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ON VECTOR-VALUED DOBRAKOV SUBMEASURES

ONDREJ HUTNÍK

Abstract. Ivan Dobrakov has initiated a theory of non-additive
set functions defined on a ring of sets intended to be a non-
additive generalization of the theory of finite non-negative count-
ably additive measures. These set functions are now known as the

Dobrakov submeasures. In this paper, we extend Dobrakov’s con-
siderations to vector-valued submeasures defined on a ring of sets.

The extension of such submeasures in the sense of Drewnowski
is also given.

1. Introduction

Non-additive set functions, as for example outer measures, semi-variations
of vector measures, appeared naturally earlier in the classical measure theory
concerning countable additive set functions or more general finite additive set
functions. A systematic study of non-additive set function begins in the fifties
of the last century, cf. [5]. Thence many authors have investigated different
kinds of non-additive set functions, as submeasures [9], [10], [11], t-norms and
t-conorms [19], k-triangular set functions [2] and null-additive set functions
[25], fuzzy measures and integrals [14], [24] and many other types of set func-
tions and their properties. Specially, in different branches of mathematics
as potential theory, harmonic analysis, fractal geometry, functional analysis,
theory of nonlinear differential equations, theory of difference equations and
optimizations, etc., there are many types of non-additive set functions.

An interesting non-additive set function (as a generalization of a notion of
submeasure) was introduced by I. Dobrakov.

Definition 1.1 (Dobrakov, [6]). Let R be a ring of subsets of a set T �= ∅.
We say that a set function μ : R → [0,+∞) is a submeasure, if it is:
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(1) monotone: if A,B ∈ R, such that A ⊂ B, then μ(A) ≤ μ(B);
(2) continuous at ∅ (shortly continuous): for any sequence (An)∞

1 of sets from
R, such that An ↘ ∅ (i.e., An ⊃ An+1 for each n ∈ N and

⋂
n∈N

An = ∅)
there holds μ(An) → 0 as n → ∞;

(3) subadditively continuous: for every A ∈ R and ε > 0 there exists a δ > 0,
such that for every B ∈ R with μ(B) < δ there holds:
(a) μ(A ∪ B) ≤ μ(A) + ε, and
(b) μ(A) ≤ μ(A \ B) + ε.

Such a set function μ is now known as the Dobrakov submeasure. If the δ
in condition (3) is uniform with respect to A ∈ R, then we say that μ is
a uniform Dobrakov submeasure. Clearly, the definition of Dobrakov sub-
measure provides a “non-additive generalization of the theory of finite non-
negative countably additive measures”, see [6]. If instead of (3) we have
μ(A ∪ B) ≤ μ(A) + μ(B) for every A,B ∈ R, or μ(A ∪ B) = μ(A) + μ(B) for
every A,B ∈ R with A ∩ B = ∅, then we say that μ is a subadditive, or an
additive Dobrakov submeasure, respectively. Obviously, subadditive, and par-
ticularly additive Dobrakov submeasures (i.e., countable additive measures)
are uniform.

Note that there are two qualitative different types of continuity of a set
function μ in the definition. In literature, various properties of continuity
are added to the property (1) in Definition 1.1 when defining the notion of a
submeasure (and/or other generalizations, e.g., a semimeasure, see [7]). There
are also many papers where authors consider various generalized settings (e.g.,
[15], [16] and [31]). In paper [20], authors considered the Darboux property
of non-additive set functions, in particular, the Dobrakov submeasure. In [26]
and [18], we can find the (variant of) Dobrakov submeasure in the context of
fuzzy sets and systems. In [17] some limit techniques to create new Dobrakov
submeasures from the old ones in the case when elements of the ring R are
subsets of the real line are developed. In paper [1] Dobrakov submeasures
with values in some partially ordered semigroups are studied.

In this paper we extend the notion of a Dobrakov submeasure to set func-
tions with values in an L-normed Banach lattice (i.e., an ordered space with a
norm structure) and we investigate their basic properties. Also, an extension
theorem for the uniform Dobrakov vector submeasures on a ring to a σ-ring
is discussed with respect to density in a topology induced by the extended
uniform Dobrakov vector submeasure. These results were motivated by the
work of Drewnowski [9], [10], [11].

2. Preliminaries

A vector lattice is a vector space equipped with a lattice order relation,
which is compatible with the linear structure. A Banach lattice is defined to
be a real Banach space Ξ which is also a vector lattice, such that the norm
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‖ · ‖ on Ξ is monotone, i.e., |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for x, y ∈ Ξ, where for
each x ∈ Ξ is |x| = (x ∨ 0) + (−x ∨ 0) with 0 being the additive identity on Ξ.
The spaces C(K), Lp(μ) for 1 ≤ p ≤ +∞, and c0 are important examples of
Banach lattices.

A Banach lattice Ξ is called an abstract L1-space (equivalently, an L-
normed Banach lattice, or an AL-space) if ‖x+y‖ = ‖x‖ + ‖y‖ for all x, y ≥ 0,
see [3] or [23]. The spaces L1(μ) and l1 are usual examples of AL-space.

An order interval [x, y], where x, y ∈ Ξ, is the set of all z ∈ Ξ, such that
x ≤ z ≤ y. A subset S ⊂ Ξ is called order bounded if S is contained in some
order interval of Ξ. A function f : T → Ξ is said to be order bounded if its
range is order bounded. If f : X → Y and Z ⊂ X , then f |Z is the restriction
of f to Z.

In this paper, Ξ will represent an AL-space, and Λ the positive cone of Ξ
(the set of all positive (≥) elements of Ξ). We also write Λ = Λ ∪ {λ}, where
λ is such that x < λ for each x ∈ Ξ.

Let R be a collection of subsets of a non-void set T which forms a ring
under the operation � (symmetric difference) and ∩ (intersection). As usual,
a σ-ring S is a collection of subsets of T which is closed under countable union
and relative complementation. If A, B ⊂ R, then

A
◦

∩ B = {A ∩ B;A ∈ A,B ∈ B }.

In the case A = {A} we write A
◦

∩ B instead of {A}
◦

∩ B. The operations
◦

∩ ,
◦

� are defined similarly.
The following easy observations will be useful in the sequel of this paper.

Lemma 2.1. Let Λ be the positive cone of an AL-space Ξ.
(i) If {fi} ⊂ Λ is directed downward (≥) with infi fi = f , where f ∈ Λ, then

infi ‖fi‖ = ‖f ‖.
(ii) If {fi} ⊂ Λ is directed upward (≤) with supi fi = f , where f ∈ Λ, then

supi ‖fi‖ = ‖f ‖.

Proof. Clearly, {fi − f } ∈ Λ is directed downward (≥) with infimum 0.
Then according to results in [27] (Ch.II, § 5.10 and Ch.II, § 1.7, § 2.4 and
§ 8.3) we have that limi ‖fi − f ‖ = 0. From it follows that limi ‖fi‖ = ‖f ‖ and
therefore infi ‖fi‖ = ‖f ‖. The second item may be proved analogously. �

Using these observations we immediately have the following lemma.

Lemma 2.2. Let ν : M → Λ be a monotone set function, where M ⊂ P (T ),
T �= ∅.
(i) If M is closed with respect to finite intersection, and inf{ν(A);E ⊂ A ∈

M,E ∈ T } = a, where a ∈ Λ, then inf{ ‖ν(A)‖;E ⊂ A ∈ M } = ‖a‖.
(ii) If M is closed with respect to finite union, and sup{ν(A);E ⊃ A ∈ M,

E ∈ T } = a, where a ∈ Λ, then sup{ ‖ν(A)‖;E ⊃ A ∈ M } = ‖a‖.
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Proof. Let us prove the item (i). It is obvious that the set P = {ν(A);E ⊂
A ∈ M } is a directed subset (≥) of Λ, such that inf P = a exists in Λ. From
Lemma 2.1(i) we have that inf{ ‖ν(A)‖;E ⊂ A ∈ M } = ‖a‖. The item (ii) may
be proved similarly. �

Definition 2.3. The ordered pair (R,Γ), where R is a ring and Γ is
a topology on R, is called a topological ring of sets if the ring operations
(A,B) → A�B and (A,B) → A ∩ B from R × R (with the product topology)
to R are continuous.

The topology Γ will be shortly called an r-topology on R. It it obvious
that in a topological ring of sets also the operations (A,B) → A ∪ B and
(A,B) → A \ B are continuous. Recall that the notion of a topological ring
of sets is a generalization of spaces of measurable functions introduced by
Fréchet and Nikodym.

Definition 2.4. An r-topology Γ on a ring R is said to be monotone, or
Fréchet–Nikodym topology (FN -topology, for short), if for each neighborhood

U of ∅ there is a neighborhood V of ∅, such that V
◦

∩ R ⊂ U , i.e., such that
B ∈ U whenever B ∈ R and B ⊂ A ∈ V . A ring equipped with FN -topology
is called an FN -ring.

Definition 2.5. A base Ω at ∅ in (R,Γ) is called a normal base of neigh-
borhoods of ∅ if every U ∈ Ω is a normal subclass of R (i.e., B ∈ U provided
B ∈ R and B ⊂ A for some A ∈ U ).

Now we introduce a notion of Dobrakov vector submeasure defined on a
ring R of subsets of a set T �= ∅ with values in an AL-space Λ.

Definition 2.6. A set function μ : R → Λ is called a Dobrakov vector
submeasure, briefly a D-submeasure, if it is:
(1) monotone: if A,B ∈ R, such that A ⊂ B, then μ(A) ≤ μ(B);
(2) continuous: for any sequence (An)∞

1 of sets from R, such that An ↘ ∅
there holds ‖μ(An)‖ → 0 as n → ∞;

(3) subadditively continuous (s.c.): for every A ∈ R and ε > 0 there exists a
δ > 0, such that for every B ∈ R with ‖μ(B)‖ < δ there holds:
(a) ‖μ(A ∪ B)‖ ≤ ‖μ(A)‖ + ε, and
(b) ‖μ(A)‖ ≤ ‖μ(A \ B)‖ + ε.

Note that the conditions (3a) and (3b) may be equivalently written as the
following sequence of inequalities∥∥μ(A)

∥∥ − ε ≤
∥∥μ(A \ B)

∥∥ ≤
∥∥μ(A)

∥∥ ≤
∥∥μ(A ∪ B)

∥∥ ≤
∥∥μ(A)

∥∥ + ε.

Similarly as in the case of a Dobrakov submeasure, if the set function μ
has the property of uniform subadditive continuity, shortly (u.s.c.), then we
say that μ is a uniform D-submeasure (Du-submeasure, for short). If instead
of (3) we have ‖μ(A ∪ B)‖ ≤ ‖μ(A)‖ + ‖μ(B)‖ for every A,B ∈ R, or ‖μ(A ∪
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B)‖ = ‖μ(A)‖ + ‖μ(B)‖ for every A,B ∈ R with A ∩ B = ∅, then we say that
μ is a subadditive D-submeasure (shortly, Ds-submeasure), or an additive D-
submeasure (shortly, Da-submeasure), respectively.

Example 2.7. Let R be a ring of subsets of T �= ∅, T ∈ R, and μ : R → Ξ
be a monotone set function with μ(∅) = 0 taking values in an AL-space Ξ.
Consider f : T → R a non-negative real function measurable with respect to R
in the sense {t ∈ T ;f(t) > x} ∈ R for each x ∈ R. Analogously to [13] define
the Choquet integral of a function f on a set A with respect to μ by the
formula

(C)
∫

A

f dμ =
∫ ∞

0

μ
({

t ∈ A;f(t) > x
})

dx.

From the structural properties of set functions defined by Choquet integral,
see [21], it is obvious that if μ is a Ds-(Da-)submeasure, then the set function
νf : R → Ξ defined by νf (A) = (C)

∫
A

f dμ is also a Ds-(Da-)submeasure.
In this case, the property (s.c.) may be understood in the sense that if two

functions f and g differ on a set A with measure ε, then ‖νf (A) − νg(A)‖ <
δ · τ , where τ = supt∈A |f(t) − g(t)|. Hence, we may estimate errors in inte-
gration whenever we have some errors in inputs.

Remark 2.8. Observe that the integration technique developed in [28],
[29] may be extended to an AL-space Ξ to obtain a Ξ-valued Šipoš integral.
Recall that the Šipoš integral is more general than the Choquet integral, but
for non-negative functions and fuzzy measures they coincide, see [25]. The
Šipoš integral is constructed as a limit of nets. Such a case of Dobrakov net
submeasures is investigated in [17]. In particular, a Ξ-valued Šipoš integral
may also be considered as an example of Dobrakov vector submeasure. Note
that the Šipoš integral was successfully used in prospect theory allowing to
describe how people make choices in situations where they have to decide
between alternatives involving risk.

Concerning the notion of D-submeasure, let us note that the (s.c.) in
Definition 2.6 may be replaced by the following one.

Lemma 2.9. The set function μ : R → Λ has the (s.c.) if and only if for
A,An ∈ R, n = 1,2, . . . , such that ‖μ(A�An)‖ → 0 holds ‖μ(An)‖ → ‖μ(A)‖
as n → ∞.

Proof. Necessity: Suppose the contrary, i.e., let ‖μ(An)‖ � ‖μ(A)‖ when-
ever ‖μ(A�An)‖ → 0 for A,An ∈ R, n = 1,2, . . . . Then we may assume that
for some ε > 0 either ‖μ(An)‖ > ‖μ(A)‖ + ε for each n ∈ N, or ‖μ(An)‖ <
‖μ(A)‖ − ε for each n ∈ N. In the first case, we have that∥∥μ

(
A ∪ (A�An)

)∥∥ ≥
∥∥μ

(
A�(A�An)

)∥∥ >
∥∥μ(A)

∥∥ + ε,

which contradicts (3a). Similarly in the second case,
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Sufficiency: Let ‖μ(Bn)‖ → 0 as n → ∞. Then∥∥μ(A ∪ Bn)
∥∥ =

∥∥μ
(
A�(Bn \ A)

)∥∥ →
∥∥μ(A)

∥∥,

and also ∥∥μ(A \ Bn)
∥∥ =

∥∥μ
(
A�(Bn ∩ A)

)∥∥ →
∥∥μ(A)

∥∥
as n → ∞. This completes the proof. �

Lemma 2.9 may also be written as follows: a set function μ : R → Λ has
the (s.c.) iff for each A ∈ R and each ε > 0 there exists a δ > 0, such that
for each C ∈ R with ‖μ(A�C)‖ < δ holds ‖μ(C)‖ − ε < ‖μ(A)‖ < ‖μ(C)‖ + ε.
Similarly, we may prove that the property (u.s.c.) is equivalent with the
following condition.

Lemma 2.10. The set function μ : R → Λ has the (u.s.c.) if and only if
for An, Bn ∈ R, n = 1,2, . . . , such that ‖μ(An�Bn)‖ → 0 holds ‖μ(An)‖ −
‖μ(Bn)‖ → 0 as n → ∞.

The property (u.s.c.) says that for each ε > 0 there is a δ > 0, such that for
all A,B ∈ R with ‖μ(A�B)‖ < δ holds ‖μ(B)‖ − ε < ‖μ(A)‖ < ‖μ(B)‖ + ε.
For the following definition see [7, Theorem 1].

Definition 2.11. A set function μ : R → Λ is said to have the pseudomet-
ric generating property, briefly the (p.g.p.), if for each ε > 0 there is a δ > 0,
such that for every A,B ∈ R with ‖μ(A)‖ ∨ ‖μ(B)‖ < δ holds ‖μ(A ∪ B)‖ < ε,
where a ∨ b, resp. a ∧ b, means the maximum, resp. the minimum, of the real
numbers a, b.

Example 2.12. Consider the Choquet integral and νf (A) = (C)
∫

A
f dμ. If

‖νf (T )‖ < +∞ and μ has the (p.g.p.), then νf has the (p.g.p.) as well, see
[22].

Clearly, the (u.s.c.) implies the (p.g.p.). The following theorem rewritten
in our setting is due to Dobrakov and Farková, cf. [7, Lemma 3].

Theorem 2.13. Let μ : R → Λ have the (p.g.p.). Then there is a sequence
(δk)∞

1 of positive real numbers with δk ↘ 0, such that for any sequence (Ak)∞
1

of sets from R with ‖μ(Ak)‖ < δk we have∥∥∥∥∥μ

(
k+p⋃

i=k+1

Ai

)∥∥∥∥∥ < δk

for each k, p = 1,2, . . . .

Proof. Let μ have the (p.g.p.). Then for ε = 1/2 there exists a δ1 ∈ (0, 1
2 ),

such that for any A,B ∈ R with ‖μ(A)‖ ∨ ‖μ(B)‖ < δ1 holds ‖μ(A ∪ B)‖ < 1
2 .

For the above δ1 there exists a δ2 ∈ (0, 1
22 ∧ δ1), such that for any A,B ∈ R with
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‖μ(A)‖ ∨ ‖μ(B)‖ < δ2 we have ‖μ(A ∪ B)‖ < δ1. Repeating this procedure,
we obtain a sequence (δk)∞

1 , such that

0 < δk+1 <
1

2k+1
∧ δk, k = 1,2, . . . .

If ‖μ(Ak)‖ < δk for k = 1,2, . . . , then∥∥∥∥∥μ

(
k+p⋃

i=k+1

Ai

)∥∥∥∥∥ < δk, p = 1,2, . . . .
�

Definition 2.14. A set function μ : R → Λ is said to be exhaustive on R
if for each infinite sequence (An)∞

1 of pairwise disjoint sets from R there holds
‖μ(An)‖ → 0 as n → ∞.

Definition 2.15. Let R1 and R2 be two σ-rings, such that R1 ⊂ R2. If for
every A ∈ R2 there exists B,C ∈ R1, such that B ⊂ A ⊂ C and μ(C \ B) = 0,
then R2 is called the null-completion of R1.

We say that a σ-ring S is null-complete with respect to μ if B ⊂ A ∈ S and
μ(A) = 0, then B ∈ S and μ(B) = 0.

3. Few elementary properties

We begin with the following easy observations related to Ds-submeasures
on a ring.

Theorem 3.1. Each Ds-submeasure μ on a ring R is σ-subadditive, i.e.,∥∥∥∥∥μ

( ∞⋃
n=1

An

)∥∥∥∥∥ ≤
∞∑

n=1

∥∥μ(An)
∥∥

for An ∈ R, n = 1,2, . . . .

Proof. Let An ∈ R, n = 1,2, . . . , such that
⋃∞

n=1 An = A ∈ R and put
Bn = A \

⋃n
i=1 Ai, n = 1,2, . . . . Then, clearly, Bn ∈ R, and Bn ↘ ∅. Thus,

‖μ(Bn)‖ → 0 as n → ∞. Recall that if μ is a Ds-submeasure on R, then∥∥∥∥∥μ

(
n⋃

i=1

Ai

)∥∥∥∥∥ ≤
n∑

i=1

∥∥μ(Ai)
∥∥

for every finite sequence (Ai)n
1 of arbitrary sets from R. Since A ⊂ Bn ∪⋃n

i=1 Ai for every n ∈ N, then we get

∥∥μ(A)
∥∥ ≤

∥∥∥∥∥μ

(
n⋃

i=1

Bn ∪ Ai

)∥∥∥∥∥ ≤
n∑

i=1

∥∥μ(Bn ∪ Ai)
∥∥

≤
∥∥μ(Bn)

∥∥ +
n∑

i=1

∥∥μ(Ai)
∥∥.
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From it, follows

∥∥μ(A)
∥∥ ≤ lim

n→∞

∥∥μ(Bn)
∥∥ +

∞∑
i=1

∥∥μ(Ai)
∥∥ =

∞∑
i=1

∥∥μ(Ai)
∥∥.

Hence, the result. �

Theorem 3.2. Let μ be a D-submeasure on R and (An)∞
1 be a sequence

of sets from R, such that An ↗ (↘)A, A ∈ R. Then∥∥μ(A)
∥∥ =

∥∥∥μ
(

lim
n→∞

An

)∥∥∥ = lim
n→∞

∥∥μ(An)
∥∥.

Proof. Suppose that An ↗ A. Then A�An = A \ An and obviously A \
An ↘ ∅. From continuity of μ, we have that ‖μ(A \ An)‖ → 0 as n → ∞, and
therefore ‖μ(A�An)‖ → 0 as n → ∞. Using Lemma 2.9, we immediately get
‖μ(An)‖ → ‖μ(A)‖, i.e.,

lim
n→∞

∥∥μ(An)
∥∥ =

∥∥μ(A)
∥∥ =

∥∥∥μ
(

lim
n→∞

An

)∥∥∥.

Analogously we may prove the result for An ↘ A. �

Theorem 3.3. A D-submeasure μ is exhaustive on a ring R if and only if
every monotone sequence (An)∞

1 of sets from R is μ-Cauchy, i.e.,∥∥μ(An�Am)
∥∥ → 0 whenever n ∧ m → ∞.

Proof. Necessity: Suppose the contrary, i.e., let (An)∞
1 be a monotone

sequence of sets from R which is not μ-Cauchy. Without loss of generality, let
us assume that the sequence (An)∞

1 is increasing. Then there exists a positive
integer N and (an infinite number of) n1, n2, . . . , where ni > N , i = 1,2, . . . ,
such that ‖μ(Anj �Ank

)‖ ≥ ε for j �= k. We set

Pnk
= Ank+1 �Ank

= Ank+1 \ Ank
.

Clearly, Pnk
∩ Pnk+1 = ∅ for k = 1,2, . . . . Now, (Pnk

)∞
1 is a disjoint sequence

of sets from R, such that ‖μ(Pnk
)‖ ≥ ε for k = 1,2, . . . . This contradicts the

fact that μ is exhaustive.
Sufficiency: Let (An)∞

1 be a disjoint sequence of sets from R and put Bn =⋃n
k=1 Ak. If ‖μ(An)‖ � 0 as n → ∞, there exists an ε > 0 and an increasing

sequence (nk)∞
1 of natural numbers, such that ‖μ(Ank

)‖ > ε for k = 1,2, . . . .
Then ‖μ(Bnk

)‖ ≥ ‖μ(Ank
)‖ > ε for k = 1,2, . . . , which contradicts the fact

that ‖μ(Bnk
)‖ is Cauchy. �

The following result shows that the situation from Theorem 3.3 is different
when considering a D-submeasure on a σ-ring.

Theorem 3.4. Each D-submeasure μ : S → Λ on a σ-ring S is exhaustive.
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Proof. Let (An)∞
1 be a disjoint sequence of sets from S and put

Bn =
⋃∞

k=n Ak. Then Bn ↘ ∅, and from continuity of μ we have
‖μ(Bn)‖ → 0 as n → ∞. Since μ(An) ≤ μ(Bn) for every n ∈ N, then it follows
that ‖μ(An)‖ → 0 as n → ∞. Thus, μ is exhaustive on S . �

Theorem 3.5. Let μ : R → Λ be an order bounded Du-submeasure on a
ring R. Then the class T of all Uε (0 < ε), where Uε = {A ∈ R; ‖μ(A)‖ ≤ ε},
forms a normal base of neighborhoods at ∅ for an FN -topology.

Proof. It is easy to see that T is a filter base satisfying the following con-
ditions:

(1) for each U ∈ T there exists V ∈ T , such that V
◦

� V ⊂ U ;

(2) for each U ∈ T there exists V ∈ T , such that V
◦

∩ V ⊂ U ;

(3) for each A ∈ R and U ∈ T there exists V ∈ T , such that A
◦

∩ V ⊂ U .
From the general theory of topological rings [4] and according to [9, §1] these
three conditions are necessary and sufficient that a filter base T of neighbor-
hoods of ∅ determines an r-topology on R. It is clear, that this topology is
an FN -topology. Moreover, the filter base T has the following properties
(4) each class U ∈ T is normal in R, and

(5) for each U ∈ T there exists V ∈ T , such that V
◦

∩ V ⊂ U .
Then according to [30, p. 142] T is a normal base of neighborhoods of ∅ for
an FN -topology generated (or determined) by μ on R. �

Remark 3.6. The FN -topology generated by μ on R is denoted by Γ(μ).
Since the concept of (s.c.) of μ is linked with absolute continuity, in fact, only
the continuity of μ and the condition (a.c.)∥∥μ(An)

∥∥ +
∥∥μ(Bn)

∥∥ → 0 ⇒
∥∥μ(An ∪ Bn)

∥∥ → 0

as n → ∞ are needed for Γ(μ) to be an FN -topology, see [12]. Clearly, Du-
submeasures satisfy this condition. On the other hand, D-submeasures do
not satisfy the (a.c.) in general.

To prove the next theorem, we first recall two Drewnowski’s results from
[9], [10], [11].

Lemma 3.7. If (R,Γ) is a topological ring of sets and P is a subring of
the ring R, then P Γ

is a subring of R, where P denotes the closure of P in
(R,Γ).

Lemma 3.8. If (R,Γ) is a topological ring of sets and Ω is a base of (the
filter of all) neighborhoods of ∅ in R, then for each A ∈ R, A�Ω = {A� U ;
U ∈ Ω} is a base of (the filter of all) neighborhoods of A in R.

Theorem 3.9. Let σ(R) be a σ-ring generated by a ring R and let μ be
an order bounded Du-submeasure on σ(R). Then R is dense in (σ(R),Γ(μ)).
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Proof. Denote by R = RΓ(μ)
. According to Lemma 3.7 we have that R is

a subring of σ(R).
Let (An)∞

1 be a disjoint sequence of sets from R, such that
⋃∞

n=1 An = A.
Then obviously,

Bn =
n⋃

k=1

Ak ∈ R, for every n ∈ N.

Put

Cn = A�Bn = A�
(

n⋃
k=1

Ak

)
=

∞⋃
k=n+1

Ak.

Clearly, Cn ↘ ∅. Let ε > 0 and

V =
{

E ∈ σ(R);
∥∥μ(E)

∥∥ ≤ ε

2

}
be a neighborhood of ∅ in σ(R). Then for each n ∈ N the neighborhood Bn� V
of Bn contains an element En = Bn�Vn ∈ R, where Vn ∈ V , and also∥∥μ(A�En)

∥∥ =
∥∥μ(Cn�Vn)

∥∥ ≤
∥∥μ(Cn ∪ Vn)

∥∥.

From continuity of μ, we have that ‖μ(Cn)‖ → 0 as n → ∞, and therefore∥∥μ(Cn ∪ Vn)
∥∥ ≤

∥∥μ(Vn)
∥∥ +

ε

2
,

which is possible by the (u.s.c.) of μ. Since Vn ∈ V , then ‖μ(Vn)‖ ≤ ε
2 for

every n = 1,2, . . . , and therefore∥∥μ(A�En)
∥∥ ≤

∥∥μ(Cn ∪ Vn)
∥∥ ≤

∥∥μ(Vn)
∥∥ +

ε

2
≤ ε

2
+

ε

2
= ε.

Since A�En ∈ σ(R) for all n ∈ N, then A�En ∈ Uε, where

Uε =
{
F ∈ σ(R);

∥∥μ(F )
∥∥ ≤ ε

}
is a neighborhood of ∅ in σ(R). Accordingly, En = A�(A�En) ∈ A� Uε.
Therefore each neighborhood of A contains an element of R (according to
Lemma 3.8). Hence A ∈ R, and therefore R is a σ-ring. Thus, R = σ(R).
This completes the proof. �

4. Extension of D-submeasure

In measure theory, an essential concept is the extension of the notion of
a measure (or, a submeasure) on one class of sets to a notion of measure
(or, a submeasure) on a larger class of sets. For instance, in [8] Dobrakov
showed the following extension of a (Dobrakov) submeasure from a ring to a
generated σ-ring: An additive, subadditive or uniform (Dobrakov) submeasure
μ : R → [0,+∞) has a unique extension μ : σ(R) → [0,+∞) of the same type
if and only if μ is exhaustive. In this section, we study the possibility of an
extension for a Du-submeasure defined on a ring R to a σ-ring R0 in the sense
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that R is dense in R0 with respect to a topology induced by the extended
Du-submeasure.

Let R be a ring of subsets of T �= ∅. Then

Rσ = {A; there are An ∈ R, n = 1,2, . . . , such that An ↗ A}
denotes the standard class of limits of increasing sequences of sets of R. It is
clear that Rσ is closed with respect to countable unions and finite intersec-
tions. Also, if A ∈ Rσ and B ∈ R, then A \ B ∈ Rσ .

Let μ : R → Λ be an order bounded exhaustive Du-submeasure on a ring
R and for each A ∈ Rσ define the set function μ̂ : Rσ → Λ as follows

(4.1) μ̂(A) = sup
{
μ(B);B ⊂ A,B ∈ R

}
.

If (Cn)∞
1 is a sequence of sets from R, such that A =

⋃∞
n=1 Cn, then there

exists a sequence (Bn)∞
1 of sets from R with B1 ⊂ B2 ⊂ · · · , such that

Bn =
n⋃

i=1

Ci and
∞⋃

n=1

Bn =
∞⋃

n=1

Cn = A.

From Lemma 2.2(ii), it follows that∥∥μ̂(A)
∥∥ = sup

{∥∥μ(B)
∥∥;B ⊂ A,B ∈ R

}
.

Then it is obvious that∥∥μ̂(A)
∥∥ = sup

{∥∥μ(Bn)
∥∥;Bn ⊂ A,Bn ↗ A,Bn ∈ R

}
,

which results

(4.2)
∥∥μ(Bn)

∥∥ →
∥∥μ̂(A)

∥∥ as n → ∞.

Theorem 4.1. Let μ : R → Λ be an order bounded exhaustive Du-sub-
measure on a ring R and μ̂ : Rσ → Λ be defined as in (4.1). Then μ̂ has the
following properties:
(a) μ̂|R = μ, μ̂ is monotone;
(b) μ̂ is exhaustive on Rσ ;
(c) if An ∈ R, n = 1,2, . . . , such that An ↗ A, then ‖μ̂(A \ An)‖ → 0 as n →

∞;
(d) μ̂ has the (u.s.c.) on Rσ ;
(e) μ̂ is continuous on Rσ .

Proof. The item (a) is obvious.
(b) Let (An)∞

1 be a disjoint sequence of sets from Rσ . We have that∥∥μ̂(An)
∥∥ = sup

{∥∥μ(C)
∥∥;C ⊂ An,C ∈ R

}
.

Let ε > 0 be chosen arbitrarily. Then there exists Bn ∈ R, such that Bn ⊂ An

and ∥∥μ̂(An)
∥∥ <

∥∥μ(Bn)
∥∥ +

ε

2n
, n = 1,2, . . . .
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Since (An)∞
1 is a disjoint sequence, then (Bn)∞

1 is disjoint as well. Also, μ is
exhaustive on R, i.e., ‖μ(Bn)‖ → 0 as n → ∞. Consequently, ‖μ̂(An)‖ → 0 as
n → ∞ and thus, μ̂ is exhaustive on Rσ .

(c) Since An ∈ R, n = 1,2, . . . , such that An ↗ A, and μ is exhaustive on R,
then the sequence (An)∞

1 is μ-Cauchy, i.e., ‖μ(Am�An)‖ → 0 as n ∧ m → ∞.
Considering m > n yields that Am�An = Am \ An. Thus, ‖μ(Am \ An)‖ → 0
as m → ∞. Since (Am \ An) ↗m (A \ An), then∥∥μ̂(A \ An)

∥∥ = lim
m→∞

∥∥μ(Am \ An)
∥∥, for every n ∈ N,

and therefore ‖μ̂(A \ An)‖ → 0.
(d) Let (An)∞

1 and (Bn)∞
1 be two sequences of sets from Rσ and let

limn→∞ ‖μ̂(An�Bn)‖ = 0. Then there exist An,k ∈ R and Bn,k ∈ R, k =
1,2, . . . , such that An,k ↗k An and Bn,k ↗k Bn for each n ∈ N, respectively.
According to (4.2) for each n ∈ N, we have

lim
k→∞

∥∥μ(An,k)
∥∥ =

∥∥μ̂(An)
∥∥ and lim

k→∞

∥∥μ(Bn,k)
∥∥ =

∥∥μ̂(Bn)
∥∥.

Since

lim
n→∞

lim
k→∞

∥∥μ(An,k �Bn,k)
∥∥ = lim

n→∞
lim

k→∞

∥∥μ̂(An,k �Bn,k)
∥∥

= lim
n→∞

∥∥μ̂(An�Bn)
∥∥ = 0,

then according to the (u.s.c.) of μ on R (see Lemma 2.10) we get that for
each n ∈ N

lim
k→∞

(∥∥μ(An,k)
∥∥ −

∥∥μ(Bn,k)
∥∥)

= 0.

Then, we have

0 = lim
n→∞

lim
k→∞

(∥∥μ(An,k)
∥∥ −

∥∥μ(Bn,k)
∥∥)

= lim
n→∞

(
lim

k→∞

∥∥μ(An,k)
∥∥ − lim

k→∞

∥∥μ(Bn,k)
∥∥)

= lim
n→∞

(∥∥μ̂(An)
∥∥ −

∥∥μ̂(Bn)
∥∥)

.

Thus, according to Lemma 2.10 the set function μ̂ satisfies the (u.s.c.) on Rσ .
(e) Let An ∈ Rσ , n = 1,2, . . . , be such that An ↘ ∅. Then Bn = An \ An+1,

n ∈ N, are pairwise disjoint sets from Rσ and An =
⋃∞

i=n Bi. Since μ̂ is
exhaustive on Rσ and has the (p.g.p.), then for each k = 2,3, . . . there exists
an nk > nk−1, such that∥∥∥∥∥μ̂

(
nk+p⋃
i=nk

Bi

)∥∥∥∥∥ < δk for each p = 1,2, . . . .

Thus ∥∥∥∥∥μ̂

(
nj+1⋃
i=nj

Bi

)∥∥∥∥∥ < δj for each j = 1,2, . . . ,
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and then ∥∥μ̂(Ank
)
∥∥ =

∥∥∥∥∥μ̂

( ∞⋃
i=nk

Bi

)∥∥∥∥∥ =

∥∥∥∥∥μ̂

( ∞⋃
j=k

nj+1⋃
i=nj

Bi

)∥∥∥∥∥ < δk−1

for each k = 2,3, . . . . Since δk ↘ 0, then ‖μ̂(Ank
)‖ → 0 as k → ∞. Thus, μ̂ is

continuous on Rσ . �
Put

R ∗ = {A;A ⊂ B for some B ∈ Rσ }.

Obviously, Rσ ⊂ R∗ and R∗ is a σ-ring. For every A ∈ R∗ define a set function
μ∗ : R∗ → Λ as follows

(4.3) μ∗(A) = inf
{
μ̂(B);A ⊂ B,B ∈ Rσ

}
.

Observe that μ∗ | Rσ = μ̂ and μ∗ is monotone. Note that the σ-ring R∗ is com-
plete with respect to (Fréchet–Nikodym) pseudometric ρ(A,B) = μ∗(A�B),
see [8, Corollary 2]. Since μ̂ : Rσ → Λ is a Du-submeasure, then clearly
μ∗ : R ∗ → Λ satisfies the (u.s.c.). Note that μ∗ need not be necessarily con-
tinuous on the whole σ-ring R∗, but we will show its continuity on R0 =
RΓ(μ∗) ⊂ R∗. Also, some other useful properties of the set function μ∗ are
summarized in the following lemma.

Lemma 4.2. Let μ∗ be defined as in (4.3) and R0 = RΓ(μ∗)

σ . Then
(i) A ∈ R0 if and only if there exists a sequence (An)∞

1 of sets from Rσ ,
such that ‖μ∗(A�An)‖ → 0 as n → ∞;

(ii) R0 = RΓ(μ∗)
;

(iii) if A ∈ R0, then there exists a sequence (Cn)∞
1 of sets from Rσ with C1 ⊃

C2 ⊃ · · · , such that A ⊂ Cn for every n = 1,2, . . . , and ‖μ∗(Cn \ A)‖ → 0
as n → ∞;

(iv) μ∗ is continuous on R0.

Proof. (i) Let A ∈ R0 and ε > 0. Suppose that

V =
{
B;B ∈ R ∗,

∥∥μ∗(B)
∥∥ ≤ ε

}
is an arbitrary neighborhood of ∅ in R ∗. Then the neighborhood A� V of A
contains an element E = A�C ∈ Rσ , where C ∈ V . Clearly, ‖μ∗(C)‖ ≤ ε, i.e.,
‖μ∗(A�E)‖ ≤ ε.

Now, for a given sequence ( ε
2n )∞

1 of positive numbers there exists a sequence
(An)∞

1 of sets from Rσ , such that ‖μ∗(A�An)‖ ≤ ε
2n for n = 1,2, . . . . Thus,

‖μ∗(A�An)‖ → 0 as n → ∞.
Conversely, let A ∈ R∗ and ‖μ∗(A�An)‖ → 0 as n → ∞ for a sequence

(An)∞
1 of sets from Rσ . By the definition of R0 we have A ∈ R0.

(ii) Let ε > 0 be chosen arbitrarily and A ∈ R0. Then by (i) there exists
a sequence (An)∞

1 of sets from Rσ , such that ‖μ∗(A�An)‖ → 0 as n → ∞.
Accordingly, we may find a positive integer N , such that ‖μ∗(A�An)‖ < ε

2
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for each n ≥ N . Let (An,k)∞
k=1 be a sequence of sets from R, such that

An,k ↗k An for each n ∈ N. Then by Theorem 4.1(c)

lim
k→∞

∥∥μ̂(An�An,k)
∥∥ = lim

k→∞

∥∥μ̂(An \ An,k)
∥∥ = 0, n = 1,2, . . . .

Since μ∗ | Rσ = μ̂, we get

lim
k→∞

∥∥μ∗(An�An,k)
∥∥ = 0, n = 1,2, . . . .

As in Theorem 3.9, we may prove that A ∈ RΓ(μ∗)
and therefore R0 ⊂ RΓ(μ∗)

.
Also, since R ⊂ Rσ , then RΓ(μ∗) ⊂ RΓ(μ∗)

σ . Hence, R0 = RΓ(μ∗)
. From

Lemma 3.7, it follows that R0 is a ring.
(iii) Since A ∈ R0 = RΓ(μ∗)

, there exists a sequence (An)∞
1 of sets from

R, such that ‖μ∗(A�An)‖ → 0 as n → ∞. Let ε > 0 be arbitrary. From the
definition of μ∗ and Lemma 2.2(i), it follows that for each n ∈ N there exists
a set Fn ∈ Rσ such that A�An ⊂ Fn and∥∥μ̂(Fn)

∥∥ <
∥∥μ∗(A�An)

∥∥ +
ε

2n
.

Since μ∗ | Rσ = μ̂, then

(4.4)
∥∥μ∗(Fn)

∥∥ <
∥∥μ∗(A�An)

∥∥ +
ε

2n
,

and we put Gn =
⋂n

i=1(Ai ∪ Fi). Clearly, Gn ∈ Rσ , n = 1,2, . . . , and G1 ⊃
G2 ⊃ · · · . Also,

A = (A \ An) ∪ (A ∩ An) ⊂ (A \ An) ∪ An ⊂ An ∪ Fn,

for each n ∈ N. Thus, A ⊂ Gn for each n ∈ N and then

Gn \ A ⊂ (An ∪ Fn) \ A ⊂ Fn.

From monotonicity of μ∗ and (4.4) it follows that ‖μ∗(Gn \ A)‖ → 0 as n → ∞.
(iv) First, we show that μ∗ is exhaustive on R0. Suppose the contrary.

Since μ∗ has the (p.g.p.) on R0, take the corresponding sequence (δk)∞
1 . Then

there exists a positive integer K and a sequence (An)∞
1 of pairwise disjoint

sets from R0, such that ‖μ∗(An)‖ > δK for each n ∈ N. By (i) for each n ∈ N

there exists sequence (Bn,l)∞
l=1 of sets from Rσ , such that ‖μ∗(An�Bn,l)‖ → 0

for each n ∈ N. Thus for each n ∈ N, there exists a positive integer Ln, such
that for each l ≥ Ln holds ‖μ∗(An�Bn,l)‖ < δK+3+n. Putting Cn = Bn,Ln ,
n ∈ N we have Cn ∈ Rσ and ‖μ∗(An�Cn)‖ < δK+3+n for each n ∈ N. Since
for n �= m holds

Cn ∩ Cm ⊂ (An�Cn) ∪ (Am�Cm),
then from the (p.g.p.) ‖μ∗(Cn ∩ Cm)‖ < δK+2+n∧m. Put

E1 = C1, En =
n−1⋂
i=1

Cn \ Ci, n ≥ 2.
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Clearly, En, n = 1,2, . . . , are pairwise disjoint sets from Rσ . Since μ∗ | Rσ = μ̂
and μ̂ is exhaustive on Rσ , then there exists a positive integer N , such that
for each n ≥ N holds ‖μ∗(En)‖ = ‖μ̂(En)‖ < δK+3. Since

Cn \ En =
n−1⋃
i=1

(Ci ∩ Cn),

then for each n ∈ N we have ‖μ∗(Cn \ En)‖ < δK+2. Then by (p.g.p.) for each
n ≥ N holds ‖μ̂(Cn)‖ = ‖μ∗(Cn)‖ ≤ ‖μ∗((Cn \ En) ∪ En)‖ < δK+1. Hence
for n ≥ N we have the contradiction ‖μ∗(An)‖ ≤ ‖μ∗(An�Cn)‖ < δK , which
proves that μ∗ is exhaustive.

Let Fn ∈ R0, n = 1,2, . . . , be such that Fn ↘ ∅. Then Gn = Fn \ Fn+1,
n ∈ N, are pairwise disjoint sets from R0, such that Fn =

⋃∞
i=n Gi. Now in

the same way as in case (e) of Theorem 4.1 we obtain that ‖μ∗(Fn)‖ → 0 as
n → ∞. �

Note that μ∗ is also order bounded. Now, we are able to prove the following
extension theorem for Du-submeasures from a ring R to the σ-ring R0.

Theorem 4.3. If μ is an order bounded exhaustive Du-submeasure on a
ring R of subsets of a set T �= ∅, then there exists a σ-ring R0 of subsets of T ,
such that R ⊂ R0 and μ may be extended to the Du-submeasure μ∗ on R0,
such that

(a) R0 = RΓ(μ∗)
;

(b) the σ-ring R0 is null-complete with respect to μ∗;
(c) if ν is a Du-submeasure on R0, such that ν| R = μ, then for every A ∈ R0

holds ‖ν(A)‖ = ‖μ∗(A)‖;
(d) the σ-ring R0 is a null-completion of σ(R).

Proof. Let (An)∞
1 be a sequence of sets from R0, such that A =

⋃∞
n=1 An.

Similarly as in Theorem 3.9 we may show that A ∈ R0 = RΓ(μ∗)
. Therefore,

R0 is a σ-ring containing R and μ∗ is a Du-submeasure on R0 which is an
extension of μ. Thus, the item (a) is proved.

(b) Let A ∈ R0 with μ∗(A) = 0. Then ‖μ∗(A)‖ = 0. Since R0 ⊂ R∗, then
A ∈ R∗. Accordingly, A ⊂ C for some C ∈ Rσ . Then B ⊂ A implies B ⊂
C ∈ Rσ . Thus, B ∈ R∗ and from monotonicity ‖μ∗(B)‖ ≤ ‖μ∗(A)‖ we get
‖μ∗(B)‖ = 0, and so μ∗(B) = 0.

Now we prove that B ∈ R0. Let ε > 0 be chosen arbitrarily. From the
definition of R0, it follows that there exists E ∈ R, such that

(4.5)
∥∥μ∗(A�E)

∥∥ ≤ ε.

Since ‖μ∗(A)‖ = ‖μ∗(B)‖ = 0 and μ∗ is monotone, then

(4.6)
∥∥μ∗(A ∪ E)

∥∥ =
∥∥μ∗(A�E)

∥∥ =
∥∥μ∗(E)

∥∥,



1364 O. HUTNÍK

and

(4.7)
∥∥μ∗(B ∪ E)

∥∥ =
∥∥μ∗(B�E)

∥∥ =
∥∥μ∗(E)

∥∥.

Using (4.5), (4.6) and (4.7) yields∥∥μ∗(B�E)
∥∥ ≤ ε, for E ∈ R.

Consequently, B ∈ R0.
(c) Let ν be a Du-submeasure on R0, such that ν| R = μ and let B ∈ Rσ .

Then there exists a sequence (Bn)∞
1 of sets from R, such that Bn ↗ B. From

the definition of μ∗ it follows that μ∗(B) ≤ ν(B). Using (4.2) and Theorem 3.2,
we may prove that μ∗(B) = ν(B). Thus, ν| Rσ = μ̂.

Let A ∈ R0. Similarly as in Lemma 4.2(iii) there exists a sequence (Fn)∞
1

of sets from Rσ with F1 ⊃ F2 ⊃ · · · , such that A ⊂ Fn for every n = 1,2, . . . ,
and

(4.8)
∥∥μ∗(Fn \ A)

∥∥ → 0 as n → ∞.

This yields

(4.9)
∥∥μ∗(A)

∥∥ = lim
n→∞

∥∥μ̂(Fn)
∥∥ = lim

n→∞

∥∥ν(Fn)
∥∥.

Let ε > 0 be chosen arbitrary. Since Fn \ A ∈ R ∗, then from the definition of
μ∗ it follows that for each n ∈ N there exists Gn ∈ Rσ , such that Fn \ A ⊂ Gn

and ∥∥μ̂(Gn)
∥∥ <

∥∥μ∗(Fn \ A)
∥∥ +

ε

2n
.

Consequently, from (4.8) we get ‖μ̂(Gn)‖ → 0 as n → ∞. From monotonicity
of ν on R, we have ‖ν(Fn \ A)‖ ≤ ‖ν(Gn)‖ = ‖μ̂(Gn)‖ and therefore ‖ν(Fn \
A)‖ → 0 as n → ∞. From it follows that ‖ν(Fn)‖ → ‖ν(A)‖ and from (4.9)
we get ‖ν(A)‖ = ‖μ∗(A)‖ for every A ∈ R0.

(d) Let A ∈ R0. Then by Lemma 4.2(iii) there exists a sequence (Cn)∞
1

of sets from Rσ with C1 ⊃ C2 ⊃ · · · , such that A ⊂ Cn for every n = 1,2, . . . ,
and ‖μ∗(Cn \ A)‖ → 0 as n → ∞. Let C =

⋂∞
n=1 Cn. Then A ⊂ C ∈ σ(R) and

thus ‖μ∗(C \ A)‖ ≤ ‖μ∗(Cn \ A)‖ for n = 1,2, . . . . Hence, ‖μ∗(C \ A)‖ ≤ 0.
Also, C \ A ∈ R0. By Lemma 4.2(iii) there exists a sequence (En)∞

1 of
sets from Rσ with E1 ⊃ E2 ⊃ · · · and C \ A ⊂ En for n = 1,2, . . . , such that
‖μ∗(En \ (C \ A))‖ → 0 as n → ∞. So,

lim
n→∞

∥∥μ∗(En)
∥∥ =

∥∥μ∗(C \ A)
∥∥ = 0.

Now,

C \ A ⊂
∞⋂

n=1

En = E ∈ σ(R),

and also from monotonicity

∥∥μ∗(E)
∥∥ =

∥∥∥∥∥μ∗

( ∞⋂
n=1

En

)∥∥∥∥∥ ≤
∥∥μ∗(En)

∥∥, for every n ∈ N.
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From it results that ‖μ∗(E)‖ = 0. Now,

C = (C \ A) ∪ A ⊂ E ∪ A.

Since A ⊂ C, then A \ E ⊂ C \ E, and since C ⊂ E ∪ A, then C \ E ⊂ (E ∪
A) \ E = A \ E. Thus, C \ E = A \ E ⊂ A ⊂ C and C \ E, E ∈ σ(R) and∥∥μ∗(

C \ (C \ E)
)∥∥ =

∥∥μ∗(C ∩ E)
∥∥ = 0.

Therefore, μ∗(C \ (C \ E)) = μ∗(C ∩ E) = 0, i.e., R0 is a null-completion of
σ(R). �

Remark 4.4. In Remark 3.6, we have stated that D-submeasures do not
satisfy the condition (a.c.) in general, which seems to play the crucial role for
Γ(μ) to be the FN -topology. In spite of this fact, is it possible to provide the
(analogous) extension for D-submeasures in general?
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[17] J. Haluška and O. Hutńik, On Dobrakov net submeasures, Tatra Mt. Math. Publ. 40

(2008), 149–160. MR 2440629

[18] M. Khare and A. K. Singh, Atoms and Dobrakov submeasures in effect algebras, Fuzzy

Sets and Systems 159 (2008), 1123–1128. MR 2418790

http://www.ams.org/mathscinet-getitem?mr=1002862
http://www.ams.org/mathscinet-getitem?mr=0348073
http://www.ams.org/mathscinet-getitem?mr=0227053
http://www.ams.org/mathscinet-getitem?mr=0141067
http://www.ams.org/mathscinet-getitem?mr=0080760
http://www.ams.org/mathscinet-getitem?mr=0367140
http://www.ams.org/mathscinet-getitem?mr=0568216
http://www.ams.org/mathscinet-getitem?mr=0756982
http://www.ams.org/mathscinet-getitem?mr=0306432
http://www.ams.org/mathscinet-getitem?mr=0316653
http://www.ams.org/mathscinet-getitem?mr=0316653
http://www.ams.org/mathscinet-getitem?mr=0492153
http://www.ams.org/mathscinet-getitem?mr=1771024
http://www.ams.org/mathscinet-getitem?mr=1767776
http://www.ams.org/mathscinet-getitem?mr=1146763
http://www.ams.org/mathscinet-getitem?mr=1274601
http://www.ams.org/mathscinet-getitem?mr=2440629
http://www.ams.org/mathscinet-getitem?mr=2418790


1366 O. HUTNÍK
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