UNIQUENESS THEOREM FOR NON-ARCHIMEDEAN ANALYTIC CURVES INTERSECTING HYPERPLANES WITHOUT COUNTING MULTIPLICITIES

QIMING YAN

Abstract

In this paper, we prove uniqueness theorems for analytic curves from \mathbf{F} to $\mathbb{P}^{n}(\mathbf{F})$ sharing hyperplanes in general position without counting multiplicities, where \mathbf{F} is a complete algebraically closed non-Archimedean field of arbitrary characteristic.

1. Introduction

Let \mathbf{F} be an algebraically closed field complete with respect to a nonArchimedean absolute value $|\cdot|$.

In [1], Adams and Straus proved the following uniqueness theorem.
ThEOREM A. Let f and g be two nonconstant meromorphic functions on \mathbf{F}, where \mathbf{F} has characteristic zero. Let a_{1}, a_{2}, a_{3} and a_{4} be four distinct values. Assume that $f^{-1}\left(a_{i}\right)=g^{-1}\left(a_{i}\right)$ for $i=1,2,3,4$. Then $f \equiv g$.

Obviously, Theorem A is an analog of Nevanlinna's five-value theorem in the complex case (see [4]). Furthermore, they gave the example

$$
f(z)=\frac{z}{z^{2}-z+1} \quad \text { and } \quad g(z)=\frac{z^{2}}{z^{2}-z+1}
$$

to show that Theorem A is optimal since $f^{-1}(0)=g^{-1}(0), f^{-1}(1)=g^{-1}(1)$, and $f^{-1}(\infty)=g^{-1}(\infty)$.

In 2001, Ru [5] extended Theorem A to non-Archimedean analytic curves in projective space.

[^0]A non-Archimedean analytic curve f is a map $f=\left[f_{0}: \cdots: f_{n}\right]: \mathbf{F} \rightarrow$ $\mathbb{P}^{n}(\mathbf{F})$, where f_{0}, \ldots, f_{n} are entire functions on \mathbf{F} without common zeros. $\left(f_{0}, \ldots, f_{n}\right)$ is called a reduced representation of f.

A non-Archimedean analytic curve $f: \mathbf{F} \rightarrow \mathbb{P}^{n}(\mathbf{F})$ is said to be linearly nondegenerate (over \mathbf{F}) if $f(\mathbf{F})$ is not contained in any proper linear subspace of $\mathbb{P}^{n}(\mathbf{F})$.

Hyperplanes H_{1}, \ldots, H_{q} in $\mathbb{P}^{n}(\mathbf{F})$ are said to be in general position if any $n+1$ of them are linearly independent.

Ru showed the following theorem.
Theorem B ([5, Theorem 2.2]). Let $f, g: \mathbf{F} \rightarrow \mathbb{P}^{n}(\mathbf{F})$ be two linearly nondegenerate analytic curves, where \mathbf{F} has characteristic zero. Let $H_{1}, \ldots, H_{3 n+1}$ be hyperplanes in $\mathbb{P}^{n}(\mathbf{F})$ located in general position. Assume that $f^{-1}\left(H_{j}\right)=$ $g^{-1}\left(H_{j}\right)$ for $1 \leq j \leq 3 n+1$ and $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for $i \neq j$. If $f(z)=g(z)$ for every point $z \in \bigcup_{j=1}^{3 n+1} f^{-1}\left(H_{j}\right)$, then $f \equiv g$.

In this paper, we will improve and generalize Theorem B as follows.
Theorem 1. Let $f, g: \mathbf{F} \rightarrow \mathbb{P}^{n}(\mathbf{F})$ be two linearly non-degenerate analytic curves, where \mathbf{F} has characteristic zero. Let $H_{1}, \ldots, H_{2 n+2}$ be hyperplanes in $\mathbb{P}^{n}(\mathbf{F})$ located in general position. Assume that $f^{-1}\left(H_{j}\right)=g^{-1}\left(H_{j}\right)$ for $1 \leq j \leq 2 n+2$ and $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for $i \neq j$. If $f(z)=g(z)$ for every point $z \in \bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$, then $f \equiv g$.

Remark 1. (a) When $n=1$, Theorem 1 reduces to Theorem A.
(b) Our key technique is Lemma 5, which gives a new estimate for the divisor of $\left(f, H_{i}\right)\left(g, H_{j}\right)-\left(f, H_{j}\right)\left(g, H_{i}\right) \not \equiv 0$. This method does not work for $f_{1} \wedge \cdots \wedge f_{\lambda}$, where $f_{1}, \ldots, f_{\lambda}$ are linearly non-degenerate analytic curves. Hence, we cannot improve Theorem 2.1 in [5].

Now, we consider that \mathbf{F} has positive characteristic.
Denote \mathcal{E} the ring of entire functions on \mathbf{F} and \mathcal{M} the field of meromorphic functions on \mathbf{F}. If \mathbf{F} has positive characteristic p and s is a positive integer, let $\mathcal{E}\left[p^{s}\right]=\left\{g^{p^{s}} \mid g \in \mathcal{E}\right\}$ and $\mathcal{M}\left[p^{s}\right]$ be the fraction field of $\mathcal{E}\left[p^{s}\right]$. Note that $\mathcal{M}\left[p^{s+1}\right] \subset \mathcal{M}\left[p^{s}\right]$ (see Proposition 3.4 in [2]).

If an analytic curve $f: \mathbf{F} \rightarrow \mathbb{P}^{n}(\mathbf{F})$ is linearly non-degenerate over \mathbf{F}, where \mathbf{F} has positive characteristic p, then f is also linearly non-degenerate over $\mathcal{M}\left[p^{s}\right]$ for some integer $s \geq 1$ (see Lemma 5.2 in [2]). Hence, we can define the index of independence of f be the smallest integer s such that f linearly non-degenerate over \mathbf{F} remains linearly non-degenerate over $\mathcal{M}\left[p^{s}\right]$.

We can generalize Theorem 1 to the case of positive characteristic.
Theorem 2. Let \mathbf{F} have positive characteristic p, and $f, g: \mathbf{F} \rightarrow \mathbb{P}^{n}(\mathbf{F})$ be two analytic curves linearly non-degenerate over \mathbf{F} with index of independence $\leq s$. Let $H_{1}, \ldots, H_{2 p^{s-1} n+2}$ be $2 p^{s-1} n+2$ hyperplanes in $\mathbb{P}^{n}(\mathbf{F})$ located in general position. Assume that $f^{-1}\left(H_{j}\right)=g^{-1}\left(H_{j}\right)$ for $1 \leq j \leq 2 p^{s-1} n+2$
and $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for $i \neq j$. If $f(z)=g(z)$ for every point $z \in$ $\bigcup_{j=1}^{2 p^{s-1} n+2} f^{-1}\left(H_{j}\right)$, then $f \equiv g$.

There are several open questions related to the above results.
Question 1. Is it true that the number of hyperplanes can be replaced by a smaller one?

Question 2. The conditions " $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for $1 \leq i<j \leq q$ " and " $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$ " in the above theorems are not natural. Can one remove them?

2. Preliminaries

Let \mathbf{F} be an algebraically closed field of characteristic $p \geq 0$, complete with respect to a non-Archimedean absolute value $|\cdot|$.

Recall that an infinite sum converges in a non-Archimedean norm if and only if its general term approaches zero. Thus, a function of the form

$$
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{n} \in \mathbf{F}
$$

is well defined whenever

$$
\left|a_{n} z^{n}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Functions of this type are called analytic functions of a non-Archimedean variable. If h is analytic on \mathbf{F}, then h is called an entire function on \mathbf{F}. Let

$$
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{n} \in \mathbf{F}
$$

be an analytic function on $|z|<R$. For $0<r<R$, define

$$
M_{h}(r)=\max _{|z|=r}|h(z)| .
$$

We have the following lemma.
Lemma 3. [1] The following statements hold:
(1) We have $M_{h}(r)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$.
(2) The maximum on the right of (1) is attained for a unique value of n except for a discrete sequence of values $\left\{r_{\nu}\right\}$ in the open interval $(0, R)$.
(3) If $r \notin\left\{r_{\nu}\right\}$ and $|z|=r<R$, then $|h(z)|=M_{h}(r)$.
(4) If h is a nonconstant entire function, then $M_{h}(r) \rightarrow \infty$ as $r \rightarrow \infty$.
(5) We have $M_{f g}(r)=M_{f}(r) M_{g}(r)$ for any analytic functions f and g.

For a given entire function $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, define the k th Hasse derivative of h by

$$
D^{k} h=\sum_{n=k}^{\infty}\binom{n}{k} a_{n} z^{n-k}
$$

which is also analytic. Note that $D^{0} h=h$ and $D^{1} h=h^{\prime}$. In characteristic zero, the Hasse derivative $D^{k} h$ is simply $h^{(k)} / k$!. Hasse derivatives are more useful than ordinary derivatives in positive characteristic and have similar properties (see [2]).

Lemma 4 (Logarithmic derivative lemma). Let h be an entire function on \mathbf{F}. Then

$$
M_{\frac{D^{k} h}{h}}(r) \leq \frac{1}{r^{k}} \quad(r>0)
$$

In particular, we have $M_{h^{(k)} / h}(r) \leq \frac{1}{r^{k}}$ for characteristic zero.
For a nonzero entire function h on \mathbf{F}, we denote the divisor of h by ν_{h}. For $z_{0} \in \mathbf{F}, \nu_{h}\left(z_{0}\right):=\operatorname{ord}_{z_{0}}(h)$.

Denote ν_{h}^{M} the divisor of h with truncated multiplicity by a positive integer M. That means, for $z_{0} \in \mathbf{F}, \nu_{h}^{M}\left(z_{0}\right):=\min \left\{M, \nu_{h}\left(z_{0}\right)\right\}$.

We define $\nu_{h,=k}^{1}$ be the divisor of all zeros of h with multiplicity k, without counting multiplicity. Hence,

$$
\nu_{h,=k}^{1}\left(z_{0}\right)= \begin{cases}0, & \text { if } \nu_{h}\left(z_{0}\right) \neq k \\ 1, & \text { if } \nu_{h}\left(z_{0}\right)=k\end{cases}
$$

for $z_{0} \in \mathbf{F}$.

3. Proof of main results

Assume that $f=\left[f_{0}: \cdots: f_{n}\right]$ and $g=\left[g_{0}: \cdots: g_{n}\right]$ are linearly non-degenerate analytic curves. Let H_{1}, \ldots, H_{q} be $q(\geq 2 n)$ hyperplanes, located in general position. We denote $H_{j}=\left\{\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(\mathbf{F}) \mid a_{j 0} x_{0}+\cdots+a_{j n} x_{n}=0\right\}$, $\left(f, H_{j}\right)=a_{j 0} f_{0}+\cdots+a_{j n} f_{n}$, and $\left(g, H_{j}\right)=a_{j 0} g_{0}+\cdots+a_{j n} g_{n}, 1 \leq j \leq q$. Obviously, $\left(f, H_{j}\right) \not \equiv 0$ and $\left(g, H_{j}\right) \not \equiv 0$ for $1 \leq j \leq q$.

Proof of Theorem 1. Suppose that $f \not \equiv g$. By changing indices if necessary, we may assume that

$$
\begin{aligned}
& \underbrace{\frac{\left(f, H_{1}\right)}{\left(g, H_{1}\right)} \equiv \frac{\left(f, H_{2}\right)}{\left(g, H_{2}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{1}}\right)}{\left(g, H_{k_{1}}\right)}}_{\text {group 1 }} \\
& \quad \not \equiv \underbrace{\frac{\left(f, H_{k_{1}+1}\right)}{\left(g, H_{k_{1}+1}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{2}}\right)}{\left(g, H_{k_{2}}\right)}}_{\text {group } 2} \\
& \quad \not \equiv \cdots \not \equiv \underbrace{\frac{\left(f, H_{k_{t-1}+1}\right)}{\left(g, H_{k_{t-1}+1}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{t}}\right)}{\left(g, H_{k_{t}}\right)}}_{\text {group } t},
\end{aligned}
$$

where $k_{t}=q$.
Since $f \not \equiv g$, the number of elements of every group is at most n.

We define the map $\sigma:\{1, \ldots, q\} \rightarrow\{1, \ldots, q\}$ by

$$
\sigma(i)= \begin{cases}i+n, & \text { if } i+n \leq q \\ i+n-q, & \text { if } i+n>q\end{cases}
$$

It is easy to see that σ is bijective and $|\sigma(i)-i| \geq n$ (note that $q \geq 2 n$). Hence, $\frac{\left(f, H_{i}\right)}{\left(g, H_{i}\right)}$ and $\frac{\left(f, H_{\sigma(i)}\right)}{\left(g, H_{\sigma(i)}\right)}$ belong to distinct groups, so that $\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-$ $\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right) \not \equiv 0$.

We consider $\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right), 1 \leq i \leq q$.
Lemma 5. For each $i \in\{1, \ldots, q\}$ and a positive integer N, we have

$$
\begin{align*}
& \sum_{j=1, j \neq i, \sigma(i)}^{q} \nu_{\left(f, H_{j}\right)}^{1}+\nu_{\left(f, H_{i}\right)}^{N}+\nu_{\left(g, H_{i}\right)}^{N}-N \nu_{\left(g, H_{i}\right)}^{1} \tag{1}\\
& \quad+\nu_{\left(f, H_{\sigma(i))}\right.}^{N}(r)+\nu_{\left(g, H_{\sigma(i)}\right)}^{N}-N \nu_{\left(g, H_{\sigma(i)}\right)}^{1} \\
& \leq
\end{align*}
$$

Proof. For any $j \in\{1, \ldots, q\} \backslash\{i, \sigma(i)\}$, since $f=g$ on $f^{-1}\left(H_{j}\right)\left(=g^{-1}\left(H_{j}\right)\right)$, we have that a zero of $\left(f, H_{j}\right)$ is also a zero point of $\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-$ $\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)$.

For any $z_{0} \in f^{-1}\left(H_{i}\right)\left(=g^{-1}\left(H_{i}\right)\right), z_{0}$ is a zero of $\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-$ $\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)$ with

$$
\nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)}\left(z_{0}\right) \geq \min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), \nu_{\left(g, H_{i}\right)}\left(z_{0}\right)\right\}
$$

Note that the set $f^{-1}\left(H_{i}\right)$ is the union of $\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\right.$ $\left.\nu_{\left(f, H_{i}\right)}(z)\right\} \cap f^{-1}\left(H_{i}\right)$ and $\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\nu_{\left(g, H_{i}\right)}(z)\right\} \cap$ $f^{-1}\left(H_{i}\right)$.

Case 1. If $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\nu_{\left(f, H_{i}\right)}(z)\right\}$, then

$$
\min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), \nu_{\left(g, H_{i}\right)}\left(z_{0}\right)\right\}=\nu_{\left(f, H_{i}\right)}\left(z_{0}\right) \geq \min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), N\right\}
$$

Case 2. Consider $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\nu_{\left(g, H_{i}\right)}(z)\right\}$.
For $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\nu_{\left(g, H_{i}\right)}(z)\right\} \cap\left\{z \mid \nu_{\left(g, H_{i}\right)}(z) \geq N\right\}$, we have

$$
\min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), \nu_{\left(g, H_{i}\right)}\left(z_{0}\right)\right\}=\nu_{\left(g, H_{i}\right)}\left(z_{0}\right) \geq N=\min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), N\right\}
$$

For $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}=\nu_{\left(g, H_{i}\right)}(z)\right\} \cap\left\{z \mid \nu_{\left(g, H_{i}\right)}(z)=k\right\}$, $k=1, \ldots, N-1$, we have

$$
\begin{aligned}
\min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), \nu_{\left(g, H_{i}\right)}\left(z_{0}\right)\right\} & =\nu_{\left(g, H_{i}\right)}\left(z_{0}\right)=k \\
& \geq \min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{0}\right), N\right\}-(N-k) \nu_{\left(g, H_{i}\right)}^{1}\left(z_{0}\right)
\end{aligned}
$$

For any $z_{0} \in f^{-1}\left(H_{\sigma(i)}\right)\left(=g^{-1}\left(H_{\sigma(i)}\right)\right), z_{0}$ is a zero of $\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-$ $\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)$ with

$$
\nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)}\left(z_{0}\right) \geq \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), \nu_{\left(g, H_{\sigma(i)}\right)}\left(z_{0}\right)\right\} .
$$

By the same argument, if

$$
z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}(z), \nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\}=\nu_{\left(f, H_{\sigma(i)}\right)}(z)\right\}
$$

then

$$
\min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), \nu_{\left(g, H_{\sigma(i)}\right)}\left(z_{0}\right)\right\}=\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right) \geq \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), N\right\} .
$$

If $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}(z), \nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\}=\nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\} \cap\left\{z \mid \nu_{\left(g, H_{\sigma(i)}\right)}(z) \geq\right.$ $N\}$, we have

$$
\begin{aligned}
& \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), \nu_{\left(g, H_{\sigma(i)}\right)}\left(z_{0}\right)\right\} \\
& \quad=\nu_{\left(g, H_{\sigma(i)}\right)}\left(z_{0}\right) \geq N=\min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), N\right\}
\end{aligned}
$$

If $z_{0} \in\left\{z \mid \min \left\{\nu_{\left(f, H_{\sigma(i)}\right.}(z), \nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\}=\nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\} \cap\left\{z \mid \nu_{\left(g, H_{\sigma(i)}\right)}(z)=\right.$ $k\}, k=1, \ldots, N-1$, we have

$$
\begin{aligned}
& \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), \nu_{\left(g, H_{\sigma(i))}\right.}\left(z_{0}\right)\right\} \\
& \quad=\nu_{\left(g, H_{\sigma(i))}\right)}\left(z_{0}\right)=k \\
& \quad \geq \min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}\left(z_{0}\right), N\right\}-(N-k) \nu_{\left(g, H_{\sigma(i)}\right)}^{1}\left(z_{0}\right)
\end{aligned}
$$

Note that $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for all $1 \leq i<j \leq q$. We have

$$
\begin{align*}
& \quad \sum_{j=1, j \neq i, \sigma(i)}^{q} \nu_{\left(f, H_{j}\right)}^{1}+\nu_{\left(f, H_{i}\right)}^{N}-(N-1) \nu_{\left(g, H_{i}\right),=1}^{1}-(N-2) \nu_{\left(g, H_{i}\right),=2}^{1} \tag{2}\\
& \quad-\cdots-\nu_{\left(g, H_{i}\right),=N-1}^{1}+\nu_{\left(f, H_{\sigma(i)}\right)}^{N}-(N-1) \nu_{\left(g, H_{\sigma(i)}\right),=1}^{1} \\
& \quad-(N-2) \nu_{\left(g, H_{\sigma(i)}\right),=2}^{1}-\cdots-\nu_{\left(g, H_{\sigma(i)}\right),=N-1}^{1} \\
& \leq
\end{align*}
$$

On the other hand, for each $j, 1 \leq j \leq q$,

$$
\begin{align*}
& (N-1) \nu_{\left(g, H_{j}\right),=1}^{1}+(N-2) \nu_{\left(g, H_{j}\right),=2}^{1}+\cdots+\nu_{\left(g, H_{j}\right),=N-1}^{1} \tag{3}\\
& \quad=N \nu_{\left(g, H_{j}\right)}^{1}-\nu_{\left(g, H_{j}\right)}^{N} .
\end{align*}
$$

Combining (2) and (3), we have (1).
Take summation of (1) over $1 \leq i \leq q$, we have

$$
\begin{aligned}
(q-2) & \sum_{j=1}^{q} \nu_{\left(f, H_{j}\right)}^{1}+\sum_{i=1}^{q}\left(\nu_{\left(f, H_{i}\right)}^{N}+\nu_{\left(g, H_{i}\right)}^{N}\right) \\
& +\sum_{i=1}^{q}\left(\nu_{\left(f, H_{\sigma(i)}\right)}^{N}+\nu_{\left(g, H_{\sigma(i)}\right)}^{N}\right)-N \sum_{i=1}^{q}\left(\nu_{\left(g, H_{i}\right)}^{1}+\nu_{\left(g, H_{\sigma(i)}\right)}^{1}\right) \\
& \leq \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)}
\end{aligned}
$$

Since σ is bijective, this gives

$$
\begin{aligned}
& (q-2) \sum_{j=1}^{q} \nu_{\left(f, H_{j}\right)}^{1}+2 \sum_{i=1}^{q}\left(\nu_{\left(f, H_{i}\right)}^{N}+\nu_{\left(g, H_{i}\right)}^{N}\right)-2 N \sum_{i=1}^{q} \nu_{\left(g, H_{i}\right)}^{1} \\
& \quad \leq \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& (q-2) \sum_{j=1}^{q} \nu_{\left(g, H_{j}\right)}^{1}+2 \sum_{i=1}^{q}\left(\nu_{\left(f, H_{i}\right)}^{N}+\nu_{\left(g, H_{i}\right)}^{N}\right)-2 N \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)}^{1} \\
& \quad \leq \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \frac{(q-2 N-2)}{2} \sum_{j=1}^{q}\left(\nu_{\left(f, H_{j}\right)}^{1}+\nu_{\left(g, H_{j}\right)}^{1}\right)+2 \sum_{j=1}^{q}\left(\nu_{\left(f, H_{j}\right)}^{N}+\nu_{\left(g, H_{j}\right)}^{N}\right) \tag{4}\\
& \quad \leq \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
\end{align*}
$$

Take $N=n$ and $q=2 n+2$, we have

$$
\begin{equation*}
2 \sum_{j=1}^{2 n+2}\left(\nu_{\left(f, H_{j}\right)}^{n}+\nu_{\left(g, H_{j}\right)}^{n}\right) \leq \sum_{i=1}^{2 n+2} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} . \tag{5}
\end{equation*}
$$

Denote by $W\left(f_{0}, \ldots, f_{n}\right)$ (or $W\left(g_{0}, \ldots, g_{n}\right)$) the Wronskian of f_{0}, \ldots, f_{n} (or $\left.g_{0}, \ldots, g_{n}\right)$. Since f and g are linearly non-degenerate, we have $W\left(f_{0}, \ldots\right.$, $\left.f_{n}\right) \not \equiv 0$ and $W\left(g_{0}, \ldots, g_{n}\right) \not \equiv 0$.

Lemma 6. Let $H_{1}, \ldots, H_{2 n+2}$ be the hyperplanes in $\mathbb{P}^{n}(\mathbf{F})$, located in general position. Then

$$
\begin{equation*}
\sum_{j=1}^{2 n+2} \nu_{\left(f, H_{j}\right)}-\nu_{W\left(f_{0}, \ldots, f_{n}\right)} \leq \sum_{j=1}^{2 n+2} \nu_{\left(f, H_{j}\right)}^{n} \tag{6}
\end{equation*}
$$

Proof. Since $f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)=\emptyset$ for all $1 \leq i<j \leq 2 n+2$, each point $z \in \bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$ satisfies $z \in f^{-1}\left(H_{i_{0}}\right)$ for some i_{0} with $1 \leq i_{0} \leq 2 n+2$, and $z \notin f^{-1}\left(H_{j}\right)$ for $j \neq i_{0}$. Hence $\left(f, H_{j}\right)(z) \neq 0$ for $j \neq i_{0}$. Assume that $\left(f, H_{i_{0}}\right)$ vanishes at z with vanishing order m. Without loss of generality, we assume that $a_{i_{0} 0} \neq 0$. Then, $W\left(f_{0}, f_{1}, \ldots, f_{n}\right)=a_{i_{0}}^{-1} W\left(\left(f, H_{i_{0}}\right), f_{1}, \ldots, f_{n}\right)$ and $W\left(f_{0}, \ldots, f_{n}\right)$ vanishes at z with vanishing order at least $m-n$. Hence, we have (6).

By Lemma 6 and (5), we have

$$
\begin{align*}
& 2\left(\sum_{j=1}^{2 n+2} \nu_{\left(f, H_{j}\right)}-\nu_{W\left(f_{0}, \ldots, f_{n}\right)}+\sum_{j=1}^{2 n+2} \nu_{\left(g, H_{j}\right)}-\nu_{W\left(g_{0}, \ldots, g_{n}\right)}\right) \tag{7}\\
& \quad \leq \sum_{i=1}^{2 n+2} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)}
\end{align*}
$$

Define

$$
\begin{aligned}
\Psi= & \left(W\left(f_{0}, \ldots, f_{n}\right) W\left(g_{0}, \ldots, g_{n}\right)\right)^{2} \\
& \times \prod_{i=1}^{2 n+2}\left(\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)\right) /\left(\prod_{j=1}^{2 n+2}\left(f, H_{j}\right)\left(g, H_{j}\right)\right)^{2}
\end{aligned}
$$

By (7), Ψ is entire. Furthermore, $\Psi \not \equiv 0$.
By Lemma 3, there exists a sequence $z_{k} \in \mathbf{F}$ such that $r_{k}=\left|z_{k}\right| \rightarrow \infty$, $r_{k} \notin\left\{r_{\nu}\right\}$, and $\left(f, H_{j}\right)\left(z_{k}\right) \neq 0$ for $1 \leq j \leq 2 n+2$, where the set $\left\{r_{\nu}\right\}$ is a discrete set.

Assume that

$$
\begin{equation*}
\left|f_{i_{k}}\left(z_{k}\right)\right|=\max _{0 \leq i \leq n}\left\{\left|f_{i}\left(z_{k}\right)\right|\right\} \quad \text { and } \quad\left|g_{j_{k}}\left(z_{k}\right)\right|=\max _{0 \leq j \leq n}\left\{\left|g_{j}\left(z_{k}\right)\right|\right\} \tag{8}
\end{equation*}
$$

Now, for each fixed z_{k}, we suppose that

$$
\left|\left(f, H_{\mu_{1}}\right)\left(z_{k}\right)\right| \leq\left|\left(f, H_{\mu_{2}}\right)\left(z_{k}\right)\right| \leq \cdots \leq\left|\left(f, H_{\mu_{2 n+2}}\right)\left(z_{k}\right)\right|
$$

and

$$
\left|\left(g, H_{\nu_{1}}\right)\left(z_{k}\right)\right| \leq\left|\left(g, H_{\nu_{2}}\right)\left(z_{k}\right)\right| \leq \cdots \leq\left|\left(g, H_{\nu_{2 n+2}}\right)\left(z_{k}\right)\right|
$$

Solving the system of linear equations

$$
a_{\mu_{l} 0} f_{0}\left(z_{k}\right)+\cdots+a_{\mu_{l} n} f_{n}\left(z_{k}\right)=\left(f, H_{\mu_{l}}\right)\left(z_{k}\right), \quad 1 \leq l \leq n+1
$$

we have

$$
\left|f_{i_{k}}\left(z_{k}\right)\right| \leq C_{1} \max _{1 \leq l \leq n+1}\left\{\left|\left(f, H_{\mu_{l}}\right)\left(z_{k}\right)\right|\right\}=C_{1}\left|\left(f, H_{\mu_{n+1}}\right)\left(z_{k}\right)\right|
$$

for a constant C_{1} dependent only on $H_{1}, \ldots, H_{2 n+2}$.
Similarly, we have

$$
\left|g_{j_{k}}\left(z_{k}\right)\right| \leq C_{2} \max _{1 \leq l \leq n+1}\left\{\left|\left(g, H_{\nu_{l}}\right)\left(z_{k}\right)\right|\right\}=C_{2}\left|\left(g, H_{\nu_{n+1}}\right)\left(z_{k}\right)\right|
$$

for $C_{2}>0$.
Hence, we obtain

$$
\left|f_{i_{k}}\left(z_{k}\right)\right| \leq B\left|\left(f, H_{\mu_{n+1}}\right)\left(z_{k}\right)\right| \leq B\left|\left(f, H_{\mu_{n+2}}\right)\left(z_{k}\right)\right| \leq \cdots \leq B\left|\left(f, H_{\mu_{2 n+2}}\right)\left(z_{k}\right)\right|
$$

and

$$
\left|g_{j_{k}}\left(z_{k}\right)\right| \leq B\left|\left(g, H_{\nu_{n+1}}\right)\left(z_{k}\right)\right| \leq B\left|\left(g, H_{\nu_{n+2}}\right)\left(z_{k}\right)\right| \leq \cdots \leq B\left|\left(g, H_{\nu_{2 n+2}}\right)\left(z_{k}\right)\right|
$$ where $B>0$ is a constant independent of z_{k}.

Thus,
(9) $\quad\left|\Psi\left(z_{k}\right)\right|$

$$
\begin{aligned}
= & \frac{\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|^{2}\left|W\left(g_{0}, \ldots, g_{n}\right)\left(z_{k}\right)\right|^{2}}{\left(\prod_{j=1}^{2 n+2}\left|\left(f, H_{j}\right)\left(z_{k}\right)\right|\left|\left(g, H_{j}\right)\left(z_{k}\right)\right|\right)^{2}} \\
& \times \prod_{i=1}^{2 n+2}\left|\left(\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)\right)\left(z_{k}\right)\right| \\
\leq & \frac{B^{4 n+4}\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|^{2}\left|W\left(g_{0}, \ldots, g_{n}\right)\left(z_{k}\right)\right|^{2}}{\left(\prod_{l=1}^{n+1}\left|\left(f, H_{\mu_{l}}\right)\left(z_{k}\right)\right|\left|\left(g, H_{\nu_{l}}\right)\left(z_{k}\right)\right|\right)^{2}\left|f_{i_{k}}\left(z_{k}\right)\right|^{2 n+2}\left|g_{j_{k}}\left(z_{k}\right)\right|^{2 n+2}} \\
& \times \prod_{i=1}^{2 n+2}\left|\left(\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)\right)\left(z_{k}\right)\right| .
\end{aligned}
$$

By Lemma 4 , for $1 \leq \alpha \leq n$,

$$
M_{\frac{\left(f, H_{j}\right)(\alpha)}{\left(f, H_{j}\right)}}(r) \leq \frac{1}{r^{\alpha}},
$$

and hence

$$
\begin{equation*}
\left|\frac{\left(f, H_{j}\right)^{(\alpha)}}{\left(f, H_{j}\right)}\left(z_{k}\right)\right| \leq \frac{1}{\left|z_{k}\right|^{\alpha}} . \tag{10}
\end{equation*}
$$

By the properties of the Wronskian, we have

$$
\frac{\left|W\left(f_{0}, \ldots, f_{n}\right)\left(z_{k}\right)\right|}{\prod_{l=1}^{n+1}\left|\left(f, H_{\mu_{l}}\right)\left(z_{k}\right)\right|}=\frac{C_{3}\left|W\left(\left(f, H_{\mu_{1}}\right), \ldots,\left(f, H_{\mu_{n+1}}\right)\right)\left(z_{k}\right)\right|}{\prod_{l=1}^{n+1}\left|\left(f, H_{\mu_{l}}\right)\left(z_{k}\right)\right|}
$$

where $C_{3}>0$ is a constant.
By the properties of the non-Archimedean norm and (10), we have

$$
\begin{align*}
& \frac{\left|W\left(\left(f, H_{\mu_{1}}\right), \ldots,\left(f, H_{\mu_{n+1}}\right)\right)\left(z_{k}\right)\right|}{\prod_{l=1}^{n+1}\left|\left(f, H_{\mu_{l}}\right)\left(z_{k}\right)\right|} \tag{11}\\
& \quad \leq \max _{\alpha_{1}+\cdots+\alpha_{n+1}=\frac{n(n+1)}{2}}\left|\frac{\left(f, H_{\mu_{1}}\right)^{\left(\alpha_{1}\right)}}{\left(f, H_{\mu_{1}}\right)}\left(z_{k}\right)\right| \cdots\left|\frac{\left(f, H_{\mu_{n+1}}\right)^{\left(\alpha_{n+1}\right)}}{\left(f, H_{\mu_{n+1}}\right)}\left(z_{k}\right)\right| \\
& \quad \leq \frac{1}{\left|z_{k}\right|^{\frac{n(n+1)}{2}}} .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\frac{\left|W\left(\left(g, H_{\nu_{1}}\right), \ldots,\left(g, H_{\nu_{n+1}}\right)\right)\left(z_{k}\right)\right|}{\prod_{l=1}^{n+1}\left|\left(g, H_{\nu_{l}}\right)\left(z_{k}\right)\right|} \leq \frac{1}{\left|z_{k}\right|^{\frac{n(n+1)}{2}}} . \tag{12}
\end{equation*}
$$

On the other hand, by (8) and the properties of the non-Archimedean norm, we also have

$$
\begin{align*}
& \prod_{i=1}^{2 n+2}\left|\left(\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)\right)\left(z_{k}\right)\right| \tag{13}\\
& \quad \leq C_{4}\left|f_{i_{k}}\left(z_{k}\right)\right|^{2 n+2}\left|g_{j_{k}}\left(z_{k}\right)\right|^{2 n+2}
\end{align*}
$$

for a constant C_{4} independent of z_{k}.
Combining (9), (11), (12) and (13), we have

$$
\left|\Psi\left(z_{k}\right)\right| \leq \frac{B^{4 n+4} \cdot C}{\left|z_{k}\right|^{2 n(n+1)}}
$$

for all k, where $C>0$ is a constant which depends only on the hyperplanes. Let $k \rightarrow \infty$, this implies that $\Psi \equiv 0$, which is a contradiction. So $f \equiv g$. This completes the proof of Theorem 1 .

Proof of Theorem 2. Suppose that $f \not \equiv g$. Repeating the argument in the proof of Theorem 1, we have

$$
\begin{aligned}
& \frac{(q-2 N-2)}{2} \sum_{j=1}^{q}\left(\nu_{\left(f, H_{j}\right)}^{1}+\nu_{\left(g, H_{j}\right)}^{1}\right)+2 \sum_{j=1}^{q}\left(\nu_{\left(f, H_{j}\right)}^{N}+\nu_{\left(g, H_{j}\right)}^{N}\right) \\
& \quad \leq \sum_{i=1}^{q} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
\end{aligned}
$$

Take $N=p^{s-1} n$ and $q=2 p^{s-1} n+2$, we have

$$
2 \sum_{j=1}^{2 p^{s-1} n+2}\left(\nu_{\left(f, H_{j}\right)}^{p^{s-1} n}+\nu_{\left(g, H_{j}\right)}^{p^{s-1} n}\right) \leq \sum_{i=1}^{2 p^{s-1} n+2} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
$$

In the positive characteristic case, we should use the generalized Wronskian instead of the ordinary Wronskian.

Since $f=\left[f_{0}: \cdots: f_{n}\right]$ is linearly non-degenerate over $\mathcal{M}\left[p^{s}\right]$, by Theorem 3.5 in [2], there exist positive integers $\gamma_{1}, \ldots, \gamma_{n}$ with $\gamma_{i} \leq \gamma_{i-1}+p^{s-1}$ such that

$$
\left|\begin{array}{ccc}
f_{0} & \cdots & f_{n} \\
D^{\gamma_{1}} f_{0} & \cdots & D^{\gamma_{1}} f_{n} \\
D^{\gamma_{2}} f_{0} & \cdots & D^{\gamma_{2}} f_{n} \\
\vdots & \vdots & \vdots \\
D^{\gamma_{n}} f_{0} & \cdots & D^{\gamma_{n}} f_{n}
\end{array}\right| \not \equiv 0
$$

This determinant is called the generalized Wronskian of f. For more properties of the generalized Wronskian, we refer readers to [3].

Denote by $\tilde{W}\left(f_{0}, \ldots, f_{n}\right)$ (or $\left.\tilde{W}\left(g_{0}, \ldots, g_{n}\right)\right)$ the generalized Wronskian of f (or g), which is not identically zero.

Similar to (6), we have

$$
\sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(f, H_{j}\right)}-\nu_{\tilde{W}\left(f_{0}, \ldots, f_{n}\right)} \leq \sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(f, H_{j}\right)}^{p^{s-1} n}
$$

and

$$
\sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(g, H_{j}\right)}-\nu_{\tilde{W}\left(g_{0}, \ldots, g_{n}\right)} \leq \sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(g, H_{j}\right)}^{p^{s-1} n}
$$

Hence,

$$
\begin{aligned}
& 2\left(\sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(f, H_{j}\right)}-\nu_{\tilde{W}\left(f_{0}, \ldots, f_{n}\right)}+\sum_{j=1}^{2 p^{s-1} n+2} \nu_{\left(g, H_{j}\right)}-\nu_{\tilde{W}\left(g_{0}, \ldots, g_{n}\right)}\right) \\
& \quad \leq \sum_{i=1}^{2 p^{s-1} n+2} \nu_{\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)} .
\end{aligned}
$$

We consider

$$
\begin{aligned}
\Psi= & \frac{\left(\tilde{W}\left(f_{0}, \ldots, f_{n}\right) \tilde{W}\left(g_{0}, \ldots, g_{n}\right)\right)^{2}}{\left(\prod_{j=1}^{2 p^{s-1} n+2}\left(f, H_{j}\right)\left(g, H_{j}\right)\right)^{2}} \\
& \times \prod_{i=1}^{2 p^{s-1} n+2}\left(\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(f, H_{\sigma(i)}\right)\left(g, H_{i}\right)\right),
\end{aligned}
$$

which is a nonzero entire function.
By Lemma 3, we can take a sequence $z_{k} \in \mathbf{F}$ such that $r_{k}=\left|z_{k}\right| \rightarrow \infty$, $r_{k} \notin\left\{r_{\nu}\right\}$, and $\left(f, H_{j}\right)\left(z_{k}\right) \neq 0$ for $1 \leq j \leq 2 p^{s-1} n+2$, where the set $\left\{r_{\nu}\right\}$ is a discrete set. Assume that

$$
\left|f_{i_{k}}\left(z_{k}\right)\right|=\max _{0 \leq i \leq n}\left\{\left|f_{i}\left(z_{k}\right)\right|\right\} \quad \text { and } \quad\left|g_{j_{k}}\left(z_{k}\right)\right|=\max _{0 \leq j \leq n}\left\{\left|g_{j}\left(z_{k}\right)\right|\right\}
$$

Hence, we have $\left|f_{i_{k}}\left(z_{k}\right)\right| \rightarrow \infty,\left|g_{j_{k}}\left(z_{k}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$.
By the same argument as in the proof of Theorem 1, there exist positive constants B and C, dependent only on the hyperplanes, such that

$$
\left|\Psi\left(z_{k}\right)\right| \leq \frac{B^{4\left(2 p^{s-1}-1\right) n+4} \cdot C}{\left|z_{k}\right|^{2 n(n+1)}\left|f_{i_{k}}\left(z_{k}\right)\right|^{2\left(p^{s-1}-1\right) n}\left|g_{j_{k}}\left(z_{k}\right)\right|^{2\left(p^{s-1}-1\right) n}}
$$

for all k. This yields that $\Psi \equiv 0$, which is a contradiction.
Acknowledgments. The author would like to thank the referee for many valuable suggestions which have improved the presentation of this paper.

References

[1] W. W. Adams and E. G. Straus, Non-archimedean analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418-424. MR 0277771
[2] W. Cherry and C. Toropu, Generalized $A B C$ theorems for non-Archimedean entire functions of several vaiables in arbitrary characteristic, Acta Arith. 136 (2009), 351384. MR 2476602
[3] L.-C. Hsia and J. T.-Y. Wang, The $A B C$ theorem for higher-dimensional function fields, Trans. Amer. Math. Soc. 356 (2004), 2871-2887. MR 2052600
[4] R. Nevanlinna, Einige eindeutigkeitssätze in der theorie der meromorphen funktionen, Acta Math. 48 (1926), 367-391. MR 1555233
[5] M. Ru, Uniqueness theorems for p-adic holomorphic curves, Illinois J. Math. 45 (2001), 487-493. MR 1878615

Qiming Yan, Department of Mathematics, Tongji University, Shanghai 200092, P. R. China

E-mail address: yan_qiming@hotmail.com

[^0]: Received August 30, 2010; received in final form May 24, 2011.
 This project is supported by NSFC (Grant Nos. 11171255, 10901120) and the Fundamental Research Funds for the Central Universities.

 2010 Mathematics Subject Classification. 11J99, 32H30.

