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TRANSVERSALITY OF HOLOMORPHIC MAPPINGS

BETWEEN REAL HYPERSURFACES IN COMPLEX

SPACES OF DIFFERENT DIMENSIONS

PETER EBENFELT AND DUONG NGOC SON

Abstract. We consider holomorphic mappings H between a
smooth real hypersurface M ⊂ C

n+1 and another M ′ ⊂ C
N+1

with N ≥ n. We provide conditions guaranteeing that H is trans-
versal to M ′ along all of M . In the strictly pseudoconvex case,

this is well known and follows from the classical Hopf boundary

lemma. In the equidimensional case (N = n), transversality holds

for maps of full generic rank provided that the source is of finite

type in view of recent results by the authors (see also a previ-
ous paper by the first author and L. Rothschild). In the positive

codimensional case (N >n), the situation is more delicate as ex-
amples readily show. In recent work by S. Baouendi, the first

author, and L. Rothschild, conditions were given guaranteeing

that the map H is transversal outside a proper subvariety of M ,

and examples were given showing that transversality may fail at
certain points.

One of the results in this paper implies that ifN ≤ 2n−2, M ′ is
Levi-nondegenerate, and H has maximal rank outside a complex

subvariety of codimension 2, then H is transversal to M ′ at all

points of M . We show by examples that this conclusion fails in

general if N ≥ 2n, or if the set WH of points where H is not

of maximal rank has codimension one. We also show that H is
transversal at all points if H is assumed to be a finite map (which

allows WH to have codimension one) and the stronger inequality
N ≤ 2n− 3 holds, provided that M is of finite type.
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1. Introduction

The geometric property of transversality is often a crucial ingredient in
proving results of an analytic nature in CR geometry and other areas of anal-
ysis. We mention here as a general example the frequent use of the Hopf
boundary point lemma (a transversality result) in elliptic PDE and poten-
tial theory. The reader is referred to for example, [ER06] and [BER07] for a
more detailed account of the significance of transversality in CR geometry. In
this paper, we shall prove transversality results concerning mappings in CR
geometry.

Let M ⊂ Cn+d and M ′ ⊂ C
N+D be smooth generic (in particular CR)

submanifolds of codimension d andD, respectively (so that the CR dimensions
are n and N , respectively), and H a holomorphic mapping from an open
neighborhood U of M in C

n+d into C
N+D such that H(M)⊂M ′. The study

of how the CR geometries of M and M ′ influence the geometric behaviour
of H , in particular its CR transversality to M , has received considerable
attention from many authors over the years (see, e.g., [P77], [Forn78], [BR90],
[BR93], [CR94], [BHR95], [CR98], [Lam01], [BH05], [EHZ05], [ER06], [LM06],
[Zh07], [HZ09], [ESh10], [BEH11], [ES10] and the references therein). The
equidimensional case (N = n and D = d) is by now well understood (in the
finite type case) [ES10]: Assume that H has full generic rank (i.e., JacH :=
detHZ �≡ 0), p ∈M , and M is of finite type at p. Then, H is CR transversal
to M ′ at p. (This result under the stronger assumption that H is assumed
to be a finite map at p was proved earlier in [ER06].) If M is assumed to be
holomorphically nondegenerate, then the condition JacH �≡ 0 is also necessary
in this context. In this paper, we shall consider the more delicate situation
where the CR dimension N of the target M ′ is larger than that, n, of the
source M . We shall restrict to the case where M and M ′ are hypersurfaces
(d=D = 1). In this case, the notion of CR transversality coincides with the (in
general) weaker notion of transversality in the traditional sense (see [ER06]);
recall that a holomorphic mapping H from an open set U ⊂Cn+1 →CN+1 is
said to be transversal (see, e.g., [GG86]) to a real hypersurface M ′ ⊂ C

N+1

at p ∈ U if p′ :=H(p) ∈M ′ and

(1) TH(p)M
′ + dH

(
TpC

n+1
)
= TH(p)C

N+1.

In [BER07], the case of real-analytic hypersurfaces M ⊂ C
n+1 and M ′ ⊂

C
N+1 was considered under the (obviously necessary condition) that the map

H : U ⊂ C
n+1 → C

N+1 sending M into M ′ does not collapse all of U into
M ′. Sufficient conditions involving the signature and rank of the Levi form
L′ of M ′, and the CR dimensions n and N were given guaranteeing that the
map H must be transversal outside a proper, real-analytic subvariety of M ,
but not necessarily at a specific point p ∈M . Examples and results were also
given showing that these results are essentially sharp in the sense that if the
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conditions are violated, then the map H could be non-transversal over all of
M , but also that under the conditions given transversality can fail at certain
points. In this paper, we shall give more restrictive conditions on the rank r
of L′, the CR dimensions n and N , and on the map H that will guarantee
transversality at all points.

To formulate our main results, we shall need to introduce a little more
notation. Given a holomorphic map H : U ⊂C

n+1 →C
N+1, we shall consider

the complex analytic subvariety

(2) WH :=
{
Z ∈ U : rkHZ(Z)< n+ 1

}
,

where HZ denotes the (N + 1)× (n+ 1) matrix of partial derivatives of the
components of H ,

HZ :=

(
∂Hi

∂Zj

)
, 1≤ i≤N + 1,1≤ j ≤ n+ 1.

We shall only consider situations where WH is a proper subvariety (i.e., the
rank of H is of generic maximal rank); just as in the equidimensional case
mentioned above, this is essentially necessary for transversality to hold under
some mild conditions on M . Observe that if δl(Z), for l = 1, . . . ,m≤

(
N+1
N−n

)
,

denote the collection of all nontrivial (n+ 1)× (n+ 1)-minors of the matrix
HZ(Z), then WH coincides with the set defined by

δ1(Z) = · · ·= δm(Z) = 0.

Thus, when N > n the codimension of this set is in general large, and the
codimension is one only when all the minors have a common divisor. Our
first result is the following theorem.

Theorem 1.1. Let M ⊂C
n+1 and M ′ ⊂C

N+1 be smooth real hypersurfaces
through p and p′ respectively, and H : (Cn+1, p)→ (CN+1, p′) a germ at p of
holomorphic mapping such that H(M)⊂M ′. Denote by r the rank of the Levi
form of M ′ at p′ and assume that

(3) 2N − r ≤ 2n− 2.

If the germ at p of the analytic variety WH , given by (2), has codimension at
least 2, then H is transversal to M ′ at p.

The following example shows that condition (3) in Theorem 1.1 is at least
“almost” sharp.

Example 1.2. Consider the strictly pseudoconvex hyperquadric M ⊂C
n+1

(biholomorphically equivalent to the sphere) given by

Imw−
n∑

j=1

|zj |2 = 0
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and the nondegenerate hyperquadric M ′ ⊂C
2n+1 given by

Imw′ +
n∑

j=1

|z′2j−1|2 −
n∑

j=1

|z′2j |2 = 0,

where we use coordinates (z,w) ∈ C
n ×C and (z′,w, ) ∈ C

2n ×C. Now, con-
sider the polynomial mapping H = (F1, F2, . . . , F2n−1, F2n,G) : (Cn+1,0) →
(C2n+1,0) given by

H(z,w) :=

(
z1 + [z]z1 +

i

2
w,z1 − [z]z1 −

i

2
w, . . . ,(4)

zn + [z]zn +
i

2
w,zn − [z]zn − i

2
w,−2[z]w

)
,

where we have used the notation [z] :=
∑n

j=1 zj . We claim that H sends M

into M ′, H is a local embedding at 0 (and hence as germs at 0, we have
WH = ∅), but H is not transversal to M ′ along the intersection of M and
the real hypersurface Re[z] = 0, and hence, in particular, is not transversal
at 0. For the reader’s convenience, a proof of this claim is given in Section 5.
In this example, N = 2n and r =N = 2n (since M ′ is Levi nondegenerate).
Thus, we have 2N − r = N = 2n, which is equal to (2n − 2) + 2 and hence
condition (3) is violated. However, the authors do not know of an example
where 2N − r = (2n− 2) + 1 = 2n− 1, which leaves open the possibility that
condition (3) could be sharpened to 2N − r ≤ 2n− 1 in Theorem 1.1.

We would like to point out that when the target M ′ is Levi nondegener-
ate at p′ (i.e., r =N , as in Example 1.2 above), then the condition (3) can
be rewritten N − n≤ n− 2. (The number N − n, the difference between di-
mension of the target space and the source space, is often referred to as the
codimension of the map.) That is, transversality holds at p for maps H up
to a codimensional gap N − n that increases with the CR dimension n of
the source manifold, provided that the codimension of WH is at least 2. The
following example shows that this phenomenon fails if we allow WH to have
codimension one.

Example 1.3. Consider the sphere M ⊂Cn+1 given by

n+1∑
j=1

|Zj |2 − 1 = 0

and the nondegenerate hyperquadric M ′ ⊂Cn+3 given by

Imw′ −
(

n+1∑
j=1

|z′j |2 − |z′n+2|2
)

= 0.
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It is straightforward to verify that the polynomial mapping H : Cn+1 →C
n+3

given by
H(Z) :=

(
Z2
1 ,Z1Z2, . . . ,Z1Zn+1,Z1,0

)
sends M into M ′. The set WH is given by Z1 = 0 (and hence has codimension
one), and the mapping H is not transversal to M ′ along the intersection of
the sphere M with WH (cf. Example 2.3 in [BER07]). Thus, this is a family
of examples where WH has codimension one, the map has codimension 2 (i.e.,
N − n = 2), and transversality fails at certain points regardless of the CR
dimension n of the source.

Example 1.3 shows that even for Levi nondegenerate hypersurfaces and
maps of generic full rank, transversality may fail at specific points unless
further conditions are imposed. One direction is to assume conditions relating
the signatures of the Levi forms as in [BH05] in which transversality is proved
for maps between hyperquadrics of the same signature. We shall not pursue
this direction in the present paper.

We note that in Example 1.3 the map H sends the whole hyperplane
WH = {Z : Z1 = 0} to 0 ∈ M ′. In particular, H is not a finite map at
0 ∈ C

n+1. Recall that a (germ at p of a) map H : (Cn−1, p) → (CN+1, p′)
is finite if H−1(p′) = {p} as germs at p, or equivalently if the vector space
C[[Z]]/I(H1, . . . ,HN+1) is finite dimensional over C; here, C[[= Z]] denotes
the ring of formal power series in Z and I(H1, . . . ,HN+1) denotes the ideal
generated by the components of H . Our next results asserts that if we sharpen
condition (3) slightly and require M to be of finite type, then transversality
holds at all points for finite maps.

Theorem 1.4. Let M ⊂C
n+1 and M ′ ⊂CN+1 be smooth real hypersurfaces

through p and p′ respectively, and H : (Cn+1, p)→ (CN+1, p′) a germ at p of
holomorphic mapping such that H(M)⊂M ′. Denote by r the rank of the Levi
form of M ′ at p′ and assume that

(5) 2N − r ≤ 2n− 3.

Assume also that M is of finite type at p and H is a finite map at p. Then,
H is transversal to M ′ at p.

We would like to point out that the map H in Example 1.2 is a finite map
(indeed, it is a local embedding at p= 0 and therefore locally 1-to-1 there),
showing that condition (5) cannot be improved by much, and the rate of
growth of the codimensional gap where transversality holds grows like n. We
would also like to point out the well known fact that ifM is Levi nondegenerate
at p, then transversality of H at p implies that H is in fact a transversal local
embedding at p.

Theorem 1.4 will be a direct consequence of a more general result, which
we will now present. Let s be an integer with 1≤ s≤ n+ 1, and define

(6) W s
H :=

{
Z ∈C

n+1 : rkHZ(Z)< s
}
.
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We note that Wn+1
H =WH . Each W s

H is a complex analytic variety defined
by the vanishing of all k× k minors of HZ , for k = s, . . . , n+ 1, and we have
a nesting

W 1
H ⊂W 2

H ⊂ · · · ⊂Wn+1
H =WH .

Our next result is the following.

Theorem 1.5. Let M ⊂C
n+1 and M ′ ⊂C

N+1 be smooth real hypersurfaces
through p and p′ respectively, and H : (Cn+1, p)→ (CN+1, p′) a germ at p of
holomorphic mapping such that H(M)⊂M ′. Denote by r the rank of the Levi
form of M ′ at p′. Assume that M is of finite type at p and that, for some
1≤ s≤ n+ 1,

(7) 2N − r ≤ n+ s− 3.

If the germ at p of the analytic variety WH , given by (2), is proper (i.e. H has
generic rank n+ 1) and the germ at p of W s

H , given by (6), has codimension
at least 2, then H is transversal to M ′ at p.

We note that if H is a finite map at p, then WH is proper and Wn
H has

codimension at least 2. Thus, Theorem 1.4 follows from Theorem 1.5 with
s= n.

We end this introduction by pointing out that if H is a smooth CR mapping
from M to M ′, then we can identify H with a formal holomorphic power series
mapping in the variable Z ∈C

n+1 centered at Z = p and sending M into M ′

(formally); see e.g. [BER99a] and [BER99b]. The definition of transversality
(1) makes sense for formal mappings, and Theorems 1.1, 1.4, and 1.5 remain
true for such maps, provided that the algebraic definition of finite map is used
in Theorem 1.4, and the conditions on the analytic varieties W s

H in Theorems
1.1 and 1.5 are interpreted algebraically as in Theorems 3.5 and 4.1.

2. Preliminaries

In this section, we will summarize some basic facts and definitions that will
be used in this paper. We refer the reader to the book [BER99a] for more
details.

A smooth real hypersurface in C
n+1 (∼= R

2n+2) is a subset M , locally
defined by the vanishing of a local defining equation ρ(Z, Z̄) = 0, where ρ is
a smooth real-valued function satisfying dρ �= 0 along M . Such M is a CR

manifold with CR bundle T (0,1)M whose fiber at p ∈ is defined by T
(0,1)
p M :=

CTpM ∩ T 0,1
C

n+1. Sections of T (0,1)M are called CR vector fields. A real
hypersurface M is said to be of finite type at p (in the sense of Kohn and
Bloom–Graham) if the (complex) Lie algebra gM generated by all CR vector
fields and their conjugates near p satisfies gM (p) = CTpM . The complex

conjugate bundle T (0,1)M is denoted by T (1,0)M . Associated to M at p, there

is a Hermitian form Lp : T
(1,0)
p M ×T

(1,0)
p M →CTpM/(T

(1,0)
p M +T

(0,1)
p M)∼=
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C called the Levi form of M at p. In terms of a local defining equation ρ= 0,

the space T
(1,0)
p M can be identified with the subspace of c ∈C

n+1 such that

n+1∑
j=1

∂ρ

∂Zj
(p, p̄)cj = 0,

and then the Levi form Lp is represented by the restriction to this space of
the Hermitian (n+ 1)× (n+ 1)-matrix

ρZZ̄(p, p̄) :=

(
∂2ρ

∂Zi ∂Z̄j
(p, p̄)

)
, 1≤ i, j ≤ n+ 1.

If U is an open neighborhood of M in C
n+1 and H : U : CN+1 a holomorphic

mapping, then H sends M into a smooth real hypersurface M ′ ⊂ C
N+1 if

and only if there is a smooth function a in U ⊂ Cn+1 such that ρ′ ◦H = aρ,
where ρ′ denotes a defining function for M ′. Moreover, H is transversal to
M ′ precisely at those points p ∈M where a �= 0 (see, e.g., [ER06]). In what
follows, we shall always assume, without loss of generality of course, that the
given points p ∈M and p′ =H(p) ∈M ′ are both the origin p= 0 ∈C

n+1, and
p′ = 0 ∈C

N+1.
When M and M ′ are real-analytic, then ρ and ρ′ are given by convergent

power series in (Z, Z̄) ∈ C
n+1 × C

n+1 and (Z ′, Z̄ ′) ∈ C
N+1 × C

N+1, respec-
tively. By replacing ZZ̄ and Z̄ ′ by independent variables ξ and ξ̄, we obtain
a holomorphic mapping H := (H,H̄) : U ×U∗ →C

N+1 ×C
N+1, where

H̄(ξ) :=H(ξ̄), U∗ :=
{
ξ ∈C

n+1 : ξ̄ ∈ U
}
,

sending 0 to 0 and M into M′, where M := {ρ(Z, ξ) = 0} ⊂ U × U∗ and
M′ = {ρ′(Z ′, ξ′) = 0} ⊂C

N+1 ×C
N+1 denote the complexifications of M and

M ′, respectively. Thus, we have

(8) ρ′
(
H(Z), H̄(ξ)

)
= a(Z, ξ)ρ(Z, ξ),

and H fails to be transversal to M′ precisely along the common zero set of
a(Z, ξ) and ρ(Z, ξ). If M and M ′ are merely C∞-smooth, then we can replace
ρ, a, and ρ′ by their formal Taylor series at 0 in (Z, Z̄) and (Z ′, Z̄ ′) and H
by its convergent (or formal if H is a C∞-smooth CR mapping) Taylor series
at 0 and obtain (8) as an identity of formal power series. This is standard
procedure in the field, and is referred to as identifying M and M ′ with their
formal manifolds and considering H as a formal mapping sending M into
M ′; the reader is referred to for example, [BR90], [BER99a] or [BER99b]
for further discussion of this procedure. In what follows, we shall work over
the rings of formal power series with formal manifolds and mappings, unless
explicitly specified otherwise. For convenience, we shall also drop the ′ on the
target space coordinates (Z ′, ξ′), as it will be clear from the context to which
space the variables belong.
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It is well known, see, for example, [BER99a], that there are formal holo-
morphic (or convergent holomorphic in the real-analytic situation) normal
coordinates Z = (z,w) ∈ C

n × C at 0 ∈M such that M can be defined by a
complex formal (again, convergent in the real-analytic case) equation

(9) ρ(Z, Z̄) :=w−Q(z, z̄, w̄) = 0,

where Q(z, ξ) =Q(z,χ, τ) is a holomorphic function defined in a neighborhood
of 0 in C

n ×C
n ×C satisfying

(10) Q(z,0, τ)≡Q(0, χ, τ)≡ 0.

The fact that equation (9) defines a real hypersurface is equivalent to one of
the following the identities

(11) Q
(
z,χ, Q̄(χ, z,w)

)
≡w or Q̄

(
χ, z,Q(z,χ, τ)

)
≡ τ ;

recall that if u(x) is a formal power series in x= (x1, . . . , xq) (or holomorphic

function), then we use the notation ū(y) = u(ȳ). It follows that, in normal
coordinates using Z = (z,w) and ξ = (χ, τ), we may use either of the choices

(12) ρ(Z, ξ) =w−Q(z,χ, τ)

or, in view of (11),

(13) ρ(Z, ξ) = τ − Q̄(χ, z,w).

We conclude this section by mentioning that in normal coordinates, the

T
(1,0)
0 M space can be identified with the space of c ∈ C

n × C such that
cn+1 = 0 and the Levi form of M at 0 can be represented by the n×n matrix
Qzχ(0,0,0). Moreover, M is of finite type at 0 if and only if Q(χ, z,0) �≡ 0.

3. The non-transversality locus and proof of Theorem 1.1

In this section, we will assume M and M ′ are (analytic, smooth, or formal)
real hypersurfaces in C

n+1 and C
N+1, respectively, and as mentioned in the

previous section we shall assume that p = 0 ∈M and p′ = 0 ∈M ′. We shall
identify M and M ′ with formal hypersurfaces as explained in the previous
section. We shall also assume in this section that

(14) 2N − r ≤ 2n− 2,

where r is the rank of Levi form of M ′ at p′ = 0. We shall use the notation
ρ(Z, ξ) and ρ′(Z ′, ξ′) for (complexified) formal defining functions for M and
M ′, respectively. Let H : (Cn+1,0) → (CN+1,0) be a formal holomorphic
mapping sending M into M ′, that is,

(15) ρ′
(
H(Z), H̄(ξ)

)
= a(Z, ξ)ρ(Z, ξ),

where a(Z, ξ) is a formal power series in C[[Z, ξ]]. We shall assume that H has
generic rank n+1, that is, there is at least one (n+1)× (n+1)-minors of HZ

which does not vanish identically. We shall denote by {δl(Z), l = 1,2, . . . ,m}
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the collection of (n + 1) × (n + 1)-minors which do not vanish identically.

(Thus, we have 1≤m≤
(
N+1
N−n

)
.)

We first observe that a �= 0 when (14) holds. For the readers convenience,
we sketch the simple proof. Assume that a≡ 0. Then, by differentiating (15)
once with respect to Z and once with respect to ξ, we obtain

(16) Ht
Z(Z)ρ′Zξ

(
H(Z), H̄(ξ)

)
H̄ξ(ξ) = 0,

where as before HZ is the (N +1)× (n+1) Jacobian matrix of H ; superscript
t denotes transpose of a matrix, and ρ′Zξ is an (N + 1)× (N + 1)-matrix. If

we let S denote the field of fractions of C[[Z, ξ]], then we can regard (16) as a
matrix identity over S. Note that the ranks of Ht

Z and H̄ξ over K are both
n+1, and the rank of ρ′Zξ is at least r (since the rank of ρ′Zξ(0,0) is at least r).

Elementary linear algebra implies that n+1− (N +1− r)≥ (N +1)− (n+1)
or, equivalently, 2N − t ≥ 2n, proving our claim that a �≡ 0 under condition
(14). It now follows from Theorem 1.1 in [BER07] that a is not a multiple
of ρ. In other words, in normal coordinates Z = (z,w) and ξ = (χ, τ) as in the
previous section, we have

a
(
Z,

(
χ, Q̄(χ,Z)

))
�≡ 0, a

((
z,Q(z,χ, τ)

)
, ξ
)
�≡ 0,

where Q and Q̄ are as in (12) and (13), respectively.
As mentioned in the first section, the map H is transversal to M ′ at 0 if and

only if a(0,0) �= 0. We shall consider the ideal I := I(a, ρ) in the ring C[[Z, ξ]]
of formal power series in (Z, ξ). We that note the power series a depends
on the choices of defining power series ρ and ρ′, but the ideal I clearly does
not. In the case a(0,0) = 0, the ideal I is proper. When M , M ′ and H are
analytic, I defines a complex analytic variety X in C

n+1
Z × C

n+1
ξ consisting

of the points at which the complexified map H(Z, ξ) = (H(Z), H̄(ξ)) fails to
be transversal to the complexified hypersurface M′. In this section, we shall
also give a description (Corollary 3.6) of the non-transversality locus X (in
the analytic case) of a (complexified) holomorphic map of generic full rank
when the condition on the codimension of WH in Theorem 1.1 fails; when the
codimensional condition on WH holds, we shall show that X is empty. But
first let us observe some simple properties of I .

Lemma 3.1. The ideal I and its radical
√
I are Hermitian, that is, if

α(Z, ξ) ∈ C[[Z, ξ]], then α(Z, ξ) ∈ I if and only if ᾱ(ξ,Z) ∈ I , and similarly

for
√
I .

Recall that the radical of I is defined by
√
I = {f : fq ∈ I for some inte-

ger q}.

Proof of Lemma 3.1. Recall that we can choose real-valued defining func-
tions ρ and ρ′ for M and M ′ respectively and, hence, the corresponding
function a is real-valued as well. At the level of formal power series, this is
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equivalent to ρ, ρ′, a being Hermitian; that is, if u equals ρ, ρ′, or a, then
u(Z, ξ) = ū(ξ,Z). The conclusion of Lemma 3.1 follows immediately. �

In the following lemma, we use normal coordinates Z = (z,w), ξ = (χ, τ) as
above, and Q̄(χ,Z) = Q̄(χ, z,w) is the power series appearing in (13). Recall
that a(Z, (χ, Q̄(χ,Z))) �≡ 0.

Lemma 3.2. Assume that a(0,0) = 0 and let

a
(
Z,

(
χ, Q̄(χ,Z)

))
= at11 (Z,χ) · · ·atkk (Z,χ)

be the unique (modulo units) factorization into irreducible (or prime) elements
in C[[Z,χ]]⊂C[[Z, ξ]]. Let Ij = I(aj , ρ). Then,

√
I =

k⋂
j=1

Ij

is a prime decomposition of
√
I .

Proof. Recall that we may choose ρ(Z, ξ) = τ − Q̄(χ,Z). It then follows
that for some ã(Z, ξ) ∈C[[Z, ξ]]

a(Z, ξ) = a
(
Z,

(
χ, Q̄(χ,Z)

))
+ ã(Z, ξ)ρ(Z, ξ).

Hence, a ∈ Ij and so I = I(a, ρ)⊂ Ij for all j = 1, . . . , k.
Next, we claim that, for each j, the ideal Ij is prime. Indeed, fix j and let

f, g ∈C[[Z, ξ]] such that fg ∈ Ij . Then

f(Z, ξ)g(Z, ξ) = r(Z, ξ)aj(Z,χ) + s(Z, ξ)ρ(Z, ξ),

for some r, s ∈C[[Z, ξ]]. If we substitute ξ = (χ, Q̄(χ,Z)) in this identity, then
we obtain

f
(
Z,

(
χ, Q̄(χ,Z)

))
g
(
Z,

(
χ, Q̄(χ,Z)

))
= r

(
Z,

(
χ, Q̄(χ,Z)

))
aj(Z,χ).

Since aj(Z,χ) is irreducible, we deduce that it divides, say, f(Z, (χ, Q̄(χ,Z))).
It follows that

f(Z, ξ) = f
(
Z,

(
χ, Q̄(χ,Z)

))
+ f̃(Z, ξ)ρ(Z, ξ)(17)

= r
(
Z,

(
χ, Q̄(χ,Z)

))
aj(Z,χ) + f̃(Z, ξ)ρ(Z, ξ)

for some f̃(Z, ξ) and so f belongs to Ij . We conclude that Ij is prime, as

desired. Since I ⊂ Ij , for all j, and Ij is prime, we conclude that
√
I ⊂ Ij , for

all j, proving
√
I ⊂

⋂k
j=1 Ij .

Now assume f(Z, ξ) ∈ Ij for all j. Then we can write, for any fixed j,

f(Z, ξ) = r(Z, ξ)aj(Z,χ) + s(Z, ξ)ρ(Z, ξ),

for some power series r and s. If we substitute τ = Q̄(χ,Z), then we get

f
(
Z,

(
χ, Q̄(χ,Z)

))
= r

(
Z,

(
χ, Q̄(χ,Z)

))
aj(Z,χ).
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Thus, f(Z, (χ, Q̄(χ,Z))) is divisible by aj(Z,χ) for all j = 1,2, . . . , k. It then
follows that, for some integer l, f(Z, (χ, Q̄(χ,Z)))l is divisible by a(Z, (χ,
Q̄(χ,Z))). We conclude that

f(Z, ξ)l = f
(
Z,

(
χ, Q̄(χ,Z)

))l
+ f̃(Z, ξ)ρ(Z, ξ),

for some f̃(Z,χ), belongs to I and hence f(Z, ξ) ∈
√
I . Consequently,⋂k

j=1 Ij ⊂
√
I . The proof is complete. �

A key point in the proof of our main results is the following lemma.

Lemma 3.3. Assume that a(0,0) = 0. Then, for each j, either δl(Z) ∈ Ij
for every l = 1,2, . . . ,m, or δ̄l(ξ) ∈ Ij for every l = 1,2, . . . ,m. As above,
δl(Z), l = 1,2, . . . ,m denotes the collection of all (n+ 1)× (n+ 1)-minors of
HZ(Z) that do not vanish identically.

Proof. If we differentiate (15) with respect to Z, we obtain

(18) HZ(Z)tρ′Z
(
H(Z), H̄(ξ)

)
= aZ(Z, ξ)ρ(Z, ξ) + a(Z, ξ)ρZ(Z, ξ).

Here, as above, the Jacobian matrix HZ is regarded as an (N + 1)× (n+ 1)-
matrix, the superscript t denotes transposition of a matrix, and the gradient
vectors are regarded as column vectors. Let K =C[[Z]]. Then C[[Z, ξ]] can be
identified with the ring K[[ξ]]. We can regard equation (18) as an identity in
(K[[ξ]])N+1. Thus, we may rewrite this identity as follows

(19) Ht
Zρ

′
Z

(
H̄(ξ)

)
= aZ(ξ)ρ(ξ) + a(ξ)ρZ(ξ),

where we have used the notation ρ′Z(ξ
′) := ρ′Z(H(Z), ξ′); Ht

Z is a matrix with
components in the field K and for example, a(ξ) is a formal power series in ξ
whose coefficients are elements in K.

Since Ij is proper prime ideal of K[[ξ]], it follows that K[[ξ]]/Ij is an integral
domain. Let us fix a j, and define S to be the field of fractions of K[[ξ]]/Ij .
Denote by π the canonical projection: π : K[[ξ]]→K[[ξ]]/Ij , x �→ x+ Ij .

Now, let L be a formal vector field (or a derivation) in K[[ξ]], i.e.

L=

n+1∑
l=1

βl(ξ)
∂

∂ξl
,

where βl(ξ) ∈K[[ξ]]. We say that L is Zariski tangent to Ij if L(f) = 0 mod Ij
for all f ∈ Ij , or equivalently,

(20)

n+1∑
l=1

βl(ξ)
∂aj
∂ξl

(ξ) =

n+1∑
l=1

βl(ξ)
∂ρ

∂ξl
(ξ) = 0 mod Ij .

It is straightforward to see that there are at least n− 1 formal vector fields
L1, . . . ,Ln−1 tangent to Ij ,

(21) Lk =
∑
l

βk
l (ξ)∂/∂ξl,
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such that the collection of corresponding vectors in Sn+1:

V̂k =
(
π
(
βk
1 (ξ)

)
, . . . , π

(
βk
n+1(ξ)

))
, k = 1,2, . . . , n− 1,

is linearly independent over the quotient field S of K[[ξ]]/Ij . Indeed, let us
consider the following system of two linear equations over S with unknowns
Xl, l= 1,2, . . . , n+ 1,

n+1∑
l=1

Xlπ
(
aj,ξl(ξ)

)
= 0,

n+1∑
l=1

Xlπ
(
ρξl(ξ)

)
= 0.

This system has at least n−1 linearly independent solutions in Sn+1, denoted
by

Ṽk =
(
β̃k
1 , . . . , β̃

k
n+1

)
, k = 1, . . . , n− 1,

where β̃k
l ∈ S. Since each component β̃k

l is a fraction β̃k
l = μk

l /ν
k
l with μk

l , ν
k
l ∈

K[[ξ]]/Ij , we can clear the denominators and obtain n−1 linearly independent
vectors

V̂k =
(
β̂k
1 , . . . , β̂

k
n+1

)
,

whose components belong toK[[ξ]]/Ij . Since π : K[[ξ]]→K[[ξ]]/Ij is surjective,

we can find βk
l (ξ) ∈K[[ξ]] such that π(βk

l (ξ)) = β̂k
l . The corresponding formal

vector fields Lk, given by (21), satisfy the desired properties.
We now apply the vector fields Lk to (19). It follows from (20) and the

fact that I ⊂ Ij (Lemma 3.2) that

Lk

(
aZ(ξ)ρ(ξ) + a(ξ)ρZ(ξ)

)
= 0 mod Ij for k = 1,2, . . . , n− 1.

Consequently, we have the following identity

(22) Lk

(
Ht

Zρ
′
Z

(
H̄(ξ)

))
= 0 mod Ij for k = 1,2, . . . , n− 1.

Using chain rule, we can rewrite (22) in matrix notations as follows

(23) Ht
ZΦ(ξ)H̄ξ(ξ)Vk(ξ) = 0 mod Ij for k = 1,2, . . . , n− 1,

where we have used the notation Vk(ξ) = (βk
1 (ξ), . . . , β

k
n+1(ξ))

t and Φ(ξ) for

the (N+1)×(N+1) matrix (ρ′Zξ(H̄(ξ))). Note that since the Levi form of M ′

at 0 (which is represented by the restriction of ρ′Zξ(0,0) to the holomorphic

tangent space of M ′ at 0) has rank r by assumption, there is an r× r-minor
of Φ which is a unit in K[[ξ]].

We now go to the quotient field S of K[[ξ]]/Ij . We will put a hat over
elements of K[[ξ]] (including vectors and matrices with elements in K[[ξ]]) to
indicate their images in K[[ξ]]/Ij under the canonical projection π. Thus, (23)
implies

(24) Ĥt
ZΦ̂

ˆ̄HξV̂k = 0 for k = 1,2, . . . , n− 1.

Let us assume, in order to reach a contradiction, that there is at least one
δl(Z) /∈ Ij and at least one δ̄l′(ξ) /∈ Ij . Consequently, the corresponding minors

δ̂l and
ˆ̄δl′ do not vanish in S and it follows that the matrices Ĥt

Z and ˆ̄Hξ have
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rank n + 1 over the field S. Furthermore, since there is an r × r-minor of
the matrix Φ which is a unit in K[[ξ]], we deduce that Φ̂ has rank at least r
over S. Now, consider the following collection of vectors in SN+1:

(25) Yk = Φ̂ ˆ̄HξV̂k, k = 1, . . . , n− 1 and Yn =
(
ρ̂′z1 , . . . , ρ̂

′
zN+1

)
.

Here we recall that ρ̂′zl = π(ρ′zl(H̄(ξ))). We claim that the rank of the col-

lection of vectors Y1, . . . , Yn ∈ SN+1 is at least n+ r −N − 1. Indeed, since

Φ̂ has rank at least r over S and the (N + 1)× (n+ 1)-matrix ˆ̄Hξ has full
rank (=n+ 1), we deduce that the collection Y1, . . . , Yn+1 has rank at least
n + r − N − 2. On the other hand, observe that in normal coordinates in
the target space we may choose ρ′(Z, ξ) =w−Q′(z,χ, τ) and, hence, the last

row of Φ̂ contains only zeros resulting in the last component of each Yk, for
k = 1, . . . , n−1, being 0. On the other hand, the last component of Yn is 1, so
that Yn cannot be a linear combination of Yk for k = 1, . . . , n− 1. The claim
that the rank of the collection {Yk}nk=1 is n+ r−N − 1 follows. To complete

the proof of the lemma, we observe from (19) and (24) that Ĥt
ZYk = 0 for

k = 1, . . . , n. Since the (n+1)× (N +1)-matrix Ĥt
Z has rank n+1, we deduce

that (N + 1)− (n+ 1)≥ n+ r −N − 1. This implies 2N − r ≥ 2n− 1 which
contradicts (14). The proof of Lemma 3.3 is complete. �

Proposition 3.4. Suppose that a(0,0) = 0. Then there are B(Z),C(Z) ∈
C[[Z]] such that

(26) a(Z, ξ) =B(Z)C̄(ξ)t(Z, ξ) + ã(Z, ξ)ρ(Z, ξ),

for some ã(Z, ξ), t(Z, ξ) ∈ C[[Z, ξ]] such that t(Z, ξ) is a unit. Moreover, each
irreducible divisor of B(Z) and each irreducible divisor of C(Z) divides δl(Z)
for every l= 1, . . . ,m.

Proof. By Lemma 3.3, for each j, we have either δl(Z) ∈ Ij for all l =
1, . . . ,m or δ̄j(ξ) ∈ Ij for all l. Let us first assume that δl(Z) ∈ Ij for all l.
Consequently,

δl(Z) = rl(Z, ξ)aj(Z,χ) + sl(Z, ξ)ρ(Z, ξ)

for some rl and sl. By substituting τ = Q̄(χ,Z), we obtain

δl(Z) = rl
(
Z,

(
χ, Q̄(χ,Z)

))
aj(Z,χ).

Now, recalling that aj(Z,χ) is irreducible, we conclude that

(27) aj(Z,χ) = bj(Z)ul(Z,χ),

where bj(Z) is an irreducible (or prime) divisor of δl(Z) and ul(Z,χ) is an
unit. This holds for all l = 1,2, . . . ,m (with the same bj(Z), modulo units)
and hence bj(Z) is an irreducible divisor of δl(Z) for every l= 1, . . . ,m.

If δ̄l(ξ) ∈ Ij for all l, then we can write δ̄l(ξ) = rl(Z, ξ)aj(Z,χ) +
sl(Z, ξ)ρ(Z, ξ). Thus, by substituting w =Q(Z, ξ) this time, we obtain

δ̄l(ξ) = rl
(
Z,

(
χ, Q̄(χ,Z)

))
aj
((
z,Q(z, ξ)

)
, χ

)
.
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Observe that aj((z,Q(z, ξ)), χ) is also irreducible, a fact that follows easily
from the identity

aj(Z,χ) = aj
(
(z,w), ξ

)
= aj

((
z,Q

(
z,χ, Q̄(χ, z,w)

))
, χ

)
,

where we recall that ξ = (χ, τ). It then follows as above that aj((z,Q(z, ξ)), χ)
is an irreducible divisor of δ̄l(ξ) and thus aj((z,Q(z, ξ)), χ) = c̄j(ξ)vl(Z, ξ) for
some irreducible divisor c̄j(ξ) of δ̄l(ξ) and unit vl(Z, ξ). Again, since δ̄l(ξ) ∈ Ij
for every l, we conclude that c̄j(ξ) divides δ̄l(ξ) for every l. If we substitute
τ = Q̄(χ,Z), then we obtain

aj(Z,χ) = c̄j
(
χ, Q̄(χ,Z)

)
ṽl(Z,χ),

where ṽl(Z,χ) = v(Z, (χ, Q̄(χ,Z)). Putting all this together, we conclude (via
Lemma 3.2) that

a
(
Z,

(
χ, Q̄(χ,Z)

))
= at11 (Z,χ) · · ·atkk (Z,χ) =B(Z)C̄

(
χ, Q̄(χ,Z)

)
t(Z, ξ),(28)

where t(Z, ξ) is a unit. By construction, every irreducible divisor of B(Z)
divides δl(Z) for all l, and every irreducible divisor of C̄(ξ) divides δ̄l(ξ) for
all l. We conclude that

a(Z, ξ) = a
(
Z,

(
χ, Q̄(χ,Z)

))
+ ã(Z, ξ)ρ(Z, ξ)(29)

= B(Z)C
(
χ, Q̄(χ,Z)

)
t(Z, ξ) + ã(Z, ξ)ρ(Z, ξ).

Similarly, we can also write

C̄
(
χ, Q̄(χ,Z)

)
= C̄(ξ) + C̃(Z, ξ)ρ(Z, ξ),

which by substituting into (29) yields the desired form of a(Z, ξ). The proof
is complete. �

We may now prove the following result, which as explained above is a
reformulation of Theorem 1.1 in the formal setting (and hence has Theorem 1.1
as a direct consequence).

Theorem 3.5. Let M and M ′ be formal real hypersurfaces through 0 in
C

n+1 and C
N+1, respectively, and H : (Cn+1,0)→ (CN+1,0) a formal holo-

morphic mapping sending M into M ′. Assume that

2N − r ≤ 2n− 2,

where r is the rank of Levi form of M ′ at 0. Assume further that the Jacobian
matrix HZ is of generic rank n+1 (i.e., at least one (n+1)× (n+1)-minor
is not identically zero) and that the collection of its not-identically-zero (n+
1)× (n+ 1)-minors δ1, . . . , δm have no nontrivial common divisor. Then, H
is transversal to M ′ at 0.

Proof. Assume, in order to reach a contradiction, that H is not transversal
to M ′ at 0, i.e. a(0,0) = 0 where a(Z, ξ) is given by (15). By Proposition 3.4,
there are nontrivial power series B(Z) and C(Z) such that (26) holds, and
such that every irreducible divisor of B(Z) and every irreducible divisor of
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C(Z) divides δl(Z) for all l. Also, note that at least one of B(Z) or C(Z) has
to be 0 at Z = 0, since a(0,0) = ρ(0,0) = 0. This contradicts the assumption
that δ1(Z), . . . , δm(Z) have no common divisor. The proof is complete. �

We conclude this section by giving a description in the analytic case (i.e.,
M , M ′, and H are analytic) of the non-transversality locus

X :=
{
(Z, ξ) ∈C

n+1 ×C
n+1 : a(Z, ξ) = ρ(Z, ξ) = 0

}
=

{
(Z, ξ) ∈M : a(Z, ξ) = 0

}
of the complexified map H(Z, ξ) = (H(Z), H̄(ξ)) when (14) holds but the
codimension of WH is one. (Of course, when the codimension of WH is at
least two, we just proved that X is empty.) Recall (see, e.g., Example 1.3)
that X may be nonempty in this situation, but it turns out that the variety
must have a special form. In context of Segre preserving maps, a similar
description was given in [Zh07].

Corollary 3.6. Let M and M ′ be real-analytic hypersurfaces through 0 in
C

n+1 and C
N+1, respectively, and H : (Cn+1,0)→ (CN+1,0) a holomorphic

mapping sending M into M ′. Assume that

2N − r ≤ 2n− 2,

where r is the rank of Levi form of M ′ at 0, and that the Jacobian matrix HZ is
of generic rank n+1 (i.e., WH is a proper subvariety). If H is not transversal
to M ′ at 0, then the non-transversality locus X = {(Z, ξ) ∈M : a(Z, ξ) = 0}
of the complexified map H= (H,H̄) has a decomposition into irreducible com-
ponents of the following form

X =X1 ∪ · · · ∪ Xk,

where Xj is either of the form {(Z, ξ) : Z ∈Wi, ξ ∈ S∗
Z} or {(Z, ξ) : ξ ∈W ∗

i ,
Z ∈ Sξ̄}. Here, the Wi denote the irreducible, codimension one components of
WH , ∗ denotes the complex conjugate of a set, and

Sp :=
{
Z ∈C

n+1 : ρ(Z, p̄) = 0
}

denotes the Segre varieties of M at p. Moreover, X is Hermitian symmetric,
that is, X ∗ =X .

Proof. Observe that by Proposition 3.4, (Z, ξ) ∈ X if and only if
B(Z)C̄(ξ) = 0, where each irreducible factor of B and C divide every (n+1)×
(n+1)-minor δl of H . The decomposition of X in Corollary 3.6 follows readily
from this fact. The Hermitian symmetry is immediate from Lemma 3.1. The
proof is complete. �
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4. Proof of Theorem 1.5

In this section, we will assume M and M ′ are (analytic, smooth or formal)
real hypersurfaces in C

n+1 and C
N+1, respectively, and that M is of finite

type at 0. The aim is to show that H is transversal to M ′ at 0 under the
assumptions in Theorem 1.5. In view of Theorem 3.5 (since condition (7)
implies 2N − r ≤ 2n − 2 for any s ≤ n + 1), we may therefore assume here
that the nonempty collection of nontrivial (n+1)× (n+1)-minors of HZ(Z),
denoted as before by δl(Z) for l= 1, . . . ,m, has a (nontrivial) common divisor.
The main result of this section is the following theorem.

Theorem 4.1. Let M ⊂C
n+1 and M ⊂C

N+1 be formal real hypersurface
and H formal map such that H(M)⊂M ′ and the collection of not identically
zero (n+ 1)× (n+ 1)-minors of HZ(Z), denoted as before by δl(Z) for l =
1, . . . ,m, is nonempty. Let r be the rank of the Levi form of M ′ at 0 and
assume that, for some 1≤ s≤ n+ 1,

(30) 2N − r ≤ n+ s− 3.

Suppose further that M is of finite type at 0, and that for every common divisor
d(Z) of the collection δl(Z), l = 1, . . . ,m, there is at least one k × k-minor
δ′(Z) of the Jacobian matrix HZ(Z) such that k ≥ s and δ′(Z) is relatively
prime to d(Z). Then H is transversal to M ′ at 0.

For the proof, we will need the following lemma.

Lemma 4.2. Assume that M is of finite type at 0 and H is not transversal
to M ′, i.e., a(0) = 0. Let Ij be the ideal defined in Lemma 3.2. If there exists
a non-trivial α(Z) ∈ Ij then there are no non-trivial β(ξ) ∈ Ij .

Proof. We assume, in order to obtain a contradiction, that there are non-
trivial power series α(Z), β(ξ) ∈ Ij = I(aj , ρ). We can argue as in the proof of
Proposition 3.4 to deduce that

(31) aj(Z,χ) = b(Z)u(Z,χ),

where u(Z,χ) is a unit and b(Z) an irreducible divisor of α(Z) in C[[Z]].
Similarly, we can deduce from the fact that β(ξ) ∈ I that

(32) aj(Z,χ) = c
(
χ, Q̄(χ,Z)

)
v(Z, ξ),

where v ∈ C[[z, ξ]] ⊂ C[[Z, ξ]] is a unit and c(ξ) is a divisor of β(ξ) in C[[ξ]].
Now, we deduce from (31) and (32) that

u(Z, ξ)b(Z) = aj(Z,χ) = v(Z, ξ)c
(
χ, Q̄(χ,Z)

)
.

Hence, for some unit s(Z, ξ),

(33) b(Z) = c
(
χ, Q̄(χ,Z)

)
s(Z, ξ).

If we substitute Z = 0 into (33), then we get

c(χ,0) = c
(
χ, Q̄(χ,0)

)
= s(0, ξ)−1b(0) = 0.
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We deduce that c(ξ) = τ c̃(ξ), where c̃(ξ) is an unit since c(ξ) is irreducible.
Then, by setting χ= 0 in (33) and recalling that Q̄(0,Z) =w, we deduce that

for some unit b̃(Z, ξ):

b(Z) = c
(
0, Q̄(0,Z)

)
s(Z,0, τ) =wb̃(Z, ξ).(34)

Consequently:

(35) wb̃(Z, ξ) = b(Z) = c
(
χ, Q̄(χ,Z)

)
s(Z, ξ) = Q̄(χ,Z)c̃

(
χ, Q̄(χ,Z)

)
s(Z, ξ).

This and the fact that s and c̃ are units imply Q̄(χ, z,0) = 0. This contradicts
the fact that M is of finite type at 0. The proof is complete. �

Now we can prove the Theorem 4.1.

Proof of Theorem 4.1. We will argue by contradiction. Assume that H is
not transversal to M ′ at 0, i.e. a(0,0) = 0. Recall that Ij , j = 1, . . . , k, denote
the ideals defined in Lemma 3.2. By Lemma 3.3, for each j either δl(Z) ∈ Ij
for all l or δ̄l(ξ) ∈ Ij for all l. We claim that for some j, δl(Z) ∈ Ij for all l.

Indeed, even if δ̄l(ξ) ∈ Ij for all l and all j, then (by Lemma 3.2) δ̄l(ξ) ∈
√
I

and, hence, by Lemmas 3.1 and 3.2 we would also have δl(Z) ∈ Ij for all l
and j. (Although this does not matter for the proof, we point out that this
latter situation cannot occur by Lemma 4.2.)

Let us now fix a j be such that δl(Z) ∈ Ij for all l. We claim that there is an
k× k-minor δ′(Z) of HZ(Z) such that k ≥ s and δ′(Z) /∈ Ij . Indeed, if δ

′
i(Z),

for i = 1, . . . , p, denote the collection of all k × k-minors of HZ(Z) for k ≥ s
and δ′i(Z) ∈ Ij for all i, then we can argue as in the proof of Proposition 3.4
(considering the collection of δ′i(Z) and δl(Z), for i= 1, . . . , p and l= 1, . . . ,m)
and conclude that there is a common irreducible divisor b(Z) of δ′i(Z) and
δl(Z) for all i= 1, . . . , p and l = 1, . . . ,m (which is also a divisor of aj(Z,χ),
although this does not matter here). This contradicts the fact that to every
common divisor of the δl(Z), l = 1, . . . ,m, there is at least one δ′i(Z) which
is relatively prime to it. Thus, let δ′(Z) denote a k × k-minor, with k ≥ s,
such that δ′(Z) /∈ Ij . We will now proceed along the lines of the proof of
Lemma 3.3, using the same notation as in that proof. We first observe that,
by Lemma 4.2, no δ̄l(ξ) ∈ Ij by our choice of j. We conclude that the rank of
ˆ̄Hξ(ξ) over the quotient field S of K[[ξ]]/Ij is n+1. On the other hand, since

δ′(Z) /∈ Ij , it also follows that the rank of ĤZ(Z) over S is at least k ≥ s. We
then argue in the same way as in the proof of Lemma 3.3 to deduce from (24)
that 2N − r ≥ n+ s− 2, which contradicts our assumption (30). The proof is
complete. �
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5. Proof of claim in Example 1.2

We first note that∣∣∣∣zj + [z]zj +
i

2
w

∣∣∣∣
2

−
∣∣∣∣zj − [z]zj −

i

2
w

∣∣∣∣
2

(36)

= 2

(
zj

(
[z]zj −

i

2
w̄

)
+ z̄j

(
[z]zj +

i

2
w

))

= 2

((
[z] + [z]

)
|zj |2 +

i

2
(z̄jw− zjw̄)

)
.

Thus, it follows that the expression

(37) 2i

(
ImG+

n∑
j=1

|F2j−1|2−
n∑

j=1

|F2j |2
)

=G− Ḡ+2i

n∑
j=1

(
|F2j−1|2−|F2j |2

)
is equal to

−2

(
[z]w− [z]w− 2i

(
[z] + [z]

) n∑
j=1

|zj |2 + [z]w− [z]w̄

)
(38)

=−2
(
[z] + [z]

)(
w− w̄− 2i

n∑
j=1

|zj |2
)
,

or, in other words,

(39) ImG+

n∑
j=1

|F2j−1|2 −
n∑

j=1

|F2j |2 = i
(
[z] + [z]

)(
w− w̄− 2i

n∑
j=1

|zj |2
)
,

proving that H sends M into M ′, and that H is not transversal to M ′ along
the intersection of M with Re[z] = 0 as claimed in Example 1.2. The fact that
H is a local embedding at 0 is trivial.
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