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COMPACT ACTIONS, RETRACT THEORY AND PRIME
IDEALS

RAZA LAHIANI AND CARINE MOLITOR-BRAUN

Abstract. Let N be a connected, simply connected, nilpotent
Lie group and let K be a compact subgroup of the automorphism

group of N . We study the density of Schwartz functions in the

kernels of K-orbits and characterize K-prime ideals. For this
purpose a retract theory for K-actions has to be established.

Introduction

Among the classical questions in harmonic analysis, we find the Fourier
inversion problem, the Wiener property (see below), the characterization of
maximal ideals and prime ideals in a function algebra. These questions were
first solved for locally compact Abelian groups. For a non-Abelian group G,
there exist infinite dimensional unitary irreducible representations (except in
the compact case). So the Abelian Fourier transform f̂(χ) ∈ C, χ ∈ Ĝ, has
to be replaced by the family of operators π(f), π ∈ Ĝ, which act on infinite
dimensional spaces. This makes the Fourier analysis questions much more
difficult.

First generalizations were made for connected, simply connected, nilpotent
Lie groups. For such groups N , the Wiener property, which says that any
proper closed ideal is contained in the kernel of a unitary irreducible repre-
sentation, was proved by Leptin ([9], 1976) for the algebra L1(N) and by
Ludwig ([14], 1987) for the Schwartz algebra S(N). It is used, among others,
in the proofs of the results presented in this paper.

In order to introduce the results of this paper, let us make some com-
ments on the unitary irreducible representations and the retract problem for
a connected, simply connected, nilpotent Lie group N = expn. Given l ∈ n∗,
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let p(l) be a polarization for l in n. On the subgroup P (l) = expp(l), one
defines the character χl by χl(x) := e−i〈l,log x〉, x ∈ P (l). The induced repre-
sentation πl := indN

P (l) χl is then irreducible, and all the unitary irreducible
representations may be realized in this way. The representation πl acts on
the function space Hl := L2(N/P (l), χl) by left translation (see Section 1.2
and [4] for more details). For any Schwartz function f ∈ S(N), the oper-
ator πl(f) :=

∫
N

f(x)πl(x)dx is a kernel operator, that is, it is of the form
(πl(f)ξ)(x) =

∫
N/P (l)

F (x, y)ξ(y)dẏ, ξ ∈ Hl, for some kernel function F . The
pointwise Fourier inversion problem (or construction of a retract at one fixed
point of the dual) is the following: Given a suitable kernel function F , show
that there is a Schwartz function f such that πl(f) has F as an operator
kernel, for fixed l. This was proved by Howe ([7], 1977). Of course, the kernel
function F depends on l. Hence, we may consider F as a function of l, where
l runs through an appropriate submanifold of n∗, and we may ask whether the
same retract function f is valid for all l. The existence of retracts is a very
useful tool. A big part of this paper will hence be devoted to retract problems.
They are used to study questions in ideal theory of the group algebras.

The maximal ideals, the prime ideals and the kernels of the unitary irre-
ducible representations coincide in the Abelian case. On the other hand, in
the non-Abelian case, this result is not necessarily true. It remains correct for
connected, simply connected, nilpotent Lie groups. Let us recall that an ideal
I is said to be prime, if for any two ideals I1 and I2 such that I1 ∗ I2 ⊂ I, I1 ⊂ I
or I2 ⊂ I . For connected, simply connected, nilpotent Lie groups, J. Ludwig
showed ([13], 1983) that the closed prime ideals of L1(N) coincide with the
kernels of the irreducible unitary representations.

A next step consisted in introducing an exponential action on the nilpo-
tent Lie groups. In this situation, a similar result for the characterization
of the prime ideals in the set of all the ideals which are invariant under this
exponential action, was established in ([15], 1998).

On the other hand, in the 80s, Poguntke studied the action of an Abelian
compact group K on a nilpotent Lie group ([20], [21]). He was interested in
the density of Schwartz functions in the kernels of the K-orbits. Poguntke’s
result implies the characterization of the K-prime ideals if the compact group
K is Abelian. The problem for K non-Abelian remained open.

In this paper, we determine the K-prime ideals of S(N) and L1(N) (with
some restrictions in the case of L1(N), see below), when K is a non-Abelian
compact Lie subgroup of the automorphism group of N . After some generali-
ties, we start by defining the space of the kernel functions. Then we construct
a retract on different layers of n∗ (in the sense of Ludwig–Zahir, [18]) and
on submanifolds contained in sections of these layers. In the fifth section,
we study the orbits under the compact action and we then prove the exis-
tence of a retract for different realizations of the representations subjected to
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the compact action. Using these tools, we show the density of the Schwartz
functions in the kernels of K-orbits and we characterize the corresponding
K-prime ideals. The retract theory, which is the heart of this paper, produces
a global retract theorem (Theorem 12), which is important for its own sake
and which may be considered as a kind of Fourier’s inversion theorem for a
compact action.

The previous results are established for the layer of generic elements in the
sense of Ludwig–Zahir [18], for the layer corresponding to the characters of
the group and for all the layers in the case of the free nilpotent Lie groups of
step 2 on 2, 3 or 4 generators. For arbitrary intermediate layers and general
nilpotent Lie groups, the problem remains open.

1. Generalities

1.1. Coordinates of the second kind and Haar measure. Let N = expn

be a connected, simply connected, nilpotent Lie group. Let {X1, . . . ,Xn} be a
Jordan–Hölder basis of n, that is, a basis satisfying [Xi,Xj ] ∈ 〈Xr+1, . . . ,Xn〉
where r = max{i, j} and where 〈Xr+1, . . . ,Xn〉 denotes the vector subspace
generated by Xr+1, . . . ,Xn.

The elements of N may be written uniquely in the form

x = exp(x1X1) exp(x2X2) · · · exp(xnXn)

and x1, . . . , xn ∈ R are called coordinates of the second kind of the element x
in the given basis. Unless otherwise stated, all our computations are done in
coordinates of the second kind.

In a connected, simply connected, nilpotent Lie group, left and right Haar
measure coincide, up to a constant, with the Lebesgue measure associated to
the coordinates of the second kind.

If h is a subalgebra of n, {X1, . . . ,Xr } is called a Malcev basis of n with
respect to h if n = 〈X1, . . . ,Xr 〉 ⊕ h and if, for every index j ∈ {1, . . . , r},
〈Xj ,Xj+1, . . . ,Xr 〉 ⊕ h is a subalgebra of n. In that case, the Lebesgue measure
on Rr gives rise to a left invariant measure on N/H , with H = exph, via the
formula∫

G/H

f(ẋ)dẋ

:=
∫

Rr

f
(
exp(x1X1) exp(x2X2) · · · exp(xrXr) · H

)
dx1 dx2 · · · dxr

for all continuous functions with compact support f on N/H .

1.2. Irreducible representations. Given l ∈ n∗, let p(l) be a polariza-
tion for l in n, that is, a maximal subalgebra p such that 〈l, [p,p]〉 ≡ 0. Let
P (l) = expp(l) be the corresponding subgroup. On P (l), the character χl

is defined by χl(x) = e−i〈l,log x〉 for all x ∈ P (l). The induced representation
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πl := indN
P (l) χl is defined in the following way: Let Cc(N/P (l), χl) be the

set of all continuous functions ξ from N to C, satisfying ξ(np) = χl(p)ξ(n)
for all n ∈ N and all p ∈ P (l) (covariance condition), with compact support
mod P (l). The representation space Hl := L2(N/P (l), χl) is then the comple-
tion of Cc(N/P (l), χl) for the norm

‖ξ‖2 =
(∫

N/P (l)

∣∣ξ(ẋ)
∣∣2 dẋ

) 1
2

.

The representation πl is defined on Hl by(
πl(x)ξ

)
(y) := ξ

(
x−1y

)
, x, y ∈ N.

If p(l) is a polarization for l in n, then πl = indN
P (l) χl is a unitary, topologically

irreducible representation of N . Different polarizations for a same l give rise
to equivalent representations; πl and πl′ are equivalent if and only if l and
l′ belong to the same coadjoint orbit. Moreover, every unitary topologically
irreducible representation is of that form, up to equivalence.

The representation πl gives rise to a representation of the group algebra
L1(N), also denoted by πl, defined by

πl(f) =
∫

N

f(x)πl(x)dx.

For any Schwartz function f ∈ S(N), the operator πl(f) is a kernel operator,
as explained in the introduction.

1.3. Fourier transform. In subsequent proofs, we will use the usual Fourier
transform on R, according to the following definition:

f̂(y) :=
∫

R

f(x)e−ixy dx, f ∈ L1(R).

2. Kernel functions

Let N = expn be a connected, simply connected, nilpotent Lie group and
K be a compact subgroup of Aut(N). Let W be a smooth manifold, which
will be specified later. For example, W may be n∗

gen or n∗
gen ∩ Σ, where n∗

gen

denotes the set of generic linear forms in the sense of Ludwig–Zahir [18] and Σ
denotes a Pukanszky section. But we can also choose W = K,K̃,K · l0, K̃ · l0
where K̃ is an open subset of K. Moreover, we may take W = K/Kl0 , K̃/Kl0

or a smooth section of K/Kl0 , resp. K̃/Kl0 where Kl0 denotes the stabilizer
of l0. We begin by giving a certain number of definitions.
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2.1. Generalized Schwartz property.

Definition 1. Let W be a manifold. We say that a C∞-function F ′ : W ×
Rd × Rd −→ C satisfies the generalized Schwartz property (GS-property) if and
only if for every chart (U,ϕ) of W , for every compact subset CU ⊂ U and for
arbitrary A,B,C,D,E ∈ N, we have∥∥F ′∥∥CU

A,B,C,D,E

:= sup
w∈ϕ(CU );x,y∈Rd

sup
|a|≤A,|b|≤B,|c|≤C,|α|≤D,|β|≤E∣∣∣∣xαyβ ∂a

∂wa

∂b

∂xb

∂c

∂yc
F ′ ◦

(
ϕ−1 ⊗ id ⊗ id

)
(w,x1, . . . , xd, y1, . . . , yd)

∣∣∣∣
< ∞.

Similarly for functions ξ : W × Rd → C.

2.2. Kernel function spaces. Let W be a manifold as before and

l : W −→ n∗,

w �−→ l(w)

be a smooth map. For example, we may choose l(w) = w if W ⊂ n∗ or l(k) =
k · l0, for some fixed l0 ∈ n∗, if W = K,K̃, . . . .

Definition 2. Given the manifold W and the map l : W −→ n∗, we define
a smooth family of polarizations (p(w))w∈W = (p(l(w)))w∈W in the following
way:
• p(l(w)) is a polarization of l(w) in n for all w.
• All the polarizations p(l(w)),w ∈ W , have the same fixed dimension denoted

by r. This condition restricts the choice of W .
• There exists {X1(w), . . . ,Xr(w)}w∈W a smooth family of Malcev bases of

(p(l(w)))w.

Definition 3. A family of d vectors {X1(w), . . . ,Xd(w)} is said to be a
smooth Malcev basis of n relative to p(l(w)) if:
• The map w �−→ Xj(w) is smooth for all j.
• n =

⊕d
j=1 RXj(w) ⊕ p(l(w)) for all w.

• The space pj(w) :=
⊕d

i=j RXi(w) ⊕ p(l(w)) is a subalgebra of n for all j
and for all w.

Given a smooth family of polarizations (p(l(w)))w, we will consider the
corresponding family of induced representations (πw)w∈W , where

πw := indN
P (l(w)) χl(w),

with P (l(w)) = expp(l(w)). Then, for any function f ∈ S(N) and any fixed
w ∈ W , the operator πw(f) has an operator kernel F (w; ·, ·) which is a function
of w. The retract problem consists in showing, that for suitable function
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spaces, called kernel function spaces, there exists an f ∈ S(N) for which πw(f)
admits as a kernel an arbitrarily chosen element of the kernel function space.
These kernel function spaces are defined as follows.

Definition 4. Let W be a manifold, l : W → n∗ a smooth map and
(p(l(w)))w∈W an associated smooth family of polarizations. For every com-
pact subset C0 contained in W , we write N

C0
W for the space of all complex

valued smooth functions F on W × N × N such that:

• The support of F in w is contained in C0.
• F satisfies the covariance condition:

F (w;xp, yq) = χl(w)(p)χl(w)(q)F (w;x, y) ∀p, q ∈ P
(
l(w)

)
= expp

(
l(w)

)
.

• Let {X1(w), . . . ,Xd(w)} be a smooth Malcev basis of n relative to p(l(w)).
Then, the function

F ′(w;x1, . . . , xd, y1, . . . , yd)
:= F

(
w; expx1X1(w) · · · expxdXd(w); expy1X1(w) · · · expydXd(w)

)
verifies the GS-property.

• If l(w) and l(w′) are in the same co-adjoint orbit, then the corresponding
induced representations are equivalent. It is hence necessary to introduce a
compatibility condition on the kernel function F to take into account this
equivalence. This condition is specific to every single choice of the manifold
W and of the family of polarizations.

The space N
C0
W will be called a space of kernel functions.

Remark 1. The suitable compatibility condition depends on the choice
of the polarizations, the definition of representations, etc. For example,
if l(w′) = Ad∗(m)l(w),m ∈ N , and if p(w) = p(l(w)) is a smooth family of
Vergne polarizations, the compatibility condition for kernel functions will be:

F
(
w′;x, y

)
= F

(
l
(
w′);x, y

)
= F

(
l(w);x · m,y · m

)
= F (w;x · m,y · m) ∀x, y ∈ N.

In particular if l(w) = l(w′), then we may take m = e and we have to require
that

F
(
w′;x, y

)
= F (w;x, y) ∀x, y ∈ N.

Remark 2. We equip the space N
C0
W with the topology of the semi-norms

‖ · ‖C0
A,B,C,D,E defined in the Definition 1.
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3. Retract theorems on the different layers

We start this section by introducing the retract problem in a few words.
It is well known that for every Schwartz function f on the nilpotent Lie

group N , the operator πl(f), l ∈ n∗ fixed, is completely characterized by its
operator kernel

F (x, y) =
∫

P

f
(
xpy−1

)
χl(p)dp,

where P = expp is a polarization of l, χl(p) = e−i〈l,log p〉 denotes the character
of P associated to l and πl = indN

P χl. The retract question is the converse
problem, which means: Given a function F on N × N satisfying certain hy-
potheses (covariance condition, Schwartz function), does there exist f ∈ S(N)
such that πl(f) have F (·, ·) as a kernel function?

This problem has been solved by Howe [7] in 1977 for a fixed l in n∗ and
has been generalized to exponential solvable Lie groups by Ludwig [12] and
Andele [1]. But these results deal only with one fixed chosen l ∈ n∗ and can
therefore not be qualified as a Fourier inversion theorem. So now the question
is whether these results are still true if l runs through an arbitrary layer of
n∗?

3.1. Retract theorem on the generic layer. For the construction of
retracts, one has to stick to a precise layer of n∗. Such layerings of n∗ have
first been introduced in [5] and [19]. The layering used in this paper is the
one of [18]. So let n∗

gen denote the set of generic linear forms in the sense of
Ludwig–Zahir [18] for a fixed Jordan–Hölder basis. Then n∗

gen is a dense open
subset of n∗. Moreover n∗

gen ⊂ n∗
puk, where n∗

puk denotes the set of generic
linear forms in the sense of Pukanszky [4] and n∗

gen is N -invariant, by [18].
Let Σ be a corresponding Pukanszky section and p(l) be the Vergne po-

larization for all l ∈ n∗
gen ∩ Σ. In this case, we consider W = n∗

gen ∩ Σ as a
submanifold of n∗ and N

C0
n∗
gen∩Σ as the space of kernel functions defined as in

Section 2.

Remark 3. As every co-adjoint orbit cuts Σ in at most one point, there
is no need for a compatibility condition.

Let πl := indN
P (l) χl be the induced representation of N . Then the retract

problem for πl has been solved in the generic case [17] by the following Fourier
inversion theorem.

Theorem 1. For every F ∈ N
C0
n∗
gen∩Σ, there exists a unique Schwartz func-

tion f ∈ S(N) such that πl(f) has F (l, ·, ·) as an operator kernel for every
l ∈ n∗

gen ∩ Σ and πl(f) = 0 if l /∈ n∗
gen.

The map F �−→ f is continuous with respect to the appropriate function
space topologies.
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3.2. Retract theorem on the character layer. Let

C =
{
l ∈ n∗ |

〈
l, [n,n]

〉
= 0

}
be the layer of n∗ corresponding to the characters of N . It is a vector subspace
of n∗ and hence a submanifold of n∗.

The unitary irreducible representations of N defined by the elements of C
are the characters of N :

χl : N −→ C,

x �−→ χl(x) = e−i〈l,logx〉,

where l ∈ C.
For every compact subset C0 of C, we define

N
C0
char := {F : C −→ C|F smooth and suppF ⊂ C0}.

We equip N
C0
char with the topology of the semi-norms

‖F ‖C0
A := sup

l∈C0

sup
|a|≤A

∣∣∣∣ ∂a

∂la
F (l)

∣∣∣∣ < ∞ ∀A ∈ N.

Remark 4. We do not need a compatibility condition in the definition of
N

C0
char because the orbits in this case are reduced to single points.

Theorem 2. For every F ∈ N
C0
char, there exists a Schwartz function f such

that f̂ ◦ exp(l) = χl(f) = F (l) for all l ∈ C and χl(f) = f̂ ◦ exp(l) = 0 if l ∈
C \C0.

There exists an algorithm to choose f such that the map

N
C0
char −→ S(N),

F �−→ R(F ) := f

is continuous.

Proof. Let {Y1, . . . , Yn} be any Jordan–Hölder basis such that

n = 〈Y1, . . . , Yd〉 ⊕ 〈Yd+1, . . . , Yn〉︸ ︷︷ ︸
∈[n,n]

,

where 〈Yi, Yi+1, . . . , Yj 〉, i < j, denotes the vector subspace generated by Yi,
Yi+1, . . . , Yj . Then F may be identified with a function on 〈Y ∗

1 , . . . , Y ∗
d 〉 which

we call again F .
Let ϕ ∈ S(RY ∗

d+1 ⊕ · · · ⊕ RY ∗
n ) such that ϕ(0) = 1 and let F̃ := F ⊗ ϕ. Then

F̃ ∈ S(n∗) ≡ S(Rn) and there exists f ∈ S(N) such that f ◦ exp ∈ S(n) and
f̂ ◦ exp = F̃ ∈ S(n∗). It is sufficient to take f ◦ exp = F −1(F̃ ) where F −1

denotes the classical inverse Fourier transform.
If l ∈ C, then χl ∈ N̂ and

χl(f ◦ exp) = f̂ ◦ exp(l) = F̃ (l) = ϕ(0)F (l) = F (l). �
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Remark 5. The constructed retract is not unique since it depends on the
choice of the function ϕ and, for a fixed ϕ, this construction is continuous.

3.3. Retract theorem on an intermediate layer. In this section, we
shall give a retract theorem for the free two-step nilpotent Lie group on 4
generators F4,2.

We denote by f4,2 the Lie algebra of F4,2. Let {Y1, . . . , Y10} be the Jordan–
Hölder basis of f4,2 such that

[Y1, Y2] = Y5, [Y2, Y3] = Y8,

[Y1, Y3] = Y6, [Y2, Y4] = Y9,

[Y1, Y4] = Y7, [Y3, Y4] = Y10.

Let l =
∑10

i=1 aiY
∗
i ∈ f∗

4,2. It is easy to compute the different layers of f∗
4,2

(generic layers in the sense of Ludwig–Zahir for any Jordan–Hölder basis
obtained from the given one by a change of the order of the basis vectors
Y1, . . . , Y4, character layer and intermediate layers). Following the algorithm
of Ludwig–Zahir [18], one shows that the intermediate layers are given by

Si :=

{
l =

10∑
i=1

aiY
∗
i ∈ f∗

4,2

∣∣∣a5a10 + a8a7 − a6a9 = 0, ai �= 0

}
for i = 5, . . . ,10.

Let us put S :=
⋃10

i=5 Si. These intermediate layers all play the same role as is
easily proven by interchanging the vectors of the Jordan–Hölder basis. Hence,
it is sufficient to have a retract theorem on any one of these intermediate layers.
We choose for example S10 for the proofs. The results remain valid for every
Si (i = 5, . . . ,10).

One sees that for each pair of real constants c3 and c4,

Σ10 :=

{
l =

10∑
i=1

aiY
∗
i ∈ f∗

4,2

∣∣∣a3 = c3;a4 = c4

}
is a corresponding Pukanszky section.

In this case, S10 ∩ Σ10 is parameterized by (a1, a2, a6, . . . , a10) ∈ R6 × R∗

and a5 = a6a9−a7a8
a10

.
We consider also

p(l) = R

(
Y1 − a7

a10
Y3

)
⊕ R

(
Y2 − a9

a10
Y3

)
⊕ RY4 ⊕ · · · ⊕ RY10

the Vergne polarization obtained by the Ludwig–Zahir method [18]. Then
{Y3} is a Malcev basis of f4,2 relative to p(l). Similarly for the other interme-
diate layers Si, i = 5, . . . ,10.

Let C0 be an arbitrary compact subset contained in R6 × R∗ and N
C0
S10∩Σ10

be the corresponding space of kernel functions. Similarly for the other layers
Si (5 ≤ i ≤ 10) and the associate spaces N

C0
Si ∩Σi

.
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Remark 6. We do not need a compatibility condition in the definition of
N

C0
Si ∩Σi

since every co-adjoint orbit intersects Σi in at most one point.

We denote by πl := indF4,2

P (l) χl the unitary irreducible induced representation
of F4,2 associated to l and the Vergne polarization p(l). Let us compute this
representation. The representation space Hl may be identified with L2(R)
by ξ(u) ≡ ξ(exp(uY3)), the function ξ satisfying the covariance condition of
Section 1.2. Hence,(

πl

(
exp(y1Y1)

)
ξ
)
(u)

= ξ
(
exp(−y1Y1) exp(uY3)

)
= ξ

(
exp(uY3) exp(−y1Y1 − uy1Y6)

)
= e−iuy1a6ξ

(
exp(uY3) exp(−y1Y1) exp

(
y1

(
Y1 − a7

a10
Y3

))
· exp

(
−y1

(
Y1 − a7

a10
Y3

)))
= e−iuy1a6e−iy1(a1− c3a7

a10
)

· ξ

(
exp(uY3) exp

(
−y1

a7

a10
Y3 +

1
2
y2
1

a7

a10
Y6

))
= e−iy1(ua6+a1− c3a7

a10
)e

1
2 iy2

1
a7

a10
a6ξ

(
u − y1

a7

a10

)
.

One gets similarly:(
πl

(
exp(y2Y2)

)
ξ
)
(u) = e−iy2(ua8+a2− c3a9

a10
)e

1
2 iy2

2
a8a9
a10 ξ

(
u − y2

a9

a10

)
,(

πl

(
exp(y3Y3)

)
ξ
)
(u) = ξ(u − y3),(

πl

(
exp(y4Y4)

)
ξ
)
(u) = e−iy4(c4−ua10)ξ(u),(

πl

(
exp(y5Y5)

)
ξ
)
(u) = e−iy5

a6a9−a7a8
a10 ξ(u),(

πl

(
exp(yjYj)

)
ξ
)
(u) = e−iyjaj ξ(u), 6 ≤ j ≤ 10.

Finally, (
πl

(
exp(y1Y1) exp(y2Y2) · · · exp(y10Y10)

)
ξ
)
(u)

=
(
πl

(
exp(y1Y1)

)[
πl

(
exp(y2Y2) · · · exp(y10Y10)

)
ξ
])

(u)
= · · ·
= e−iy1(ua6+a1− c3a7

a10
)e−iy2(ua8+a2− c3a9

a10
)eiy1y2

a7a8
a10

· e
1
2 iy2

1
a6a7
a10 e

1
2 iy2

2
a8a9
a10 e−iy4(c4−ua10+y1a7+y2a9+y3a10)

· e−iy5
a6a9−a7a8

a10 e−iy6a6e−iy7a7e−iy8a8e−iy9a9

· e−iy10a10ξ

(
u − y1

a7

a10
− y2

a9

a10
− y3

)
.
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We may then prove the following retract theorem:

Theorem 3. Let i ∈ {5,6, . . . ,10} be fixed, but arbitrary. For every F ∈
N

C0
Si ∩Σi

, there exists a Schwartz function f on F4,2 such that πl(f) has F (l, ·, ·)
as an operator kernel for all l ∈ Si ∩ Σi and πl(f) = 0 if l ∈ S \Si.

There exists a suitable algorithm to choose f such that the map

N
C0
Si ∩Σi

−→ S(F4,2),

F �−→ R(F ) := f

is continuous.

Proof. The proof is done for S10 ∩ Σ10. The elements of S10 ∩ Σ10 are of
the form

l = a1Y
∗
1 + a2Y

∗
2 + c3Y

∗
3 + c4Y

∗
4 +

(
a6a9 − a7a8

a10

)
Y ∗

5 + a6Y
∗
6 + · · · + a10Y

∗
10,

where c3, c4 are the constants determining the section Σ10 and where (a1, a2,
a6, a7, . . . , a10) are the parameters characterizing l in S10 ∩ Σ10. Let f ∈
S(F4,2). An explicit computation of πl(f) gives(

πl(f)ξ
)
(u) =

∫
R10

f
(
exp(y1Y1) · · · exp(y10Y10)

)
·
(
πl

(
exp(y1Y1) · · · exp(y10Y10)

)
ξ
)
(u)dy1 · · · dy10

=
∫

R4
f̂5,6,...,10

(
y1, y2, y3, y4,

a6a9 − a7a8

a10
, a6, . . . , a10

)
· e−iy1(ua6+a1− c3a7

a10
)e−iy2(ua8+a2− c3a9

a10
)eiy1y2

a7a8
a10 e

1
2 iy2

1
a6a7
a10

· e
1
2 iy2

2
a8a9
a10 e−iy4(c4−ua10+y1a7+y2a9+y3a10)

· ξ

(
u − y1

a7

a10
− y2

a9

a10
− y3

)
dy1 dy2 dy3 dy4,

where f̂5,6,...,10 denotes the partial Fourier transform of f in the last 6 vari-
ables. Changing the variable y3 into a variable w defined by

w = −y3 + u − y1
a7

a10
− y2

a9

a10
,

gives(
πl(f)ξ

)
(u) =

∫
R

[∫
R2

eiy1y2
a7a8
a10 e

1
2 iy2

1
a6a7
a10 e

1
2 iy2

2
a8a9
a10

· f̂4,5,...,10

(
y1, y2, u − w − y1

a7

a10
− y2

a9

a10
, c4 − wa10,

a6a9 − a7a8

a10
, a6, . . . , a10

)
· e−iy1(ua6+a1− c3a7

a10
)e−iy2(ua8+a2− c3a9

a10
) dy1 dy2

]
ξ(w)dw.
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Hence the operator kernel of πl(f) is given by

F (a1, a2, a6, . . . , a10;u,w)

= ĝ1,2

(
ua6 + a1 − a7c3

a10
, ua8 + a2 − a9c3

a10
, u,w, a6, . . . , a10

)
,

where ĝ1,2 denotes the usual partial Fourier transform of g in the first two
variables and where the function g is obtained by

g(y1, y2, u,w, a6, . . . , a10) = eiy1y2
a7a8
a10 e

1
2 iy2

1
a6a7
a10 e

1
2 iy2

2
a8a9
a10

· f̂4,5,6,...,10

(
y1, y2, u − w − y1

a7

a10
− y2

a9

a10
,

c4 − wa10,
a6a9 − a7a8

a10
, a6, . . . , a10

)
.

Conversely, given a kernel function F , one may compute easily the function g
satisfying the previous relation between F and ĝ1,2. Let C0 be the compact
subset of {(a1, a2, a6, . . . , a10) ∈ R7|a10 �= 0} which contains the support in
(a1, a2, a6, . . . , a10) of the considered kernel functions. Let K0 be its image
under the map

(a1, a2, a6, . . . , a10) �→ a6a9 − a7a8

a10

and let ϕ ∈ S(R) be an arbitrary, but fixed Schwartz function such that ϕ ≡ 1
on K0.

In order to deduce the function g from the given F , let us change the
variables a1, a2 into ã1, ã2 given by{

ã1 = a1 + ua6 − c3a7
a10

,

ã2 = a2 + ua8 − c3a9
a10

.

We get

ĝ1,2(ã1, ã2, u,w, a6, . . . , a10)

= F

(
ã1 − ua6 +

c3a7

a10
, ã2 − ua8 +

c3a9

a10
, a6, . . . , a10;u,w

)
.

The function g is then obtained by inverse Fourier transform in the first two
variables. We hence have to produce a function f ∈ S(N) such that

f̂4,5,...,10

(
y1, y2, u − w − y1

a7

a10
− y2

a9

a10
, c4 − wa10,

a6a9 − a7a8

a10
, a6, . . . , a10

)
= e−iy1y2

a7a8
a10 e− 1

2 iy2
1

a6a7
a10 e− 1

2 iy2
2

a8a9
a10 g(y1, y2, u,w, a6, . . . , a10).

To do this we change the variables u and w into y3 and a by{
y3 = u − w − y1

a7
a10

− y2
a9
a10

,

a = c4 − wa10
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and we use the arbitrary function ϕ introduced previously, to look for f ∈
S(N) such that

f̂4,5,6,...,10(y1, y2, y3, a, a5, a6, . . . , a10)

= e−iy1y2
a7a8
a10 e− 1

2 iy2
1

a7a6
a10 e− 1

2 iy2
2

a9a8
a10 ϕ(a5)

· g

(
y1, y2, y3 +

a7

a10
y1 +

a9

a10
y2 +

c4 − a

a10
,
c4 − a

a10
, a6, . . . , a10

)
.

Because of the restriction on the support of the kernel function F , the right
hand side of the previous equality is a Schwartz function and f may be ob-
tained by inverse Fourier transform in the variables 4 to 10. This function f
may be taken as the retract of F , as πl(f) has F (l, ·, ·) as an operator kernel
for all l ∈ S10 ∩ Σ10.

Let’s now prove that πl(f) = 0 for every l ∈ S \S10. Let’s fix l0 ∈ S \S10 and
let’s take a sequence (lε)ε>0 which converges to l0 in f∗

4,2 with lε ∈ S10 such
that (lε)10 = ε.

We define lε,Σ10 as follows:

lε,Σ10 := Ad∗(F4,2)lε ∩ Σ10.

As Y10 is central, (lε,Σ10)10 = ε also. Moreover, there exists δ > 0 such that for
all l =

∑10
j=1 ljY

∗
j ∈ C0, | l10 | ≥ δ > 0 since C0 is a compact subset of S10 ∩ Σ10.

Hence for 0 < ε < δ, lε,Σ10 /∈ C0 and F (lε,Σ10 , ·, ·) ≡ 0 since suppl F |Σ10×R2 ⊂
C0 × R2. Then πlε,Σ10

(f) ≡ 0 and πlε(f) ≡ 0.
But we may of course identify the topological spaces f∗

4,2/Ad∗(F4,2) and
Prim∗ L1(F4,2) (with the hull-kernel topology), as the group is *-regular [3].
So, as lε converges to l0,

⋂
0<ε<δ Ker(πlε) ⊂ Ker(πl0). Hence, πl0(f) = 0, if

l0 ∈ S \S10. �

Remark 7. 1. One is tempted to conjecture that there exists a similar
retract on any layer of an arbitrary connected, simply connected, nilpotent
Lie group. But this is still an open question.

2. As the rest of this paper relies on the retract results of this section,
we have to limit ourselves from now on to n∗

gen, to the character layer C or,
additionally, in the case of the group F2,4, to the intermediate layers Si.

4. Retract theorems on a submanifold contained in a section of a
layer

In this section, W will either denote n∗
gen ∩ Σ, C or Si ∩ Σi, 5 ≤ i ≤ 10, in

the case of the group F4,2. Let V be a submanifold of W . Then, we denote by
NC

V ,W the corresponding space of kernel functions, if C is a compact subset
contained in V .
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The aim is to give a global retract theorem on the submanifold V . To do
this, we construct, locally on a chart of V , an extension of a kernel function
F , we apply the results of Section 3 to obtain local retracts and we use a
partition of unity in order to paste together the different local retracts.

4.1. Local retract theorem. For each l ∈ V , there exists a chart (U,ϕ) of
V in a neighborhood of l such that it is the restriction to V of a chart (W,ρ)
of W . We first assume that the fixed compact set C is contained in such a
chart. We then have the following theorem.

Theorem 4. Let C be a compact subset contained in a fixed chart (U,ϕ)
of V , which is a restriction to V of a chart of W . For every F ∈ NC

V ,W , there
exists a Schwartz function f on N , such that πl(f) has F (l, ·, ·) as an operator
kernel for all l ∈ C and πl(f) = 0 if l ∈ V \C.

There exists a suitable algorithm to choose f such that the map

F �−→ R(F ) := f

is continuous. If V is a submanifold of W = n∗
gen ∩ Σ, then we have moreover

πl(f) = 0 for all l /∈ n∗
gen. In the case of F4,2, we have πl(f) = 0 for all l ∈

S \ Si, if V is a submanifold of W = Si ∩ Σi.

Proof. By a standard procedure, we extend F (l, ·, ·) to a smooth function
F1(l, ·, ·) defined on a compact subset of a chart of all of W and we apply the
results of Section 3. �

4.2. Global retract theorem. As before, let V be a submanifold of W .
We now drop the condition that the compact subset C has to be contained in
a fixed chart of the manifold.

Theorem 5. Let C be any compact subset contained in V . For every
F ∈ NC

V ,W , there exists a Schwartz function f on N , such that πl(f) has
F (l, ·, ·) as an operator kernel for all l ∈ C and πl(f) = 0 if l ∈ V \C.

There exists a suitable algorithm to choose f such that the map

F �−→ R(F ) := f

is continuous. Moreover, if V is a submanifold of W = n∗
gen ∩ Σ, we have

πl(f) = 0 for all l /∈ n∗
gen. In the case of F4,2, we have πl(f) = 0 for all l ∈

S \ Si, if V is a submanifold of W = Si ∩ Σi.

Proof. One uses a partition of unity to glue together local retracts obtained
via Theorem 4. �
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5. Orbits under the compact group action

Let N be a connected, simply connected, nilpotent Lie group and K be
a compact subgroup of the group of automorphisms of N , Aut(N), acting
smoothly on N . We denote this action by:

K × N −→ N,

(k,x) �−→ k · x.

This action induces naturally actions of K on n,n∗, N̂ ,L1(N), S(N).

Examples.

1. Action of SO(2n) on the Heisenberg group Hn.
2. Action of SO(n) on Fn,2, the free nilpotent Lie group of step 2 and n

generators (see [2] for details on this action).

Let πl := indN
P (l) χl be the induced representation of N associated to l,

where P (l) = expp(l) denotes the Vergne polarization of l. The different
actions of K on N̂ , the dual of N , n∗, etc., allow us to define equivalent
irreducible representations of N as follows:

πk·l := indN
P (k·l) χk·l,

π̃k := indN
k·P (l) χk·l,

kπl(x) := πl

(
k−1 · x

)
, x ∈ N.

Here P (l) = expp(l), P (k · l) = expp(k · l), where p(l) and p(k · l) denote the
Vergne polarizations of l, resp. k · l, with respect to the given basis. Moreover,
k · p(l) is also a polarization of k · l, a fact which justifies the definition of π̃k,
where k · P (l) = exp(k · p(l)).

Definition 5. For all πl ∈ N̂ , we define the following stabilizers:

Kπl
:=

{
k ∈ K|kπl � πl

}
(� means: is equivalent to)

=
{
k ∈ K|k · l ∈ Ad∗(N)l

}
,

Kl = {k ∈ K|k · l = l}.

These stabilizers are closed subgroups of K.

Remark 8. When l0 defines a character, that is, when 〈l0, [n,n]〉 ≡ 0, then
necessarily Kl0 = Kπl0

, as the co-adjoint orbit of l0 reduces to {l0}. Let us
also note that

C =
{
l ∈ n∗ |

〈
l, [n,n]

〉
≡ 0

}
is K-invariant.

In general, we have Kl ⊂ Kπl
, but not necessarily Kl = Kπl

. Nevertheless,
for technical reasons we will need Kl0 = Kπl0

. Therefore, we introduce a
particular linear form l0, called aligned linear form, which satisfies Kl0 = Kπl0

.
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Lipsman shows in [11] the existence of such aligned linear forms. More pre-
cisely, every co-adjoint orbit in n∗ contains an aligned linear form l0 verifying
Kl0 = Kπl0

[11].

Remark 9. We can always assume that l0 is aligned and generic in the
sense Ludwig–Zahir (resp. aligned and in the intermediate layer Si, in the
case of N = F4,2) by moving on the co-adjoint orbit. This will be the case for
the rest of this paper.

Let Σ (resp. Σi) be the corresponding Pukanszky section of n∗
gen (resp.

Si) such that l0 ∈ Σ (resp. Σi). Let Σ̃ denote either Σ or Σi. Let U denote
n∗
gen, resp. Si in the case of the group F4,2. As before, let W = U ∩ Σ̃ denote

n∗
gen ∩ Σ, resp. Si ∩ Σi in the case of F4,2.

In general, U is not stable under the action of K. Therefore, we define

K̃ := {k ∈ K|k · l0 ∈ U }.

Let now
l1 = Ad∗(m)k1 · l0 ∈ Ad∗(N)K̃ · l0 ∩ Σ̃,

where k1 ∈ K̃ and m ∈ N such that l1 ∈ Σ̃.
Let k ∈ K̃ be such that k · k1 ∈ K̃. We then define k ∗ l1 := (l1)k to be the

unique intersection point of the co-adjoint orbit of k · l1 with the section Σ̃, i.e.{
(l1)k

}
= Ad∗(N)(k · l1) ∩ Σ̃

= Ad∗(N)
(
Ad∗(k · m)(kk1) · l0

)
∩ Σ̃

= Ad∗(N)
(
(kk1) · l0

)
∩ Σ̃.

It is easy to check that, provided k′kk1 ∈ K̃,
k′ ∗ (k ∗ l1) = (l1)k′k =

(
k′k

)
∗ l1,

that is, we have a local group action.
In particular,

{l0,k } := {k ∗ l0} = Ad∗(N)(k · l0) ∩ Σ̃.

Proposition 1. The local group action

K̃ → W ,

k �→ l0,k = k ∗ l0

satisfies:
(1) Its image Ad∗(N)K̃ · l0 ∩ Σ̃ is a submanifold of Σ̃ in U .
(2) There exist a smooth section (V, η) of K̃/Kl0 such that η(V ) is a subman-

ifold of K, a relatively open subset Ṽ in η(V ) and a smooth map

Ṽ −→ N,

k �−→ mk

such that l0,k = Ad∗(mk)k · l0.
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Proof. As Ad∗(N)K̃ · l0 ∩ Σ̃ = (Ad∗(N)K · l0) ∩ W is locally closed in Σ̃
and as we are in presence of a local group action for which the stabilizer of l0
is Kl0 , the map

K̃/Kl0 −→ K̃ ∗ l0,

k̇ �−→ l0,k

is a diffeomorphism and Ad∗(N)K̃ · l0 ∩ Σ̃ is a submanifold of Σ̃, by [6].
The Pukanszky orbit parametrization and the characterization of the

Pukanszky sections via this parametrization, then give a system of equations
for mk. A smooth solution of this system exists, at least in a certain relatively
open subset Ṽ of η(V ). �

Remark 10. We have the natural local action of K̃ on U defined by

(k, l) �−→ k · l.

Hence, for l0 ∈ U fixed, K̃ · l0 is a submanifold of U [6].

6. K-retract theory for the representations induced from Vergne
polarizations

In this section, we shall study the retract theory associated to the induced
representations using Vergne polarizations on K-orbits for the different layers.
We will use the notations Σ̃, U , W introduced in the previous section.

6.1. On the character layer. Recall that

C =
{
l ∈ n∗ |

〈
l, [n,n]

〉
= 0

}
is the layer of n∗ corresponding to the characters of N . It is obvious that C
is K-invariant.

For l0 ∈ C, V = K · l0 is a submanifold of C. Then, by Section 4 and
Theorem 5, we have a global retract theorem for the characters χk·l0 on the
orbit K · l0. Moreover, as K · l0 is diffeomorphic to K/Kl0 , this gives a global
retract theorem for χk·l0 and kernel functions defined on K/Kl0 (resp. on a
section of K/Kl0). Finally, we may extend this result to a retract theorem on
all of K, if we use the following function space: Let NK be the space of all
smooth functions F : K −→ C such that:

• F is a C ∞ function.
• We have the compatibility relation

k = k′ mod Kl0 =⇒ F (k) = F
(
k′).

The compatibility condition then allows us to deduce a retract theorem for
χk·l0 and kernel functions defined on K.
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Theorem 6. For every F ∈ NK , there exists a Schwartz function f on N

such that χk·l0(f) = f̂(k · l0) = F (k) for all k ∈ K.
There exists a suitable algorithm to choose f such that the map

F �−→ R(F ) := f

is continuous.

Proof. By Theorem 2 and the use of the compatibility condition. �

6.2. On the sections of K̃-orbits. Let l0 ∈ U be aligned. Let V = K̃ ∗ l0 =
Ad∗(N)K̃ · l0 ∩ Σ̃ be the submanifold of Σ̃ obtained by the action of K̃. Then
Theorem 5 of Section 4 is in particular true for the submanifolds K̃ ∗ l0 =
Ad∗(N)K̃ · l0 ∩ Σ̃ and the representations πl0,k

.

6.3. On the K̃-orbits. The aim of this paragraph is to get out of the
section Σ̃ in order to work with the original K-orbit. Let us hence consider
the submanifold V = K̃ · l0 of U .

Theorem 7. There exist a smooth section (V, η) of K̃/Kl0 such that η(V )
is a submanifold of K and a relatively open subset Ṽ in η(V ), such that for
every compact subset C0 in Ṽ · l0, we have:

For every F ∈ N
C0

K̃·l0,U , there exists a Schwartz function f on N , such that
πk·l0(f) has F (k · l0, ·, ·) as an operator kernel for all k · l0 ∈ C0 and πk·l0(f) = 0
if k · l0 ∈ K̃ · l0\C0. Moreover, πk·l0(f) = 0 if k ∈ K \ K̃.

There exists a suitable algorithm to choose f such that the map

F �−→ R(F ) := f

is continuous.

Proof. By Proposition 1, there exist a smooth section (V, η) of K̃/Kl0 , a
non-empty relatively open subset Ṽ in η(V ) and a smooth map

Ṽ −→ N,

k �−→ mk

such that l0,k = Ad∗(mk)k · l0. We extend now F to a function F1 on
Ad∗(N)K̃ · l0 × N × N as follows:

F1

(
Ad∗(n)k · l0, x, y

)
:= F (k · l0, x · n, y · n)

for all n ∈ N .
Then, we restrict the function F1 to (Ad∗(N)K̃ · l0 ∩ Σ) × N × N in the

following way:

F0(l0,k, x, y) = F0

(
Ad∗(mk)k · l0, x, y

)
:= F (k · l0, x · mk, y · mk).

Now, one checks that F0 ∈ NC
K̃∗l0,W , where C := Ad∗(N)C0 ∩ Σ̃ is a compact

subset in Ad∗(N)(K̃ · l0) ∩ Σ̃.
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By applying Theorem 5 to the function F0, one sees that there exists f ∈
S(N), such that πl0,k

(f) has F0(l0,k, ·, ·) as an operator kernel for all k ∈ K̃ and
πl0,k

(f) = 0 if l0,k /∈ C. Then, πk·l0(f) has F (k · l0, ·, ·) as an operator kernel
if k · l0 ∈ C0. Moreover, l0,k = Ad∗(mk)k · l0 /∈ C if and only if k · l0 /∈ C0 since
every co-adjoint orbit cuts K · l0 in at most one point. Hence, πk·l0(f) = 0 if
k · l0 /∈ C0 and k ∈ K̃. The same is true if k ∈ K \ K̃, as in this case k · l0 /∈ n∗

gen

(resp. k · l0 ∈ S \ Si). �

Remark 11. We get a similar retract theorem for kernel functions F de-
fined on K (instead of K · l0), with compact support in k contained in K̃,
provided we require the compatibility condition

k = k′ mod Kl0 =⇒ F (k,x, y) = F
(
k′, x, y

)
for the kernel functions F .

7. K-retract theory for the representations induced from
translated polarizations

The purpose of this section is to give a global retract theorem for the
representations induced from translated polarizations rather than Vergne po-
larizations, since these are more natural in the study of the compact group
action.

Recall that l0 is an aligned and generic linear form in the sense of Ludwig–
Zahir, resp. aligned and in Si (in the case of N = F4,2) and p(l0) is the Vergne
polarization of l0. Then k · p(l0) is a polarization for k · l0, for every k, and
we define the induced representations from the translated polarizations as
follows:

π̃0,k := indN
k·P (l0) χk·l0 ,

where P (l0) = exp(p(l0)) and k · P (l0) = exp(k · p(l0)). Let U denote n∗
gen,

resp. Si, as defined in Section 5.

7.1. A retract theorem for π̃0,k on a section of K̃/Kl0 . In order to
construct a global retract for π̃0,k, let us recall that π̃0,k and πk·l0 are unitary
equivalent. We will use the results of the previous section and a result on
smooth families of intertwining operators [8]. We need the following definition.

Definition 6. Let (V, η) be a smooth section of K̃/Kl0 such that η(V ) is
a submanifold of K, and V ′ a relatively open subset of η(V ). A function

ξ : V ′ × N → C

is called a generalized C ∞-vector for the family of representations (πk·l0)k∈V ′ ,
if
• ξ(k,x · p) = χk·l0(p)ξ(k,x), ∀p ∈ p(k · l0).
• The support of ξ in k is a compact subset of V ′.
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• For any smooth Malcev basis {X1(k), . . . ,Xd(k)}, k ∈ V ′, of n relative to
p(k · l0), the function ξ′ defined by

ξ′(k;x1, . . . , xd) := ξ
(
k; exp

(
x1X1(k)

)
· · · exp

(
xdXd(k)

))
has the GS-property.

Then, for k ∈ V ′ fixed, ξ(k; ·) is a C ∞-vector for the representation πk·l0 .
We denote P := (P (k · l0))k∈V ′ and we write K S(V ′, S(N/P,χ)) for the set

of all these generalized C ∞-vectors. We define similarly P ′ := (k · P (l0))k∈V ′

and K S(V ′, S(N/P ′, χ)) associated to the family of representations (π̃0,k)k∈V ′ .

From [8] we get the following result.

Theorem 8. For every smooth section (V, η) of K̃/Kl0 such that η(V ) is a
submanifold of K, and every nonempty relatively open subset Ṽ of η(V ), there
exists a nonempty relatively open subset V ′ of Ṽ and a smooth family of uni-
tary intertwining operators U = (Uk)k∈V ′ between (π̃0,k)k∈V ′ and (πk·l0)k∈V ′ .
This family of intertwining operators U = (Uk)k∈V ′ ,

U : K S
(
V ′, S

(
N/P ′, χ

))
−→ K S

(
V ′, S(N/P,χ)

)
,

is given by

Ukξ(k;g) :=
1

α(k)

∫
P (k·l0)/P (k·l0)∩k·P (l0)

ξ(k;gp)χk·l0(p)dṗ

=:
1

α(k)
(Tkξ)(k;g)

for all ξ ∈ K S(V ′, S(N/P ′, χ)). The normalization function α is defined by

α(k) =
∥∥(Tkξ)(k; ·)

∥∥
L2(N/P (k·l0),χk·l0 )

:=
(∫

N/P (k·l0)

∣∣(Tkξ)(k;n)
∣∣2 dṅ

) 1
2

for any ξ ∈ K S(V ′, S(N/P ′, χ)) such that ξ(k, ·) has L2-norm 1 for all k. The
function α is positive and smooth.

If f ∈ S(N), then the operator kernels F (k, ·, ·) and F̃ (k, ·, ·) of πk·l0(f) and
π̃0,k(f) are linked by the relation

F (k,x, y)

:= (Uk ⊗ Uk)F̃ (k,x, y)

=
1

α2(k)

∫
P (k·l0)/(P (k·l0)∩k·P (l0))

∫
P (k·l0)/(P (k·l0)∩k·P (l0))

F̃ (k,xp, yq)

· χk·l0(p)χk·l0(q)dṗ dq̇.

In [8], these results are proven in a more general setting and with more
precise indications on the choice of V ′. In particular, they are valid for any
two smooth families of polarizations associated to the same family of linear
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forms (k · l0)k. This fact will be used in Section 7.2. In this section, we deduce
the existence of a local retract for (π̃0,k)k.

Theorem 9. There exist a smooth section (V, η) of K̃/Kl0 and a nonempty
relatively open subset V ′ of η(V ) such that for every compact subset C̃ of V ′,
we have: For every F̃ ∈ NC̃

V ′ , there exists a Schwartz function f on N , such
that π̃0,k(f) has F̃ (k, ·, ·) as an operator kernel if k ∈ C̃ and π̃0,k(f) = 0 if
k ∈ K̃ \ C̃ · Kl0 . Moreover, π̃0,k(f) = 0 if k ∈ K \ K̃.

There exists a precise algorithm to choose f such that the map

F̃ �−→ R(F̃ ) := f

is continuous in the given topologies.

Proof. Let (V, η) and Ṽ be as in Theorem 7 and let V ′ ⊂ Ṽ be such that
(Uk)k∈V ′ is a smooth family of intertwining operators as given by Theorem 8.
Let now C̃ be any compact subset of V ′. For F̃ ∈ NC̃

V ′ , we define

F (k · l0, x, y)

:= (Uk ⊗ Uk)F̃ (k,x, y)

=
1

α2(k)

∫
P (k·l0)/(P (k·l0)∩k·P (l0))

∫
P (k·l0)/(P (k·l0)∩k·P (l0))

F̃ (k,xp, yq)

· χk·l0(p)χk·l0(q)dṗ dq̇

for all k ∈ V ′, by using Theorem 8. Then F is a kernel function which belongs
to N

C̃·l0
K̃·l0,U . By Theorem 7, there exists f ∈ S(N) such that πk·l0(f) has

F (k · l0, ·, ·) as an operator kernel for all k · l0 ∈ C̃ · l0 and πk·l0(f) = 0 if
k · l0 ∈ K̃ · l0\C̃ · l0. Moreover, πk·l0(f) = 0 if k ∈ K \ K̃.

Thanks to the smooth family of intertwining operators and the definition of
F , we then have the same results for π̃0,k(f) and F̃ (k, ·, ·). The continuity of
the retract is obtained by the smoothness of the intertwining operators (Uk)k

and the continuity given by Theorem 7. �

7.2. A retract theorem for π̃0,k on an open subset of K. By introducing
a precise compatibility condition, we get a local retract on an open subset of
K̃, instead of working only on a section of K̃/Kl0 . This will be used in
Section 7.3 in the process of constructing a global retract theorem. It is done
as follows.

Let U = U · Kl0 be a saturated non-empty open subset of K̃ and C0 =
C0 · Kl0 be a saturated fixed compact subset contained in U . We denote by
N

C0
K the space of kernel functions as defined in Section 2 and satisfying the

following compatibility condition:
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If k = k′ modKl0 , there is a positive number α(k, k′) such that we have

F̃ (k,x, y)

=
1

α2(k, k′)

∫
k·P (l0)/(k′ ·P (l0)∩k·P (l0))

∫
k·P (l0)/(k′ ·P (l0)∩k·P (l0))

F̃
(
k′, xp, yq

)
· χk′ ·l0(p)χk′ ·l0(q)dṗ dq̇

for all x, y ∈ N . Here α(k, k′) is defined as in Theorem 8, i.e. α(k, k′) =
‖(Tk,k′ ξ)(·)‖L2(N/k·P (l0),χk·l0 ) for any ξ ∈ S(N/k′ · P (l0), χk′ ·l0) of L2-norm 1,
where

Tk,k′ ξ(x) =
∫

k·P (l0)/(k′ ·P (l0))∩(k·P (l0))

ξ(xp)χk′ ·l0(p)dṗ

and where S(N/k′ · P (l0), χk′ ·l0) denotes the space of C ∞-vectors of the repre-
sentation π̃0,k′ . It is easy to check that α(k, k′) is left invariant, that is, that
α(k1k, k1k

′) = α(k, k′) for all k, k′, k1 ∈ K (see also [10]).

Theorem 10. There exists a nonempty open subset U = U · Kl0 in K̃ such
that for every saturated compact subset C0 = C0 · Kl0 in U , we have: For
every F̃ ∈ N

C0
K , there exists a Schwartz function on N , such that π̃0,k(f) has

F̃ (k, ·, ·) as an operator kernel for all k ∈ C0 and π̃0,k(f) = 0 if k ∈ K̃\C0.
Moreover, π̃0,k(f) = 0 if k ∈ K \ K̃.

There exists a precise algorithm for the construction of f , such that the
map

F̃ �−→ R(F̃ ) := f

is continuous in the given topologies.

Proof. Let (V, η) and V ′ be as in Theorem 9. Let U := V ′ · Kl0 . It then
suffices to use Theorem 9 for F̃0 := F̃ |V ′ ×N ×N , and the compatibility condi-
tion. �

Let us now translate the previous result to any point of K. Let W be a
nonempty open saturated subset of K̃ such that Theorem 10 holds and let
k1 ∈ K. Then, we consider the translated nonempty open subset W1 := k1 · W
of K and take a fixed saturated compact subset C1 := C1 · Kl0 in W1. We
denote by N

C1
K the corresponding space of kernel functions.

Theorem 11. Let W be a nonempty open saturated (with respect to Kl0)
subset of K̃ such that Theorem 10 holds. For any k1 ∈ K, let W1 = k1 · W
which is a nonempty subset of K and let C1 be any saturated compact subset
contained in W1. For every F̃ ∈ N

C1
K , there exists a Schwartz function f1 on

N , such that π̃0,k(f1) has F̃1(k, ·, ·) as an operator kernel for all k ∈ C1 and
π̃0,k(f1) = 0 if k ∈ K\C1.
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Moreover, there exists a precise algorithm for the construction of f1 such
that the map

F̃1 �−→ R(F̃1) := f1

is continuous in the given topologies.

Proof. Let us define

F̃ (k,x, y) := F̃1(k1k, k1x,k1y).

It is clear that F̃ is well defined and supp F̃ in k is a compact subset contained
in C0 = k−1

1 C1. Moreover, by a simple computation, one shows that F̃ verifies
the covariance condition with respect to the polarization k · P (l0) and also the
GS-property.

In order to show that F̃ satisfies the compatibility condition, let us remark
that if k = k′ modKl0 , α(k, k′) previously defined is invariant by translation
by k1. This implies that

F̃ (k,x, y)

:= F̃1(k1k, k1 · x,k1 · y)

=
1

α2(k1k, k1k′)

∫
k1k·P (l0)/(k1k′ ·P (l0)∩k1k·P (l0))

∫
k1k·P (l0)/(k1k′ ·P (l0)∩k1k·P (l0))

F̃1

(
k1k

′, (k1 · x)p, (k1 · y)q
)
χk1k′ ·l0(p)χk1k′ ·l0(q)dṗ dq̇

=
1

α2(k1k, k1k′)

∫
k1k·P (l0)/(k1k′ ·P (l0)∩k1k·P (l0))

∫
k1k·P (l0)/(k1k′ ·P (l0)∩k1k·P (l0))

F̃
(
k′, x

(
k−1
1 · p

)
, y

(
k−1
1 · q

))
χk′ ·l0

(
k−1
1 · p

)
χk′ ·l0

(
k−1
1 · q

)
dṗ dq̇

=
1

α2(k, k′)

∫
k·P (l0)/(k′ ·P (l0)∩k·P (l0))

∫
k·P (l0)/(k′ ·p(l0)∩k·P (l0))

F̃
(
k′, xp1, yq1

)
χk′ ·l0(p1)χk′ ·l0(q1)dṗ1 dq̇1

(
p1 = k−1

1 p and q1 = k−1
1 q

)
,

that is, F̃ has the correct compatibility condition. Finally, as F̃ satisfies the
hypotheses of Theorem 10, there exists a Schwartz function f in N such that
π̃0,k(f) has F̃ (k, ·, ·) as an operator kernel for all k ∈ C0 and π̃0,k(f) = 0 if
k ∈ K\C0. Let us define f1(x) := fk−1

1 (x) = f(k−1
1 · x). It is then easy to

check that π̃0,k(f1) has F̃1(k, ·, ·) as an operator kernel for all k ∈ C1 and
π̃0,k(f1) = 0 if k ∈ K\C1.

The continuity of the retract is given by the fact that the translation is
continuous and that the retract given by Theorem 10 is continuous. �

7.3. A global retract theorem for π̃0,k. Let us denote by N the space
of the smooth kernel functions defined on K × N × N , satisfying the GS-
property, the covariance condition with respect to the polarizations k · P (l0)
and the compatibility condition defined in the previous section.
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Theorem 12. For every F̆ ∈ N, there exists a Schwartz function f̃ on N
such that π̃0,k(f̃) has F̆ (k, ·, ·) as an operator kernel for all k ∈ K.

Moreover, there exists for the construction of the retract a precise algorithm
such that the map

F̆ �−→ R(F̆ ) := f̃

is continuous in the given topologies.

Proof. Let us denote by (hi)i∈I a partition of unity associated to a finite
number of translates of W obtained by Theorem 10. As the translates of W
are all saturated with respect to Kl0 , we may assume that all the functions
hi are constant on the classes modulo Kl0 . Then we define for all i ∈ I ,

F̃i(k,x, y) := hi(k)F̆ (k,x, y).

The functions Fi satisfy the hypotheses of Theorem 11. This implies that for
all i ∈ I , there exists fi ∈ S(N) such that π̃0,k(fi) has F̃i(k, ·, ·) as an operator
kernel for all k ∈ K. Since

F̆ (k,x, y) =
∑
i∈I

hi(k)F̆ (k,x, y) =
∑
i∈I

F̃i(k,x, y)

for all k ∈ K, it is sufficient to consider f̃ :=
∑

i∈I fi ∈ S(N). Then π0,k(f̃)
has F̆ (k, ·, ·) as an operator kernel for all k ∈ K.

For a fixed partition of unity of K, the maps F̆ �−→ F̃i are continuous. The
continuity of the retract of F̃i given in Theorem 11, allows to conclude to the
continuity of F̆ �−→ R(F̆ ). �

This theorem is important for its own sake, but it is also useful to construct
other types of retracts.

Corollary 1. For every k0 ∈ K, there exists a local section (S, ζ) of
K/Kl0 containing k̇0 = k0 modKl0 such that ζ(S) is a submanifold of K. Let
C0 be any compact subset contained in ζ(S). For every F̃ ∈ N

C0
ζ(S), there ex-

ists a Schwartz function f on N such that π̃0,k(f) has F̃ (k, ·, ·) as an operator
kernel if k ∈ ζ(S) and π̃0,k(f) = 0 if k̇ /∈ S.

Moreover, there exists a precise algorithm such that the map

F̃ �−→ R(F̃ ) := f

is continuous in the given topologies.

8. K-retract theory for kπl0

As in the previous sections, l0 will either be aligned and generic in the
sense of Ludwig–Zahir, or l0 ∈ Sj aligned, 5 ≤ j ≤ 10, if N = F4,2. In this part
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of the paper, we shall also give a retract theorem for the representation kπl0

defined as follows:
kπl0(x) := πl0

(
k−1 · x

)
, x ∈ N.

This result will be necessary for the study of the density of Schwartz functions
in the K-orbits and for the characterization of K-prime ideals in Sections 9
and 10.

It is easy to check that kπl0 is unitary equivalent to π̃0,k and that the
corresponding intertwining operator is given by:

U : Hkπl0
−→ Hπ̃0,k

,

ξ �−→ U ξ(t) := ξ
(
k−1 · t

)
.

This equivalence will allow us to deduce a local retract theorem for kπl0 on a
section of K/Kl0 from a local retract theorem for π̃0,k on the same section.

Theorem 13. For every k0 ∈ K, there exists a local section (S, ζ) of K/Kl0

containing k̇0 = k0 modKl0 such that ζ(S) is a submanifold of K. Let C0

be any compact subset contained in ζ(S). For every ˜̃F ∈ N
C0
ζ(S), there exists

a Schwartz function f on N such that kπl0(f) has ˜̃F (k, ·, ·) as an operator
kernel if k ∈ ζ(S) and kπl0(f) = 0 if k̇ /∈ S.

Moreover, there exists a precise algorithm such that the map

˜̃F �−→ R( ˜̃F ) := f

is continuous in the given topologies.

Proof. Let us define F̃ as follows:

F̃ (k,x, y) := U ⊗ U ˜̃F (k,x, y)

= ˜̃F
(
k, k−1 · x,k−1 · y

)
.

Then F̃ satisfies the hypotheses of Corollary 1 and there exists f ∈ S(N) such
that π̃0,k(f) has F̃ (k, ·, ·) as an operator kernel if k ∈ ζ(S) and π̃0,k(f) = 0 if
k̇ /∈ S.

So
˜̃F (k,x, y) = F̃ (k, k · x,k · y)

=
∫

k·P (l0)

f
(
kx · p · (ky)−1

)
χk·l0(p)dp

=
∫

k·P (l0)

fk
(
x
(
k−1p

)
y−1

)
χl0

(
k−1p

)
dp

(
p1 = k−1 · p

)
=

∫
P (l0)

fk
(
xp1y

−1
)
χl0(p1)dp1
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is the operator kernel of πl0(f
k) = kπl0(f), for k ∈ C0. If k /∈ C0 · Kl0 , π̃0,k(f) =

0 and kπl0(f) = 0 as π̃0,k and kπl0 are equivalent. �

9. Density of Schwartz functions in the orbit

The aim of this section is to study the relationship between the kernels of
the K-orbits KerΩl and KerΩl ∩ S(N). In order to have this relationship, we
rely essentially on the retract theory of Section 8 and on previous results for
an exponential action [15].

Let us first start by giving some definitions.

Definition 7. For all l ∈ n∗, we denote by Ωl the K-orbit given by

Ωl := {k · l|k ∈ K}.

Since kπl, π̃k = indN
k·P (l) χk·l and πk·l = indN

P (k·l) χk·l are equivalent, we can
justify the following definition of the kernel of an orbit:

Definition 8. Let l ∈ n∗. We define the kernel of the orbit Ωl by

KerΩl =
{
f ∈ L1(N)|kπl(f) = 0 ∀k ∈ K

}
=

{
f ∈ L1(N)|πk·l(f) = 0 ∀k ∈ K

}
.

We take l0 an aligned and generic linear form in the sense of Ludwig–
Zahir (or l0 aligned and l0 ∈ Sj , 5 ≤ j ≤ 10, in the case of N = F4,2). Let us
choose a finite family of sections (Si, ζi)i∈I , I finite, of K/Kl0 together with
finite families of open sets with compact closure Wi ⊂ W i ⊂ Vi ⊂ Si, covering
K/Kl0 , and a corresponding partition of unity of C ∞-functions (hi)i∈I of
K/Kl0 such that supphi ⊂ Wi ⊂ W i for all i and

∑
i∈I hi ≡ 1 on K/Kl0 . We

may even assume that each Wi is completely contained in at least one chart
of the manifold K/Kl0 . Then Theorem 13 may be applied to the sections
(Si, ζi).

Remark 12.
1. Every hi can be identified with a smooth function with compact support

in a space Rp since supphi is totally contained in one chart of K/Kl0 .
2. ζi(W i) is a compact subset contained in ζi(Si).

9.1. Relationship between f and fi. Let us assume that either l0 is an
aligned and generic (in the sense of Ludwig–Zahir) linear form, or an aligned
element of Sj (5 ≤ j ≤ 10, in the case of the group F4,2), or defines a character.
Let f ∈ S(N). We denote by F̃ (k, ·, ·) the kernel of the operator kπl0(f) for
all k ∈ K and ˜̃F (k, ·, ·) the kernel of the operator kπl0(f) for all k ∈ ζ(S). Let
us consider

F̃i(k, ·, ·) := hi(k̇)F̃ (k, ·, ·) ∀k ∈ K,

˜̃Fi := F̃i|ζi(Si)×N ×N .
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It is then easy to see that ˜̃Fi ∈ N
Ci

ζi(Si)
where Ci := ζi(W i) is a fixed compact

subset contained in ζi(Si). By applying Theorem 13, there exists fi ∈ S(N)
such that kπl0(fi) has ˜̃Fi(k, ·, ·) as an operator kernel for every k ∈ ζi(Si) and
kπl0(fi) = 0 if k̇ /∈ Si.

Let us define
f̃ :=

∑
i∈I

fi ∈ S(N).

Then we have the following proposition.

Proposition 2. For any f ∈ S(N),

f = f̃ mod KerΩl0 ∩ S(N).

Proof. The result is obtained by a simple computation, using the fact that
kπl0(fi) = hi(k̇)(kπl0(f)), for all k ∈ K. �

9.2. Relationship between KerΩl0 and KerΩl0 ∩ S(N). Let ψ ∈ C ∞(K)
be such that

ψ ≥ 0, ψ(e) > 0,

∫
K

ψ(k)dk = 1.

For every f ∈ L1(N), we consider

f 
 :=
∫

K

fkψ(k)dk,

where fk(x) := f(k · x) for all x ∈ N .
It is easy to check that the operator kernel of

kπl

(
f 


)
=

∫
K

k′ ′
πl(f)ψ

(
k′ ′k−1

)
dk′ ′

is given by

F̃ 
(k, ·, ·) =
∫

K

F̃
(
k′ ′, ·, ·

)
ψ

(
k′ ′k−1

)
dk′ ′.

Lemma 1. For every section (S, ζ) of K/Kl0 , for every compact subset
of K of the form ζ(W ), with W compact and W ⊂ V ⊂ V ⊂ S for some open
subset V of K/Kl0 , ζ(W ) is contained in p−1(V ) = V · Kl0 ⊂ p−1(S) = S · Kl0 .
Moreover, there exists a compact neighborhood K0 of e in K such that

K−1
0 · ζ(W ) ⊂ p−1(V ) ⊂ p−1(V ) ⊂ p−1(S),

where p : K −→ K/Kl0 is the canonical projection.

Proof. Obvious. �

Let us now assume that F̃ (k, ·, ·) is a kernel function associated to the
representations kπl0 and that the support of F̃ in k is contained in ζ(W ) ·
Kl0 . Let K0 be a compact neighborhood of e as in Lemma 1 and let ψ be
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chosen as previously such that suppψ ⊂ K0. Let us consider F̃ 
 and ˜̃F 
 :=
F̃ 
 |ζ(S)×N ×N . Then the support of ˜̃F 
 is contained in

K
 :=
(
K−1

0 · ζ(W ) · Kl0

)
∩ ζ(S) =

(
K−1

0 · ζ(W ) · Kl0

)
∩ ζ(V )

which is a compact subset of K, contained in ζ(S). If we replace f , F̃ , W by
fi, F̃i, Wi, i ∈ I , as in Section 9.1, we may of course choose the same K0 and
the same function ψ for all i ∈ I . This will be done in Proposition 3.

Proposition 3. If l0 ∈ n∗ is a generic linear form in the sense of Ludwig–
Zahir, or l0 ∈ Sj (5 ≤ j ≤ 10, in the case of the group F4,2) or if l0 defines a
character on N , we have

L1(N) ∗ L1(N) ∗ KerΩl0 ∗ L1(N) ∗ L1(N) ⊂ KerΩl0 ∩ S
(
N

)L1(N)
.

Proof. The proof of this proposition is an adaptation to the case of a com-
pact action, of the corresponding proof in the case of an exponential action
[15]. We will only give the parts of the proof which are really essential, which
differ from the one of [15], or which show the use of the retract results. For
the other parts of the proof, we refer to [15].

Let us first assume that l0 is generic in the sense of Ludwig–Zahir or that
l0 ∈ Sj . We may of course assume that l0 is aligned. By Hahn–Banach, we
have to show that for every φ ∈ L∞(N) such that 〈φ,KerΩl0 ∩ S(N)〉 = 0, we
also have 〈

φ,L1(N) ∗ L1(N) ∗ KerΩl0 ∗ L1(N) ∗ L1(N)
〉

= 0.

Let f ∈ S(N) and g1, g2, g3, g4 ∈ S(N). We apply the arguments of [15] to the
functions fi given by the Section 9.1.

Let us fix i ∈ I . As in [15], we define (g1 ∗ g2 ∗ fi ∗ g3 ∗ g4)
 and we con-
sider the corresponding operator kernel for the representations kπl0 , which we
denote (G̃1 ◦ G̃2 ◦ ˜̃Fi ◦ G̃3 ◦ G̃4)
, according to the notation of Section 9.2.

One shows that supp(G̃1 ◦ G̃2 ◦ ˜̃Fi ◦ G̃3 ◦ G̃4)
 ⊂ C

i × N × N where C


i :=
(K−1

0 · ζi(Wi) · Kl0) ∩ ζi(Si) is a compact subset of ζi(Si), as shown in the
proof of Lemma 1.

Let S(C

i , S(Rd × Rd)) denote the set of C ∞ functions with support in the

fixed compact set C

i and with values in the Schwartz space S(Rd × Rd), where

d denotes the dimension of n/p(l0) and where p(l0) is a polarization at l0.
Thanks to the covariance relation and to a fixed Malcev basis of n with

respect to p(l0), we may identify (G̃1 ◦ G̃2 ◦ ˜̃Fi ◦ G̃3 ◦ G̃4)
 with an element of
S(C


i , S(Rd × Rd)).
We define a linear form μi on S(C


i , S(Rd × Rd)) by

〈μi,G〉 := 〈φ, g〉,
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where g = R(G) is the retract of G obtained by Theorem 13. It is well defined
as 〈φ,KerΩl0 ∩ S(N)〉 = 0.

As C

i is entirely contained in one chart of K/Kl0 , it may be identified

with a compact subset of some Rp and μi may be identified with a tempered
distribution. It is hence of the form

〈μi,G〉

=
∑

|α|+|β|+|γ|≤M

∫
C�

i

τα,β,γ(k,x, y)
(

∂

∂k

)α(
∂

∂x

)β(
∂

∂y

)γ

G(k,x, y)dk dxdy,

where τα,β,γ is a continuous function with moderate growth and where k is
identified with its coordinates in the given chart (see [22]). We then define a
linear form φ
 on S(N) by

〈
φ
, f

〉
:=

〈
φ, (g1 ∗ g2 ∗ f ∗ g3 ∗ g4)


〉
.

Using the precise form of μi, the same arguments as in Proposition 4.1 of [15]
show that ∣∣〈φ
, fi〉

∣∣ ≤ C(i,ψ) · sup
k∈K

∥∥k
πl0(fi)

∥∥
op

≤ C(i,ψ) · sup
k∈K

∥∥k
πl0(f)

∥∥
op

≤ C(i,ψ)‖f ‖1

for some constant C(i,ψ).
Let us put C(ψ) :=

∑
i∈I C(i,ψ). As f = f̃ +h for some h ∈ KerΩl0 ∩ S(N)

and as 〈φ,KerΩl0 ∩ S(N)〉 ≡ 0, it is easy to check that 〈φ
, h〉 = 0 and hence∣∣〈φ
, f 〉
∣∣ =

∣∣〈φ
, f̃ 〉
∣∣

≤
∑
i∈I

∣∣〈φ
, fi〉
∣∣

≤ C(ψ) · sup
k∈K

∥∥k
πl0(f)

∥∥
op

≤ C(ψ)‖f ‖1

for all f ∈ S(N). So the linear form φ
 may be extended to all L1(N), with
the same bounds. Moreover, if f ∈ KerΩl0 , then 〈φ
, f 〉 = 0. We finish the
proof as in Proposition 4.1 of [15].

If 〈l0, [n,n]〉 = 0, then kπl0 = χk·l0 is a character and a simplified version of
the previous arguments holds. �

Theorem 14. Let l0 be a generic linear form in the sense of Ludwig–Zahir
or let l0 ∈ Sj (5 ≤ j ≤ 10, in the case of the group F4,2), or let l0 be a linear
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form defining a character, that is, 〈l0, [n,n]〉 = 0. Then

KerΩl0 = KerΩl0 ∩ S(N)
L1(N)

.

Proof. Let υι be an approximate identity of L1(N). Then, for all f ∈
KerΩl0 , we have

υι ∗ υι ∗ f ∗ υι ∗ υι ∈ L1(N) ∗ L1(N) ∗ KerΩl0 ∗ L1(N) ∗ L1(N)

⊂ KerΩl0 ∩ S(N)
L1(N)

.

By taking the limit in ι, the result holds. �

10. K-prime ideals

Definition 9. An ideal I is a K-prime ideal of L1(N), if I is K-invariant
and if, for all K-invariant ideals I1, I2 of L1(N),

I1 ∗ I2 ⊂ I =⇒ I1 ⊂ I or I2 ⊂ I.

Theorem 15. Let I be a proper closed K-prime ideal of L1(N). Then
there exists a K-orbit Ωl0 in n∗ such that

I ∩ S(N) = KerΩl0 ∩ S(N).

If l0 is a generic linear form in the sense of Ludwig–Zahir (for at least one
Jordan–Hölder basis), or l0 ∈ Si (in the case of the group F4,2, i = 5, . . . ,10)
or if l0 defines a character (〈l0, [n,n]〉 = 0), we have

I = KerΩl0 .

Proof. The proof of this result is an adaptation of the proof for an expo-
nential action [15]. As a matter of fact, I ∩ S(N) is a K-prime ideal of S(N)
which is closed in the continuous norm ‖ · ‖1. By [16] which remains valid for
compact actions, it has to be of the form KerΩl0 ∩ S(N). We use Theorem 14
to finish the proof. �

Examples. In the cases of the action of SO(2n) on Hn (Heisenberg group),
of SO(3) on F3,2 (free nilpotent Lie group of step 2 on 3 generators) or of SO(4)
on F4,2, the K-prime ideals of L1(N) coincide with the kernels of K-orbits.

As a matter fact, in the cases of Hn or F3,2 every linear form l0 is either
generic in the sense of Ludwig–Zahir with respect to a suitable Jordan–Hölder
basis or it defines a character. In the case of F4,2, a Fourier inversion theorem
also exists for the intermediate layers and hence the result on K-prime ideals
remains correct.

This leads to the following conjecture:

Conjecture 1. Let N be a connected, simply connected, nilpotent Lie
group and let K ⊂ Aut(N) be a compact subgroup of the automorphism group
of N , acting smoothly on N . Then every K-prime ideal coincides with the
kernel of a K-orbit.
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[20] D. Poguntke, Über das Synthese-Problem für nilpotente Liesche Gruppen, Math. Ann.

269 (1984), 431–467. MR 0766009
[21] D. Poguntke, Spectral synthesis of orbits of compact groups, Miniconferences on har-

monic analysis and operator algebras (Canberra/Aust. 1987), Proc. Cent. Math.
Anal. Aust. Natl. Univ., vol. 16, Austral. Nat. Univ., Canberra, 1988, pp. 247–261.

MR 0954001

http://www.ams.org/mathscinet-getitem?mr=1000329
http://www.ams.org/mathscinet-getitem?mr=0498971
http://www.ams.org/mathscinet-getitem?mr=1070979
http://www.ams.org/mathscinet-getitem?mr=0957072
http://www.ams.org/mathscinet-getitem?mr=1631937
http://www.ams.org/mathscinet-getitem?mr=0578891
http://www.ams.org/mathscinet-getitem?mr=2752442
http://www.ams.org/mathscinet-getitem?mr=0399344
http://www.ams.org/mathscinet-getitem?mr=0486311
http://www.ams.org/mathscinet-getitem?mr=0604474
http://www.ams.org/mathscinet-getitem?mr=0686694
http://www.ams.org/mathscinet-getitem?mr=0692858
http://www.ams.org/mathscinet-getitem?mr=0974317
http://www.ams.org/mathscinet-getitem?mr=1623287
http://www.ams.org/mathscinet-getitem?mr=1859763
http://www.ams.org/mathscinet-getitem?mr=2380066
http://www.ams.org/mathscinet-getitem?mr=1259193
http://www.ams.org/mathscinet-getitem?mr=0967317
http://www.ams.org/mathscinet-getitem?mr=0766009
http://www.ams.org/mathscinet-getitem?mr=0954001


1266 R. LAHIANI AND C. MOLITOR-BRAUN
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