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ON THE p-NORM OF THE BEREZIN TRANSFORM

CONGWEN LIU AND LIFANG ZHOU

Abstract. In this short note, the norm of Berezin transform,
acting on Lp(Bn), is determined to be

∥∥BBn : Lp(Bn)→ Lp(Bn)
∥∥=

1

p

n∏
k=1

(
1 +

1

kp

)
π

sin(π/p)
.

This extends a result of Dostanić (J. Anal. Math. 104 (2008)
13–23) to several complex variables.

1. Introduction

Let D be the open unit disc in the complex plane. By Lp(D) we mean
the Lebesgue space with respect to the normalized Lebesgue measure dA =
(1/π)dxdy on D. The Bergman space Lp

a(D) is the closed subspace of Lp(D)
consisting of holomorphic functions on D. For z ∈D, the Bergman reproducing
kernel is the function Kz ∈ L2

a(D) such that f(z) = 〈f,Kz〉 for every f ∈
L2
a(D), where 〈·, ·〉 denote the inner product in L2(D). Explicitly,

(1.1) Kz(w) =
1

(1− z̄w)2
, w ∈D.

The normalized reproducing kernel kz is defined by kz =Kz/‖Kz‖2.
For f ∈ L1(D) define

(1.2) Bf(z) = 〈fkz, kz〉=
(
1− |z|2

)2 ∫
D

f(w)

|1− zw̄|4 dA(w), z ∈D.

The function Bf is called the Berezin transform of f . This transform was
first introduced by F. A. Berezin [4] in the context of quantization of Kähler
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manifolds. It later turned out that the Berezin transform plays an important
role in the theory of Toeplitz operators on the Bergman space. See [1], [2],
[10], [13] for details.

It has long been a well-known fact that the Berezin transform B is bounded
on Lp(D) if and only if p > 1 ([10, Proposition 2.2]), but only recently has its
p-norm been calculated. In [7], Dostanić showed that

Theorem A. For 1< p≤∞,

(1.3)
∥∥B : Lp(D)→ Lp(D)

∥∥=
1

p

(
1 +

1

p

)
π

sin(π/p)
.

When p=∞, the quantity on the right-hand side of (1.3) should be interpreted
as 1.

The purpose of this note is to extend the above result to the several complex
variables setting.

Throughout we denote by Bn the open unit ball in C
n. Let ν be the

Lebesgue measure on C
n, normalized so that ν(Bn) = 1. For f ∈ L1(Bn, ν),

the Berezin transform of f is defined by

(1.4) BBnf(z) =
(
1− |z|2

)n+1
∫
Bn

f(w)

|1− 〈z,w〉|2(n+1)
dν(w), z ∈ Bn.

See [17, p. 76], [3, p. 383] and [16] for more information on this transform.
Our main result is the following theorem.

Theorem 1.1. For 1< p≤∞, we have

(1.5)
∥∥BBn : Lp(Bn)→ Lp(Bn)

∥∥=
1

p

n∏
k=1

(
1 +

1

kp

)
π

sin(π/p)
.

Again, when p = ∞, the quantity on the right-hand side of (1.5) should be
interpreted as 1.

It is obvious that when n= 1, we recover Theorem A.
We will in fact deal with a family of integral operators as follows. For

α>−1, we define

Sαf(z) :=

∫
Bn

(1− |w|2)α
|1− 〈z,w〉|n+1+α

f(w)dν(w)

for z ∈ Bn and f ∈ L1(Bn, ν). Note that the Berezin transform BBn = S∗
n+1,

the adjoint of Sn+1. These operators first appeared in [9] in connection with
projections of Bergman type defined by

Tαf(z) =
Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)

∫
Bn

(1− |w|2)α
(1− 〈z,w〉)n+1+α

f(w)dν(w).

It was shown in [9] that, if α >−1, 1≤ p <∞ and p(α+ 1)> 1, then Sα is a
bounded linear operator on Lp(Bn). This in turn implies the Lp-boundedness
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of Tα. Moreover, in [9], Forelli and Rudin in fact proved (implicitly) that

(1.6)
∥∥Sα : Lp(Bn)→ Lp(Bn)

∥∥≤ n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
.

In this note, we show that in fact equality holds in (1.6).

Theorem 1.2. Suppose that α > −1, 1 ≤ p <∞ and p(α+ 1) > 1. Then
we have

(1.7)
∥∥Sα : Lp(Bn)→ Lp(Bn)

∥∥=
n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
.

In particular, when n= 1, we recover Theorem 1 in [7].
We mention other related works. In [6], Dostanić gave two-sided estimates

of the norm of Cauchy transform on Lp spaces on bounded simply-connected
domains in the complex plane. There is also a nice paper of similar nature
by K. Zhu [18], where an asymptotic formula for the norm of the Bergman
projection on Lp spaces of the unit ball is given. Also, although not directly
related to our results, the determination of the exact Lp norm of singular
integral operators has been studied extensively. Results of this type include
Pichorides’ determination of the p-norm of the Hilbert transform ([14]) and
Iwaniec and Martin’s work on the Riesz transform ([12]). Also, an outstanding
open problem of the past three decades, known as the Iwaniec conjecture, is
the computation of the p-norm of the Beurling—Ahlfors transform ([11]). For
the present best known estimates on the Lp-norm of the Beurling–Ahlfors
transform, see [5] and references therein.

2. Preliminaries

A number of hypergeometric functions will appear throughout. We use the
classical notation 2F1(α,β;γ; z) to denote

(2.1) 2F1(α,β;γ; z) =
∞∑
k=0

(α)k(β)k
(γ)k

zk

k!

with γ 	= 0,−1,−2, . . . , where

(α)0 = 1, (α)k = α(α+ 1) · · · (α+ k− 1) for k ≥ 1.

We list a few formulas for easy reference (see [8, Chapter II]):

2F1(α,β;γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, Re(γ − α− β)> 0.(2.2)

2F1(α,β;γ; z) = (1− z)γ−α−β
2F1(γ − α,γ − β;γ; z).(2.3)

2F1(α,β;γ; z) =
Γ(γ)

Γ(λ)Γ(γ − λ)

∫ 1

0

tλ−1(1− t)γ−λ−1
2F1(α,β;λ; tz)dt,(2.4)

Reγ >Reλ > 0; |arg(1− z)|< π; z 	= 1.
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Lemma 2.1. Suppose Re δ > 0 and Re(λ+ δ− α− β)> 0. Then

(2.5)

∫ 1

0

tλ−1(1− t)δ−1
2F1(α,β;λ; t)dt=

Γ(λ)Γ(δ)Γ(λ+ δ − α− β)

Γ(λ+ δ − α)Γ(λ+ δ− β)
.

Proof. Note that, under the assumption of the lemma, both sides of (2.4)
are continuous at z = 1. The lemma then follows by letting z → 1 in (2.4) and
applying (2.2). �

The following lemma is contained implicitly in the proof of Theorem 1.4.10
in [15] (see the formula in page 19, line 5 of [15]):

Lemma 2.2. For α ∈R and γ >−1, we have∫
Bn

(1− |w|2)γ
|1− 〈z,w〉|2α dV (w) =

Γ(n+ 1)Γ(1 + γ)

Γ(n+ 1+ γ)
2F1

(
α,α;n+ 1+ γ; |z|2

)
.

The following result, usually called Schur’s test, is a very effective tool in
proving the Lp-boundedness of integral operators. See, for example, [19].

Lemma 2.3. Suppose that (X,μ) is a σ-finite measure space and K(x, y)
is a nonnegative measurable function on X ×X and T the associated integral
operator

Tf(x) =

∫
X

K(x, y)f(y)dμ(y).

Let 1< p <∞ and 1/p+ 1/q = 1. If there exist a positive constant C and a
positive measurable function u on X such that∫

X

K(x, y)u(y)q dμ(y)≤Cu(x)q

for almost every x in X and∫
X

K(x, y)u(x)p dμ(x)≤Cu(y)p

for almost every y in X , then T is bounded on Lp(X,μ) with ‖T‖ ≤C.

3. The proofs

Proof of Theorem 1.2. We first deal with the case p= 1. Note that in this
case the assumption p(α+ 1)> 1 implies α> 0.

It is clear that∥∥Sα : L1(Bn)→ L1(Bn)
∥∥≤ sup

w∈Bn

(
1− |w|2

)α ∫
Bn

dν(z)

|1− 〈z,w〉|n+1+α
.

By Lemma 2.2 and (2.3), we find that∫
Bn

dν(z)

|1− 〈z,w〉|n+1+α
= 2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ 1; |w|2

)

=
(
1− |w|2

)−α
2F1

(
n+ 1− α

2
,
n+ 1− α

2
;n+ 1; |w|2

)
.
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Note that the last hypergeometric function is increasing on the interval [0,1),
since its Taylor coefficients are all positive. Hence,

∥∥Sα : L1(Bn)→ L1(Bn)
∥∥ ≤ 2F1

(
n+ 1− α

2
,
n+ 1− α

2
;n+ 1;1

)

=
Γ(n+ 1)Γ(α)

Γ2((n+ 1+ α)/2)
,

where the last equality follows from (2.2).
To prove the reverse inequality, consider, for fixed ε > 0, the function

fε(z) =
Γ(n+ ε)

Γ(n+ 1)Γ(ε)

(
1− |z|2

)ε−1
.

It is easy to check that ‖fε‖1 = 1. Again by Lemma 2.2,

Sαfε(z) =
Γ(n+ ε)

Γ(n+ 1)Γ(ε)

∫
Bn

(1− |w|2)α+ε−1

|1− 〈z,w〉|n+1+α
dν(w)

= C(ε)2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ α+ ε; |z|2

)
,

where

C(ε) :=
Γ(n+ ε)Γ(α+ ε)

Γ(ε)Γ(n+ α+ ε)
.

It follows that

‖Sαfε‖1 = C(ε)

∫
Bn

2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ α+ ε; |z|2

)
dν(z)

= C(ε)

∫ 1

0

nrn−1
2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ α+ ε; r

)
dr

≥ nC(ε)

∫ 1

0

rn+α+ε−1
2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ α+ ε; r

)
dr.

Hence, an application of Lemma 2.1 yields

∥∥Sα : L1(Bn)→ L1(Bn)
∥∥≥ ‖Sαfε‖1 ≥

nΓ(n+ ε)Γ(α+ ε)

Γ2((n+ 1+ α)/2 + ε)
.

Finally, by letting ε→ 0+, we obtain

∥∥Sα : L1(Bn)→ L1(Bn)
∥∥≥ Γ(n+ 1)Γ(α)

Γ2((n+ 1+ α)/2)
.

Now, assume that 1 < p <∞ and p(α + 1) > 1. For the upper bound of
‖Sα : Lp(Bn)→ Lp(Bn)‖, we appeal to Schur’s test (Lemma 2.3). Set

u(z) =
(
1− |z|2

)−1/(pq)
,
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where q is the conjugate exponent of p. It then suffices to show

(3.1)

∫
Bn

(1− |w|2)α
|1− 〈z,w〉|n+1+α

u(w)q dν(w)≤ n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
u(z)q

for all z ∈ Bn and

(3.2)

∫
Bn

(1− |w|2)α
|1− 〈z,w〉|n+1+α

u(z)p dν(z)≤ n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
u(w)p

for all w ∈ Bn. We only prove the first inequality, the other one follows the
same lines. By Lemma 2.2 and (2.3), we have∫

Bn

(1− |w|2)α
|1− 〈z,w〉|n+1+α

u(w)q dν(w)

=
Γ(n+ 1)Γ(α+ 1− 1/p)

Γ(n+ α+ 1− 1/p)

× 2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ 1+ α− 1

p
; |z|2

)

=
Γ(n+ 1)Γ(α+ 1− 1/p)

Γ(n+ α+ 1− 1/p)

(
1− |z|2

)−1/p

× 2F1

(
n+ 1+ α

2
− 1

p
,
n+ 1+ α

2
− 1

p
;n+ 1+ α− 1

p
; |z|2

)
.

Note that the last hypergeometric function is increasing on the interval [0,1),
since its Taylor coefficients are all positive. Thus, this hypergeometric function
is bounded from above by

2F1

(
n+ 1+ α

2
− 1

p
,
n+ 1+ α

2
− 1

p
;n+ 1+ α− 1

p
; 1

)

=
Γ(n+ 1+ α− 1/p)Γ(1/p)

Γ2((n+ 1+ α)/2)
.

This proves (3.1), which in turn gives

(3.3)
∥∥Sα : Lp(Bn)→ Lp(Bn)

∥∥≤ n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
.

We now proceed to show

(3.4)
∥∥Sα : Lp(Bn)→ Lp(Bn)

∥∥≥ n!Γ(1/p)Γ(α+ 1− 1/p)

Γ2((n+ 1+ α)/2)
.

For fixed ε > 0, define

gε(w) = C1(ε)
(
1− |w|2

)(ε−1)/p
,

hε(z) = C2(ε)
(
1− |z|2

)(ε−1)/q|z|2(α+1)+2(ε−1)/p,
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where

C1(ε) =

{
Γ(ε)Γ(n+ 1)

Γ(n+ ε)

}−1/p

,(3.5)

C2(ε) =

{
nΓ(ε)Γ(n+ q(α+ 1) + (ε− 1)q/p)

Γ(n+ (ε− 1)q/p+ q(α+ 1) + ε)

}−1/q

.(3.6)

Easy calculations show that ‖gε‖p = ‖hε‖q = 1.
By applying Lemma 2.2 and integrating in polar coordinates, we obtain∫

Bn

{∫
Bn

(1− |w|2)α
|1− 〈z,w〉|n+α+1

gε(w)dν(w)

}
hε(z)dν(z)

=C1(ε)C2(ε)
Γ(n+ 1)Γ(α+ 1+ (ε− 1)/p)

Γ(n+ α+ 1+ (ε− 1)/p)

×
∫
Bn

(
1− |z|2

)(ε−1)/q|z|2(α+1+(ε−1)/p)

× 2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ 1+ α+

ε− 1

p
; |z|2

)
dν(z)

= nC1(ε)C2(ε)
Γ(n+ 1)Γ(α+ 1+ (ε− 1)/p)

Γ(n+ α+ 1+ (ε− 1)/p)

×
∫ 1

0

rn+α+(ε−1)/p(1− r)(ε−1)/q

× 2F1

(
n+ 1+ α

2
,
n+ 1+ α

2
;n+ 1+ α+

ε− 1

p
; r

)
dr

= nC1(ε)C2(ε)
Γ(n+ 1)Γ(α+ 1+ (ε− 1)/p)Γ(ε/q+ 1/p)Γ(ε)

Γ2((n+ α+ 1)/2 + ε)
,

where the last equality follows from (2.5). Having in mind that∥∥Sα : Lp(Bn)→ Lp(Bn)
∥∥

= sup
‖f‖p=1
‖g‖q=1

{∣∣∣∣
∫
Bn

(∫
Bn

(1− |w|2)α
|1− 〈z,w〉|n+α+1

f(w)dν(w)

)
g(z)dν(z)

∣∣∣∣
}
,

this implies∥∥Sα : Lp(Bn)→ Lp(Bn)
∥∥

≥ Γ(n+ 1)Γ(α+ 1+ (ε− 1)/p)Γ(ε/q+ 1/p)

Γ2((n+ α+ 1)/2 + ε)

×
{
Γ(n+ ε)

Γ(n)

}1/p{
Γ(n+ (ε− 1)q/p+ q(α+ 1) + ε)

Γ(n+ q(α+ 1) + (ε− 1)q/p)

}1/q

.

Equation (3.4) now follows by letting ε→ 0+ and the proof is complete. �
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Proof of Theorem 1.1. Note that BBn = S∗
n+1. It follows from Theorem 1.2

that ∥∥BBn : Lp(Bn)→ Lp(Bn)
∥∥ =

∥∥Sn+1 : L
q(Bn)→ Lq(Bn)

∥∥
=

1

n!
Γ

(
1

q

)
Γ

(
n+ 2− 1

q

)

=
1

n!
Γ

(
1− 1

p

)
Γ

(
n+ 1+

1

p

)
.

Then, repeated use of Γ(x+1) = xΓ(x), together with the well-known formula

Γ(x)Γ(1− x) =
π

sin(xπ)
,

completes the proof. �

4. The polydisc case

There is yet another multidimensional extension of Theorem A, that is, to
the polydisc case. Let D

n be the unit polydisc in C
n, that is, the cartesian

product of n copies of D. Denote by dm the normalized Lebesque volume
measure on the polydisk D

n. For f ∈ L1(Dn,m), the Berezin transform of f
is define by

(4.1) BDnf(z) =

∫
Dn

n∏
j=1

(1− |zj |2)2
|1− zjw̄j |4

f(w)dm(w).

Theorem 4.1. For 1< p≤∞, we have

∥∥BDn : Lp
(
D

n
)
→ Lp

(
D

n
)∥∥=

{
1

p

(
1 +

1

p

)
π

sin(π/p)

}n

.

The proof is almost the same as (and slightly simpler than) that of Theo-
rem 1.1, so we omit it.

References

[1] P. Ahern, On the range of the Berezin transform, J. Funct. Anal. 215 (2004), 206–216.
MR 2085115
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