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THE INTRINSIC SQUARE FUNCTION
CHARACTERIZATIONS OF WEIGHTED HARDY SPACES

HUA WANG AND HEPING LIU

Abstract. In this paper, we will study the boundedness of in-
trinsic square functions on the weighted Hardy spaces Hp(w)

for 0< p < 1, where w is a Muckenhoupt’s weight function. We

will also give some intrinsic square function characterizations of
weighted Hardy spaces Hp(w) for 0< p< 1.

1. Introduction and preliminaries

First, let’s recall some standard definitions and notations. The classical Ap

weight theory was first introduced by Muckenhoupt in the study of weighted
Lp boundedness of Hardy–Littlewood maximal functions in [9]. Let w be a
nonnegative, locally integrable function defined on R

n, all cubes are assumed
to have their sides parallel to the coordinate axes. We say that w ∈ Ap,
1< p<∞, if(

1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

≤C for every cube Q⊆R
n,

where C is a positive constant which is independent of the choice of Q.
For the case p= 1, w ∈A1, if

1

|Q|

∫
Q

w(x)dx≤C · ess inf
x∈Q

w(x) for every cube Q⊆R
n.

For the case p=∞, w ∈A∞, if for any given ε > 0, we can find a positive
number δ > 0 such that if Q is a cube, E is a measurable subset of Q with
|E|< δ|Q|, then

∫
E
w(x)dx < ε

∫
Q
w(x)dx.
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It is well known that A∞ =
⋃

1<p<∞Ap, namely, a nonnegative, locally

integrable function w(x) satisfies the condition A∞ if and only if it satisfies
the condition Ap for some 1< p <∞. We also know that if w ∈Ap with 1<
p <∞, then w ∈Ar for all r > p, and w ∈Aq for some 1< q < p. Therefore,
we will use the notation qw ≡ inf{q > 1 : w ∈Aq} to denote the critical index
of w. Obviously, if w ∈Aq , q > 1, then we have 1≤ qw < q.

Given a cube Q and λ > 0, λQ denotes the cube with the same center
as Q whose side length is λ times that of Q. Q=Q(x0, r) denotes the cube
centered at x0 with side length r. For a weight function w and a measurable
set E, we set the weighted measure w(E) =

∫
E
w(x)dx, and we denote the

characteristic function of E by χE .
We shall need the following lemmas. For the proofs of these results, we

refer the readers to [4, Chapter IV] and [5, Chapter 9].

Lemma A. Let w ∈ Ap, p ≥ 1. Then, for any cube Q, there exists an
absolute constant C > 0 such that

w(2Q)≤C ·w(Q).

In general, for any λ > 1, we have

w(λQ)≤C · λnpw(Q),

where C does not depend on Q nor on λ.

Lemma B. Let w ∈Aq , q > 1. Then, for all r > 0, there exists a constant
C > 0 independent of r such that∫

|x|≥r

w(x)

|x|nq dx≤C · r−nqw
(
Q(0,2r)

)
.

Lemma C. Let w ∈A∞. For any 0< ε< 1, there exists a positive number
0< δ < 1 such that if E is a measurable subset of a cube Q with |E|/|Q|> ε,
then we have w(E)/w(Q)> δ.

Lemma D. Let w ∈Ap, p≥ 1. Then there exists an absolute constant C > 0
such that

C

(
|E|
|Q|

)p

≤ w(E)

w(Q)
,

for any measurable subset E of a cube Q.

Given a Muckenhoupt’s weight function w on R
n, for 0< p<∞, we denote

by Lp
w(R

n) the space of all functions satisfying

‖f‖Lp
w(Rn) =

(∫
Rn

∣∣f(x)∣∣pw(x)dx)1/p

<∞.

When q =∞, L∞
w will be taken to mean L∞, and we set ‖f‖L∞

w
= ‖f‖L∞ .

As we all know, for any 0< p <∞, the weighted Hardy spaces Hp
w(R

n) can



INTRINSIC SQUARE FUNCTION 369

be defined in terms of maximal functions. Let ϕ be a function in S (Rn)
satisfying

∫
Rn ϕ(x)dx= 1. Set

ϕt(x) = t−nϕ(x/t), t > 0, x ∈R
n.

We will define the maximal function Mϕf(x) by

Mϕf(x) = sup
t>0

|f ∗ϕt(x)|.

Then Hp
w(R

n) consists of those tempered distributions f ∈ S ′(Rn) for which
Mϕf ∈ Lp

w(R
n) with ‖f‖Hp

w
= ‖Mϕf‖Lp

w
. For every 1 < p < ∞, as in the

unweighted case, we have Lp
w(R

n) =Hp
w(R

n).
The real-variable theory of weighted Hardy spaces has been studied by

many authors. In 1979, Garcia-Cuerva studied the atomic decomposition
and the dual spaces of Hp

w for 0 < p ≤ 1. In 2002, Lee and Lin gave the
molecular characterization of Hp

w for 0< p≤ 1, they also obtained the Hp
w(R),

1
2 < p≤ 1 boundedness of the Hilbert transform and the Hp

w(R
n), n

n+1 < p≤ 1
boundedness of the Riesz transforms. For the results mentioned above, we
refer the readers to [3], [7], [10] for further details.

In this article, we will use Garcia-Cuerva’s atomic decomposition theory
for weighted Hardy spaces in [3], [10]. We characterize weighted Hardy spaces
in terms of atoms in the following way.

Let 0< p≤ 1≤ q ≤∞ and p 
= q such that w ∈Aq with critical index qw.
Set [ · ] the greatest integer function. For s ∈ Z+ satisfying s≥ [n(qw/p− 1)],
a real-valued function a(x) is called (p, q, s)-atom centered at x0 with respect
to w(or w-(p, q, s)-atom centered at x0) if the following conditions are satis-
fied:

(a) a ∈ Lq
w(R

n) and is supported in a cube Q centered at x0,
(b) ‖a‖Lq

w
≤w(Q)1/q−1/p,

(c)
∫
Rn a(x)x

α dx= 0 for every multi-index α with |α| ≤ s.

Theorem E. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p 
= q such that w ∈ Aq with
critical index qw. For each f ∈ Hp

w(R
n), there exist a sequence {aj} of w-

(p, q, [n(qw/p − 1)])-atoms and a sequence {λj} of real numbers with∑
j |λj |p ≤ C‖f‖p

Hp
w

such that f =
∑

j λjaj both in the sense of distributions

and in the Hp
w norm.

2. The intrinsic square functions and our main results

The intrinsic square functions were first introduced by Wilson in [11] and
[12]; they are defined as follows. For 0< α≤ 1, let Cα be the family of func-
tions ϕ defined on R

n such that ϕ has support containing in {x ∈R
n : |x| ≤ 1},∫

Rn ϕ(x)dx= 0 and for all x,x′ ∈R
n,∣∣ϕ(x)−ϕ
(
x′)∣∣≤ ∣∣x− x′∣∣α.
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For (y, t) ∈R
n+1
+ =R

n × (0,∞) and f ∈ L1
loc(R

n), we set

Aα(f)(y, t) = sup
ϕ∈Cα

∣∣f ∗ϕt(y)
∣∣.

Then we define the intrinsic square function of f (of order α) by the formula

Sα(f)(x) =

(∫ ∫
Γ(x)

(
Aα(f)(y, t)

)2 dy dt
tn+1

)1/2

,

where Γ(x) denotes the usual cone of aperture one:

Γ(x) =
{
(y, t) ∈R

n+1
+ : |x− y|< t

}
.

We can also define varying-aperture versions of Sα(f) by the formula

Sα,β(f)(x) =

(∫ ∫
Γβ(x)

(
Aα(f)(y, t)

)2 dy dt
tn+1

)1/2

,

where Γβ(x) is the usual cone of aperture β > 0:

Γβ(x) =
{
(y, t) ∈R

n+1
+ : |x− y|< βt

}
.

The intrinsic Littlewood–Paley g-function (could be viewed as “zero-aperture”
version of Sα(f)) and the intrinsic g∗λ-function (could be viewed as “infinite
aperture” version of Sα(f)) will be defined respectively, by

gα(f)(x) =

(∫ ∞

0

(
Aα(f)(x, t)

)2 dt
t

)1/2

and

g∗λ,α(f)(x) =

(∫ ∫
R

n+1
+

(
t

t+ |x− y|

)λn(
Aα(f)(y, t)

)2 dy dt
tn+1

)1/2

.

Similarly, we can also introduce the so-called similar-looking square func-
tions S̃(α,ε)(f)(x), which are defined via convolutions with kernels that have
unbounded supports, more precisely, for 0<α≤ 1 and ε > 0, let C(α,ε) be the
family of functions ϕ defined on R

n such that for all x ∈R
n,∣∣ϕ(x)∣∣≤ (

1 + |x|
)−n−ε

,

and for all x,x′ ∈R
n,∣∣ϕ(x)−ϕ
(
x′)∣∣≤ ∣∣x− x′∣∣α((1 + |x|

)−n−ε
+
(
1 + |x′|

)−n−ε)
,

and also satisfy
∫
Rn ϕ(x)dx= 0.

Let f be such that |f(x)|(1+ |x|)−n−ε ∈ L1(Rn). For any (y, t) ∈R
n+1
+ , set

Ã(α,ε)(f)(y, t) = sup
ϕ∈C(α,ε)

∣∣f ∗ϕt(y)
∣∣.
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We define

S̃(α,ε)(f)(x) =

(∫ ∫
Γ(x)

(
Ã(α,ε)(f)(y, t)

)2 dy dt
tn+1

)1/2

,

g̃(α,ε)(f)(x) =

(∫ ∞

0

(
Ã(α,ε)(f)(x, t)

)2 dt
t

)1/2

and

g̃∗λ,(α,ε)(f)(x) =

(∫ ∫
R

n+1
+

(
t

t+ |x− y|

)λn(
Ã(α,ε)(f)(y, t)

)2 dy dt
tn+1

)1/2

.

In [12], Wilson proved that the intrinsic square functions are bounded op-
erators on the weighted Lebesgue spaces Lp

w(R
n) for 1 < p <∞; namely, he

showed the following result.

Theorem F. Let w ∈ Ap, 1 < p <∞ and 0< α ≤ 1. Then there exists a
positive constant C > 0 such that∥∥Sα(f)

∥∥
Lp

w
≤C‖f‖Lp

w
.

Recently, Huang and Liu [6] studied the boundedness of intrinsic square
functions on the weighted Hardy spaces H1

w(R
n). Moreover, they obtained

the intrinsic square function characterizations of H1
w(R

n).
As a continuation of their work, the purpose of this paper is to investigate

the boundedness of intrinsic square functions on the weighted Hardy spaces
Hp

w(R
n) for 0< p< 1. Furthermore, we will characterize the weighted Hardy

spaces Hp
w(R

n) for 0 < p < 1 by the intrinsic square functions including the
Lusin area function, Littlewood–Paley g-function and g∗λ-function.

In order to state our theorems, we need to introduce the Lipschitz space
Lip(α,1,0) for 0<α≤ 1. Set bQ = 1

|Q|
∫
Q
b(x)dx.

Lip(α,1,0) =
{
b ∈ L1

loc

(
R

n
)
: ‖b‖Lip(α,1,0) <∞

}
,

where

‖b‖Lip(α,1,0) = sup
Q

1

|Q|1+α/n

∫
Q

∣∣b(y)− bQ
∣∣dy

and the supremum is taken over all cubes Q in R
n.

We say that a tempered distribution f vanishes weakly at infinity, if for
any ϕ ∈ S , we have f ∗ϕt(x)→ 0 as t→∞ in the sense of distributions.

Our main results are stated as follows.

Theorem 1. Let 0<α≤ 1, n
n+α < p< 1, w ∈Ap(1+α

n ) and ε > α. Suppose

that f ∈ (Lip(α,1,0))∗, then a tempered distribution f ∈Hp
w(R

n) if and only
if gα(f) ∈ Lp

w(R
n) or g̃(α,ε)(f) ∈ Lp

w(R
n) and f vanishes weakly at infinity.
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Theorem 2. Let 0<α≤ 1, n
n+α < p< 1, w ∈Ap(1+α

n ) and ε > α. Suppose

that f ∈ (Lip(α,1,0))∗, then a tempered distribution f ∈Hp
w(R

n) if and only

if Sα(f) ∈ Lp
w(R

n) or S̃(α,ε)(f) ∈ Lp
w(R

n) and f vanishes weakly at infinity.

Theorem 3. Let 0 < α ≤ 1, n
n+α < p < 1, w ∈ Ap(1+α

n ), ε > α and λ >
3n+2α

n . Suppose that f ∈ (Lip(α,1,0))∗, then a tempered distribution f ∈
Hp

w(R
n) if and only if g∗λ,α(f) ∈ Lp

w(R
n) or g̃∗λ,(α,ε)(f) ∈ Lp

w(R
n) and f van-

ishes weakly at infinity.

Remark 1. Clearly, if for every t > 0, ϕt ∈ Cα, then we have ϕt ∈ Lip(α,
1,0). Thus, the intrinsic square functions are well defined for tempered dis-
tributions in (Lip(α,1,0))∗.

Throughout this article, we will use C to denote a positive constant, which
is independent of the main parameters and not necessarily the same at each
occurrence. By A∼B, we mean that there exists a constant C > 1 such that
1
C ≤ A

B ≤C.

3. The necessity of our conditions

In this section, we shall first prove the following lemma.

Lemma 3.1. Let 0< p < 1 and w ∈ A∞. Then for every f ∈Hp
w(R

n), we
have that f vanishes weakly at infinity.

Proof. For any given ϕ ∈ S (Rn),
∫
Rn ϕ(x)dx = 1, we denote the nontan-

gential maximal function of f by

M∗
ϕ(f)(x) = sup

|y−x|<t

∣∣f ∗ϕt(y)
∣∣.

Then we have |f ∗ϕt(x)| ≤M∗
ϕ(f)(y) whenever |x− y|< t. As a consequence,

we obtain the following inequality∫
|x−y|<t

∣∣f ∗ϕt(x)
∣∣pw(y)dy ≤ ∫

|x−y|<t

(
M∗

ϕ(f)(y)
)p
w(y)dy.

Hence,∣∣f ∗ϕt(x)
∣∣p ≤ 1

w(Q(x,
√
2t))

∥∥M∗
ϕ(f)

∥∥p
Lp

w
≤C · 1

w(Q(x,
√
2t))

∥∥Mϕ(f)
∥∥p
Lp

w
.

It is well known that for given w ∈A∞, then w satisfies the doubling condition
(Lemma A). Furthermore, we can easily show that w also satisfies the reverse
doubling condition; that is, for any cube Q, there exists a constant C1 > 1 such
that w(2Q)≥C1w(Q). From this property, we can deduce w(2kQ)≥Ck

1w(Q)

by induction. Set Q=Q(x,
√
2). So we can get

lim
k→∞

1

w(2kQ)
= 0,
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which implies

lim
t→∞

1

w(Q(x,
√
2t))

= 0.

This completes the proof of the lemma. �

From the definitions of intrinsic square functions, we know that when
ϕ ∈ Cα, 0 < α ≤ 1, then there exists a positive constant c depending only
on α, ε and n, such that cϕ ∈ C(α,ε). Thus, we can get the pointwise in-

equality Sα(f)(x) ≤ CS̃(α,ε)(f)(x). Furthermore, in [11], the author proved
that this inequality has a partial converse; that is, for every α′ satisfying
0 < α′ ≤ α and α′ < ε, for all f such that |f(x)|(1 + |x|)−n−ε ∈ L1(Rn),

we have S̃(α,ε)(f)(x) ≤ CSα(f)(x). So if we choose α′ = α and ε > α, we

obtain Sα(f)(x) ∼ S̃(α,ε)(f)(x). In [11], the author also showed that the
functions Sα(f)(x) and gα(f)(x) are pointwise comparable. Meanwhile, he
pointed out that by similar arguments we can show the pointwise compa-
rability of S̃(α,ε)(f)(x) and g̃(α,ε)(f)(x). Therefore, in order to prove the
necessity of Theorems 1 and 2, we need only to establish the following propo-
sition.

Proposition 3.2. Let 0<α≤ 1, n
n+α < p< 1 and w ∈Ap(1+α

n ). Then for

every f ∈Hp
w(R

n), we have∥∥gα(f)∥∥Lp
w
≤C‖f‖Hp

w
.

Proof. Set q = p(1 + α
n ). Then for w ∈Aq , we have [n(qw/p− 1)] = 0. By

Theorem E, it suffices to show that for any w-(p, q,0)-atom a, there exists a
constant C > 0 independent of a such that ‖gα(a)‖Lp

w
≤C.

Let a be a w-(p, q,0)-atom with suppa⊆Q=Q(x0, r), and let Q∗ = 2
√
nQ.

By using Hölder’s inequality, Lemma A and Theorem F, we thus have∫
Q∗

∣∣gα(a)(x)∣∣pw(x)dx(1)

≤
(∫

Q∗

∣∣gα(a)(x)∣∣qw(x)dx)p/q(∫
Q∗

w(x)dx

)1−p/q

≤
∥∥gα(a)∥∥pLq

w
w
(
Q∗)1−p/q

≤C
∥∥Sα(a)

∥∥p
Lq

w
w(Q)1−p/q

≤C‖a‖p
Lq

w
w(Q)1−p/q

≤C.
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Below we shall give the estimate of the integral I =
∫
(Q∗)c |gα(a)(x)|pw(x)dx.

For any ϕ ∈ Cα, by the vanishing moment condition of atom a, we get∣∣a ∗ϕt(x)
∣∣ = ∣∣∣∣∫

Q

(
ϕt(x− y)− ϕt(x− x0)

)
a(y)dy

∣∣∣∣(2)

≤
∫
Q

|y− x0|α
tn+α

∣∣a(y)∣∣dy
≤ C · rα

tn+α

∫
Q

∣∣a(y)∣∣dy.
Denote the conjugate exponent of q > 1 by q′ = q/(q− 1). Hölder’s inequality
and the condition Aq yield∫

Q

∣∣a(y)∣∣dy ≤
(∫

Q

∣∣a(y)∣∣qw(y)dy)1/q(∫
Q

w(y)−1/(q−1) dy

)1/q′

(3)

≤ C‖a‖Lq
w

(
|Q|q
w(Q)

)1/q

≤ C · |Q|
w(Q)1/p

.

We note that suppϕ⊆ {x ∈ R
n : |x| ≤ 1}, then for any y ∈Q, x ∈ (Q∗)c, we

have t≥ |x−y| ≥ |x−x0|−|y−x0| ≥ |x−x0|
2 . Substituting the above inequality

(3) into (2), we thus obtain∣∣gα(a)(x)∣∣2 = ∫ ∞

0

(
sup
ϕ∈Cα

∣∣a ∗ϕt(x)
∣∣)2 dt

t
(4)

≤ C

(
|Q|

w(Q)1/p

)2

r2α
∫ ∞

|x−x0|
2

dt

t2(n+α)+1

≤ C

(
|Q|

w(Q)1/p

)2

r2α
1

|x− x0|2n+2α
.

It follows from the inequality (4), Lemma A and Lemma B that

I =

∫
(Q∗)c

∣∣gα(a)(x)∣∣pw(x)dx(5)

≤ C

(
rn+α

w(Q)1/p

)p ∫
|x−x0|≥

√
nr

w(x)

|x− x0|nq
dx

= C

(
rn+α

w(Q)1/p

)p ∫
|y|≥√

nr

w1(y)

|y|nq dy

≤ C

(
rn+α

w(Q)1/p

)p

r−nqw1(Q1)
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= C

(
rn+α

w(Q)1/p

)p

r−nqw(Q)

≤ C,

where w1(x) = w(x + x0) is the translation of w(x), Q1 is a cube which is
the translation of Q. It is obvious that w1 ∈ Aq for w ∈ Aq , q > 1, and
qw1 = qw. Therefore, Proposition 3.2 is proved by combining the estimates
(1) and (5). �

Proposition 3.3. Let 0 < α ≤ 1, n
n+α < p < 1, w ∈ Ap(1+α

n ) and λ >
3n+2α

n . Then for every f ∈Hp
w(R

n), we have∥∥g∗λ,α(f)∥∥Lp
w
≤C‖f‖Hp

w
.

Proof. Let q = p(1+ α
n ). As in the proof of Proposition 3.2, we only need to

show that for any w-(p, q,0)-atom a, there exists a constant C > 0 independent
of a such that ‖g∗λ,α(a)‖Lp

w
≤C.

Let a be a w-(p, q,0)-atom with suppa ⊆ Q = Q(x0, r), and let Q∗
k =

2
√
n(2kQ). From the definition, we readily see that(

g∗λ,α(a)(x)
)2

=

∫ ∫
R

n+1
+

(
t

t+ |x− y|

)λn(
Aα(a)(y, t)

)2 dy dt
tn+1

=

∫ ∞

0

∫
|x−y|<t

(
t

t+ |x− y|

)λn(
Aα(a)(y, t)

)2 dy dt
tn+1

+

∞∑
k=1

∫ ∞

0

∫
2k−1t≤|x−y|<2kt

(
t

t+ |x− y|

)λn(
Aα(a)(y, t)

)2 dy dt
tn+1

≤C

[
Sα(a)(x)

2 +

∞∑
k=1

2−kλnSα,2k(a)(x)
2

]
.

Since 0< p< 1, we thus get

∥∥g∗λ,α(a)∥∥pLp
w
≤C

[∥∥Sα(a)
∥∥p
Lp

w
+

∞∑
k=1

2−
kλnp

2

∥∥Sα,2k(a)
∥∥p
Lp

w

]
.

By Proposition 3.2, we can obtain ‖Sα(a)‖Lp
w
≤ C. It remains to estimate

‖Sα,2k(a)‖Lp
w
for k = 1,2, . . . .

First, we claim that the following inequality holds.

(6)
∥∥Sα,2k(a)

∥∥
L2

w
≤C · 2 knq

2

∥∥Sα(a)
∥∥
L2

w
, k = 1,2, . . . .
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In fact, by using the Fubini theorem and Lemma A, we can get∥∥Sα,2k(a)
∥∥2
L2

w
=

∫
Rn

(∫
R

n+1
+

(
Aα(a)(y, t)

)2
χ|x−y|<2kt

dy dt

tn+1

)
w(x)dx

=

∫
R

n+1
+

(∫
|x−y|<2kt

w(x)dx

)(
Aα(a)(y, t)

)2 dy dt
tn+1

≤ C · 2knq
∫
R

n+1
+

(∫
|x−y|<t

w(x)dx

)(
Aα(a)(y, t)

)2 dy dt
tn+1

= C · 2knq
∥∥Sα(a)

∥∥2
L2

w
.

Using Hölder’s inequality, Lemma A, Theorem F and (6), we thus obtain(∫
Q∗

k

∣∣Sα,2k(a)(x)
∣∣pw(x)dx)1/p

≤
∥∥Sα,2k(a)

∥∥
L2

w
w
(
Q∗

k

) 1
p− 1

2(7)

≤ C · 2 knq
2

∥∥Sα(a)
∥∥
L2

w

(
2knqw(Q)

) 1
p− 1

2

≤ C · 2
knq
p ‖a‖L2

w

(
w(Q)

)1/p−1/2

≤ C · 2
knq
p ,

where we have used the fact that w ∈ Aq , 1 < q < 1 + α
n ≤ 2, then w ∈ A2.

Below we give the estimate of the integral J =
∫
(Q∗

k)
c |Sα,2k(a)(x)|pw(x)dx.

Note that suppϕ ⊆ {x ∈ R
n : |x| ≤ 1}, by a simple calculation, we know

that for any (y, t) ∈ Γ2k(x), x ∈ (Q∗
k)

c, then t ≥ |x−x0|
2k+1 . It follows from the

previous estimates (2) and (3) that∣∣Sα,2k(a)(x)
∣∣2 ≤ C

(
|Q|

w(Q)1/p

)2

r2α
∫ ∫

Γ
2k

(x)

dy dt

t2(n+α) · tn+1
(8)

≤ C

(
|Q|

w(Q)1/p

)2

r2α2kn
∫ ∞

|x−x0|
2k+1

dt

t2(n+α)+1

≤ C · 23kn+2kα

(
rn+α

w(Q)1/p

)2
1

|x− x0|2(n+α)
.

Applying Lemma A, Lemma B and the above inequality (8), we have

J =

∫
(Q∗

k)
c

∣∣Sα,2k(a)(x)
∣∣pw(x)dx(9)

≤ C · 2
kp(3n+2α)

2
rp(n+α)

w(Q)

∫
|x−x0|≥

√
n2kr

w(x)

|x− x0|nq
dx

≤ C · 2
kp(3n+2α)

2
rp(n+α)

w(Q)

(
2kr

)−nq(
2k
)nq

w1(Q1)

≤ C · 2
kp(3n+2α)

2 ,
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where the notations w1 and Q1 are the same as Proposition 3.2, we have
w1(Q1) =w(Q). Hence, by the estimates (7) and (9), we obtain∥∥Sα,2k(a)

∥∥p
Lp

w
≤C ·

(
2kp(n+α) + 2

kp(3n+2α)
2

)
≤C · 2

kp(3n+2α)
2 .

Therefore ∥∥g∗λ,α(a)∥∥pLp
w
≤C

∞∑
k=1

2−
kλnp

2 · 2
kp(3n+2α)

2 ≤C,

where the last inequality holds since λ > 3n+2α
n . The proof of Proposition 3.3

is complete. �

Using the same arguments as above, we can also show the Hp
w–L

p
w bound-

edness of g̃∗λ,(α,ε); that is,

(10)
∥∥g̃∗λ,(α,ε)(f)∥∥Lp

w
≤C‖f‖Hp

w
.

Therefore, by Lemma 3.1, Proposition 3.2, Proposition 3.3 and (10), we have
proved the necessity of our conditions.

4. The sufficiency of our conditions

We shall need the following Calderón reproducing formula given in [2].

Lemma 4.1. Let ψ ∈ S (Rn), suppψ ⊆ {x ∈R
n : |x| ≤ 1},

∫
Rn ψ(x)dx = 0

and ∫ ∞

0

∣∣ψ̂(ξt)∣∣2 dt
t
= 1 whenever ξ 
= 0.

Then for any f ∈ S ′(Rn), f vanishes weakly at infinity, we have

(11) f(x) =

∫ ∞

0

∫
Rn

f ∗ψt(y)ψt(x− y)
dy dt

t
,

where the equality holds in the sense of distributions.

Suppose that ψ satisfies the conditions of Lemma 4.1. For every f ∈
S ′(Rn), we define the area integral of f by

Sψ(f)(x) =

(∫
|x−y|<t

∣∣f ∗ψt(y)
∣∣2 dy dt
tn+1

)1/2

.

We are going to prove the following result.

Proposition 4.2. Let 0<α≤ 1, n
n+α < p< 1 and w ∈Ap(1+α

n ). Then for

any f ∈ S ′(Rn), f vanishes weakly at infinity, we have

‖f‖Hp
w
≤C

∥∥Sψ(f)
∥∥
Lp

w
.
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Proof. We follow the same constructions as in [1] and [8]. For any k ∈ Z,
set

Ωk =
{
x ∈R

n : Sψ(f)(x)> 2k
}
.

Let D denote the set formed by all dyadic cubes in R
n and let

Dk =

{
Q ∈D : |Q∩Ωk|>

|Q|
2

, |Q∩Ωk+1| ≤
|Q|
2

}
.

Obviously, for any Q ∈ D, there exists a unique k ∈ Z such that Q ∈ Dk. We
also denote the maximal dyadic cubes in Dk by Ql

k. Set

Q̃=
{
(y, t) ∈R

n+1
+ : y ∈Q, l(Q)< t≤ 2l(Q)

}
,

where l(Q) denotes the side length of Q.

If we set Q̃l
k =

⋃
Ql

k⊇Q∈Dk

Q̃, then we have R
n+1
+ =

⋃
k

⋃
l

Q̃l
k. Hence, by the

expression (11), we obtain

f(x) =
∑
k

∑
l

∫
Q̃l

k

f ∗ψt(y)ψt(x− y)
dy dt

t
=
∑
k

∑
l

λkla
l
k(x),

where

alk(x) = λ−1
kl

∫
Q̃l

k

f ∗ψt(y)ψt(x− y)
dy dt

t

and

λkl =w
(
Ql

k

)1/p−1/2
(∫

Q̃l
k

∣∣f ∗ψt(y)
∣∣2w(Ql

k)

|Ql
k|

dy dt

t

)1/2

.

By the properties of ψ, we can easily get suppalk ⊆ 5Ql
k,

∫
Rn a

l
k(x)dx= 0. Let

q = p(1 + α
n ), w ∈Aq . Since

‖alk‖Lq
w
= sup

‖b‖
L
q′
w

≤1

∣∣∣∣∫
Rn

alk(x)b(x)w(x)dx

∣∣∣∣.
Then Hölder’s inequality and the definition of λkl imply∣∣∣∣∫

Rn

alk(x)b(x)w(x)dx

∣∣∣∣
≤ λ−1

kl

∫
Q̃l

k

∣∣f ∗ ψt(y)
∣∣∣∣g ∗ ψt(y)

∣∣dy dt
t

≤ λ−1
kl

(∫
Q̃l

k

∣∣f ∗ψt(y)
∣∣2 dy dt

t

)1/2(∫
Q̃l

k

∣∣g ∗ ψt(y)
∣∣2 dy dt

t

)1/2

≤ |Ql
k|1/2

w(Ql
k)

1/p

(∫
Q̃l

k

∣∣g ∗ψt(y)
∣∣2 dy dt

t

)1/2

,
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where g(x) = χ5Ql
k
(x)b(x)w(x). For any (y, t) ∈ Q̃l

k, then a direct calculation

shows that ∣∣g ∗ψt(y)
∣∣≤C · t−n‖b‖

Lq′
w
w
(
Ql

k

)1/q
.

Hence,

∥∥alk∥∥Lq
w
≤ C · |Ql

k|1/2
w(Ql

k)
1/p

w
(
Ql

k

)1/q(∫
Q̃l

k

dy dt

t2n+1

)1/2

≤ C ·w
(
Ql

k

)1/q−1/p
,

where in the last inequality we have used the fact that for any (y, t) ∈ Q̃l
k, we

have tn ∼ |Ql
k|. Therefore, these functions alk defined above are all w-(p, q,0)-

atoms.
Set Ω∗

k = {x ∈ R
n : Mw(χΩk

)(x) > C0

2 }, where C0 is an appropriate con-

stant andMw(f)(x) = supx∈Q
1

w(Q)

∫
Q
|f(y)|w(y)dy. Using the weighted weak

type estimate of weighted maximal operator Mw, we have w(Ω∗
k)≤ Cw(Ωk).

Consequently∫
Ω∗

k\Ωk+1

Sψ(f)(x)
2w(x)dx≤

(
2k+1

)2
w
(
Ω∗

k

)
≤C · 22kw(Ωk).

We set E =E(y, t) = {x ∈Ω∗
k\Ωk+1 : |x− y|< t}, then we have∫

Ω∗
k\Ωk+1

Sψ(f)(x)
2w(x)dx =

∫
R

n+1
+

{∫
Rn

χ
E
(x)w(x)dx

}∣∣f ∗ψt(y)
∣∣2 dy dt
tn+1

≥
∑
Q∈Dk

∫
Q̃

∣∣f ∗ψt(y)
∣∣2w(E(y, t)

)dy dt
tn+1

.

We also set Ω
∗
k = {x ∈ R

n : M(χΩk
)(x) > 1

2} and E = E(y, t) = {x ∈ Ω
∗
k\

Ωk+1 : |x − y| < t}, where M denotes the classical(unweighted) Hardy–
Littlewood maximal operator. It is easy to check that

E(y, t)⊇E(y, t) for any (y, t) ∈ Q̃,Q ∈Dk.

In [1], Chang and Fefferman actually proved that |E(y, t)| > c|Q|, with a

positive constant c independent of Q and (y, t) ∈ Q̃. See also [2, p. 158] for its
proof. Since w ∈A∞, then by Lemma C, we know that there exists a constant
0<C ′ < 1 such that

(12) w
(
E(y, t)

)
≥w

(
E(y, t)

)
>C ′w(Q).

Suppose that {Ql
k} is the family of maximal dyadic cubes containing Q which

belong to Dk. Then by Lemma D and the above inequality (12), we can
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get

22kw(Ωk) ≥ C
∑
Q∈Dk

∫
Q̃

∣∣f ∗ ψt(y)
∣∣2w(Q)

dy dt

tn+1
(13)

≥ C
∑
Q∈Dk

∫
Q̃

∣∣f ∗ ψt(y)
∣∣2w(Ql

k

)( |Q|
|Ql

k|

)q
dy dt

tn+1

≥ C
∑
l

∫
Q̃l

k

∣∣f ∗ψt(y)
∣∣2w(Ql

k)

|Ql
k|

· 1

|Ql
k|

α
n

dy dt

t1−α

≥ C
∑
l

∫
Q̃l

k

∣∣f ∗ψt(y)
∣∣2w(Ql

k)

|Ql
k|

dy dt

t
,

where the last inequality holds since t∼ l(Ql
k). For any l ∈ Z+, since |Ql

k ∩
Ωk| > |Ql

k|
2 , w ∈ A∞, then by using Lemma C again, we have that there ex-

ists a constant 0<C ′′ < 1 such that w(Ql
k ∩Ωk)>C ′′w(Ql

k). Note that the
maximal dyadic cubes Ql

k are pairwise disjoint, we thus obtain

w(Ωk) ≥ w

((⋃
l

Ql
k

)
∩Ωk

)
(14)

=
∑
l

w
(
Ql

k ∩Ωk

)
> C ′′

∑
l

w
(
Ql

k

)
.

Then it follows from Hölder’s inequality, the estimates (13) and (14) that∑
k

∑
l

|λkl|p =
∑
k

∑
l

(
w
(
Ql

k

))1−p/2
(∫

Q̃l
k

∣∣f ∗ ψt(y)
∣∣2w(Ql

k)

|Ql
k|

dy dt

t

)p/2

≤
∑
k

(∑
l

w
(
Ql

k

))1−p/2(∑
l

∫
Q̃l

k

∣∣f ∗ ψt(y)
∣∣2w(Ql

k)

|Ql
k|

dy dt

t

)p/2

≤ C
∑
k

(
w(Ωk)

)1−p/2(
22kw(Ωk)

)p/2
≤ C

∥∥Sψ(f)
∥∥p
Lp

w
.

Therefore, by using the atomic decomposition of weighted Hardy spaces, we
get the desired result. �

Finally, we choose a function ψ satisfying the conditions of Lemma 4.1.
Obviously, we have ψ ∈ Cα for any 0<α≤ 1, which implies

(15) Sψ(f)(x)≤ Sα(f)(x)≤CS̃(α,ε)(f)(x)≤Cg̃∗λ,(α,ε)(f)(x).
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Combining the above inequality (15) and Proposition 4.2, we have proved the
sufficiency of our conditions.
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