over K. T is bigraded by deg(xi) = (1,0) for
all 1≤ i≤ n and deg(Tu) = (0,1) for all u ∈B.

Let R(I) =
⊕

j≥0 I
jtj = S[{ut}u∈B ]⊂ S[t] be the Rees ring of I . R(I) is

also naturally bigraded by deg(xi) = (1,0) for 1≤ i≤ n and deg(ut) = (0,1)
for all u ∈ B. There exists a canonical bigraded surjective K-algebra homo-
morphism ϕ : T →R(I) defined b ϕ(xi) = xi for 1≤ i≤ n and ϕ(Tu) = ut for
all u ∈ B. Let PR(I) := kerϕ be the toric ideal of R(I). PR(I) is bihomoge-

neous and generated by irreducible bihomogeneous binomials of T . Let <#

be an arbitrary monomial order on R and <σ be an arbitrary monomial order
on S. By <#

σ we will denote the product of these two orders which is a mono-
mial order on T . More precisely, for mTu1 · · ·TuN

, m′Tv1 · · ·TvN , monomials
in T , with m,m′ monomials in S, we have mTu1 · · ·TuN

<#
σ m′Tv1 · · ·TvN if

m<σ m′ or m=m′ and Tu1 · · ·TuN
<# Tv1 · · ·TvN .

The following theorem generalizes [7, Theorem 5.1].

Theorem 3.4. Let I ⊂ S be a monomial ideal generated in degree d, B =
G(I), <# a monomial order on R and <σ a monomial order on S. Let
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G<#(JK[B]) be the reduced Gröbner basis of the toric ideal JK[B] with respect

to <#. Suppose that B satisfies the σ-exchange property with respect to <#.
Then the reduced Gröbner basis of the toric ideal PR(I) with respect to <#

σ

consists of all binomials belonging to G<#(JK[B]) together with the binomials
of the form

xiTu − xjTv ∈ PR(I),

where xj is the smallest variable with respect to <σ such that xi >σ xj and
xiu/xj ∈B.

Proof. We closely follow the ideas from the proof of [7, Theorem 5.1].
We first show that the set

G=G<#(JK[B])∪ {xiTu − xjTv ∈ PR(I) : xi >σ xj}
is a Gröbner basis of PR(I) with respect to <#

σ .
Let f ∈ PR(I) ⊂ T be an irreducible binomial. If in<#

σ
(f) ∈ R, then f ∈

PR(I) ∩R= JK[B], hence there is a binomial belonging to G<#(JK[B]) which
divides in<#

σ
(f).

Let in<#
σ
(f) /∈R, that is, we may write

f = xi1 · · ·xitTu1 · · ·TuN
− xj1 · · ·xjtTv1 · · ·TvN

with {i1, . . . , it} ∩ {j1, . . . , jt}= ∅ and where we assume that xi1 ≥σ · · · ≥σ xit

and xj1 ≥σ · · · ≥σ xjt . By successively reductions modulo the binomials from
G<#(JK[B]), we may assume that Tu1 · · ·TuN

and Tv1 · · ·TvN are standard

monomials with respect to <#. Let in<#
σ
(f) = xi1 · · ·xitTu1 · · ·TuN

. Then
xi1 · · ·xit >σ xj1 · · ·xjt . By using the equality

xi1 · · ·xitu1 · · ·uN = xj1 · · ·xjtv1 · · ·vN ,

we obtain u1 · · ·uN <σ v1 · · ·vN , νis(u1 · · ·uN ) < νis(v1 · · ·vN ) for 1 ≤ s ≤ t,
and νk(u1 · · ·uN ) ≥ νk(v1 · · ·vN ) for all k /∈ {i1, . . . , it}. Since B satisfies
the σ-exchange property, we have that there exist 1 ≤ δ ≤ N , j ∈ supp(uδ)
and q ∈ supp(v1 · · ·vN ) such that νq(u1 · · ·uN )< νq(v1 · · ·vN ), xj <σ xq , and
xquδ/xj ∈B.

The first above condition on q shows that q = is, for some 1≤ s≤ t. There-
fore, we have xisuδ = xjv for some v ∈B and the proof of our claim is finished.

To end the proof, let us take some binomial xiTu − xjTv , where u, v ∈
B, xiu = xjv and xj <σ xi is the smallest variable with respect to <σ such
that xiu/xj ∈B. Assume that xjTv is not reduced, hence there exists some
binomial xjTv − xlTw with xl <σ xj , which belongs to PR(I). Then xiTu −
xlTw ∈ PR(I) and xl <σ xj <σ xi, a contradiction. �

Corollary 3.5. Let I ⊂ S be a monomial ideal generated in degree d and
B =G(I). Let <# be a monomial order on R and <σ a monomial order on S.
If B satisfies the σ-exchange property with respect to <#, then I is of fiber
type.
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We recall (see [7]) that an ideal I ⊂ S is called of fiber type if the fiber
relations together with the relations of the symmetric algebra of I generate
all the relations of the Rees algebra of I .

The above corollary may be used to find equigenerated monomial ideals
of fiber type. Let <σ be an arbitrary graded monomial order on S, u ∈Md

and I = (Li
<σ

(u)), where Li
<σ

(u) = {w ∈ Md : w >σ u}. Then it is easily

seen that Li
<σ

(u) satisfies the σ-exchange property for any monomial order

on R=K[{Tw : w ∈ Li
<σ

(u)}], hence I is of fiber type.
We prove now a significant property of the monomial ideals whose minimal

monomial generating system satisfies a σ-exchange property.

Theorem 3.6. Let I ⊂ S be a monomial ideal generated in degree d and
B = G(I). Let <# be a monomial order on R =K[{Tu : u ∈ B}] and <σ a
monomial order on S. If B satisfies the σ-exchange property with respect to
<#, then IN has linear quotients with respect to >σ for N ≥ 1.

Proof. Let G(IN ) = {w1, . . . ,wr}, where w1 >σ · · ·>σ wr and let Tw1 , . . . ,
Twr be standard monomials of JK[B] with respect to <#. Let 1≤ j < i≤ r be
two integers and assume that wj = v1 · · ·vN and wi = u1 · · ·uN for u1, . . . , uN ,
v1, . . . , vN ∈G(I), u1 ≥σ · · · ≥σ uN , v1 ≥σ · · · ≥σ vN . We have to prove that
there exist 1≤ k < i and 1≤ q ≤ n such that

wk

gcd(wk,wi)
= xq and xq

∣∣∣ wj

gcd(wj ,wi)
.

Since wj >σ wi, by using the σ-exchange property of B, there exist 1≤ δ ≤N ,
l ∈ supp(uδ), and q ∈ supp(v1 · · ·vN ) such that νq(u1 · · ·uN ) < νq(v1 · · ·vN ),
xl <σ xq , and xquδ/xl ∈B. Let

wk = u1 · · ·uδ−1
xquδ

xl
uδ+1 · · ·uN =

xqwi

xl
.

Then wk satisfies the required conditions. �
In the sequel, we show that the lexsegment ideals with a linear resolution

which are not completely satisfy an exchange property.
We first recall the following theorem.

Theorem 3.7 ([1]). Let I = (L(u, v)) be a lexsegment ideal with x1 | u
and x1 � v which is not a completely lexsegment ideal. Then I has a linear
resolution if and only if u and v have the following form:

u= x1x
al+1

l+1 · · ·xan
n and v = xlx

d−1
n

for some l, 2≤ l≤ n− 1.

Theorem 3.8. Let <σ be the decreasing revlexicographical order on S and
I = (L(u, v)) a lexsegment ideal with linear resolution which is not a completely
lexsegment ideal. Then L(u, v) satisfies the σ-exchange property with respect
to any monomial order on R=K[{Tw : w ∈ L(u, v)}].



548 V. ENE AND A. OLTEANU

Proof. Let u = x1x
al+1

l+1 · · ·xan
n , v = xlx

d−1
n for some 2 ≤ l ≤ n− 1. Let us

assume that there exists a monomial order < on R such that L(u, v) does
not satisfy the σ-exchange property with respect to <. Then there exist
two standard monomials Tu1 · · ·TuN

and Tv1 · · ·TvN such that u1 · · ·uN >revlex

v1 · · ·vN and with the property that for all 1≤ δ ≤N , j ∈ supp(uδ) and q ∈
supp(v1 · · ·vN ) such that νq(u1 · · ·uN ) < νq(v1 · · ·vN ) and xj >revlex xq , we
have xquδ/xj /∈ L(u, v). Since u1 · · ·uN >revlex v1 · · ·vN there exists some q,
1≤ q ≤ n, such that

νi(u1 · · ·uN ) = νi(v1 · · ·vN ) for all i≥ q+ 1,

and νq(u1 · · ·uN ) < νq(v1 · · ·vN ). Since deg(u1 · · ·uN ) = deg(v1 · · ·vN ) there
exists some s < q such that νs(u1 · · ·uN ) > νs(v1 · · ·vN ). Let uδ be such
that s ∈ supp(uδ). By our assumption, we must have xquδ/xs <lex v, that
is xquδ/xs ≤lex xd

l+1. This implies, in particular, that q ≥ l + 1. Moreover,
our assumption implies that for all δ, 1≤ δ ≤N , there exists a unique jδ ≤ l
such that uδ = xjδwδ where min(wδ)≥ l+ 1.

Therefore, we have u1 · · ·uN = xj1 · · ·xjNxat
t · · ·xan

n , where j1, . . . , jN < q
and t≥ q. We have

at + · · ·+ an = deg
(
xat
t · · ·xan

n

)
=Nd−N =N(d− 1).

Let v1 · · ·vN = xb1
1 · · ·xbn

n . By hypothesis, we have aq < bq and ai = bi for all
i≥ q+1. Since each monomial vγ ∈ L(u, v) it is divisible by some variable xi

with i≤ l < q, we have b1 + · · ·+ bq−1 ≥N . Then we have

Nd = b1 + · · ·+ bq−1 + bq + · · ·+ bn

> b1 + · · ·+ bq−1 + aq + · · ·+ at + · · ·+ an

≥N +N(d− 1) =Nd,

a contradiction. �

Corollary 3.9. All powers of a lexsegment ideal with a linear resolution
which is not a completely lexsegment ideal have linear quotients with respect
to the increasing revlexicographic order.

Corollary 3.10. Any lexsegment ideal with a linear resolution which is
not a completely lexsegment ideal is of fiber type.

Corollary 3.11. Let I = (L(u, v)) be a lexsegment ideal with a linear
resolution which is not a completely lexsegment ideal. Then the Rees algebra
R(I) is Koszul.

Proof. Let <# be the lexicographical monomial order on R=K[{Tw : w ∈
L(u, v)}] induced by Tw1 > Tw2 if w1 >lex w2 and <σ be the decreasing revlex-
icographic order on S. By Theorem 3.4, the reduced Gröbner basis of PR(I)

with respect to the product order <#
σ on T is formed by the binomials from
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G<#(JK[L(u,v)]), the reduced Gröbner basis of JK[L(u,v)], and by the binomials
of the form

xiTu′ − xjTv′ ,

where xi >σ xj , xiu
′ = xjv

′ and j is the smallest integer with xiu
′/xj ∈

L(u, v). Since G<#(JK[L(u,v)]) is quadratic ([4, Proposition 2.13]), the state-
ment follows. �
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