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A NORMAL FORM FOR ALL LEVI-NONDEGENERATE
ALMOST CR STRUCTURES

DMITRI ZAITSEV

Abstract. We propose a unified normal form for all Levi-nonde-
generate hypersurface type almost CR structures.

1. Introduction

In the recent article [Z12], the author extended the Chern–Moser nor-
mal form theory [CM74] to nonintegrable (or noninvolutive) (hypersurface
type) almost CR structures. The extension has been obtained for all strongly
pseudoconvex almost CR structures. However, in the general case of Levi-
nondegenerate almost CR structures a difficulty arose that lead to an addi-
tional condition called in [Z12] “strong nondegeneracy” involving both the
Levi form and the Nijenhuis nonintegrability tensor.

The present paper removes that additional condition and yields a unified
normal form for all Levi-nondegenerate (hypersurface type) almost CR struc-
tures. There is a price to pay: our normal form does not extend the Chern–
Moser one but rather a modification involving higher order derivatives. The
question of convergence of the normal form for real-analytic almost CR struc-
tures is not treated here and remains an interesting open problem.

Recall that an almost CR structure on a real manifold M consists of a
subbundle H = HM of the tangent bundle T = TM and a vector bundle
automorphism J : H → H satisfying J2 = − id. Thus, J makes every fiber
Hp, p ∈ M , into a complex vector space. A special case of an almost CR
structure corresponding to H = T is the almost complex structure, whereas
the hypersurface type corresponds to H being a corank 1 subbundle of T .
Equivalently, an almost CR structure is given by the i-eigenspace subbundle
H1,0 ⊂ C ⊗H ⊂ C ⊗ T of J , which can be chosen as an arbitrary complex
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subbundle of C⊗ T satisfying H1,0 ∩H1,0 = 0. A CR structure is an almost
CR structure satisfying the integrability condition [H1,0,H1,0] ⊂ H1,0. See
[BER99] for more details.

We refer to [Z12] for the history of the problem. Here we recall the approach
by S. S. Chern and J. Moser [CM74]. According to it, every real-analytic
Levi-nondegenerate hypersurface type CR structure near a fixed point p can
be realized by an embedded real-analytic hypersurface M ⊂Cn+1 of the form

(1.1) Imw = F (z, z̄,Rew), (z,w) ∈C
n ×C,

with p corresponding to the origin and F having near the origin the expansion

(1.2) F (z, z̄, u) =

n∑
j=1

εj |zj |2 +
∑
k,l≥2

Fkl(z, z̄, u),

where εj =±1 and the summands Fkl(z, z̄, u) are bihomogeneous of bidegree
(k, l) in (z, z̄) (i.e. Fkl(tz, sz̄, u) = tkslFkl(z, z̄, u) for t, s ∈ R) satisfying the
normalization conditions

(1.3) trF22 = 0, tr2F23 = 0, tr3F33 = 0,

where tr :=
∑n

j=1 εj
∂2

∂zj ∂z̄j
. The CR structure here is induced by the embed-

ding of M in C
n+1 in the sense that HM = TM ∩ iTM and J is the restriction

to HM of the multiplication by i in C
n+1. If the given CR structure is merely

smooth, its Taylor series expansion at p can still be realized by a formal nor-
mal form (1.2) satisfying (1.3), that is, as a smooth hypersurface (1.1) such
that the right-hand side of (1.2) is a formal power series expansion satisfying
(1.3) and such that the CR structure induced by the embedding coincides
with the given one at the infinite order at 0.

Our goal here is to obtain a normal form for more general almost CR
structures that may not necessarily satisfy the integrability condition. Such
structures arise naturally, for instance, when one is deforming or glueing CR
structures. The first problem one faces here is that the nonintegrable almost
CR structures do not admit any realization as real submanifolds in Cn+1

even at the formal level. Speaking informally, the normal form (1.2), (1.3) is
extrinsic whereas almost CR structures are intrinsic.

In [Z12], we suggested a way of overcoming this difficulty based on an in-
trinsic analogue of the Chern–Moser normal form. The main idea is to impose
normalizing conditions on the almost CR structure itself rather than on the
defining equation in the extrinsic setting. However, almost CR structures
are given by objects of different nature (complex subbundles of C⊗ T ) than
functions. In order to relate with the setting of [CM74] we constructed a new
function F associated with a given almost CR structure in given coordinates.
Roughly speaking, F is obtained by “restricting” the almost CR structure
to the Euler vector field. More precisely, consider any intrinsic coordinates
on M that we group as (z,u) ∈ Cn × R, where the subspace C

n × {0} with



A NORMAL FORM FOR ALMOST CR STRUCTURES 275

its complex structure corresponds to the given almost CR structure only at
the origin. Using the standard complex structure, we write the complexi-
fication of C

n as the direct sum C
n
z ⊕ C

n
z̄ of the spaces of (1,0) and (0,1)

vectors (±i-eigenspaces of J). Then C⊗ T can be identified at every point
with C

n
z ⊕ C

n
z̄ ⊕ Cw and the almost CR structure corresponds to a complex

subbundle H1,0 ⊂ C ⊗ T , which, at each point p = (z,u) near 0, is a graph
of a uniquely determined complex-linear map L(z, z̄, u) : Cn

z →C
n
z̄ ⊕Cw. We

now consider the Euler (or radial) vector field e(z) =
∑

j zj
∂

∂zj
on C

n
z and set

(1.4) L̃(z, z̄, u) := L(z, z̄, u)
(
e(z)

)
, L̃=

(
L̃z̄, L̃w

)
∈C

n
z̄ ⊕Cw.

Recall of the main results of [Z12]:

Theorem 1.1 ([Z12]). Any smooth strictly pseudoconvex hypersurface type

almost CR structure admits a formal normal form given by L̃z̄ = 0, Re L̃w = 0

and F = Im L̃w satisfying the Chern–Moser normalization (1.2), (1.3). This
normal form is determined as uniquely as the Chern–Moser normal form, that
is, up to the isotropy group of the hyperquadric associated with the Levi form.

When attempting to extend the statement to all Levi-nondegenerate al-
most CR structures, we have encountered the difficulty that the normalization
procedure breaks down at the crucial step, where the ODEs defining chains
are being set up. Here, instead of the nondegeneracy of the Levi form, one
needs it for a certain linear combination of the Levi form and the transversal
component of the nonintegrability tensor. More precisely, given the function
L= (Lz̄,Lw) : Cn

z →C
n
z̄ ⊕Cw as above defining the almost CR structure, the

Levi form at 0 corresponds, up to an imaginary multiple, to the antihermitian
part L(ξ̄, η) of the derivative of Lw in z̄, whereas the nonintegrability tensor
corresponds to the antisymmetric part N (ξ, η) of the derivative of L in z, and
its transversal component Nw(ξ, η) to that of Lw. (In fact, L and N are the
only 2nd order obstructions to the flatness as immediately follows from our
normal form.) We then called the almost CR structure strongly nondegenerate
at 0 if it is Levi-nondegenerate and in addition, the bilinear form 3L+Nw is
nondegenerate in the sense that

(1.5) 3L(ξ̄, η) +Nw(ξ, η) = 0 for all η =⇒ ξ = 0.

Obviously, for (integrable) CR structures, strong nondegeneracy means the
same as Levi-nondegeneracy. Furthermore, a strongly pseudoconvex almost
CR structure is automatically strongly nondegenerate. Indeed, since N is
antisymmetric, substituting η = ξ into the left-hand side of (1.5) leads to
L(ξ̄, ξ) = 0, which in the case ImL is positive definite, implies ξ = 0. However,
if the Levi form has mixed signature, strong nondegeneracy is a stronger
property than Levi-nondegeneracy. We then obtained the following extensions
of Theorems 1.1 covering, in particular, all Levi-nondegenerate (integrable)
CR structures.
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Theorem 1.2 ([Z12]). The conclusion of Theorem 1.1 holds for all strongly
nondegenerate hypersurface type almost CR structures.

In this paper, we obtain the following normal form result that holds for all
Levi-nondegenerate almost CR structures, that are not necessarily strongly
nondegenerate.

Theorem 1.3. For every formal power series L(z, z̄, u) : Cn
z → C

n
z̄ × Cw

without constant terms corresponding to any Levi-nondegenerate almost CR
structure and every vector v ∈C

n ×R, there exist unique formal power series
f(z, z̄, u) ∈ C

n and g(z, z̄, u) ∈ R without constant and linear terms such that
(fu2 , gu2)(0) = v and the map h = id+(f, g) transforms L′ into L satisfying
the normalization

L̃z̄
zaz̄buc = 0,

Re L̃w
zaz̄buc = 0, L̃w

zz̄uc+1 = 0, L̃w
za+1z̄uc = 0,

(1.6)
tr

(
L̃w
z2z̄2uc

)
= 0, tr3

(
L̃w
z3z̄3uc

)
= 0,

tr3
(
48L̃w

z3z̄2us−1L̃w
zz̄ − 7L̃w

z4z̄3us−2

)
= 0,

for all a, b, c≥ 0.

Theorem 1.3 is proved in Section 4. The “mysterious” coefficients 48 and
−7 appear naturally in the normal form calculation and are determined up to
a common factor.

2. Almost CR structures

For reader’s convenience, we recall basic definitions and constructions. Let
M be a real manifold with almost CR structure given by H and J or, equiv-
alently by a complex subbundle H1,0 ⊂ C ⊗ T satisfying H1,0 ∩ H1,0 = 0.
The complex dimension of the fiber Hp, p ∈M , is called the CR dimension
dimCRM of an almost CR manifold M and the real codimension of Hp in Tp

the CR codimension codimCRM of M . The pair (dimCRM, codimCRM) is
sometimes called the type of M and in case codimCRM = 1, M is said to be
of hypersurface type.

Many formulas and calculations become simplier when working with the
complexified tangent bundle CT := C ⊗ T . Here J extends to a complex
bundle automorphism of CH =: C ⊗ H , which splits into direct sum of its
(±i)-eigenspaces

H1,0 := {ξ ∈CH : Jξ = iξ}, H0,1 := {ξ ∈CH : Jξ =−iξ}.
These eigenspaces form complex subbundles of CH satisfying

H0,1 =H1,0, CH =H1,0 ⊕H0,1

and each of them uniquely determines the almost CR structure.
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3. Coordinate setting

We briefly outline the construction of [Z12] that we shall used here. For
a given almost CR structure (H,J) on M of CR dimension n and CR codi-
mension d and a reference point p0 ∈M , we consider a system of coordinates
(x+ iy, u) ∈C

n
x+iy ×R

d
u on M such that

(3.1) p0 = (0,0,0), H0 =C
n × {0}, J0(ξ,0) = (iξ,0).

3.1. Complex coordinates. Instead of using the real coordinates (x, y,u),
we adopt the complexified point of view and switch to the coordinates

(3.2) z = x+ iy, z̄ = x− iy ∈C
n, w ∈C

d with u= Rew.

Then our preliminary normalization (3.1) is expressed by

(3.3) H1,0
0 = {dz̄ = 0, dw = 0}.

Now consider a general point p ∈ M . If p is sufficiently close to 0, the
subspace H1,0

p ⊂ CTp is the graph of a uniquely determined complex-linear
map

(3.4) L(p) : Cn
z →C

n
z̄ ×C

d
w, H1,0

p =
{
(dz̄, dw) = L(p)dz

}
.

We shall also distinguish the components of L:

(3.5) L(p) =
(
Lz̄(p),Lw(p)

)
, Lz̄(p) : Cn

z →C
n
z̄ ,L

w(p) : Cn
z →C

d
w.

Then (3.3) can be rewritten as

(3.6) L(0) =
(
Lz̄(0),Lw(0)

)
= 0.

3.2. Evaluation along the Euler vector field. One basic idea of [Z12]
was to write normalization conditions not for L directly but for its evaluation
along the Euler vector field.

Consider the following Euler (or radial) type vector field:

(3.7) e= e(z) := z
∂

∂z
=

∑
j

zj
∂

∂zj
∈ T 1,0

z C
n.

Given a (formal) map L as in (3.4), we evaluate it along e to obtain a C
n
z̄ ×C

d
w-

valued formal power series

(3.8) L̃(z, z̄, u) := L(z, z̄, u)e(z) = L(z, z̄, u)z
∂

∂z
.

We write Lzaz̄buc for the derivative at 0 regarded as a multihomogeneous
polynomial of degree a in z, b in z̄ and c in u, which is given by

Lzaz̄buc(z, z̄, u)(3.9)

:=
∑

Lzi1 ···zia z̄j1 ···z̄jbuk1
···zkc

(0)zi1 · · ·zia z̄j1 · · · z̄jbuk1 · · ·ukc
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in terms of the partial derivatives of L, where the summation is taken over all
collections of indices i1, . . . , ia, j1, . . . , jb ∈ {1, . . . , n}, k1, . . . , kc ∈ {1, . . . , d}.
Then

(3.10) L̃zaz̄buc(z, z̄, u) = aLza−1z̄buc(z, z̄, u)e(z)

for all integers a, b, c≥ 0.

3.3. Partial normalization. We recall from [Z12] the following partial nor-
malization that holds for almost CR structures for any codimension without
any nondegeneracy assumption.

Proposition 3.1 ([Z12], Proposition 5.2). For every formal power series
L(z, z̄, u) : Cn

z → C
n
z̄ × C

d
w without constant terms and every formal power

series f0(z,u) and g0(u) without constant and linear terms, there exist unique
formal power series f(z, z̄, u) and g(z, z̄, u) without constant and linear terms
such that f(z,0, u) = f0(z,u) and g(0,0, u) = g0(u) and the map id+(f, g)
transforms L into L′ satisfying the normalization

(3.11) L̃′z̄′(
z′, z̄′, u′) = 0, Re L̃′w′(

z′, z̄′, u′) = 0.

4. A normal form for all Levi-nondegenerate almost
CR structures

Our goal here is to modify our previous construction in [Z12] to obtain
a different normal form that is valid for all Levi-nondegenerate almost CR
structures (that are not necessarily strongly nondegenerate). For this, note
that strong nondegeneracy has only been used in [Z12, (7.35)] in order to
determine fus+1 for s≥ 1, whereas only Levi-nondegeneracy has been used in
the preceding normalizations [Z12, (7.22), (7.26), (7.29), (7.32)].

If the given almost CR structure is not strongly nondegenerate, we may
not be able to obtain the normalization [Z12, (7.35)]. Instead we consider
the identities [Z12, (7.3)] corresponding to (a, b, c) equal to (4,3, s− 2) and
(3,4, s− 2) for s ≥ 2, where we keep the notation and induction hypotheses
of Section 7 of [Z12]. Using [Z12, (7.5)] to eliminate the nonpure terms as
before, we obtain:

4gz4z̄3us−2 + 12gz3z̄2us−1L̃w
zz̄ + L̃w

z4z̄3us−2

= L̃′w′

z′4z̄′3u′s−2 + 216L′w′

z̄′ (z̄;fz2us)
(
L̃w
zz̄

)2
+

(
120L′w′

z′ (z;fus+1)

− 24L′w′

z̄′ (f̄us+1 ; z)
)(
L̃w
zz̄

)3
+ · · · ,(4.1)

3gz3z̄4us−2 + 12gz2z̄3us−1L̃w
zz̄ + L̃w

z3z̄4us−2

= L̃′w′

z′3z̄′4u′s−2 + 36L′w′

z̄′ (f̄z̄2us ; z)
(
L̃w
zz̄

)2
+ 144L′w′

z̄′ (z̄;fus+1)
(
L̃w
zz̄

)3
+ · · · .
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As in Section 7.3 of [Z12], wee keep the normalization [Z12, (7.36)], in partic-
ular, we assume

(4.2) L̃′w′

z′4z̄′3u′s−2 + L̃′w′
z′3z̄′4u′s−2 = 0.

Furthermore, subtracting 4 times the conjugate of the second identity in (4.1)
from 3 times the first identity, we obtain

7 · 12gz3z̄2us−1L̃w
zz̄ +

(
3L̃w

z4z̄3us−2 − 4L̃w
z3z̄4us−2

)
(4.3)

=
(
3L̃′w′

z′4z̄′3u′s−2 − 4L̃′w′
z′3z̄′4u′s−2

)
+ 792L′w′

z̄′ (z̄;fz2us)
(
L̃w
zz̄

)2
+

(
360L′w′

z′ (z;fus+1)− 648L′w′

z̄′ (f̄us+1 ; z)
)(
L̃w
zz̄

)3
+ · · · .

We use [Z12, (7.25)] to solve for gzus+1 , substitute into the second identity in

[Z12, (7.30)] and solve it for L′w′

z̄′ (z̄;fz2us). Then substitute it in [Z12, (7.33)]
and solve for gz3z̄2us−1 and finally substitute everything into (4.3):

−96 · 12
5

(
7L′w′

z̄′ (f̄us+1 ; z) + 4L′w′

z′ (fus+1 ; z)
)(
L̃w
zz̄

)3
(4.4)

+
(
3L̃w

z4z̄3us−2 − 4L̃w
z3z̄4us−2

)

=
(
3L̃′w′

z′4z̄′3u′s−2 − 4L̃′w′
z′3z̄′4u′s−2

)
+ · · · .

Multiplying [Z12, (7.34)] by −12 · 4L̃w
zz̄ , (4.4) by 5 and adding them together,

we obtain

96 · 60L′w′

z̄′ (f̄us+1 ; z)
(
L̃w
zz̄

)3
(4.5)

− 48
(
2L̃w

z3z̄2us−1 − 3L̃w
z2z̄3us−1

)
L̃w
zz̄

+ 5
(
3L̃w

z4z̄3us−2 − 4L̃w
z3z̄4us−2

)

=−48
(
2L̃′w′

z′3z̄′2u′s−1 − 3L̃′w′
z′2z̄′3u′s−1

)
L̃w
zz̄

+ 5
(
3L̃′w′

z′4z̄′3u′s−2 − 4L̃′w′
z′3z̄′4u′s−2

)
.

Using [Z12, (7.32)] and (4.2), we conclude that the expression

(4.6) 48L̃′w′

z′3z̄′2u′s−1L̃w
zz̄ − 7L̃′w′

z′4z̄′3u′s−2

is determined up to a multiple of L′w′

z̄′ (f̄us+1 ; z)(L̃w
zz̄)

3. Hence, f̄us+1 for s≥ 2
can be uniquely determined by the normalization condition

(4.7) tr3
(
48L̃′w′

z′3z̄′2u′s−1L̃w
zz̄ − 7L̃′w′

z′4z̄′3u′s−2

)
= 0.

Note that in contrast to the previous section, the remaining derivative fu2

is not determined and is to be treated as free parameter along with gu2 .
Summarizing we obtain Theorem 1.3.
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