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SEMIGROUP-THEORETICAL CHARACTERIZATIONS OF
ARITHMETICAL INVARIANTS WITH APPLICATIONS TO

NUMERICAL MONOIDS AND KRULL MONOIDS

V. BLANCO, P. A. GARCÍA-SÁNCHEZ AND A. GEROLDINGER

Abstract. Arithmetical invariants—such as sets of lengths, cate-
nary and tame degrees—describe the non-uniqueness of factor-
izations in atomic monoids. We study these arithmetical in-
variants by the monoid of relations and by presentations of the

involved monoids. The abstract results will be applied to numer-
ical monoids and to Krull monoids.

1. Introduction

Factorization theory describes the non-uniqueness of factorizations into ir-
reducible elements of atomic monoids by arithmetical invariants, and it studies
the relationship between these arithmetical invariants and algebraic invariants
of the objects under consideration. Here, an atomic monoid means a com-
mutative cancellative semigroup with unit element such that every non-unit
may be written as a product of atoms (irreducible elements), and main exam-
ples are the multiplicative monoids consisting of the non-zero elements from
a noetherian domain. In abstract semigroup theory, minimal relations and
presentations are key tools to describe the algebraic structure of semigroups.
Thus, there should be natural connections between the arithmetical invariants
of factorization theory and the presentations of the semigroup. However, only
first steps have been made so far to unveil these connections and to apply
them successfully for further investigations. We mention two results in this
direction (more can be found in the references). In [9], it was proved that the
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catenary degree of a monoid allows a description in terms of R-equivalence
classes (see Proposition 4.6 for details). In [36], semigroup-theoretical de-
scriptions are used in the study of the arithmetic of non-principal orders in
algebraic number fields.

The aim of the present paper is to explore further the connections be-
tween arithmetical invariants and semigroup-theoretical invariants, such as
the monoid of relations and presentations. We discuss central invariants from
factorization theory, such as the ω-invariants (Section 3), the catenary and
monotone catenary degrees (Section 4), the tame degrees (Section 5), and
finally Section 6 deals with unions of sets of lengths. We provide—in the ab-
stract setting of atomic monoids—new characterizations or new upper bounds
(as in Propositions 3.3, 5.2, Corollary 6.4), and reveal the influence of spe-
cial presentations to the arithmetic (as in Theorem 5.6). Throughout, we
apply the abstract results to concrete classes of monoids, mainly to numerical
monoids and to Krull monoids (Corollaries 5.7 and 5.8, Theorem 6.6). More-
over, some of the results have relevance from the computational point of view,
as they can provide explicit algorithms which partly have been implemented
in GAP (see Example 3.6 or Remarks 5.9, and [14]). A more detailed discussion
of the results will be given at the beginning of each section as soon as we have
the required terminology at our disposal.

2. Preliminaries

We denote by N the set of positive integers, and we put N0 = N ∪ {0}.
For every n ∈ N, we denote by Cn a cyclic group with n elements. For real
numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let L,L′ ⊂ Z. We denote
by L + L′ = {a + b | a ∈ L, b ∈ L′ } their sumset. Two distinct elements k, l ∈ L
are called adjacent if L ∩ [min{k, l},max{k, l}] = {k, l}. A positive integer
d ∈ N is called a distance of L if there exist adjacent elements k, l ∈ L with
d = |k − l|. We denote by Δ(L) the set of distances of L. If ∅ �= L ⊂ N, we call

ρ(L) = sup
{

m

n

∣∣∣m,n ∈ L

}
=

supL

minL
∈ Q≥1 ∪ {∞}

the elasticity of L, and we set ρ({0}) = 1. By a monoid, we mean a commu-
tative, cancellative semigroup with unit element. Throughout this paper, let
S be a monoid.

We denote by A(S) the set of atoms (irreducible elements) of S, by S× the
group of invertible elements, by Sred = {aS× | a ∈ S} the associated reduced
monoid of S, and by q(S) a quotient group of S with S ⊂ q(S). A submonoid
T ⊂ S is said to be saturated if T = S ∩ q(T ) (equivalently, if a, b ∈ T and a
divides b in S, then a divides b in T ). We say that S is reduced if |S× | = 1.
If not stated otherwise, we will use multiplicative notation. Submonoids of
(Zs,+), in particular numerical monoids, will of course be written additively.



CHARACTERIZATIONS OF ARITHMETICAL INVARIANTS 1387

For a set P , we denote by F (P ) the free (Abelian) monoid with basis P .
Then every a ∈ F (P ) has a unique representation in the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

We call |a| =
∑

p∈P vp(a) the length of a and supp(a) = {p ∈ P | vp(a) > 0} ⊂ P
the support of a.

The free (Abelian) monoid Z(S) = F (A(Sred)) is called the factorization
monoid of S, the unique homomorphism

π : Z(S) → Sred satisfying π(u) = u for each u ∈ A(Sred)

is called the factorization homomorphism of S and

∼S =
{
(x, y) ∈ Z(S) × Z(S) | π(x) = π(y)

}
the monoid of relations of S. Clearly, we have Z(S) ∼= (N(A(Sred)

0 ,+), and if S
is written additively, then Z(S) and ∼S will be written additively too.

Let σ ⊂ ∼S be a subset. Then σ−1 = {(x, y) ∈ ∼S | (y,x) ∈ σ}, and σ is called
a presentation of S if the congruence generated by σ equals ∼S (equivalently, if
(x, y) ∈ Z(S) × Z(S), then (x, y) ∈ ∼S if and only if there exist z0, . . . , zk ∈ Z(S)
such that x = z0, zk = y, and, for all i ∈ [1, k], (zi−1, zi) = (xi−1wi, xiwi) with
wi ∈ Z(S) and (xi−1, xi) ∈ σ ∪ σ−1). A presentation σ is said to be:

• minimal if no proper subset of σ generates ∼S (see [38, Chapter 9] for
characterizations of minimal presentations in our setting).

• generic if σ is minimal and for all (x, y) ∈ σ we have supp(xy) = A(Sred).

If S has a generic presentation, then Sred is finitely generated and has no
primes.

For a subset S′ ⊂ S, we set Z(S′) = {z ∈ Z(S) | π(z) ∈ S′ }. Let Z ⊂ Z(S)
be a subset. We say that an element x ∈ Z is minimal in Z if for all elements
y ∈ Z with y | x it follows that x = y. We denote by Min(Z) the set of minimal
elements in Z. Let x ∈ Z. Since the number of elements y ∈ Z with y | x is
finite, there exists an x∗ ∈ Min(Z) with x∗ | x.

For a ∈ S, the set

Z(a) = Z
(

{a}
)

⊂ Z(S) is the set of factorizations of a and

L(a) =
{

|z|
∣∣ z ∈ Z(a)

}
⊂ N0 is the set of lengths of a.

By definition, we have Z(a) = {1} and L(a) = {0} for all a ∈ S×. The monoid
S is called atomic if Z(a) �= ∅ for all a ∈ S (equivalently, every non-unit can
be written as a product of atoms), and it is called factorial if |Z(a)| = 1 for all
a ∈ S. If S is reduced and atomic, then the set of atoms A(S) is the uniquely
determined minimal generating set of S [26, Proposition 1.1.7]. We denote by
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L(S) = {L(a) | a ∈ S} the system of sets of lengths of S, and by

Δ(S) =
⋃

L∈L(S)

Δ(L) ⊂ N

the set of distances of S.
For z, z′ ∈ Z(S), we can write

z = u1 · . . . · ulv1 · . . . · vm and z′ = u1 · . . . · ulw1 · . . . · wn,

where l,m,n ∈ N0 and u1, . . . , ul, v1, . . . , vm,w1, . . . ,wn ∈ A(Sred) are such that

{v1, . . . , vm} ∩ {w1, . . . ,wn} = ∅.

Then gcd(z, z′) = u1 · . . . · ul, and we call

d
(
z, z′)= max{m,n} = max

{
|z gcd

(
z, z′)−1|, |z′ gcd

(
z, z′)−1|

}
∈ N0

the distance between z and z′. For subsets X,Y ⊂ Z(S), we set

d(X,Y ) = min
{
d(x, y) | x ∈ X,y ∈ Y

}
∈ N0,

and thus d(X,Y ) = 0 if and only if (X ∩ Y �= ∅ or X = ∅ or Y = ∅).
Numerical monoids. By a numerical monoid, we mean a submonoid S ⊂

(N0,+) such that the complement N \ S is finite. The theory of numerical
monoids is presented in the recent monograph [39]. The connection to semi-
group algebras and to one-dimensional local domains (in particular, to power
series domains K[[S]]) is documented in the surveys [7], [5], [6] (all these are
domains which have received a lot of attention in factorization theory). We
shall make use of this in Section 5.

Let S be a numerical monoid. Then S is reduced and finitely gener-
ated. Suppose that A(S) = {n1, . . . , nt} with t ∈ N and 1 < n1 < · · · < nt.
Then we write S = 〈n1, . . . , nt〉, and since N \ S is finite, it follows that
gcd(n1, . . . , nt) = 1. Writing factorizations of an element a ∈ S we put the
atoms in boldface in order to distinguish between the atoms and the scalars.
Thus z = k1n1 + · · · +ktnt, with k1, . . . , kt ∈ N0, is the factorization of the ele-
ment a =

∑t
i=1 kini ∈ S of length |z| = k1 + · · · +kt. We denote by Ap(S,a) =

{s ∈ S | s − a /∈ S} the Apéry set of a in S (see [39]).
Krull monoids. The monoid S is called a Krull monoid if it satisfies one

of the following equivalent properties [26, Theorem 2.4.8]:
(a) S is v-noetherian and completely integrally closed,
(b) S has a divisor theory,
(c) Sred is a saturated submonoid of a free monoid.
The theory of Krull monoids is presented in the monographs [32], [26]. Let S
be atomic. Clearly, ∼S ⊂ Z(S) × Z(S) is saturated and hence ∼S is a Krull
monoid by Property (c) (more on that can be found in [37, Lemma 11]),
and hence, in particular, it is atomic. Moreover, if Sred is finitely generated,
then ∼S is finitely generated as a saturated submonoid of a finitely generated
monoid (see [26, Proposition 2.7.5]). An integral domain R is a Krull domain
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if and only if its multiplicative monoid R \ {0} is a Krull monoid, and thus
Property (a) shows that a noetherian domain is Krull if and only if it is
integrally closed.

Main portions of the arithmetic of a Krull monoid—in particular, all ques-
tions dealing with sets of lengths—can be studied in the associated monoid
of zero-sum sequences over its class group. To describe this concept, let G
be an additive Abelian group, G0 ⊂ G a subset and F (G0) the free monoid
with basis G0. According to the tradition of combinatorial number theory,
the elements of F (G0) are called sequences over G0. For a sequence

U = g1 · . . . · gl =
∏

g∈G0

gvg(U) ∈ F (G0),

we call vg(U) the multiplicity of g in U ,

|U | = l =
∑
g∈G

vg(U) ∈ N0 the length of U,

and

σ(U) =
l∑

i=1

gi the sum of U.

The monoid
B(G0) =

{
U ∈ F (G0) | σ(U) = 0

}
is called the monoid of zero-sum sequences over G0, and Property (c) shows
that B(G0) is a Krull monoid. We define the Davenport constant of G0 by

D(G0) = sup
{

|U |
∣∣ U ∈ A

(
B(G0)

)}
∈ N0 ∪ { ∞},

which is a classical constant in Combinatorial Number Theory (see [19], [22]).
We will use that for a reduced finitely generated monoid S the following

statements are equivalent [26, Theorem 2.7.14]:
• S is a Krull monoid,
• S is isomorphic to a monoid B(G0) with G0 ⊂ G as above,
• S is isomorphic to a monoid of non-negative integer solutions of a system

of linear Diophantine equations.

3. The ω-invariants

Definition 3.1. Let S be atomic. For b ∈ S, let ω(S, b) denote the smallest
N ∈ N0 ∪ {∞} with the following property:

For all n ∈ N and a1, . . . , an ∈ S, if b | a1 · . . . · an, then there exists a subset
Ω ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣ ∏

ν∈Ω

aν .
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Furthermore, we set

ω(S) = sup
{
ω(S,u) | u ∈ A(S)

}
∈ N0 ∪ {∞}.

Let S be atomic. By definition, an element b ∈ S is a prime element if
and only if ω(S, b) = 1, and S is factorial if and only if ω(S) = 1. Thus
these ω-invariants (together with the associated tame degrees, see in particular
Equation 5.2) measure in particular how far away atoms are from primes (see
[29], [28], [27], [30]). An algorithm to compute the ω(S, ·) values in numerical
monoids was recently presented in [4]. Here we start by showing that a slight
variant of the property in the definition of ω(S, ·) does not change its value.
Also the forthcoming characterization of ω(S) will be easy to prove, but it
is useful from a computational point of view. Although special cases have
been handled in the literature before (Proposition 3.3 was done for numerical
monoids in [4, 3.3.1], and Lemma 3.2 for domains in [3]), we provide short
proofs because these technical results are the key ingredient in the proof of
our main results (see Theorem 5.6).

Lemma 3.2. Let S be atomic and b ∈ S. Then ω(S, b) is the smallest
N ∈ N0 ∪ {∞} with the following property:

For all n ∈ N and a1, . . . , an ∈ A(S), if b | a1 · . . . · an, then there exists a
subset Ω ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣ ∏

ν∈Ω

aν .

Proof. Let ω′(S, b) denote the smallest integer N ∈ N0 ∪ {∞} satisfying the
property mentioned in the lemma. We show that ω(S, b) = ω′(S, b). By defini-
tion, we have ω′(S, b) ≤ ω(S, b). (Note, if b ∈ S×, then ω(S, b) = ω′(S, b) = 0).

In order to show that ω(S, b) ≤ ω′(S, b), let n ∈ N and a1, . . . , an ∈ S with
b | a1 · . . . · an. After renumbering if necessary there is an m ∈ [0, n] such
that a1, . . . , am ∈ S \ S× and am+1, . . . , an ∈ S×. Then b | a1 · . . . · am, and for
every i ∈ [1,m] we pick a factorization ai = ui,1 · . . . · ui,ki with ki ∈ N and
ui1 , . . . , ui,ki ∈ A(S). Then there is a subset I ∈ [1,m] and, for every i ∈ I , a
subset ∅ �= Λi ⊂ [1, ki] such that

|I| ≤
∑
i∈I

|Λi| ≤ ω′(S, b) and b
∣∣∣∏

i∈I

∏
ν∈Λi

ui,ν

which implies that b |
∏

i∈I ai. �

Proposition 3.3. Let S be atomic.
1. For every s ∈ S we have

ω(S, s) = sup
{

|x| | x ∈ Min
(
Z(sS)

)}
.

2. ω(S) = sup{|x| | x ∈ Min(Z(uS)) for some u ∈ A(S)}.
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Proof. Obviously, it is sufficient to prove the first statement. Furthermore,
we may assume that S is reduced.

Let x =
∏

u∈A(S) umu ∈ Min(Z(sS)). Since x ∈ Z(sS), it follows that s

divides
∏

u∈A(S) umu (in S), and since x is minimal in Z(sS), s does not divide
a proper subproduct. Therefore, we get that ω(S, s) ≥

∑
u∈A(S) mu = |x|.

Conversely, let (mu)u∈A(S) ∈ N
A(S)
0 be such that s divides

∏
u∈A(S) umu

(in S). Then x =
∏

u∈A(S) umu ∈ Z(sS), and there exists some minimal x∗ =∏
u∈A(S) um∗

u ∈ Z(sS) with x∗ | x (in Z(S)). Then

s
∣∣∣ ∏

u∈A(S)

um∗
u

∣∣∣∣ ∏
u∈A(S)

umu (in S)

and hence ω(S, s) ≤
∑

u∈A(S) m∗
u ≤ sup{ |y| | y ∈ Min(Z(sS))}. �

Remarks 3.4.
1. Note that ω(S, s) is finite for all s ∈ S not only for finitely generated

monoids, but more generally for all v-noetherian monoids (see [28, Theo-
rem 4.2]).

2. Let k, r ∈ N0 and n,d1, . . . , dk ∈ N. Let S ⊂ (Nn
0 ,+) be the set of all non-

negative integer solutions (x1, . . . , xn) ∈ Nn
0 of the following system of equa-

tions
a1,1x1 + · · · + a1,nxn ≡ 0 mod d1,

...
ak,1x1 + · · · + ak,nxn ≡ 0 mod dk,

ak+1,1x1 + · · · + ak+1,nxn = 0,
...

ak+r,1x1 + · · · + ak+r,nxn = 0,

where all ai,j are integers. Obviously, S ⊂ (Nn
0 ,+) is a submonoid with

(∗) q(S) ∩ Nn
0 = S.

Let G = Z/d1Z × · · · × Z/dkZ × Zr and

G0 =
{
(a1,i + d1Z, . . . , ak,i + dkZ, ak+1,i, . . . , ak+r,i) ∈ G | i ∈ [1, n]

}
.

Then S is obviously isomorphic to B(G0), the monoid of zero-sum sequences
over G0. This (or independently, the fact that S ⊂ (Nn

0 ,+) is saturated) show
that S is a reduced, finitely generated Krull monoid. If a finitely generated
Krull monoid is given in that form, then the characterization of Proposition 3.3
turns out to be extremely useful, as the next corollary illustrates.

Corollary 3.5. Let S ⊂ (Nn
0 ,+) be a saturated submonoid with A(S) =

{s1, . . . , st}, where n, t ∈ N, and let A ∈ Mn,t(Z) be the matrix whose columns
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are s1, . . . , st. If s ∈ S and (x1, . . . , xt) ∈ Nt
0, then

x1s1 + · · · + xtst ∈ Z(s + S) if and only if A

⎛
⎜⎝

x1

...
xt

⎞
⎟⎠≥ s,

where ≤ denotes the component-wise order on Nn
0 .

Proof. Observe that, by definition of A, we have for s and (x1, . . . , xt) as
above, that

x1s1 + · · · + xtst ∈ Z(s) if and only if A

⎛
⎜⎝

x1

...
xt

⎞
⎟⎠= s.

If x1s1 + · · · +xtst ∈ Z(s+S), then there is some s′ ∈ S such that x1s1 + · · · +
xtst = s + s′ ∈ S, and hence A(x1, . . . , xt)t = s + s′ ≥ s.

Conversely, let x ∈ Nt
0 (considered as a column) be such that Ax ≥ s. Then

s′ = Ax ∈ S and s′ − s ∈ q(S) ∩ Nn
0 = S. Thus, s′ ∈ s+S and x1s1 + · · · +xtst ∈

Z(s′) ⊂ Z(s + S). �

The following example illustrates how Proposition 3.3 and Corollary 3.5 can
be used to calculate the ω-invariants. It was developed by using an algorithm
due to E. Contejean and H. Devie with slack variables (see [13]; these authors
published later a paper to avoid the use of these extra variables).

Example 3.6. Let S ⊂ (N3
0,+) be the set of nonnegative integer solutions

of

x + z = 0 mod 2,

y + z = 0 mod 2.

Then

A(S) =

⎧⎨
⎩
⎛
⎝2

0
0

⎞
⎠ ,

⎛
⎝0

2
0

⎞
⎠ ,

⎛
⎝0

0
2

⎞
⎠ ,

⎛
⎝1

1
1

⎞
⎠
⎫⎬
⎭ ,

and S is isomorphic to B(G0) with G0 = (Z/2Z × Z/2Z) \ {(0,0)}. The set of
solutions of ⎛

⎝2 0 0 1
0 2 0 1
0 0 2 1

⎞
⎠x ≥

⎛
⎝1

1
1

⎞
⎠

is {(0,0,0,1), (1,1,1,0)} +N4
0, and thus, by Proposition 3.3 and Corollary 3.5,

ω(S, (1,1,1)) = 3. The set of solutions of⎛
⎝2 0 0 1

0 2 0 1
0 0 2 1

⎞
⎠x ≥

⎛
⎝2

0
0

⎞
⎠
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is {(1,0,0,0), (0,0,0,2)} + N4
0, whence ω(S, (2,0,0)) = 2. By symmetry, we

get ω(S, (0,2,0)) = 2 = ω(S, (0,0,2)). Thus, it follows that ω(S) = 3.

4. The catenary and monotone catenary degrees

Definition 4.1. Let S be atomic and a ∈ S.
1. Let z, z′ ∈ Z(a) be factorizations of a and N ∈ N0 ∪ { ∞}. A finite sequence

z0, z1, . . . , zk in Z(a) is called an N -chain of factorizations from z to z′

if z = z0, z′ = zk and d(zi−1, zi) ≤ N for every i ∈ [1, k]. In addition, the
chain is called monotone if |z0| ≤ · · · ≤ |zk | or |z0| ≥ · · · ≥ |zk |.

If there exists a (monotone) N -chain of factorizations from z to z′, we
say that z and z′ can be concatenated by a (monotone) N -chain.

2. We denote by c(a) ∈ N0 ∪ { ∞} (or by cmon(a) resp.) the smallest N ∈
N0 ∪ {∞} such that any two factorizations z, z′ ∈ Z(a) can be concatenated
by an N -chain (or by a monotone N -chain).

3. Moreover,
c(S) = sup

{
c(b) | b ∈ S

}
∈ N0 ∪ { ∞}

and
cmon(S) = sup

{
cmon(b) | b ∈ S

}
∈ N0 ∪ {∞}

denote the catenary degree and the monotone catenary degree of S.

Whereas the catenary degree is a classic invariant in factorization theory,
the monotone catenary degree was introduced only in [15]. However, since
then the existence of monotone and of near monotone chains of factorizations
have been investigated in various aspects (see [16], [17], [24], [31], [35]). The
monotone catenary degree is always (explicitly or implicitly) studied in a two-
step procedure.

Definition 4.2. Let S be atomic and a ∈ S.
1. For k ∈ Z, let Zk(a) = {z ∈ Z(a) | |z| = k} denote the set of factorizations

of a having length k. We define

cadj(a) = sup
{
d
(
Zk(a),Zl(a)

)
| k, l ∈ L(a) are adjacent

}
and we set

cadj(S) = sup
{
cadj(b) | b ∈ S

}
∈ N0 ∪ { ∞}.

2. Let ceq(a) denote the smallest N ∈ N0 ∪ {∞} with the following property:
For all z, z′ ∈ Z(a) with |z| = |z′ | there exists a monotone N -chain con-
catenating z and z′.
We call

ceq(S) = sup
{
ceq(b) | b ∈ S

}
∈ N0 ∪ { ∞}

the equal catenary degree of S.
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Obviously, we have

c(a) ≤ cmon(a) = sup
{
ceq(a), cadj(a)

}
≤ supL(a) for all a ∈ S,

and hence

(4.1) c(S) ≤ cmon(S) = sup
{
ceq(S), cadj(S)

}
.

It is well known that the monotone catenary degree cmon(S) is finite for
finitely generated monoids [15, Theorem 3.9], and hence also for Krull monoids
with finite class group, because it is stable under transfer homomorphisms;
note that, for such Krull monoids, both inequalities cadj(S) < ceq(S) < ∞ and
ceq(S) < cadj(S) < ∞ can happen (for all this see [31]). Our results will pro-
vide a more natural upper bound for cmon(S), valid among others finitely
generated monoids. Inequality (5.1) will show that there is a canonical chain
of inequalities involving the set of distances, the ω-invariants, and the cate-
nary and tame degrees. However, there seems to be no obvious relationship
between cmon(·), on the one side and ω(·), the tame degree or on their canon-
ical upper bound (see Proposition 5.2) on the other side. We study these
phenomena by investigating ceq(·), and cadj(·) individually, and summarize
our discussion after Proposition 5.2.

Definition 4.3. Let S be atomic. Then

∼S,eq =
{
(x, y) ∈ Z(S) × Z(S) | π(x) = π(y) and |x| = |y|

}
is called the monoid of equal-length relations of S.

Note, if (x, y) ∈ A(∼S,eq), then either gcd(x, y) = 1 or x = y ∈ A(Sred).
Furthermore, we use the convention that sup ∅ = 0.

Proposition 4.4. Let S be atomic.

1. ∼S,eq ⊂ ∼S is a saturated submonoid, and hence ∼S,eq is a Krull monoid.
2. If Sred is finitely generated, then ∼S,eq is finitely generated.
3. ceq(S) ≤ sup{|x| | (x, y) ∈ A(∼S,eq) for some y ∈ Z(S) \ {x}}.
4. For d ∈ Δ(S) let Ad = {x ∈ Z(S)| |x| − d ∈ L(π(x))}. Then cadj(S) ≤

sup{|x| | x ∈ Min(Ad), d ∈ Δ(S)}.

Proof. 1. Obviously, ∼S,eq is a submonoid of ∼S . In order to show that it is
saturated, let (x1, x2), (z1, z2) ∈ ∼S,eq be such that (x1, x2) divides (z1, z2) in
∼S . Then there exists (y1, y2) ∈ ∼S such that x1y1 = z1 and x2y2 = z2. This
implies that |y1| = |z1| − |x1| = |z2| − |x2| = |y2|, and hence (y1, y2) ∈ ∼S,eq.
Thus, ∼S,eq ⊂ ∼S is saturated. Since ∼S is a Krull monoid by [37, Lemma 11],
∼S,eq is a Krull monoid by [26, Proposition 2.4.4].

2. Let Sred be finitely generated. Then ∼S is finitely generated (as observed
in Section 2), and hence ∼S,eq is finitely generated as a saturated submonoid
of a finitely generated monoid [26, Proposition 2.7.5].
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3. We set M = sup{ |x| | (x, y) ∈ A(∼S,eq) for some y ∈ Z(S)}, and have to
show that ceq(a) ≤ M for all a ∈ S. Let a ∈ S and z, z′ ∈ Z(a) with |z| = |z′ |.
Then (z, z′) ∈ ∼S,eq, and we consider a factorization, say(

z, z′)=
(
x1, x

′
1

)
· . . . ·

(
xl, x

′
l

)
, where

(
xi, x

′
i

)
∈ A(∼S,eq)

for all i ∈ [1, l], gcd(xi, x
′
i) = 1 for all i ∈ [1, k] and xi = x′

i ∈ A(Sred) for all
i ∈ [k + 1, l]. Then

z = z0, z1 = x′
1x2 · . . . · xl, z2 = x′

1x
′
2x3 · . . . · xl, . . . ,

zk = x′
1 · . . . · x′

kxk+1 · . . . · xl = x′
1 · . . . · x′

l = z′

is an M -chain of factorizations from z to z′ and with |zi| = |z| for all i ∈ [0, k].
4. Let a ∈ S and k, l ∈ L(a) be adjacent lengths, say l − k = d ∈ Δ(S). We

pick some z ∈ Zl(a). Then there exists some x ∈ Min(Ad) such that x | z.
If x′ ∈ Z(π(x)) with |x′ | = |x| − d, then z′ = x′(x−1z) ∈ Zk(a) and d(Zk(a),
Zl(a)) ≤ d(z, z′) ≤ |x|. This shows that cadj(a) ≤ sup{|x| | x ∈ Min(Ad), d ∈
Δ(S)}, and hence the assertion follows. �

The above upper bounds for ceq(S) and for cadj(S) are sharp for Krull
monoids with small class group (see [31, Section 5]). Moreover, Proposi-
tion 4.4.4 will allow us to obtain a more explicit finiteness criterion for cadj(S)
in Proposition 5.2.

Definition 4.5. Let S be atomic.
1. Two elements z, z′ ∈ Z(S) are R-related if z = z′ = 1 or if z and z′ can

be concatenated by a chain of factorizations z = z0, . . . , zk = z′ such that
π(zi) = π(z) and gcd(zi−1, zi) �= 1 for all i ∈ [1, k].

2. For a ∈ S, we denote by Ra the set of R-(equivalence) classes of Z(a). For
σ ∈ Ra we set |σ| = min{ |z| | z ∈ σ}, and we define

μ(a) = sup{ |σ| | σ ∈ Ra}.

3. We set
μ(S) = sup

{
μ(a) | a ∈ S with | Ra| ≥ 2

}
.

We will need the following result, first proved for finitely generated monoids
(see [9, Theorem 3.1]) and then in the general setting (see [37, Corollary 9]).

Proposition 4.6. If S is atomic, then c(S) = μ(S).

There is no analogous result for the monotone catenary degree. Below
we will provide the first example of a monoid which is not tame but which
has finite monotone catenary degree (indeed the catenary and the monotone
catenary degree coincide). On the other side of the spectrum there are tame
monoids with infinite monotone catenary degree. We recall the notion of
finitely primary monoids, a concept which stems from ring theory. The monoid
S is called finitely primary if there exist s,α ∈ N with the following properties:
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S is a submonoid of a factorial monoid F = F × × [p1, . . . , ps] with s pairwise
non-associated prime elements p1, . . . , ps satisfying

S \ S× ⊂ p1 · . . . · psF and (p1 · . . . · ps)αF ⊂ S.

If this is the case, then we say that S is finitely primary of rank s and
exponent α.

If s = 1 and F × = {1}, then S is isomorphic to a numerical monoid. Further-
more, S is tame if and only if it is of rank 1 [26, Theorem 3.1.5].

Example 4.7. Let S = (N × N ∪ {(0,0)},+). Then c(S) = cmon(S) = 3 and
hence Δ(S) = {1}. However, we have ρ(S) = ∞ and hence ω(S) = t(S) = ∞
(for the invariants not defined so far, see the discussion at Inequality (5.1)).

Proof. By definition, S is a finitely primary monoid of rank 2 and expo-
nent 1. It is a special case of the monoid studied in [26, Example 3.1.8], where
all assertions have been verified apart from the formula for cmon(S). Indeed,
it is straightforward that A(S) = {(1,m), (m,1) | m ∈ N}. Furthermore, ev-
ery element a = (a1, a2) ∈ S \ (A(S) ∪ {(0,0)}) can be written as a sum of
two atoms, namely (a1, a2) = (1, a2 − 1) + (a1 − 1,1). These two observations
easily imply the assertions on c(S),Δ(S) and ρ(S). In order to show that
cmon(S) = 3 we proceed in two steps.

First, we show that cadj(S) = 3. Let a ∈ S and k, l ∈ L(a) be adjacent
lengths, say k < l. Since Δ(S) = {1}, it follows that l = k + 1 ≥ 3. Let
z = u1 · . . . · uk+1 ∈ Zl(a) with u1, . . . , uk+1 ∈ A(S). Since u1u2u3 is a prod-
uct of two atoms, say u1u2u3 = v1v2 with v1, v2 ∈ A(S), we infer that z′ =
v1v2u4 · . . . · uk+1 ∈ Zk(a), and hence 3 = d(z, z′) = d(Zk+1(a),Zk(a)). Thus
have cadj(a) = 3, and hence we get cadj(S) = 3.

Second, we verify that ceq(S) = 3. Let a = (m,n) ∈ S and k ∈ L(a). We
have to show that each two factorizations z, z′ ∈ Zk(a) can be concatenated
by a monotone 3-chain of factorizations. By symmetry, we may assume that
m ≤ n, and then we clearly have k ≤ m. We consider the factorization

z∗ = (k − 2)(1,1) + (m − k + 1,1) + (1,n − k + 1) ∈ Zk(a).

Clearly, it is sufficient to show that from every factorization z ∈ Zk(a) there
is a monotone 3-chain of factorizations to z∗. Let z ∈ Zk(a) be given. We
proceed by induction on v(1,1)(z). If v(1,1)(z) = k − 2, then z = z∗ and we
are done. Suppose that v(1,1)(z) < k − 2. Then there are two atoms u1 =
(1,a1) and u2 = (1,a2) with a1, a2 ∈ N≥2 and (u1 + u2) | z, or there are two
atoms u1 = (a1,1) and u2 = (a2,1) with a1, a2 ∈ N≥2 and (u1 + u2) | z. By
symmetry, we may suppose that the first case holds. Then we define z′ =

−u1 − u2+z+(1,1)+(1,a1 +a2 − 1). Clearly, we have z′ ∈ Zk(a), d(z, z′) = 3,
v(1,1)(z) < v(1,1)(z′), and hence the assertion follows. �



CHARACTERIZATIONS OF ARITHMETICAL INVARIANTS 1397

5. The tame degrees

Definition 5.1. Let S be atomic.
1. For a ∈ S and x ∈ Z(S), let t(a,x) ∈ N0 ∪ {∞} denote the smallest N ∈

N0 ∪ { ∞} with the following property:
If Z(a) ∩ xZ(S) �= ∅ and z ∈ Z(a), then there exists z′ ∈ Z(a) ∩ xZ(S)
such that d(z, z′) ≤ N .

2. For subsets S′ ⊂ S and X ⊂ Z(S), we define

t
(
S′,X

)
= sup

{
t(a,x) | a ∈ S′, x ∈ X

}
∈ N0 ∪ { ∞},

and for a ∈ S, we set t(a,X) = t({a},X).
3. S is said to be locally tame if t(S,u) < ∞ for all u ∈ A(Sred). We call

t(S) = t
(
S, A(Sred)

)
= sup

{
t(S,u) | u ∈ A(Sred)

}
∈ N0 ∪ {∞}

the tame degree of S, and S is called tame if t(S) < ∞.
4. We set a(S) = sup{ |x| | (x, y) ∈ A(∼S) for some y ∈ Z(S)} ∈ N0 ∪ {∞}.

Let S be reduced and atomic. Local tameness is a central finiteness prop-
erty in factorization theory, but the finiteness of the tame degree is a rare
property (a non-principal order o in an algebraic number field is locally tame
with finite catenary degree, and it is tame if and only if for every prime ideal
p containing the conductor there is precisely one prime ideal p in the prin-
cipal order o such that p ∩ o = p). Whereas in v-noetherian monoids (these
are monoids satisfying the ascending chain condition for v-ideals) we have
ω(S,u) < ∞ for all atoms u ∈ A(S), this does not hold for the t(S,u) val-
ues (see [29, Corollary 3.6], [28, Theorems 4.2 and 4.4], [27, Theorems 5.3 and
6.7]). However, we have ω(S) < ∞ if and only if t(S) < ∞ (see Inequality (5.1)
below). A main aim in this section is to show that monoids having a generic
presentation satisfy ω(S) = t(S) (Theorem 5.6 and its corollaries). After that
we provide the first examples of numerical monoids S with ω(S) < t(S).

Let S be atomic and, to avoid trivialities, suppose that S is not factorial.
Let us consider a(S). If S is finitely generated, then ∼S is finitely generated,
hence A(∼S) is finite, and thus a(S) < ∞. It has been proved that a(S) is
an upper bound for a variety of arithmetical invariants, such as the catenary
degree (e.g., [37, Proposition 14]; see also the forthcoming Corollary 6.4).
However, we have

(5.1) 2 + supΔ(S)
(1)

≤ c(S)
(2)

≤ ω(S)
(3)

≤ t(S)
(4)

≤ ω(S)2 and ρ(S)
(5)

≤ ω(S),

where ρ(S) is the elasticity (see Definition 6.1): for (1) see [26, Theorem 1.6.3],
for (2), (4) and (5) see [30, Section 3], and (3) can be found in [28, Theo-
rem 3.6]. In the next proposition, we will verify that a(S) is an upper bound
for the tame degree t(S), but even this inequality can be strict (even for
numerical monoids, see [9, Example 4.4]).
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Proposition 5.2. Let S be atomic.
1. For every u ∈ A(Sred) we have

t(S,u) ≤ sup
{

|x|, |y| | (x, y) ∈ A(∼S), x ∈ uZ(S)
}
.

2. t(S) ≤ a(S).
3. If a(S) < ∞, then cadj(S) < ∞.

Proof. 1. and 2. Obviously, it is sufficient to prove the first statement.
Furthermore, we may assume that S is reduced.

Let u ∈ A(S), a ∈ uS and z ∈ Z(a). We have to find a factorization z′ ∈
Z(a) ∩ uZ(S) such that

d
(
z, z′)≤ sup

{
|x|, |y| | (x, y) ∈ A(∼S), x ∈ uZ(S)

}
.

Since a ∈ uS, there exists some z̄ ∈ Z(a) ∩ uZ(S). We consider a factorization
of (z, z̄) in ∼S , say

(z, z̄) = (z1, z̄1) · . . . · (zk, z̄k),
where k ∈ N, (zi, z̄i) ∈ A(∼S) for all i ∈ [1, k] and z̄1 ∈ uZ(S). Then z′ =
z̄1(z−1

1 z) ∈ Z(a) ∩ uZ(S) and

d
(
z, z′)≤ max{ |z1|, |z̄1| } ≤ sup

{
|x|, |y| | (x, y) ∈ A(∼S), x ∈ uZ(S)

}
.

3. Suppose that a(S) < ∞. Then

B =
{

|x| − |y| | (x, y) ∈ A(∼S)
}

⊂ Z

is finite. Furthermore, by 2. and Inequality (5.1), the set of distances Δ(S)
is finite. By Proposition 4.4.4, it suffices to verify that

sup
{

|x| | x ∈ Min(Ad), d ∈ Δ(S)
}

< ∞,

where Ad = {x ∈ Z(S) | |x| − d ∈ L(π(x))}. Let x ∈ Min(Ad) and y ∈ Z(π(x))
such that |y| = |x| − d. Consider a factorization

(x, y) = (x1, y1) · . . . · (xk, yk),

where k ∈ N and (xi, yi) ∈ A(∼S) for all i ∈ [1, k]. There exists a bound
M(B,d) with the following property (for the construction of an explicit upper
bound, see [23, Lemma 5.1]). There is a subset I ⊂ [1, k] with |I| ≤ M(B,d)
such that for

x′ =
∏
i∈I

xi and y′ =
∏
i∈I

yi

we have |y′ | = |x′ | − d. Thus x′ ∈ Ad, and since x′ | x, it follows that x′ = x
and |x| = |x′ | ≤ M(B,d)a(S). �

We discuss the relationship between the finiteness of the monotone catenary
degree, of the tame degree and of its upper bound a(S). Example 4.7 shows
that the monotone catenary degree can be finite even if the monoid is not
tame. Conversely, Example 4.5 in [15] provides a finitely primary monoid of
rank 1 (hence it is tame and has finite catenary degree) for which ceq(S) is
infinite. In contrast to that example, Theorem 5.1 from [30] shows that a
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slightly weaker variant of cadj(S) is finite for tame monoids. More precisely, it
states that in a tame monoid S there is a constant M ∈ N with the following
property:

For each two adjacent lengths k, l ∈ L(a) ∩ [minL(a)+M,maxL(a) − M ] we
have d(Zk(a),Zl(a)) ≤ M .

Proposition 5.2.3 shows that the finiteness of a(S)—which is stronger than
the finiteness of the tame degree—enforces the finiteness of cadj(S). It is an
interesting open problem whether the finiteness of the tame degree is strong
enough to guarantee the finiteness of cadj(S).

Let S be atomic but not factorial. We discuss the relationship between
ω(S) and t(S). If u ∈ S is an atom but not prime, then

t
(
S,uS×)= max

{
ω(S,u),1 + τ(S,u)

}
∈ N≥2 ∪ {∞}

and thus

(5.2) t(S) = max
{
ω(S),1 + τ(S)

}
(see [28, Theorem 3.6]; since it is not needed again, we do not repeat the defi-
nition of the τ -invariant). For a large class of Krull monoids it was determined
that t(S) = 1+τ(S) [28, Corollary 4.6]. In contrast to that result, M. Omidali
recently proved that ω(S) = t(S) for numerical monoids generated by almost
arithmetical progressions (see [33, Theorem 3.10]). Theorem 5.6 provides a
result of this type in a more general setting. We will frequently make use of
the following fact: if t(S) < ∞, then there is an a ∈ S and a u ∈ A(Sred) such
that t(a,u) = t(a, A(Sred)) = t(S).

Lemma 5.3. Let S be a reduced and finitely generated. Then for every
subset X ⊂ S there exists a finite set E ⊂ X such that X ⊂ ES. Clearly, E
can be chosen to be minimal.

Proof. This is a special case of [26, Proposition 2.7.4]. �

The next lemma is a generalization of Lemma 5 in [9].

Lemma 5.4. Let S be reduced and atomic, a ∈ S, z ∈ Z(a) and u, v ∈
A(S).
1. Suppose that t(a, A(S)) = d(z,Z(a) ∩ uZ(S)) > 0, z ∈ vZ(S) and a ∈ uvS.

Then t(v−1a, A(S)) ≥ t(a, A(S)).
2. Let a ∈ S be minimal such that t(a, A(S)) = t(S) > 0 (this means that no

proper divisor b of a satisfies t(b, A(S)) = t(S)) and let z′ ∈ Z(a) ∩ uZ(S)
such that d(z, z′) = d(z,Z(a) ∩ uZ(S)) = t(S). Then z ∈ Min(Z(uS)).

Proof. 1. By definition, we have t(v−1a, A(S)) ≥ d(v−1z,Z(v−1a) ∩ uZ(S)).
If z′ ∈ Z(v−1a) ∩ uZ(S) such that d(v−1z, z′) = d(v−1z,Z(v−1a) ∩ uZ(S)), then

t
(
v−1a, A(S)

)
≥ d
(
v−1z, z′)= d

(
z, vz′)= d

(
z, v
(
Z
(
v−1a

)
∩ uZ(S)

))
≥ d
(
z,Z(a) ∩ uZ(S)

)
= t
(
a, A(S)

)
.
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2. Assume to the contrary that z /∈ Min(Z(uS)). Then there exists an atom,
say v, such that v−1z ∈ Z(uS). Since z′ ∈ uZ(S) with d(z, z′) = t(S) > 0, it
follows that u � z and hence d(z,Z(a) ∩ uZ(S)) > 0. Thus, 1. implies that
t(v−1a, A(S)) ≥ t(a, A(S)) = t(S), a contradiction to the minimality of a. �

We say that S has a unique minimal presentation if it has a minimal pre-
sentation σ and for each minimal presentation τ we have σ ∪ σ−1 = τ ∪ τ −1. If
this holds then σ is called a unique minimal presentation of S. Next, we show
that every generic presentation is a unique minimal presentation. We would
like to remind the reader that the term generic presentation (in semigroup
theory) has been chosen to reflect the origins of this concept in generic lattice
ideals (see the work by I. Peeva and B. Sturmfels [34]).

Proposition 5.5. Every generic presentation of S is a unique minimal
presentation.

Proof. We may suppose that S is reduced. Then S is finitely generated.
Recall that any minimal presentation is constructed by choosing pairs of ele-
ments in different R-classes of elements with more than one R-class (see [38,
Chapter 9]).

Let σ ⊂ ∼S be a generic presentation. Then every pair (x, y) ∈ σ has full
support, and x and y are in different R-classes. Thus, if x, y ∈ Z(s), then Z(s)
can consist of only two R-classes, and the union of their support is the set
of all atoms. So for every s ∈ S with |Z(s)| ≥ 2, the set of factorizations Z(s)
consists of precisely two R-classes, and σ is unique if and only if each such
R-class contains precisely one factorization.

Assume to the contrary that there is an s ∈ S such that Z(s) consists of two
R-classes and that two distinct factorizations z, z′ ∈ Z(s) are in the same R-
class. By definition, z and z′ can be concatenated by a chain of factorizations
z = z0, . . . , zk = z′ such that π(zi) = s and gcd(zi−1, zi) �= 1 for all i ∈ [1, k].

We set z1 = xy1, z2 = xy2 and s1 = π(y1) ∈ S where x = gcd(z1, z2) and
y1, y2 ∈ Z(S). Note that s1 is a proper divisor of s0 = s. Since supp(y1) ⊂
supp(z1) and supp(y2) ⊂ supp(z2), y1 and y2 are in the same R-class, because
otherwise Z(s1) would consist of two R-classes and there would be a relation
without full support.

Iterating this construction we obtain an infinite sequence (si)i≥0 where
si+1 is a proper divisor of si for all i ∈ N0, a contradiction to S being finitely
generated. �

Theorem 5.6. Let S be atomic, P ⊂ S a set of representatives of the set
of primes of S and T the set of all a ∈ S such that p � a for all p ∈ P . Suppose
that T =

∐
i∈I Ti, T �= T × and that there is an i∗ ∈ I such that Ti∗ has a

generic presentation and t(Ti∗ ) = t(T ). Then c(S) = ω(S) = t(S).

Remark. Since t(T ) = sup{t(Ti) | i ∈ I} [26, Proposition 1.6.8], the as-
sumption is of course satisfied if all Ti have generic presentations.
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Proof. By [26, Theorem 1.2.3], T ⊂ S is an atomic submonoid and S =
F (P ) × T . Note that neither S nor T are factorial because T �= T ×. Since

c(Ti∗ ) ≤ c(T ) = c(S) ≤ ω(S) ≤ t(S) = sup
{
t(Ti) | i ∈ I

}
= t(Ti∗ ),

it suffices to show that c(Ti∗ ) = t(Ti∗ ). Thus, after a change of notation, we
may assume that S is reduced, not factorial and has a generic presentation.
Let σ ⊂∼S denote this generic presentation of S. We start with the following
assertion.

A. For every u ∈ A(S), we have

Min
(
Z(uS)

)
= {u} ∪

{
x ∈ Z(S) | (x, y) ∈ σ ∪ σ−1 for some y ∈ uZ(S)

}
.

Proof of A. Since u ∈ Min(Z(uS)), we may focus on the elements different
from u. Let x =

∏
v∈A(S) vkv ∈ Min(Z(uS)) \ {u} with kv ∈ N0 for all v ∈ A(S),

and set a = π(x) ∈ S. Since x �= u, it follows that ku = 0. There exists a
y ∈ Z(a) ∩ uZ(S), and the pair (x, y) belongs to the congruence generated by
σ. Hence, there exists (x′, y′) ∈ σ ∪ σ−1 with x′ | x. Since u � x, we get that
u � x′ and because σ is generic, it follows that u | y′ and hence y′ ∈ Z(uS).
Since x ∈ Min(Z(uS)) \ {u}, we infer that x = x′. The uniqueness property of
a generic presentation implies that Z(a) = {x′, y′ }. Thus, we get that y = y′

and hence (x, y) = (x′, y′) ∈ σ.
Conversely, let x ∈ Z(S) and y ∈ uZ(S) be such that (x, y) ∈ σ ∪ σ−1. Then

we clearly have x ∈ Z(uS), and assume to the contrary that it is not minimal.
Then there is an x′ =

∏
v∈A(S) vk′

v ∈ Z(uS), where k′
v ∈ N0 for all v ∈ A(S),

and with x′ | x and x′ �= x. Note that k′
u = 0, because u | y and the supports

of x and y are disjoint. Since σ is generic, there exists a y′ =
∏

v∈A(S) vlv ,
where all lv ∈ N0, with lu �= 0 and π(x′) = π(y′). Since the pair (x′, y′) is
in the congruence generated by σ, there exist (x′ ′, y′ ′) ∈ σ ∪ σ−1 such that
x′ ′ | x′. This implies that x′ ′ | x and x′ ′ �= x. This contradicts the fact, that
elements whose factorizations appear in a generic presentation are not com-
parable [21, Corollary 6]. �

Since σ is a generic presentation, for every u ∈ A(S) and every (x, y) ∈ σ
we have u | x or u | y. Thus, A and Proposition 3.3 imply that

ω(S) = max
{
max{ |x|, |y| } | (x, y) ∈ σ

}
.

Now the minimality property of a generic presentation (see Proposition 5.5),
the above formula for ω(S) together with Proposition 4.6 imply that ω(S) =
c(S).

Since ω(S) ≤ t(S), it remains to show that converse inequality. Let a ∈ S
be minimal such that t(a, A(S)) = t(S), and let u ∈ A(S), z ∈ Z(a) and z′ ∈
Z(a) ∩ uZ(S) such that

t(S) = t
(
a, A(S)

)
= d
(
z,Z(a) ∩ uZ(S)

)
= d
(
z, z′).
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By Lemma 5.4, it follows that z ∈ Min(Z(uS)). Thus, by A, there exist
(x, y) ∈ σ ∪ σ−1 such that y = z. Therefore x and y are factorizations of a,
which appear in the unique presentation of S. This implies that Z(a) = {x, y},
and thus z′ = x and t(S) = d(z, z′) ≤ max{ |x|, |y| } ≤ ω(S). �

Let R be an integral domain. We denote by R• = R \ {0} its multiplicative
monoid of non-zero elements, by X(R) the set of all minimal nonzero prime
ideals of R, by R̂ its complete integral closure, and by (R:R̂) = {f ∈ R | fR̂ ⊂
R} the conductor of R in R̂.

Corollary 5.7. Let R be a weakly Krull domain, f = (R : R̂) �= {0}, P ∗ =
{p ∈ X(R) | p ⊃ f} and S = I ∗

v (R) the monoid of v-invertible v-ideals equipped
with v-multiplication. If for every p ∈ P ∗, the monoid Rp

• has a generic
presentation, then c(S) = ω(S) = t(S).

Proof. By [26, Theorem 3.7.1], the monoid S is isomorphic to F (P ) × T ,
where

P =
{
p ∈ X(R) | p �⊃ f

}
and T =

∏
p∈P ∗

(
Rp

•)
red

.

Thus, the assertion follows from Theorem 5.6. �

Let all notations be as in Corollary 5.7. It is easy to point out explicit
examples where the assumptions hold (for details see [26, Section 3.7]). Every
one-dimensional noetherian domain, in particular every order in a Dedekind
domain, is weakly Krull. Let p ∈ P ∗. Then Rp

• is finitely primary, and
Rp

• is tame if and only if there exists precisely one prime ideal p̂ ∈ X(R̂)
satisfying p̂ ∩ R = p. Suppose this holds true, and set H = (Rp

•)red. Then
H ⊂ F = F × × [p] where p is a prime element of the factorial monoid F , and
its value monoid vp(H) = {vp(a) | a ∈ H} ⊂ (N0,+) is a numerical monoid. If
R is a non-principal order in an algebraic number field, then F × is finite.

Corollary 5.8. Let S be a numerical monoid with A(S) = {n1, n2, n3}.
Define

ci = min
{
k ∈ N | kni ∈ 〈nj , nk 〉

}
and cini = ri,jnj + ri,knk,

where {i, j, k} = {1,2,3} and ri,j ∈ N0. Then S has a generic presentation if
and only if ri,j > 0 for all i, j ∈ {1,2,3}. If this is the case, then

c(S) = ω(S) = t(S) = max{c1, c2, c3, r12 + r1,3, r2,1 + r2,3, r3,1 + r3,2}.

Proof. The first assertion follows from [39, Example 8.23]. The formula
follows from the proof of Theorem 5.6 by taking into account that in this
setting, the minimal presentation for S is {(cini, ri,jnj + ri,knk) | {i, j, k} =
{1,2,3}} (see again [39, Example 8.23]). �
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The catenary degree of numerical monoids with embedding dimension three
has been also described (with a different approach) in [1]. Let S be atomic.
Obviously, the requirement that S has a generic presentation (enforcing c(S) =
t(S)) is a strong assumption, and also the general philosophy in factorization
theory confirms the idea that the equality of the catenary and the tame degree
should be an exceptional phenomenon (see also Corollary 5.10). On the other
hand, all types of numerical monoids studied so far share this exceptional
phenomenon. This contrast will become more clear in the following remark,
where we also construct the first infinite family of numerical monoids whose
ω-invariants are strictly smaller than the tame degrees.

Remarks 5.9. 1. Let S be a numerical monoid with A(S) = {n1, . . . , nt},
where t ∈ N and 1 < n1 < · · · < nt, and let s ∈ S. Consider a factorization
z = a1n1 + · · · + atnt ∈ Min(Z(s + S)). Then z ∈ Z(a) where a = a1n1 + · · · +
atnt, and a = s + u for some u ∈ S. Pick some j ∈ [1, t] such that nj | z.
The minimality of z implies that z − nj /∈ Z(s + S), and thus a − s − nj =
u − nj /∈ S, whence u ∈ Ap(S,nj). Thus, if we want to compute the elements
in Min(Z(s + S)) (which in view of Proposition 3.3 enables us to determine
ω(S)), we only have to find the factorizations of the elements of the form s+u
with u in the Apéry set of some atom.

We implemented this procedure in GAP by using the numericalsgps pack-
age (see [14]). We did an exhaustive search computing all numerical monoids
with Frobenius number up to 20. That makes 3515 numerical monoids, and
the only monoids S in this set fulfilling ω(S) < t(S) are 〈5,6,9〉, 〈5,8,12〉 and
〈6,8,9〉.

2. The minimal presentations of the above three numerical monoids are
very similar. Playing around with the Smith normal form of the matrix whose
rows are the differences of the relators of these monoids, one can find even
wilder examples. The monoid S = 〈19,46,391〉 has ω(S) = 23 < 39 = t(S).

3. We present an infinite family of numerical monoids whose ω-invariants
are strictly smaller than the tame degrees. Let q be a prime, p1, p2 ∈ N
with p1 < p2, p1 + p2 = q and gcd(p1, p2) = 1, and k ∈ N≥2 \ qN such that
p1k < q < p2k. We define

Sk = 〈p1k, q, p2k〉,
and set n1 = p1k, n2 = q, n3 = p2k and ci = min{m ∈ N | mni ∈ 〈nj , nk 〉 } with
{i, j, k} = {1,2,3} (note that c1, c2 and c3 are as in Corollary 5.8).
(a) The Diophantine equation qx+ p2ky = p2kt has general solution x = kt −

p2ks, y = −t+qs, s ∈ Z. The first t for which x and y can be non-negative
is t = p2. This in particular means that p1k is not in 〈q, p2k〉 and that
c1 = p2. In fact, p2n1 = p1n3, and (p2 + 1)n1 = kn2 + (p1 − 1)n3.

(b) Analogously one proves that c2 = k; kn2 = n1 + n3.
(c) It is also easy to show that c3 = p1: p1n3 = p2n1. Moreover, (p1 + 1)n3 =

(p2 − 1)n1 + kn2.



1404 V. BLANCO, P. A. GARCÍA-SÁNCHEZ AND A. GEROLDINGER

By using this information it easily follows that

Min(Z(n1 + Sk)) = {n1, kn2, p1n3},

Min(Z(n2 + Sk)) = {(p2 + 1)n1,n1 + n3,n2, (p1 + 1)n3},

Min(Z(n3 + Sk)) = {p2n1, kn2,n3}.

Therefore, Proposition 3.3 implies that

ω(Sk) = max{k, p2 + 1}.

Note that Z((p1 + 1)n3) = {(p1 + 1)n3, (p2 − 1)n1 + kn2, p2n1 + n3}. Thus,
analyzing the factorizations of the elements in π(Min(Z(ni +Sk))) for i ∈ [1,3],
and by using 1., we obtain that

t(Sk) = max
{
t
(
(p2 + 1)e1, A(Sk)

)
, t
(
(p1 + 1)e3, A(Sk)

)}
= max{p2 + 1, k + p2 − 1} = k + p2 − 1,

which is strictly larger than ω(Sk). Furthermore, if k ≥ p2 + 1, then

1 <
t(Sk)
ω(Sk)

= 1 +
p2 − 1

k
≤ 1 +

p2 − 1
p2 + 1

< 2.

We end this section with a brief glance at Krull monoids. For them the
equivalence of the catenary and the tame degree is an even rarer phenomenon
than it is for numerical monoids. Let S be a Krull monoid with class group
G and let GP ⊂ G denote the set of classes containing prime divisors. If
D(GP ) < ∞, then S is tame, and the converse holds—among others—if S the
multiplicative monoid of nonzero elements of a domain (see [30, Theorem 4.2]).
If G is finite with |G| ≥ 3 and GP = G, then [26, Corollary 3.4.12] shows that

c(S) = c(G) ≤ D(G) = ω(S) ≤ t(G) ≤ t(S),

where the final inequality can be strict.

Corollary 5.10. Let G be a finite abelian group with |G| ≥ 3.
1. c(G) = t(G) if and only if G ∈ {C3,C4,C

2
2 ,C3

2 }.
2. The monoid of zero-sum sequences B(G•) has a generic presentation if and

only if G ∈ {C3,C
2
2 }.

Proof. 1. See [26, Corollary 6.5.7].
2. By 1. and by Theorem 5.6, we have to check only the groups in

{C3,C4,C
2
2 ,C3

2 }. We recall the following facts (for details see [38, Chap-
ter 9]). If σ is a minimal presentation for B(G•) and (a, b) ∈ σ, then a and b
are in different R-classes. In fact, any minimal presentation is constructed by
choosing pairs of elements in different R-classes of elements with more than
one R-class.

If G = C3 = {0, g,2g}, then A(B(G•)) = {U1 = g3,U2 = (2g)3, V = g(2g)}
and σ = {(U1U2, V

3)} ⊂ ∼B(G•) is a generic presentation.
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If G = C2 ⊕ C2 = {0, e1, e2, e1 + e2}, then A(B(G•)) = {U1 = e2
1,U2 = e2

2,
U3 = (e1 + e2)2, V = e1e2(e1 + e2)} and σ = {(U1U2U3, V

2)} ⊂ ∼B(G•) is a
generic presentation.

Let G = C4 = {0, g,2g, −g}. Then A(B(G•)) = {U1 = g4,U2 = (2g)2,U3 =
(−g)4,U4 = (−g)g,U5 = g2(2g),U6 = ((2g)(−g)2} and (U1U3,U

4
4 ) ∈ ∼B(G•).

Since Z(U4
4 ) = {U1U3,U

4
4 }, the set of factorizations of U4

4 has only two R-
classes, where each consists of precisely one factorization. Thus, (U4

4 ,U1U3) ∈
σ ∪ σ−1, for every minimal presentation σ. Obviously, this pair does not have
full support, and hence B(G•) has no generic presentation.

Let G = C2 ⊕ C2 ⊕ C2 = {0, e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3}.
Then U1 = e2

1,U2 = e2
2,U3 = (e1 + e2)2, V = e1e2(e1 + e2) ∈ A(B(G•)) and

(U1U2, V
3) ∈ ∼B(G•). Since every minimal presentation σ contains the re-

lation (U1U2, V
3) which does not have full support, it follows that B(G•) has

no generic presentation. �

6. Unions of sets of lengths

Definition 6.1. Let S be atomic and k ∈ N.
1. If S = S×, we set Uk(S) = {k}. If S �= S×, let Uk(S) denote the set of all

m ∈ N for which there exist u1, . . . , uk, v1, . . . , vm ∈ A(S) with u1 · . . . · uk =
v1 · . . . · vm.

2. We define

ρk(S) = sup Uk(S) ∈ N ∪ {∞} and λk(S) = min Uk(S) ∈ [1, k].

3. For a ∈ S, ρ(a) = ρ(L(a)) is called the elasticity of a, and

ρ(S) = sup
{
ρ(L) | L ∈ L(S)

}
∈ R≥1 ∪ {∞}

is called the elasticity of S. We say that S has finite accepted elasticity if
there exists some a ∈ S with ρ(a) = ρ(S) < ∞.

Let k, l ∈ N. Then k ∈ Uk(S), Uk(S) + Ul(S) ⊂ Uk+l(S),

λk+l(S) ≤ λk(S) + λl(S) ≤ k + l ≤ ρk(S) + ρl(S) ≤ ρk+l(S),

ρ(S) = sup
{

ρk(S)
k

∣∣∣ k ∈ N

}
= lim

k→∞

ρk(S)
k

and
1

ρ(S)
= inf

{
λk(S)

k

∣∣∣ k ∈ N

}
= lim

k→∞

λk(S)
k

,

(see [26, Proposition 1.4.2] and [20, Section 3]). Moreover, if S �= S×, then

Uk(S) =
⋃

k∈L,L∈L(S)

L

is the union of all sets of lengths containing k. These unions were introduced
by S. T. Chapman and W. W. Smith in [12]. It was proved only recently
that a v-noetherian monoid, which satisfies ρk(S) < ∞ for all k ∈ N, is locally
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tame (see [28, Corollary 4.3]). For Krull monoids with finite class group, the
invariants ρk(S) are studied in [25].

The first part of this section is devoted to the invariant ρk(S) in a more
general setting, and after that we study the structure of the unions of sets of
lengths for numerical monoids.

Proposition 6.2. Let S be atomic with S �= S×.
1. If S has finite accepted elasticity, then the sets

M =
{

k ∈ N
∣∣∣ ρk(S)

k
= ρ(S)

}
∪ {0}

and

M ′ =
{

k ∈ N
∣∣∣ λk(S)

k
=

1
ρ(S)

}
∪ {0}

are submonoids of (N0,+), distinct from {0}.
2. Let a ∈ S, z = u1 · . . . · ul ∈ Z(a) and z′ = v1 · . . . · vρ ∈ Z(a) where l ∈ N,

ρ = ρl(S) and u1, . . . , ul, v1, . . . , vρ ∈ A(Sred). If there is no k ∈ [1, l − 1]
such that ρk(S) + ρl−k(S) = ρl(S), then (z, z′) ∈ A(∼S).

Proof. We may suppose that S is reduced.
1. Suppose that S has finite accepted elasticity. First, we consider the

set M . By definition, there is an a ∈ S such that ρ(S) = ρ(a). If k = minL(a)
and ρ = maxL(a), then

ρ(S) =
ρ

k
≤ ρk(S)

k
≤ ρ(S),

and hence k ∈ M . Let i ∈ [1,2] and ki ∈ M . Since (k1 + k2)ρ(S) = ρk1(S) +
ρk2(S) ≤ ρk1+k2(S), it follows that

ρ(S) ≥ ρk1+k2(S)
k1 + k2

≥ ρk1(S) + ρk2(S)
k1 + k2

= ρ(S).

Thus equality holds, and k1 + k2 ∈ M . To verify the assertion on M ′, we
choose an l ∈ N such that ρl(S)/l = ρ(S). Then λρl(S)(S) ≤ l, and since

1
ρ(S)

≤
λρl(S)(S)

ρl(S)
≤ l

ρl(S)
=

1
ρ(S)

,

it follows that ρl(S) ∈ M ′. Let i ∈ [1,2] and ki ∈ M ′. Since (k1 + k2)/ρ(S) =
λk1(S) + λk2(S) ≥ λk1+k2(S), it follows that

1
ρ(S)

≤ λk1+k2(S)
k1 + k2

≤ λk1(S) + λk2(S)
k1 + k2

=
1

ρ(S)
.

Thus, equality holds and k1 + k2 ∈ M ′.
2. Assume to the contrary that (z, z′) /∈ A(∼S). Then there exists (x,x′) ∈

∼S such that (x,x′) | (z, z′) with 1 �= (x,x′) �= (z, z′). After renumbering, if
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necessary, we may suppose that x = u1 · . . . · uk and x′ = v1 · . . . · vψ where
k ∈ [1, l − 1] and ψ ∈ [1, ρ − 1]. Then uk+1 · . . . · ul = vψ+1 · . . . · vρ and

ρl(S) = ρ = ψ + (ρ − ψ) ≤ ρk(S) + ρl−k(S) ≤ ρl(S),

a contradiction. �

Corollary 6.3. Let S be a numerical monoid with A(S) = {n1, . . . , nt}
where t ∈ N and 1 < n1 < · · · < nt.
1. Then

ρ(S) =
nt

n1
and minΔ(S) = gcd(n2 − n1, . . . , nt − nt−1).

2. {k ∈ N | ρk(S)
k = ρ(S)} ∪ {0} = lcm(n1,nt)

nt
N0.

3. {k ∈ N | λk(S)
k = 1

ρ(S) } ∪ {0} = lcm(n1,nt)
n1

N0.

Proof. 1. See [11, Theorem 2.1] and [8, Proposition 2.9].
2. Let a ∈ N be a multiple of lcm(n1, nt). We show that a/nt is in the set

on the left-hand side. We have

a =
a

n1
n1 =

a

nt
nt, minL(a) ≤ a

nt
, maxL(a) ≥ a

n1

and
nt

n1
= ρ(S) ≥ ρ(a) =

maxL(a)
minL(a)

≥ nt

n1
.

This shows that minL(a) = a/nt, maxL(a) = a/n1 and

nt

n1
= ρ(a) ≤

ρminL(a)(S)
minL(a)

≤ ρ(S) =
nt

n1
.

Thus equality holds and minL(a) = a/nt has the required property.
Conversely, let k ∈ N with ρk(S)/k = ρ(S) = nt/n1. We choose a ∈ Uk(S)

with maxL(a) = ρk(S). Then minL(a) ≤ k and

nt

n1
=

ρk(S)
k

≤ maxL(a)
minL(a)

= ρ(a) ≤ nt

n1

implies that minL(a) = k. Since a/nt ≤ minL(a), maxL(a) ≤ a/n1 and

nt

n1
= ρ(a) ≤ a/n1

a/nt
=

nt

n1
,

it follows that n1 | a and nt | a. Therefore, lcm(n1, nt) | a and

k = minL(a) =
a

nt
∈ lcm(n1, nt)

nt
N0.

3. Let a ∈ N be a multiple of lcm(n1, nt). We show that a/n1 is in the set
on the left-hand side which runs along the lines of 2. Conversely, let k ∈ N
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with λk(S)/k = 1/ρ(S) = n1/nt. We choose a ∈ Uk(S) with minL(a) = λk(S).
Again arguing as in 2., we infer that

k = maxL(a) =
a

n1
∈ lcm(n1, nt)

n1
N0. �

Corollary 6.4. Let S be a reduced Krull monoid, F = F (P ) a free monoid
such that S ⊂ F is a saturated and cofinal submonoid, G = F/S and GP =
{pq(S) | p ∈ P } ⊂ G the set of classes containing prime divisors. Suppose that
GP = −GP and that D(GP ) < ∞.

1. We have ρ(S) = D(GP )/2 and 2N ⊂ {k ∈ N | ρk(S)
k = ρ(S)}.

2. Let m ∈ N be minimal such that

ρ2m+1(GP ) − mD(GP ) = max
{
ρ2k+1(GP ) − kD(GP ) | k ∈ N

}
.

Then ρ2m+1(S) ≤ a(B(GP )).

Proof. 1. See [26, Theorem 3.4.10].
2. For every k ∈ N, we set (as it is usual) ρk(GP ) = ρk(B(GP )), and by

[26, Theorem 3.4.10] we have ρk(S) = ρk(GP ). Thus, it suffices to verify that
ρ2m+1(GP ) has the asserted upper bound. Let U1, . . . ,U2m+1, V1, . . . , Vρ ∈
A(B(GP )) with U1 · . . . · U2m+1 = V1 · . . . · Vρ and ρ = ρ2m+1(GP ). We assert
that there is no k ∈ [1,2m] such that ρk(GP ) + ρ2m+1−k(GP ) = ρ. If this
holds, then Proposition 6.2 implies that (z = U1 · . . . · U2m+1, z

′ = V1 · . . . · Vρ) ∈
A(∼B(GP )) and hence

ρ2m+1(GP ) = ρ = max{2m + 1, ρ} = max
{

|z|, |z′ |
}

≤ sup
{

|x| | (x, y) ∈ A(∼B(GP )) for some y ∈ Z
(

B(GP )
)}

= a
(

B(GP )
)
.

Assume to the contrary, that there is a k ∈ [1,2m] such that ρk(GP ) +
ρ2m+1−k(GP ) = ρ2m+1(GP ). Then either k or 2m + 1 − k are odd, say
k = 2s + 1 with s ∈ N0. Since, by 1., we have ρ2(m−s)(GP ) = (m − s)D(GP ),
we infer that

ρ2s+1(GP ) − sD(GP ) = ρ2m+1(GP ) − ρ2(m−s)(GP ) − sD(GP )
= ρ2m+1(GP ) − mD(GP ),

a contradiction. �

Let all notations be as Corollary 6.4, and suppose in addition that GP = G
is finite Abelian but non-cyclic. In all situations studied so far, the set

M =
{

k ∈ N
∣∣∣ ρk(S)

k
= ρ(S)

}
∪ {0}

contains an odd element, and hence (by Proposition 6.2 and by Corollary 6.4.1)
M is a numerical monoid. The standing conjecture is that this holds for all
finite non-cyclic Abelian groups G (see [25]).
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Next, we deal with the structure of the unions of sets of lengths. Sup-
pose S is a Krull monoid such that every class contains a prime divisor.
Then it was shown only recently that, for all k ∈ N, the unions Uk(S) are
arithmetical progressions with difference 1 (see [18, Theorem 4.1], [22] for a
simpler proof, and also [20]). In [36], unions of sets of lengths are studied
for non-principal order in number fields, and in [10], for domains of the form
V +XB[X], where V is a discrete valuation domain and B the ring of integers
in a finite extension field over the quotient field of V . In [2], S. T. Chapman
et al. showed that in numerical monoids, generated by arithmetical progres-
sions, all unions are arithmetical progressions. We now generalize this result.
Clearly, monoids generated by arithmetical progressions satisfy the assump-
tion in Proposition 6.5 and Theorem 6.6. A numerical monoid, for which the
assumption and the statement fail, is discussed in Remark 6.7.

Lemma 6.5. Let S be a numerical monoid with A(S) = {n1, . . . , nt}, where
t ∈ N, 1 < n1 < · · · < nt, and d = gcd(n2 − n1, . . . , nt − nt−1). Suppose that the
Diophantine equations

(n2 − n1)x2 + · · · + (nt − n1)xt = dn1

and

(nt − n1)y1 + · · · + (nt − nt−1)yt−1 = dnt

have solutions in the non-negative integers. Then there exists an element
a∗ ∈ S such that ρ(a∗) = ρ(S) and L(a∗) is an arithmetical progression with
difference d.

Proof. We proceed in several steps.
1. Let a ∈ N be a multiple of n1 and of nt. Then

z =
a

n1
n1 and z′ =

a

nt
nt

are factorizations of a. Obviously, we have minL(a) = a/nt, maxL(a) = a/n1

and hence ρ(a) = n−1
1 nt. By Corollary 6.3.1 it follows that ρ(a) = ρ(S).

2. Since S is finitely generated, Proposition 5.2.2 and Equation (5.1) imply
that S is locally tame with finite set of distances Δ(S), and Δ(S) �= ∅ because
ρ(S) > 1. Thus, [26, Theorem 4.3.6.1] implies that there is an ā ∈ S with the
following property: for every b ∈ S we have

L(āb) = y +
(
L′ ∪ L∗ ∪ L′ ′)⊂ y + dZ,

where y ∈ Z, L∗ is an arithmetical progression with difference d, minL∗ = 0,
L′ ⊂ [−t(S,Z(ā)), −1] and L′ ′ ⊂ maxL∗ + [1, t(S,Z(ā))].

3. Let (α2, . . . , αt) ∈ Nt−1
0 and (β1, . . . , βt−1) ∈ Nt−1

0 be solutions of the
given Diophantine equations, and set

α1 = α2 + · · · + αt and βt = −(β1 + · · · + βt−1).
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Now let a∗ ∈ N be a multiple of lcm(ā, n1, nt) such that

a∗

n1
≥ γ(d + α1) and

a∗

nt
≥ γ|d + βt|, where γ =

⌈
t(S,Z(ā))

d

⌉
.

We assert that a∗ has the required properties. By 1., it follows that

minL
(
a∗)=

a∗

nt
, maxL

(
a∗)=

a∗

n1
and ρ

(
a∗)= ρ(S).

We set a∗ = āb with b ∈ S, and write L(a∗) in the form L(a∗) = y + (L′ ∪ L∗ ∪
L′ ′) ⊂ y +dZ with all properties as in 2. (note that such a representation need
not be unique).

Let ν ∈ [0, γ]. Then

xν =
(

a∗

n1
− ν(d + α1)

)
n1 + να2n2 + · · · + ναtnt

is a factorization of a∗ of length

|xν | =
a∗

n1
− νd − ν(α1 − α2 − · · · − αt) = maxL

(
a∗)− νd ∈ L

(
a∗).

Similarly,

yν =
(

a∗

nt
+ ν(d + βt)

)
nt + νβ1n1 + · · · + νβt−1nt−1

is a factorization of a∗ of length

|yν | =
a∗

nt
+ νd + ν(β1 + · · · + βt−1 + βt) = minL

(
a∗)+ νd ∈ L

(
a∗).

This reveals that L(a∗) starts and ends with arithmetical progressions having
difference d and (γ + 1) elements. Thus it follows that L′ and L′ ′ are (possi-
bly empty) arithmetical progressions with difference d, and thus L(a∗) is an
arithmetical progression with difference d. �

Theorem 6.6. Let S be a numerical monoid with A(S) = {n1, . . . , nt}
where t ∈ N, 1 < n1 < · · · < nt, and d = gcd(n2 − n1, . . . , nt − nt−1). Suppose
that the Diophantine equations

(n2 − n1)x2 + · · · + (nt − n1)xt = dn1

and

(nt − n1)y1 + · · · + (nt − nt−1)yt−1 = dnt

have solutions in the non-negative integers. Then there exists a k∗ ∈ N such
that Uk(S) is an arithmetical progression with difference d for all k ≥ k∗, and

lim
k→∞

| Uk(S)|
k

=
1
d

(
nt

n1
− n1

nt

)
.

Proof. By Lemma 6.5, all assumptions in [18, Theorem 3.1] are satisfied,
and hence this result implies the assertion. �
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Remarks 6.7. 1. If A(S) is an arithmetical progression, then all sets
Uk(S) are arithmetical progressions (see [2, Theorem 2.7]). However, in gen-
eral, we have k∗ > 2. Indeed, S = 〈4,5,13,14〉 satisfies the assumptions of
Theorem 6.6, but since U2(S) = {2,6,7} is not an arithmetical progression, it
follows that k∗ > 2.

2. Unions of sets of lengths in finitely generated monoids are almost arith-
metical progressions (see [20, Theorems 3.5 and 4.2]). But even in a numerical
monoid, there may exist infinitely many k ∈ N, for which these unions are not
arithmetical progressions, as the following example shows.

Let S = 〈4,10,21〉 and k ∈ N. Then d = gcd(6,11) = 1. We assert that
Uk(S) is not an arithmetical progression with difference 1. We set Sk = {a ∈
S | k ∈ L(a)} and observe that Sk = {a4 + b10 + c21 | a, b, c ∈ N0 with a +
b + c = k},minSk = 4k and maxSk = 21k. In particular, we see that Sk =
{4k, . . . ,21k − 28,21k − 22,21k − 17,21k − 11,21k}, where the elements are
written down in increasing order. The element 21k has a unique factorization
of maximal length, namely⎧⎪⎪⎨

⎪⎪⎩
21t4 if k = 4t,
21t4 + 21 if k = 4t + 1,
(21t + 8)4 + 10 if k = 4t + 2,
(21t + 8)4 + 10 + 21 if k = 4t + 3.

Setting l = maxL(21k) we assert that there is no s ∈ Sk with l − 1 ∈ L(s). If
this holds, then Uk(S) is not an arithmetical progression with difference 1. To
verify our assertion we distinguish four cases.

• If k = 4t, then l = 21t. An element with a factorization of length 21t − 1 is
greater than or equal to (21t − 1)4 = (21t)4 − 4 > 21k − 11, and thus it does
not belong to Sk.

• If k = 4t + 1, then l = 21t + 1. Elements having a factorization of length
21t are (21t)4, (21t − 1)4 + 10 = (21t)4 + 6, (21t − 2)4 + 2 · 10 = 21t + 12,
(21t − 1)4 + 21 = (21t)4 + 17, (21t − 2)4 + 10 + 21 = (21t)4 + 23, . . . . In this
setting the four largest elements of Sk are (21t)4+21, (21t)4+10, (21t)4+4
and (21t)4 − 1. Hence also in this case, there is no element in Sk having a
factorization of length l − 1.

• If k = 4t + 2, then l = 21t + 9. The set of elements having a factorization
of length 21t + 8 is {(21t + 8)4 = (21t)4 + 32, (21t + 7)4 + 10 = (21t)4 +
39, . . . , (21t + 8)21}, and the two largest elements of Sk are (21t)4 + 42 and
(21t)4+31. Again we see that no element in Sk can have a factorization of
length l − 1.

• If k = 4t + 3, then l = 21t + 10. Arguing as above one easily checks that no
elements in Sk have factorizations of length l − 1.

In view of Theorem 6.6 and the Remarks 6.7, we end this paper with the
formulation of the following problem.
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Open problem. Characterize the numerical monoids S for which there
exists a k∗ ∈ N such that the unions of sets of lengths Uk(S) are arithmetical
progressions for all k ≥ k∗.

Acknowledgment. We thank the referee for reading the manuscript so care-
fully. Her/his suggestions helped a lot to improve the readability of the paper.
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