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UNIQUENESS THEOREM FOR NON-ARCHIMEDEAN
ANALYTIC CURVES INTERSECTING HYPERPLANES

WITHOUT COUNTING MULTIPLICITIES

QIMING YAN

Abstract. In this paper, we prove uniqueness theorems for an-
alytic curves from F to P

n(F) sharing hyperplanes in general

position without counting multiplicities, where F is a complete

algebraically closed non-Archimedean field of arbitrary charac-
teristic.

1. Introduction

Let F be an algebraically closed field complete with respect to a non-
Archimedean absolute value | · |.

In [1], Adams and Straus proved the following uniqueness theorem.

Theorem A. Let f and g be two nonconstant meromorphic functions on F,
where F has characteristic zero. Let a1, a2, a3 and a4 be four distinct values.
Assume that f −1(ai) = g−1(ai) for i = 1,2,3,4. Then f ≡ g.

Obviously, Theorem A is an analog of Nevanlinna’s five-value theorem in
the complex case (see [4]). Furthermore, they gave the example

f(z) =
z

z2 − z + 1
and g(z) =

z2

z2 − z + 1

to show that Theorem A is optimal since f −1(0) = g−1(0), f −1(1) = g−1(1),
and f −1(∞) = g−1(∞).

In 2001, Ru [5] extended Theorem A to non-Archimedean analytic curves
in projective space.
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A non-Archimedean analytic curve f is a map f = [f0 : · · · : fn] : F →
P

n(F), where f0, . . . , fn are entire functions on F without common zeros.
(f0, . . . , fn) is called a reduced representation of f .

A non-Archimedean analytic curve f : F → P
n(F) is said to be linearly non-

degenerate (over F) if f(F) is not contained in any proper linear subspace of
P

n(F).
Hyperplanes H1, . . . ,Hq in P

n(F) are said to be in general position if any
n + 1 of them are linearly independent.

Ru showed the following theorem.

Theorem B ([5, Theorem 2.2]). Let f, g : F → P
n(F) be two linearly non-

degenerate analytic curves, where F has characteristic zero. Let H1, . . . ,H3n+1

be hyperplanes in P
n(F) located in general position. Assume that f −1(Hj) =

g−1(Hj) for 1 ≤ j ≤ 3n+1 and f −1(Hi) ∩ f −1(Hj) = ∅ for i �= j. If f(z) = g(z)
for every point z ∈

⋃3n+1
j=1 f −1(Hj), then f ≡ g.

In this paper, we will improve and generalize Theorem B as follows.

Theorem 1. Let f, g : F → P
n(F) be two linearly non-degenerate analytic

curves, where F has characteristic zero. Let H1, . . . ,H2n+2 be hyperplanes
in P

n(F) located in general position. Assume that f −1(Hj) = g−1(Hj) for
1 ≤ j ≤ 2n + 2 and f −1(Hi) ∩ f −1(Hj) = ∅ for i �= j. If f(z) = g(z) for every
point z ∈

⋃2n+2
j=1 f −1(Hj), then f ≡ g.

Remark 1. (a) When n = 1, Theorem 1 reduces to Theorem A.
(b) Our key technique is Lemma 5, which gives a new estimate for the

divisor of (f,Hi)(g,Hj) − (f,Hj)(g,Hi) �≡ 0. This method does not work for
f1 ∧ · · · ∧ fλ, where f1, . . . , fλ are linearly non-degenerate analytic curves.
Hence, we cannot improve Theorem 2.1 in [5].

Now, we consider that F has positive characteristic.
Denote E the ring of entire functions on F and M the field of meromorphic

functions on F. If F has positive characteristic p and s is a positive integer,
let E [ps] = {gps |g ∈ E } and M[ps] be the fraction field of E [ps]. Note that
M[ps+1] ⊂ M[ps] (see Proposition 3.4 in [2]).

If an analytic curve f : F → P
n(F) is linearly non-degenerate over F, where

F has positive characteristic p, then f is also linearly non-degenerate over
M[ps] for some integer s ≥ 1 (see Lemma 5.2 in [2]). Hence, we can define
the index of independence of f be the smallest integer s such that f linearly
non-degenerate over F remains linearly non-degenerate over M[ps].

We can generalize Theorem 1 to the case of positive characteristic.

Theorem 2. Let F have positive characteristic p, and f, g : F → P
n(F) be

two analytic curves linearly non-degenerate over F with index of independence
≤s. Let H1, . . . ,H2ps−1n+2 be 2ps−1n + 2 hyperplanes in P

n(F) located in
general position. Assume that f −1(Hj) = g−1(Hj) for 1 ≤ j ≤ 2ps−1n + 2
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and f −1(Hi) ∩ f −1(Hj) = ∅ for i �= j. If f(z) = g(z) for every point z ∈⋃2ps−1n+2
j=1 f −1(Hj), then f ≡ g.

There are several open questions related to the above results.

Question 1. Is it true that the number of hyperplanes can be replaced by
a smaller one?

Question 2. The conditions “f −1(Hi) ∩ f −1(Hj) = ∅ for 1 ≤ i < j ≤ q”
and “f(z) = g(z) on

⋃q
j=1 f −1(Hj)” in the above theorems are not natural.

Can one remove them?

2. Preliminaries

Let F be an algebraically closed field of characteristic p ≥ 0, complete with
respect to a non-Archimedean absolute value | · |.

Recall that an infinite sum converges in a non-Archimedean norm if and
only if its general term approaches zero. Thus, a function of the form

h(z) =
∞∑

n=0

anzn, an ∈ F

is well defined whenever ∣∣anzn
∣∣ → 0 as n → ∞.

Functions of this type are called analytic functions of a non-Archimedean
variable. If h is analytic on F, then h is called an entire function on F. Let

h(z) =
∞∑

n=0

anzn, an ∈ F

be an analytic function on |z| < R. For 0 < r < R, define

Mh(r) = max
|z|=r

|h(z)|.

We have the following lemma.

Lemma 3. [1] The following statements hold:
(1) We have Mh(r) = maxn≥0 |an|rn.
(2) The maximum on the right of (1) is attained for a unique value of n except

for a discrete sequence of values {rν } in the open interval (0,R).
(3) If r /∈ {rν } and |z| = r < R, then |h(z)| = Mh(r).
(4) If h is a nonconstant entire function, then Mh(r) → ∞ as r → ∞.
(5) We have Mfg(r) = Mf (r)Mg(r) for any analytic functions f and g.

For a given entire function h(z) =
∑∞

n=0 anzn, define the kth Hasse deriv-
ative of h by

Dkh =
∞∑

n=k

(
n
k

)
anzn−k,
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which is also analytic. Note that D0h = h and D1h = h′. In characteristic
zero, the Hasse derivative Dkh is simply h(k)/k!. Hasse derivatives are more
useful than ordinary derivatives in positive characteristic and have similar
properties (see [2]).

Lemma 4 (Logarithmic derivative lemma). Let h be an entire function
on F. Then

MDkh
h

(r) ≤ 1
rk

(r > 0).

In particular, we have Mh(k)/h(r) ≤ 1
rk for characteristic zero.

For a nonzero entire function h on F, we denote the divisor of h by νh. For
z0 ∈ F, νh(z0) := ordz0(h).

Denote νM
h the divisor of h with truncated multiplicity by a positive inte-

ger M . That means, for z0 ∈ F, νM
h (z0) := min{M,νh(z0)}.

We define ν1
h,=k be the divisor of all zeros of h with multiplicity k, without

counting multiplicity. Hence,

ν1
h,=k(z0) =

{
0, if νh(z0) �= k,
1, if νh(z0) = k,

for z0 ∈ F.

3. Proof of main results

Assume that f = [f0 : · · · : fn] and g = [g0 : · · · : gn] are linearly non-degener-
ate analytic curves. Let H1, . . . ,Hq be q (≥ 2n) hyperplanes, located in general
position. We denote Hj = {[x0 : · · · : xn] ∈ P

n(F)|aj0x0 + · · · + ajnxn = 0},
(f,Hj) = aj0f0 + · · · + ajnfn, and (g,Hj) = aj0g0 + · · · + ajngn, 1 ≤ j ≤ q.
Obviously, (f,Hj) �≡ 0 and (g,Hj) �≡ 0 for 1 ≤ j ≤ q.

Proof of Theorem 1. Suppose that f �≡ g. By changing indices if necessary,
we may assume that

(f,H1)
(g,H1)

≡ (f,H2)
(g,H2)

≡ · · · ≡ (f,Hk1)
(g,Hk1)︸ ︷︷ ︸

group 1

�≡ (f,Hk1+1)
(g,Hk1+1)

≡ · · · ≡ (f,Hk2)
(g,Hk2)︸ ︷︷ ︸

group 2

�≡ · · · �≡ (f,Hkt−1+1)
(g,Hkt−1+1)

≡ · · · ≡ (f,Hkt)
(g,Hkt)︸ ︷︷ ︸

group t

,

where kt = q.
Since f �≡ g, the number of elements of every group is at most n.



UNIQUENESS THEOREM FOR NON-ARCHIMEDEAN ANALYTIC CURVES 1661

We define the map σ : {1, . . . , q} → {1, . . . , q} by

σ(i) =
{

i + n, if i + n ≤ q,
i + n − q, if i + n > q.

It is easy to see that σ is bijective and |σ(i) − i| ≥ n (note that q ≥ 2n).
Hence, (f,Hi)

(g,Hi)
and (f,Hσ(i))

(g,Hσ(i))
belong to distinct groups, so that (f,Hi)(g,Hσ(i)) −

(f,Hσ(i))(g,Hi) �≡ 0.
We consider (f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi), 1 ≤ i ≤ q.

Lemma 5. For each i ∈ {1, . . . , q} and a positive integer N , we have
q∑

j=1,j �=i,σ(i)

ν1
(f,Hj)

+ νN
(f,Hi)

+ νN
(g,Hi)

− Nν1
(g,Hi)

(1)

+ νN
(f,Hσ(i))

(r) + νN
(g,Hσ(i))

− Nν1
(g,Hσ(i))

≤ ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Proof. For any j ∈ {1, . . . , q} \ {i, σ(i)}, since f = g on f −1(Hj) (=g−1(Hj)),
we have that a zero of (f,Hj) is also a zero point of (f,Hi)(g,Hσ(i)) −
(f,Hσ(i))(g,Hi).

For any z0 ∈ f −1(Hi) (= g−1(Hi)), z0 is a zero of (f,Hi)(g,Hσ(i)) −
(f,Hσ(i))(g,Hi) with

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi)(z0) ≥ min
{
ν(f,Hi)(z0), ν(g,Hi)(z0)

}
.

Note that the set f −1(Hi) is the union of {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} =
ν(f,Hi)(z)} ∩ f −1(Hi) and {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} = ν(g,Hi)(z)} ∩
f −1(Hi).

Case 1. If z0 ∈ {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} = ν(f,Hi)(z)}, then

min
{
ν(f,Hi)(z0), ν(g,Hi)(z0)

}
= ν(f,Hi)(z0) ≥ min

{
ν(f,Hi)(z0),N

}
.

Case 2. Consider z0 ∈ {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} = ν(g,Hi)(z)}.
For z0 ∈ {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} = ν(g,Hi)(z)} ∩ {z|ν(g,Hi)(z) ≥ N },

we have

min
{
ν(f,Hi)(z0), ν(g,Hi)(z0)

}
= ν(g,Hi)(z0) ≥ N = min

{
ν(f,Hi)(z0),N

}
.

For z0 ∈ {z| min{ν(f,Hi)(z), ν(g,Hi)(z)} = ν(g,Hi)(z)} ∩ {z|ν(g,Hi)(z) = k},
k = 1, . . . ,N − 1, we have

min
{
ν(f,Hi)(z0), ν(g,Hi)(z0)

}
= ν(g,Hi)(z0) = k

≥ min
{
ν(f,Hi)(z0),N

}
− (N − k)ν1

(g,Hi)
(z0).

For any z0 ∈ f −1(Hσ(i)) (= g−1(Hσ(i))), z0 is a zero of (f,Hi)(g,Hσ(i)) −
(f,Hσ(i))(g,Hi) with

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi)(z0) ≥ min
{
ν(f,Hσ(i))(z0), ν(g,Hσ(i))(z0)

}
.
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By the same argument, if

z0 ∈
{
z| min

{
ν(f,Hσ(i))(z), ν(g,Hσ(i))(z)

}
= ν(f,Hσ(i))(z)

}
,

then

min
{
ν(f,Hσ(i))(z0), ν(g,Hσ(i))(z0)

}
= ν(f,Hσ(i))(z0) ≥ min

{
ν(f,Hσ(i))(z0),N

}
.

If z0 ∈ {z| min{ν(f,Hσ(i))(z), ν(g,Hσ(i))(z)} = ν(g,Hσ(i))(z)} ∩ {z|ν(g,Hσ(i))(z) ≥
N }, we have

min
{
ν(f,Hσ(i))(z0), ν(g,Hσ(i))(z0)

}
= ν(g,Hσ(i))(z0) ≥ N = min

{
ν(f,Hσ(i))(z0),N

}
.

If z0 ∈ {z| min{ν(f,Hσ(i))(z), ν(g,Hσ(i))(z)} = ν(g,Hσ(i))(z)} ∩ {z|ν(g,Hσ(i))(z) =
k}, k = 1, . . . ,N − 1, we have

min
{
ν(f,Hσ(i))(z0), ν(g,Hσ(i))(z0)

}
= ν(g,Hσ(i))(z0) = k

≥ min
{
ν(f,Hσ(i))(z0),N

}
− (N − k)ν1

(g,Hσ(i))
(z0).

Note that f −1(Hi) ∩ f −1(Hj) = ∅ for all 1 ≤ i < j ≤ q. We have
q∑

j=1,j �=i,σ(i)

ν1
(f,Hj)

+ νN
(f,Hi)

− (N − 1)ν1
(g,Hi),=1 − (N − 2)ν1

(g,Hi),=2(2)

− · · · − ν1
(g,Hi),=N −1 + νN

(f,Hσ(i))
− (N − 1)ν1

(g,Hσ(i)),=1

− (N − 2)ν1
(g,Hσ(i)),=2 − · · · − ν1

(g,Hσ(i)),=N −1

≤ ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

On the other hand, for each j, 1 ≤ j ≤ q,

(N − 1)ν1
(g,Hj),=1 + (N − 2)ν1

(g,Hj),=2 + · · · + ν1
(g,Hj),=N −1(3)

= Nν1
(g,Hj)

− νN
(g,Hj)

.

Combining (2) and (3), we have (1). �

Take summation of (1) over 1 ≤ i ≤ q, we have

(q − 2)
q∑

j=1

ν1
(f,Hj)

+
q∑

i=1

(
νN
(f,Hi)

+ νN
(g,Hi)

)

+
q∑

i=1

(
νN
(f,Hσ(i))

+ νN
(g,Hσ(i))

)
− N

q∑
i=1

(
ν1
(g,Hi)

+ ν1
(g,Hσ(i))

)

≤
q∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).
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Since σ is bijective, this gives

(q − 2)
q∑

j=1

ν1
(f,Hj)

+ 2
q∑

i=1

(
νN
(f,Hi)

+ νN
(g,Hi)

)
− 2N

q∑
i=1

ν1
(g,Hi)

≤
q∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Similarly, we have

(q − 2)
q∑

j=1

ν1
(g,Hj)

+ 2
q∑

i=1

(
νN
(f,Hi)

+ νN
(g,Hi)

)
− 2N

q∑
i=1

ν1
(f,Hi)

≤
q∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Hence,

(q − 2N − 2)
2

q∑
j=1

(
ν1
(f,Hj)

+ ν1
(g,Hj)

)
+ 2

q∑
j=1

(
νN
(f,Hj)

+ νN
(g,Hj)

)
(4)

≤
q∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Take N = n and q = 2n + 2, we have

2
2n+2∑
j=1

(
νn
(f,Hj)

+ νn
(g,Hj)

)
≤

2n+2∑
i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).(5)

Denote by W (f0, . . . , fn) (or W (g0, . . . , gn)) the Wronskian of f0, . . . , fn (or
g0, . . . , gn). Since f and g are linearly non-degenerate, we have W (f0, . . . ,
fn) �≡ 0 and W (g0, . . . , gn) �≡ 0.

Lemma 6. Let H1, . . . ,H2n+2 be the hyperplanes in P
n(F), located in gen-

eral position. Then
2n+2∑
j=1

ν(f,Hj) − νW (f0,...,fn) ≤
2n+2∑
j=1

νn
(f,Hj)

.(6)

Proof. Since f −1(Hi) ∩ f −1(Hj) = ∅ for all 1 ≤ i < j ≤ 2n + 2, each point
z ∈

⋃2n+2
j=1 f −1(Hj) satisfies z ∈ f −1(Hi0) for some i0 with 1 ≤ i0 ≤ 2n + 2,

and z /∈ f −1(Hj) for j �= i0. Hence (f,Hj)(z) �= 0 for j �= i0. Assume that
(f,Hi0) vanishes at z with vanishing order m. Without loss of generality,
we assume that ai00 �= 0. Then, W (f0, f1, . . . , fn) = a−1

i00
W ((f,Hi0), f1, . . . , fn)

and W (f0, . . . , fn) vanishes at z with vanishing order at least m − n. Hence,
we have (6). �
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By Lemma 6 and (5), we have

2

(
2n+2∑
j=1

ν(f,Hj) − νW (f0,...,fn) +
2n+2∑
j=1

ν(g,Hj) − νW (g0,...,gn)

)
(7)

≤
2n+2∑
i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Define

Ψ =
(
W (f0, . . . , fn)W (g0, . . . , gn)

)2

×
2n+2∏
i=1

(
(f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi)

)/(
2n+2∏
j=1

(f,Hj)(g,Hj)

)2

.

By (7), Ψ is entire. Furthermore, Ψ �≡ 0.
By Lemma 3, there exists a sequence zk ∈ F such that rk = |zk | → ∞,

rk /∈ {rν }, and (f,Hj)(zk) �= 0 for 1 ≤ j ≤ 2n + 2, where the set {rν } is a
discrete set.

Assume that∣∣fik
(zk)

∣∣ = max
0≤i≤n

{∣∣fi(zk)
∣∣} and

∣∣gjk
(zk)

∣∣ = max
0≤j≤n

{∣∣gj(zk)
∣∣}.(8)

Now, for each fixed zk, we suppose that∣∣(f,Hμ1)(zk)
∣∣ ≤

∣∣(f,Hμ2)(zk)
∣∣ ≤ · · · ≤

∣∣(f,Hμ2n+2)(zk)
∣∣

and ∣∣(g,Hν1)(zk)
∣∣ ≤

∣∣(g,Hν2)(zk)
∣∣ ≤ · · · ≤

∣∣(g,Hν2n+2)(zk)
∣∣.

Solving the system of linear equations

aμl0f0(zk) + · · · + aμlnfn(zk) = (f,Hμl
)(zk), 1 ≤ l ≤ n + 1,

we have ∣∣fik
(zk)

∣∣ ≤ C1 max
1≤l≤n+1

{∣∣(f,Hμl
)(zk)

∣∣} = C1

∣∣(f,Hμn+1)(zk)
∣∣

for a constant C1 dependent only on H1, . . . ,H2n+2.
Similarly, we have∣∣gjk

(zk)
∣∣ ≤ C2 max

1≤l≤n+1

{∣∣(g,Hνl
)(zk)

∣∣} = C2

∣∣(g,Hνn+1)(zk)
∣∣

for C2 > 0.
Hence, we obtain∣∣fik

(zk)
∣∣ ≤ B

∣∣(f,Hμn+1)(zk)
∣∣ ≤ B

∣∣(f,Hμn+2)(zk)
∣∣ ≤ · · · ≤ B

∣∣(f,Hμ2n+2)(zk)
∣∣

and∣∣gjk
(zk)

∣∣ ≤ B
∣∣(g,Hνn+1)(zk)

∣∣ ≤ B
∣∣(g,Hνn+2)(zk)

∣∣ ≤ · · · ≤ B
∣∣(g,Hν2n+2)(zk)

∣∣,
where B > 0 is a constant independent of zk.
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Thus,∣∣Ψ(zk)
∣∣(9)

=
|W (f0, . . . , fn)(zk)|2|W (g0, . . . , gn)(zk)|2

(
∏2n+2

j=1 |(f,Hj)(zk)| |(g,Hj)(zk)|)2

×
2n+2∏
i=1

∣∣((f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi)
)
(zk)

∣∣
≤ B4n+4|W (f0, . . . , fn)(zk)|2|W (g0, . . . , gn)(zk)|2

(
∏n+1

l=1 |(f,Hμl
)(zk)| |(g,Hνl

)(zk)|)2|fik
(zk)|2n+2|gjk

(zk)|2n+2

×
2n+2∏
i=1

∣∣((f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi)
)
(zk)

∣∣.
By Lemma 4, for 1 ≤ α ≤ n,

M (f,Hj)(α)

(f,Hj )

(r) ≤ 1
rα

,

and hence ∣∣∣∣ (f,Hj)(α)

(f,Hj)
(zk)

∣∣∣∣ ≤ 1
|zk |α .(10)

By the properties of the Wronskian, we have

|W (f0, . . . , fn)(zk)|∏n+1
l=1 |(f,Hμl

)(zk)|
=

C3|W ((f,Hμ1), . . . , (f,Hμn+1))(zk)|∏n+1
l=1 |(f,Hμl

)(zk)|
,

where C3 > 0 is a constant.
By the properties of the non-Archimedean norm and (10), we have

|W ((f,Hμ1), . . . , (f,Hμn+1))(zk)|∏n+1
l=1 |(f,Hμl

)(zk)|
(11)

≤ max
α1+···+αn+1=

n(n+1)
2

∣∣∣∣ (f,Hμ1)
(α1)

(f,Hμ1)
(zk)

∣∣∣∣ · · ·
∣∣∣∣ (f,Hμn+1)

(αn+1)

(f,Hμn+1)
(zk)

∣∣∣∣
≤ 1

|zk | n(n+1)
2

.

Similarly, we have

|W ((g,Hν1), . . . , (g,Hνn+1))(zk)|∏n+1
l=1 |(g,Hνl

)(zk)|
≤ 1

|zk | n(n+1)
2

.(12)
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On the other hand, by (8) and the properties of the non-Archimedean norm,
we also have

2n+2∏
i=1

∣∣((f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi)
)
(zk)

∣∣(13)

≤ C4

∣∣fik
(zk)

∣∣2n+2∣∣gjk
(zk)

∣∣2n+2

for a constant C4 independent of zk.
Combining (9), (11), (12) and (13), we have∣∣Ψ(zk)

∣∣ ≤ B4n+4 · C

|zk |2n(n+1)

for all k, where C > 0 is a constant which depends only on the hyperplanes.
Let k → ∞, this implies that Ψ ≡ 0, which is a contradiction. So f ≡ g. This
completes the proof of Theorem 1. �

Proof of Theorem 2. Suppose that f �≡ g. Repeating the argument in the
proof of Theorem 1, we have

(q − 2N − 2)
2

q∑
j=1

(
ν1
(f,Hj)

+ ν1
(g,Hj)

)
+ 2

q∑
j=1

(
νN
(f,Hj)

+ νN
(g,Hj)

)

≤
q∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

Take N = ps−1n and q = 2ps−1n + 2, we have

2
2ps−1n+2∑

j=1

(
νps−1n
(f,Hj)

+ νps−1n
(g,Hj)

)
≤

2ps−1n+2∑
i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

In the positive characteristic case, we should use the generalized Wronskian
instead of the ordinary Wronskian.

Since f = [f0 : · · · : fn] is linearly non-degenerate over M[ps], by Theo-
rem 3.5 in [2], there exist positive integers γ1, . . . , γn with γi ≤ γi−1 + ps−1

such that ∣∣∣∣∣∣∣∣∣∣∣

f0 · · · fn

Dγ1f0 · · · Dγ1fn

Dγ2f0 · · · Dγ2fn

...
...

...
Dγnf0 · · · Dγnfn

∣∣∣∣∣∣∣∣∣∣∣
�≡ 0.

This determinant is called the generalized Wronskian of f . For more proper-
ties of the generalized Wronskian, we refer readers to [3].

Denote by W̃ (f0, . . . , fn) (or W̃ (g0, . . . , gn)) the generalized Wronskian of
f (or g), which is not identically zero.
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Similar to (6), we have

2ps−1n+2∑
j=1

ν(f,Hj) − νW̃ (f0,...,fn) ≤
2ps−1n+2∑

j=1

νps−1n
(f,Hj)

and

2ps−1n+2∑
j=1

ν(g,Hj) − νW̃ (g0,...,gn) ≤
2ps−1n+2∑

j=1

νps−1n
(g,Hj)

.

Hence,

2

(
2ps−1n+2∑

j=1

ν(f,Hj) − νW̃ (f0,...,fn) +
2ps−1n+2∑

j=1

ν(g,Hj) − νW̃ (g0,...,gn)

)

≤
2ps−1n+2∑

i=1

ν(f,Hi)(g,Hσ(i))−(f,Hσ(i))(g,Hi).

We consider

Ψ =
(W̃ (f0, . . . , fn)W̃ (g0, . . . , gn))2

(
∏2ps−1n+2

j=1 (f,Hj)(g,Hj))2

×
2ps−1n+2∏

i=1

(
(f,Hi)(g,Hσ(i)) − (f,Hσ(i))(g,Hi)

)
,

which is a nonzero entire function.
By Lemma 3, we can take a sequence zk ∈ F such that rk = |zk | → ∞,

rk /∈ {rν }, and (f,Hj)(zk) �= 0 for 1 ≤ j ≤ 2ps−1n + 2, where the set {rν } is a
discrete set. Assume that∣∣fik

(zk)
∣∣ = max

0≤i≤n

{∣∣fi(zk)
∣∣} and

∣∣gjk
(zk)

∣∣ = max
0≤j≤n

{∣∣gj(zk)
∣∣}.

Hence, we have |fik
(zk)| → ∞, |gjk

(zk)| → ∞ as k → ∞.
By the same argument as in the proof of Theorem 1, there exist positive

constants B and C, dependent only on the hyperplanes, such that

∣∣Ψ(zk)
∣∣ ≤ B4(2ps−1−1)n+4 · C

|zk |2n(n+1)|fik
(zk)|2(ps−1−1)n|gjk

(zk)|2(ps−1−1)n

for all k. This yields that Ψ ≡ 0, which is a contradiction. �
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