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REAL ANALYTICITY OF HAUSDORFF DIMENSION OF
JULIA SETS OF PARABOLIC POLYNOMIALS

fλ(z) = z(1 − z − λz2)

HASINA AKTER AND MARIUSZ URBAŃSKI

Abstract. We prove that D∗, the set of all parameters λ ∈ C \
{0} for which the cubic polynomial fλ is parabolic and has no

other parabolic or finite attracting periodic cycles, contains a

deleted neighborhood D0 of the origin 0. Our main result is that if

D0 is sufficiently small then the function D0 � λ �→ HD(J(fλ)) ∈
R is real-analytic. This function ascribes to the polynomial fλ

the Hausdorff dimension of its Julia set J(fλ). The theory of

parabolic and hyperbolic graph directed Markov systems with
infinite number of edges is used in the proofs.

1. Introduction

Hausdorff dimension as a function of subsets of a given metric space usually
behaves extremely irregularly. For example if n ≥ 1 and K(Rn) denotes the
space of all non-empty compact subsets of of the Euclidean space R

n, then
the function K(Rn) � K �→ HD(K) ∈ R, ascribing to the compact set K its
Hausdorff dimension HD(K), is discontinuous at every point. It is therefore
surprising indeed that the function c �→ HD(Jc) is continuous, where c belongs
to M0, the main cardioid of the Mandelbrot set M, and Jc denotes the Ju-
lia set of the polynomial C � z �→ z2 + c. This is a relatively straightforward
consequence of (classical) Bowen’s formula which states that the Hausdorff
dimension of a conformal expanding repeller is given by the unique zero of
the corresponding pressure function. Bowen’s formula was proved in [1] for
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limit sets of quasi-Fuchsian groups, and it was the first application of thermo-
dynamic formalism to fractal geometry. Its extension to conformal expanding
repellers is rather straightforward; see [9] for the proof and related issues. As
a matter of fact Bowen’s formula can be used to prove much more. Namely,
that the function M0 � c �→ HD(Jc) is real-analytic. This fact was proved in
[11] based on considerations involving dynamical zeta-functions. Going be-
yond the classical (finite-to-one) conformal expanding case, real analyticity
of the Hausdorff dimension was proved in [17] for Julia–Lavours maps and in
[16] for the hyperbolic family of exponential maps. The proofs in both papers
are based on a different idea than in [11]; their point is to exploit complex an-
alyticity of the corresponding (generalized) Perron–Frobenius operators and
to prove applicability of the Kato–Rellich perturbation theorem. Further re-
sults in this direction (for expanding systems) and simplifications of the proof
can be found in [8] and [10], see also [7] and [14]. Real analyticity for still
expanding though random systems is proven in [6] with the use of [13], comp.
[12].

Going beyond the expanding case, up to our knowledge, the first real ana-
lyticity result is proved in [15] for analytic families of semi-hyperbolic general-
ized polynomial-like mappings. In this realm, the Julia set is allowed to con-
tain critical points but their forward orbits are assumed to be non-recurrent.
This allows us to associate with such a family an analytic family of conformal
graph directed Markov systems (in the sense of [5]) with infinite number of
edges and to reduce the problem of real analyticity of Hausdorff dimension
of limit sets of this family. In the current paper we investigate another im-
portant case where the expanding property breaks down, this time because
of presence of parabolic points. We choose to deal with this phenomenon by
working with a concrete but representative family of cubic polynomials

fλ(z) = z
(
1 − z − λz2

)
.

Note that a simpler, allegedly more natural, family z �→ z(1 − λz) is too trivial
since all its members are conjugate via Möbius transformations, and therefore
all their Julia sets have the same Hausdorff dimension. On the other hand,
what concerns the above family {fλ}, we prove that they are generally not
even bi-Lipschitz conjugate on their Julia sets.

A rational function f : Ĉ → Ĉ was called in [2] parabolic if its restriction to
the Julia set J(f) is expansive but not expanding, equivalently, if the Julia set
contains no critical points but it contains at least one rationally indifferent
(parabolic) periodic point. We prove in Section 2 (Theorem 2.4) that D0,
the set of all parameters λ ∈ C for which the cubic polynomial fλ is para-
bolic and has no other parabolic or finite attracting periodic points, contains
a deleted neighborhood of the origin 0. Our main result is that the func-
tion D0 � λ �→ HD(J(fλ)) ∈ R is real analytic. As in [15], the general idea
is to associate to the family {fλ}λ∈D0 an analytic family, call it {Sλ}λ∈D0 ,
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of conformal graph directed Markov systems with infinite number of edges
in order to reduce the problem of real analyticity of Hausdorff dimension for
this family to prove the corresponding statement for the family {Sλ}λ∈D0 .
The basic steps of this approach are these. In Section 2, The Family P3, we
prove basic facts about polynomials fλ, λ ∈ C. In Section 3, Parabolic Graph
Directed Markov Systems, we introduce the class of parabolic graph directed
Markov systems (PGDMS) and provide the reader with their basic properties.
In particular, we associate to each PGDMS S the canonical hyperbolic sys-
tem Ŝ. The concept of parabolic graph directed Markov System generalizes
slightly the notion of parabolic iterated function systems introduced in [3],
further investigated in [4], and treated at length in the book [5]. In Section 4,
Analytic Families of PGDMS, we first generalize a theorem from [15] about
real analyticity of the Hausdorff dimension for regularly analytic families of
conformal (hyperbolic) graph directed Markov Systems. Then we introduce
the concept of a holomorphic family of holomorphic parabolic graph directed
Markov systems, and the central part of the section is a rather long proof
that a holomorphic family {Sλ}λ∈Λ of holomorphic parabolic graph directed
Markov systems gives rise to a locally regular analytic family {Ŝl

λ}λ∈Λ (with
some l ≥ 1) of corresponding conformal (hyperbolic) graph directed Markov
Systems. These considerations are so long since they require a detailed anal-
ysis of local behavior of families of parabolic maps around their common
parabolic fixed points. This permits us to conclude, see Corollary 4.10, the
section with the theorem that the Hausdorff dimension of limit sets of a holo-
morphic family of holomorphic parabolic graph directed Markov systems is
real analytic. In Section 5, PGDMS Associated With fλ, λ ∈ D0, which is
the last section of the paper, we apply the machinery developed in the pre-
vious sections to study the family of polynomials fλ, λ ∈ D0. The idea is to
associate to this family of polynomials a holomorphic family of holomorphic
parabolic graph directed Markov systems whose limit sets coincide with the
Julia sets of polynomials fλ up to a countable set. Then to apply Corol-
lary 4.10.

2. The family P3

By definition, the family P3 consists of all cubic polynomials of the form

(2.1) fλ(z) = z
(
1 − z − λz2

)
, λ ∈ C \ {0}.

Note that

(2.2) fλ(0) = 0

and

(2.3) f ′
λ(z) = 1 − 2z − 3λz2.
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Hence f ′
λ(0) = 1, and therefore (looking also at (2.1)), we get the following

proposition.

Proposition 2.1. The number 0 is a parabolic fixed point of fλ with mul-
tiplicity equal to 1 and with one petal. The ray [0,+∞) forms its attracting
direction and the ray (−∞,0] forms its repelling direction.

The other finite fixed point of fλ is the non-zero solutions to the equation
1 − z − λz2 = 1, that is,

z = − 1
λ

.

We have,

(2.4) f ′
λ

(
− 1

λ

)
= 1 +

2
λ

− 3
λ

= 1 − 1
λ

.

Since any two polynomials bi-Lipschitz conjugate on their Julia sets have the
same moduli of multipliers at corresponding periodic points, (2.4) yields the
following.

Theorem 2.2. If λ,γ ∈ (−∞,1/2), λγ > 0, and λ �= γ, then fλ and fγ are
not bi-Lipschitz conjugate on their Julia sets.

The critical points of fλ are the solutions to the equation 1 − 2z − 3λz2 = 0,
i.e.,

(2.5) c
(1)
λ =

−1 +
√

1 + 3λ

3λ
and c

(2)
λ =

−1 −
√

1 + 3λ

3λ
,

and we take the convention that
√

1 = 1. We shall prove the following.

Lemma 2.3. For all λ ∈ C \ {0} sufficiently small in modulus,

lim
n→∞

fn
λ

(
c
(2)
λ

)
= ∞.

Proof. It follows from (2.5) that for all λ ∈ C \ {0} sufficiently small in
modulus, say

λ ∈ B∗(0,R1) := B(0,R1) \ {0},

7
12|λ| ≤

∣∣c(2)
λ

∣∣ ≤ 3
4|λ| .

So, ∣∣fn
λ

(
c
(2)
λ

)∣∣ =
∣∣c(2)

λ

∣∣∣∣1 − c
(2)
λ − λ

(
c
(2)
λ

)2∣∣(2.6)

≥
∣∣c(2)

λ

∣∣(∣∣c(2)
λ

∣∣ − |λ|
∣∣c(2)

λ

∣∣2 − 1
)

≥ 7
12|λ|

(
7

12|λ| − 9
16|λ| − 1

)

=
7

12|λ|

(
28

48|λ| − 27
48|λ| − 1

)
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=
7

12|λ|

(
1

48|λ| − 1
)

≥ 7
12|λ|

1
96|λ|

≥ 7
1200

1
|λ|2 ≥ 1

29|λ|2 ,

where writing the second last inequality we assumed that R1 ≤ 1
96 which

implies that,
1

48|λ| − 1 − 1
96|λ| =

1
96|λ| − 1 ≥ 1

96R1
− 1 ≥ 0.

Now, if |z| ≥ (29|λ|2)−1 and λ ∈ B∗(0,R2) with 0 < R2 ≤ R1 sufficiently small,
we get ∣∣fλ(z)

∣∣ = |z|
∣∣1 − z − λz2

∣∣ ≥ |z|
(

|λ|
∣∣z2

∣∣ − |z| − 1
)

(2.7)

= |z|
(

|z|
(

|λ| |z| − 1
)

− 1
)

≥ |z|
((

29|λ|2
)−1((29|λ|

)−1 − 1
)

− 1
)

≥ |z|
(
29|λ|2

)−1(210|λ|
)−1 − 1

≥ |z|
(
29|λ|2

)−1(211|λ|
)−1

= 2−20|λ| −3|z| ≥ 2|z|.
Combining this with (2.6), we get by a straight forward induction, for all
λ ∈ B∗(0,R2) that ∣∣fn+1

λ

(
c
(2)
λ

)∣∣ ≥ 2n
(
29|λ|2

)−1
.

We are therefore done. �
Let

D0 =
{

λ ∈ C \ {0} : fλ is a parabolic polynomial lim
n→∞

fn
λ (c(2)

λ ) = ∞ and

fλ has no other parabolic or finite attracting periodic points
}

and let
P 0

3 = {fλ : λ ∈ D0}.

Now, the following theorem immediately follows from Lemma 2.3 and Fatou–
Sullivan’s classification of Fatou components.

Theorem 2.4. There exists R > 0 such that B∗(0,R) ⊆ D0.

3. Parabolic graph directed Markov systems

In the paper [3], the class of parabolic iterated function systems has been
introduced, in [4] their finer fractal properties were investigated, and in the
book [5] this class has been studied at length. In this paper, we need a
slight generalization of this concept, namely parabolic graph directed Markov
system. We define them now. Suppose we are given an oriented multigraph
〈E,V 〉 consisting of countably many edges E and finitely many vertices V .
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Suppose also that an incidence matrix A : E × E → {0,1} is given. Any finite
word ω ∈ E∗ =

⋃∞
n=0 En is called A-admissible provided that Aωiωi+1 = 1 for

all 1 ≤ i ≤ |ω| − 1, where |ω| is the length of ω. The set of all finite A-
admissible words is denoted by E∗

A and the set of all words of some length
0 ≤ n ≤ ∞ is denoted by En

A. The matrix A is called finitely irreducible if
there exists a finite set Λ ⊆ E∗

A such that for all α,β ∈ E∗
A there exists γ ∈ Λ

such that αβγ ∈ E∗
A. The matrix A is called finitely primitive if the set Λ can

be chosen to consist of the words with the same length. Assume further that
an integer number d ≥ 1 is fixed and for every v ∈ V a compact connected set
Xv ⊆ Rd is given, and an open connected set Wv ⊇ Xv is also given. Assume
also that two functions i, t : E → V are given with the property that Aab = 1
whenever t(a) = i(b). In most known natural examples, this implication goes
in fact in both directions, but we do not assume this. Assume lastly that for
every e ∈ E a continuous injective map ϕe : Wt(e) → R

d is given. Fix also a
non-empty finite set Ω ⊆ E such that t(e) = i(e) for all e ∈ Ω. Call a word
ω ∈ E∗

A hyperbolic if either ω|ω| /∈ Ω or ω|ω|−1 �= ω|ω| and ω|ω| ∈ Ω. All the
objects introduced above are required to satisfy the following conditions.
(2a) Xv = IntXv for all v ∈ V .
(2b) ϕe(Xt(e)) ⊆ Xi(e) for all e ∈ E. This enables us to define for every ω ∈

E∗
A, say ω ∈ En

A, the map ϕω := ϕω1 ◦ ϕω2 ◦ · · · ◦ ϕωn : Xt(ωn) → Xi(ω1).
Put also t(ω) = t(ωn) and i(ω) = i(ω1).

(2c) (Open Set Condition) ϕa(IntXt(a)) ∩ ϕb(IntXt(b)) = ∅ whenever a, b ∈ E
and a �= b.

(2d) (Cone Property) There exists γ > 0 such that for every v ∈ V and for
every x ∈ Xv there exists an open cone Cone(x,γ) ⊆ IntXv with vertex
x, central angle γ and some altitude l which may depend on x.

(2e) If ω ∈ E∗
A is a hyperbolic word, then ϕω : Xt(ω) → Xi(ω) extends to a

C2-conformal map from Wt(ω) to Wi(ω). This conformal map is defined
by the same symbol ϕω .

(2f) (Bounded Distortion Property) There exists K ≥ 1 such that for every
hyperbolic word ω ∈ E∗

A and all x, y ∈ Wt(ω),

|ϕ′
ω(y)|

|ϕ′
ω(x)| ≤ K.

Here and in the sequel for any conformal mapping ϕ, |ϕ′(z)| denotes the
similarity factor (equivalently its norm as a linear map from R

d into R
d)

of the differential ϕ′(z) : R
d → R

d. In addition, if ϕ : Wv → R
d for some

v ∈ V , then
‖φ′ ‖ := sup

{∣∣φ′(x)
∣∣ : x ∈ Wt(ω)

}
.

(2g) There are constants α > 0 and L ≥ 1 such that∣∣∣∣ϕ′
e(y)

∣∣ −
∣∣ϕ′

e(x)
∣∣∣∣ ≤

∥∥ϕ′
e

∥∥‖y − x‖α

for all e ∈ E and all x, y ∈ Wt(e).
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(2h) For every hyperbolic word, ω ∈ E∗
A, ‖ϕ′

ω ‖ < 1.
(2i) For every e ∈ Ω, t(e) = i(e) and there exists a unique fixed point xe of

the map ϕe : Xt(e) → Xi(e). In addition, |ϕ′
e(xe)| = 1.

(2j) For every e ∈ Ω,

lim
n→∞

diam
(
ϕen(Xt(e))

)
= 0.

This implies that
∞⋂

n=0

ϕen(Xt(e)) = {xe}.

Any system S satisfying the above conditions is called a parabolic (con-
formal) graph directed Markov system. It is abbreviated to as a PGDMS.
The set Ω is referred to as the set of parabolic vertices, the maps ϕe, e ∈ Ω,
are called parabolic maps, and xe, e ∈ Ω, are called parabolic fixed points.
We could have in principle provided a somewhat less restrictive definition
of a PGDMS allowing finitely many parabolic periodic points (fixed points
of ϕω , ω ∈ E∗

A) that are not necessarily fixed points, but then passing to a
sufficiently large iterate Sn = {ϕω : ω ∈ En

A} we would end up in a parabolic
system as described above. Notice also that our assumptions imply each map
ϕω : Xt(ω) → Xi(ω) such that i(ω) = t(ω) to have a unique fixed point, call it
xω , and that the diameters diam(ϕn

ω(Xt(ω))) converge to zero exponentially
fast unless ω ∈ Ω∗. It is not difficult to prove (the same argument as in the
proof of Lemma 8.1.2 in [5] goes through) that

(3.1) lim
n→∞

sup
ω∈En

A

{
diam

(
ϕω(Xt(ω))

)}
= 0.

Since for every ω ∈ E∞
A , {ϕω|n

(Xt(ω))} ∞
n=1 is a descending sequence of compact

sets, this implies that the intersection
⋂∞

n=1 ϕω|n
(Xt(ωn)) is a singleton. Call

its only element π(ω). We thus have a well-defined map

π : E∞
A → X :=

⋃
v∈V

Xv.

Fixing s > 0 and endowing E∞
A with the metric ds(ω, τ) = exp(−s|ω ∧ τ |),

where ω ∧ τ is the longest common initial subword of ω and τ , the map
π : E∞

A → X becomes uniformly continuous. Its image, π(E∞
A ), is called the

limit set of the attractor of the PGDMS S, and is denoted by Js or simply by
J if only one system is under consideration. It satisfies the equation

J =
⋃
e∈E

ϕe(J ∩ Xt(e)).

Now, define the function ζ : E∞
A → R by the formula

ζ(ω) = log
∣∣ϕ′

ω1

(
π(σω)

)∣∣.
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It can be proved in the same way as Proposition 8.2.1 in [5] that the function
ζ is acceptable in the sense of [5]. This implies that for every t ∈ R the topo-
logical pressure P (σ, tζ) makes a meaningful sense as introduced in [5], and
all versions of the variational principle established in [5] hold. One can also
define the topological pressure without involving symbolic dynamics. Namely,
see Lemma 2.1.2 in [5], for all t ≥ 0

P (σ, tζ) = P (t) := lim
n→∞

1
n

log
∑

ω∈E∞
A

∥∥ϕ′
ω

∥∥t

∞.

Observe that if the set of edges E is infinite and the matrix A contains suffi-
ciently many 1s, for example, if A is finitely irreducible, then P (0) = +∞ and
it may happen that P (t) = +∞ for some positive t. It is therefore natural to
introduce the parameter

θ = θs := inf
{
t ≥ 0 : P (t) < +∞

}
.

Given an exponent t ≥ 0, a Borel probability measure m on X is said to
be t-conformal provided that m(J) = 1 and the following two conditions are
satisfied.
(1) m(ϕa(Xt(a)) ∩ ϕb(Xt(b))) = 0 for all a, b ∈ E with a �= b.
(2) m(ϕe(A)) =

∫
A

|ϕ′
e|t dm for every Borel set A ⊆ Xt(e) and e ∈ E.

It is easy to prove by induction that conditions (1) and (2) above continue
to hold with E replaced by E∗

A.
Assume from now on that the system S is finitely irreducible, i.e., the

incidence matrix A is finitely irreducible. Let

h = hs := HD(Js) and let β = sup
{
HD

(
μ ◦ π−1

)}
,

where the supremum is taken over all ergodic invariant probability shift-
invariant measures on E∞

A with finite entropy, and let e be the minimum
of all exponents t of all t-conformal measures on Js. With only minor modifi-
cations, one can prove in the same way as Theorem 8.3.6, the following version
of Bowen’s formula.

Theorem 3.1. h = β = e = the minimal zero of the pressure function t �→
P (t).

In order to get a better appreciation of the right-hand side of this theorem,
let us formulate the following proposition describing the shape of the graph
of the pressure function. Its proof, up to minor modifications, is the same as
the proof of the Proposition 8.2.5 in [5].

Proposition 3.2. The pressure function P (t) has the following proper-
ties:
(1) P (t) ≥ 0 for all t ≥ 0,
(2) P (t) > 0 for all 0 ≤ t < h,
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(3) P (t) = +∞ for all 0 ≤ t < θ,
(4) P (t) < +∞ for all t > 0,
(5) P (t) = 0 for all t ≥ h,
(6) P (t) is non-increasing,
(7) P (t) is strictly decreasing on [θ,h],
(8) P (t) is convex and continuous on (θ, ∞).

The main tool to study PGDMS is the associated (hyperbolic) conformal
graph directed Markov system in the sense from [3]. Following [3] and Sec-
tion 8.4 from [5], we will do it now. So, given a PGDMS S, the corresponding
hyperbolic system Ŝ is defined as follows.

The set of vertices V̂ = V . The set of edges

Ê =
{
anb : n ≥ 1, a ∈ Ω, b �= a,Aab = 1

}
∪ (E \ Ω).

The incidence matrix Â : Ê × Ê → {0,1} is naturally defined by requiring
that Âst = 1 if and only if As|s|t1 = 1, where |s| and t1 are understood here
in the sense of the set of edges E. The functions t and i are defined on Ê by
their restrictions to Ê treated as a subset of E∗

A and by the same procedure
the maps ϕe, e ∈ Ê, are defined. A finitely irreducible parabolic system S
is called properly finitely (pf) irreducible if and only if for every two letters
a, c ∈ E \ Ω there exists β ∈ Λ, Λ resulting from finite irreducibility of S, such
that aβc ∈ E∗

A and {β1, β|β| } ∩ (E \ Ω) �= ∅. Two basic facts about the system
Ŝ that make them useful in study the system S are these.

Theorem 3.3. If S is a PGDMS, then Ŝ is a CGDMS in the sense of
Chapter 4 in [5]. If S is pf-irreducible, then Ŝ is finitely irreducible.

Proof. The proof that Ŝ is a CGDMS is a minor modification of the proof
of Theorem 8.4.2 in [5]. So, suppose that S is pf-irreducible and let Λ be
the corresponding finite set contained in E∗

A. Shortening the words of Λ if
necessary, we may assume without loss of generality that no word of Λ contains
a subword of the form e2, e ∈ E. Call all such words reduced. If a word in
E∗

A can be split into blocks such that it becomes a member of Ê∗
Â
, slightly

abusing terminology, we say that this word is in Ê∗
Â
. Now notice that any

reduced word ω ∈ E∗
A with ω|ω| ∈ E \ Ω is in Ê∗

Â
. Notice also that for every

reduced word γ ∈ E∗
A at least one of the words γ or γ| |γ|−1 is in Ê∗

Â
. In order

to show that Ŝ is finitely irreducible, consider arbitrary two elements α,β ∈ Ê.
If both α,β ∈ E \ Ω, then by pf-irreducibility of S there exists a word γ ∈ Λ
such that αγβ ∈ E∗

A and γ|γ| ∈ E \ Ω. But then, by the first of the above
observations γ ∈ Ê∗

Â
, and we are done in this case. So, suppose that β = anb,

where n ≥ 1, a ∈ Ω, and b �= a. By finite irreducibility of S there exists γ ∈ Λ
such that αγa ∈ E∗

A. If γ ends with aq, q ≥ 1, remove from γ the last block aq .
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If γ ∈ Ê∗
Â
, then we are done. Otherwise, γ = γ̂c, where γ̂ ∈ Ê∗

Â
and c ∈ Ω \ {a}.

But then αγ̂(ca)anb ∈ Ê∗
Â

and γ̂(ca) ∈ Ê∗
Â
. So, we are also done in this case.

Finally, suppose that α = abn, n ≥ 1, a ∈ Ω, b �= a, and β ∈ E \ Ω. If b ∈ E \ Ω,
then by pf-irreducibility of S, there exists ρ ∈ Ê∗

Â
such that bρβ ∈ E∗

A. But
then anbnρβ ∈ Ê∗

Â
, and we are done. So, we may suppose that b ∈ Ω. By

finite irreducibility of S there exists γ ∈ Λ such that bγβ ∈ E∗
A. If γ ∈ Ê∗

Â
, we

are done. Otherwise, γ = γ̂c, where γ̂ ∈ Ê∗
Â

and c ∈ Ω. If γ̂ is the empty word
and c = b, then abnβ ∈ Ê∗

Â
and we are done (the empty word joins α = abn

and β). If c �= b, then (abn)(bc)β ∈ Ê∗
Â

and we are also done. So, suppose
that γ̂ is not empty. Write γ̂ = γ| |γ|−1d, where d ∈ E. If d ∈ E \ Ω, then by
pf-irreducibility of S there exists ρ ∈ Ê∗

Â
∩ Λ such that dρβ ∈ E∗

A. But then
γ̂ρ ∈ Ê∗

Â
and (anb)(γ̂ρ)β ∈ Ê∗

Â
. If d ∈ Ω, then, as d �= c, we have γ̂(dc) ∈ Ê∗

Â

and abn(γ̂(dc))β ∈ Ê∗
Â
. We are done in this case as well. In order to end the

proof notice that all the words in Ê∗
Â

we have constructed above to join all α

and β in E led from Λ to a finite set, say Λ̂. �

Theorem 3.4. The limit sets Js and Jŝ of the systems S and Ŝ, respectively
differ only by a countable set. In fact, Jŝ ⊆ Js and Js \ Jŝ ⊆ πs({ωe∞ ∈
E∞

A : e ∈ Ω}).

We call a parabolic system S finite if and only if the set of edges E is finite.
We call a parabolic system S holomorphic if d = 2 and all maps ϕe, e ∈ E,
are holomorphic, and ϕ′

e(xe) = 1 for all e ∈ Ω. Then for every e ∈ Ω, we have
the following power series expansion about xe. Namely,

(3.2) ϕe(z) = z + ae(z − xe)1+pe +
∞∑

n=2

an(e)(z − xi)n+pi , pi ≥ 1.

Hence (see [4]), ∣∣ϕ′
en(z)

∣∣ � n−(pe+1)/pe

uniformly on compact subsets of Xt(e) \ {xi}. So, looking at the series,

∞∑
n=1

∥∥ϕ′
anb

∥∥ �
∞∑

n=1

n−((pe+1)/pe)t, a ∈ Ω, b �= a,

we immediately get the following.

Theorem 3.5. If S is a finite holomorphic parabolic graph directed system,
then the associated hyperbolic system Ŝ is cofinitely (= hereditarily) regular.
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4. Analytic families of PGDMS

We want first to recall from [15] a result about real analyticity of Hausdorff
dimension of limit sets. The key idea is the concept of regularly analytic
families of conformal graph directed Markov systems. We also want to weaken
the assumptions of Section 4 from [15] at some important points. Let {φλ}λ∈Λ

be a family of CGDMS with the same set of vertices V , the same set of edges
E, the same finitely irreducible matrix A, and the same sets {Wv }v∈V with
all Wv ⊆ C. Unlike [15], we do not assume the compact spaces {Xλ

v }λ∈Λ to be
all equal. Fix λ0 ∈ Λ and for every ω ∈ E∞

A consider the function ψω : Λ → C

given by the formula

ψω(λ) =
(ϕλ

ω1
)′(πλ(σω))

(ϕλ0
ω1)′(πλ0(σω))

,

where πλ := πφ(λ) : E∞
A → Jφλ

is the coding map induced by the CGDMS φλ.
The family {φλ}λ∈Λ is said to be analytic if
(a) For every e ∈ E and every x ∈ Wt(e) the function Λ � λ �→ ϕλ

e (x) ∈ Wt(e) ⊆
C is holomorphic.

Furthermore, the family {φλ}λ∈Λ is called regularly analytic if
(b) the system {φλ0 } is strongly regular
and
(c) there exists a constant D > 0 such that

sup
{∣∣ψω(λ)

∣∣ : ω ∈ E∞
A , λ ∈ Λ

}
≤ D.

The basic fact resulting from this kind of analyticity is providing by the
following.

Lemma 4.1. If {φλ}λ∈Λ is an analytic family, then the family {Λ � λ �→
πλ(ω) ∈ C : ω ∈ E∞

A } consists of holomorphic maps and is normal.

Proof. For every v ∈ V , choose a point xv ∈ Wv . Since all the maps
Λ × Wt(e) � (λ, z) �→ φλ

e (z), e ∈ E, are holomorphic, all the maps Λ � λ �→
φλ

ω(xt(ω)), ω ∈ E∗
A, are also holomorphic. Since their ranges are all contained

in the bounded set
⋃

v∈V Wv , the family {Λ � λ �→ φλ
ω(xt(ω))}ω∈E∗

A
is nor-

mal. Therefore, since for every ω ∈ E∞
A , the sequence of functions (Λ � λ �→

φλ
ω|n

(xt(ω|n)))∞
n=1 converges pointwise to πλ(ω), we conclude that each func-

tion Λ � λ �→ πλ(ω), is holomorphic. Since the range of all these functions is
contained in the bounded set

⋃
v∈V Wv , the family {Λ � λ �→ πλ(ω)}ω∈E∞

A
is

normal. We are done. �

As an immediate consequence of this Lemma 4.1, Hartog’s theorem, and
item (c), we get the following.

Lemma 4.2. If {φλ}λ∈Λ is a regularly analytic family, then for every ω ∈
E∞

A the map Λ � λ �→ (ϕλ
ω1

)′(πλ(ω)) ∈ C is holomorphic.
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Combining this lemma and Lemma 4.1 we conclude that for every ω ∈ E∞
A ,

the map Λ � λ �→ ψω(λ) ∈ C is holomorphic. We shall prove the following.

Lemma 4.3. Suppose {φλ}λ∈Λ is a regular analytic family of holomorphic
systems. Then for every ω ∈ E∞

A there is a well-defined logψω : B(λ0,R) → C,
the unique holomorphic branch of logarithm of ψω such that logψω(λ0) = 0.
In addition, the family of functions {logψω }ω∈E∞

A
is bounded.

Proof. Indeed, fix R2 > 0 such that B(λ0,R2) ⊆ Λ. Fix ω ∈ E∞
A . Since for

all λ ∈ B(λ0,
R2
2 ) and all 0 < r ≤ R2

2 , we have

ψ′
ω(λ) =

1
2πi

∫
∂B(λ0,r)

ψω(γ)
(γ − λ)2

dγ,

we thus obtain from (c) the following:∣∣ψ′
ω(λ)

∣∣ ≤ 1
2π

∫
∂B(λ0,r)

D

r2
|dγ| =

D

r
.

Since ψω(λ0) = 1, we therefore get for all λ ∈ B(λ0, r) that

∣∣ψω(λ) − 1
∣∣= ∣∣ψω(λ) − ψω(λ0)

∣∣= ∣∣∣∣
∫ λ

λ0

ψ′
ω(γ)dγ

∣∣∣∣ ≤
∫ λ

λ0

∣∣ψ′
ω(γ)

∣∣|dγ| ≤ D

r
|λ − λ0|.

So, if we take r = R2
2 , then for all λ ∈ B(λ0,R3) with R3 = R2

8D , we get
∣∣ψω(λ) − 1

∣∣ ≤ 1
4
.

Hence, for each ω ∈ E∞
A there is a well-defined logψω : B(λ0,R3) → C, the

unique holomorphic branch of the logarithm of ψω such that logψω(λ0) = 0,
and the family of functions {logψω }ω∈Ê∞

Â

is bounded. The proof of Lemma 4.3
is complete. �

Setting κ(ω1) = 1 in the proof of Theorem 4.2 in [15] and having Lemma 4.1,
Lemma 4.2 and Lemma 4.3, the proof of Theorem 4.2 in [15] goes verbatim
to result in the following.

Theorem 4.4. If {φλ}λ∈Λ is a regular analytic family of holomorphic con-
formal graph directed Markov systems, then the function Λ � λ �→ HD(J(φλ)) ∈
R is real-analytic.

An analytic family {φλ}λ∈Λ of holomorphic CGDMS is called locally regu-
larly analytic if for every λ0 ∈ Λ there is R0 > 0 such that the family
{φλ}λ∈B(λ0,R0) is regularly analytic. As an immediate consequence of the
Theorem 4.4, we obtain the following.

Theorem 4.5. If {φλ}λ∈Λ is a locally regularly analytic family of holomor-
phic CGDMS, then the function Λ � λ �→ HD(J(φλ)) is real-analytic.
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Suppose E,V,A,Ω and Wv ⊂ C, v ∈ V , are given so that all the require-
ments imposed on them by the definition of PGDMS are met. We assume
in addition that A is pf-irreducible and that the set of edges E is finite.
Suppose Λ is an open connected subset of C. A family {Sλ}λ∈Λ of holo-
morphic PGDMS, each of which is built with the help of the above block
E,V,A,Ω, {Wv }v∈V , is called holomorphic if and only if:
(a) The functions Λ � λ �→ xλ

e ∈ C, e ∈ Ω, are constant for all λ ∈ Λ; call their
common values by xe,

(b) The family {Ŝλ
λ }λ∈Λ is analytic,

(c) For every e ∈ Ω there exists Re > 0 such that B(xe,Re) ⊆ Wt(e), and the
map Λ × B(xe,Re) � (λ, z) �→ ϕλ

e (z) ∈ C is holomorphic,
and
(d) For every v ∈ V there exists a compact set Yv ⊆ Wv such that Xλ

v ⊆ Yv

for all λ ∈ Λ.

Theorem 4.6. If {Sλ}λ∈Λ is a holomorphic family of holomorphic PGDMS,
then there exists l ≥ 1 such that the family {Ŝl

λ}λ∈Λ is locally regularly ana-
lytic.

Proof. In virtue of Proposition 9.3.9 from [5], there exists l ≥ 1 such that
(ϕl

λ)′(xe) = 1 for every e ∈ Ω. This is the integer l claimed in our theorem. For
the ease of exposition we replace Sλ by Sl

λ and assume without loss of general-
ity that l = 1. The family {Ŝλ}λ∈Λ is analytic by assumption. Condition (b)
of regular analyticity of {Ŝλ}λ∈Λ is satisfied by Theorem 3.5. So, we are
only left to verify condition (c) of regular analyticity of the family {Ŝλ}λ∈Λ.
Towards this end a detailed analysis of parabolic maps ϕλ

a , a ∈ Ω, λ ∈ Λ, is
needed. If we dealt with a one single parabolic system the analysis done in [4]
(comp. Section 9.3 in [5]) would suffice. But we want the big O constant in
(9.4) in [5] to be independent of λ lying in a sufficiently small neighborhood
of some arbitrarily chosen and then fixed parameter λ0 ∈ Λ. So, fix e ∈ Ω.
Then with R = Re, we have that

ϕλ
e (z) = z − aλ

e (z − xe)p+1 +
∞∑

n=2

aλ
n(e)(z − xe)n+p

for all λ ∈ Λ and all z ∈ B(xe,R), where p = pe. It follows from condition (c)
that all the functions λ �→ aλ

e and aλ
n(e), n ≥ 2, are analytic. Translating and

rotating the plane, we may assume without loss of generality that xe = 0 and
one of the contracting directions of ϕλ0

e coincides with (0,+∞), the positive
ray emanating from 0, meaning that aλ0

e ∈ R and aλ0
e > 0. Further on, making

a homothetic change of variables, we may assume that

(4.1) aλ0 =
1
p
.
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Further, rotating the plane again, we may of course assume that the con-
tracting direction associating with Xλ0

t(e) coincides with (0,+∞). Since in the
rest of this proof all iterates involving parabolic maps are of the form φλ

anb,
where a ∈ Ω, and b �= ω (b can be an empty word), enlarging the sets Xλ0

t(e),

Yt(e), and Wλ0
t(e) appropriately, we may further assume without loss of general-

ity that some initial segment of [0,+∞) is contained in Xλ0
t(e) ⊆ Yt(e) ⊆ Wλ0

t(e).
We also skip for simplicity the dependence on e. The power series expansion
above takes then the following form

ϕλ(z) = z − aλzp+1 +
∞∑

n=2

an(λ)zn+p, z ∈ B(0,R),

where aλ := aλ
e , ϕλ := ϕλ

e .
Now, let p

√
z be the holomorphic branch of the p-th radical defined on

C \ (−∞,0] and sending 1 to 1. Define then H : C \ (−∞,0] → C by the
formula

H(z) =
1

p
√

z
,

and consider the conjugate maps

ϕ̃λ = H−1 ◦ ϕλ ◦ H : C \ (−∞,0] → C,

where H−1(ω) = 1
ωp ; in fact ϕ̃λ is defined on U = H−1(B(0,R)) \ (−∞,0].

For all z ∈ U we have

ϕ̃λ(z) = H−1
(
ϕλ

(
H(z)

))
(4.2)

= H−1

(
H(z) − aλH(z)p+1 +

∞∑
n=2

an(λ)H(z)n+p

)

= H−1

(
1

p
√

z
− aλz−(p+1)/p +

∞∑
n=2

an(λ)z−(p+n)/p

)

= H−1

(
1

p
√

z

(
1 − aλz−1 +

∞∑
n=2

an(λ)z−(p+n−1)/p

))

=
z

(1 − aλz−1 +
∑∞

n=2 an(λ)z−(p+n−1)/p)p
.

Set w = H(z) = z−1/p, put

gλ(w) = 1 − aλwp +
∞∑

n=2

an(λ)wp+n−1
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and ĝλ(w) = (gλ(w))−p. Then (λ,w) �→ ĝλ(w) is a holomorphic function of λ
and z, and

ĝλ(0) = 1,
∂kĝλ(w)

∂wk

∣∣∣∣
(λ,0)

= 0(4.3)

for all k = 1,2, . . . , p − 1, and
∂pĝλ

∂wp

∣∣∣∣
(λ,0)

= paλ.

Therefore, we have the following power series expansion

ĝλ(w) = 1 + bλwp +
∞∑

n=2

bn(λ)wp+n

for (λ, z) ∈ D2((λ0,0);R) with some R > 0 sufficiently small, where D2(a; r) ⊆
C

2 is the polydisk centered at a and of radius r. Going back to the variable
z = w−p, we thus get from (4.2) that

ϕ̃λ(z) = z

(
1 + bλ

1
z

+
1
z

∞∑
n=1

bn(λ)H(z)n

)
(4.4)

= z + bλ +
∞∑

n=1

bn(λ)H(z)n

for all λ ∈ B(λ0,R) and all z ∈ U . Note that because of (4.1) and (4.3),
bλ0 = 1. Since the series

∑∞
n=1 bn(λ)wn converges absolutely uniformly on

compact subsets of D2((λ0,0);R), the number

M = sup

{ ∞∑
n=1

∣∣bn(λ)
∣∣|w|n : (λ,w) ∈ D2

(
(λ0,0);R/2

)}

is finite. Hence, for all λ ∈ B(λ0,
R
2 ) and all

z ∈ U1 := H−1

(
B

(
0,

R

8
min

{
1,M −1

}))∖
(−∞,0] ⊆ U

we get ∣∣∣∣∣
∞∑

n=1

bn(λ)H(z)n

∣∣∣∣∣ ≤
∞∑

n=1

∣∣bn(λ)
∣∣∣∣H(z)

∣∣n ≤
∞∑

n=1

∣∣bn(λ)
∣∣|z| −n/p(4.5)

=
∞∑

n=1

∣∣bn(λ)
∣∣(R

2

)n((
R

2

)p

|z|
)−n/p

≤ M

((
R

2

)p

|z|
)−1/p

=
2M

R
|z| −1/p ≤ 1

4
.
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Combining this estimate with (4.4), we get that if Re(z) > (R
8 max{1,M })p,

then

Re
(
ϕ̃λ(z) − (z + bλ)

)
= Re

( ∞∑
n=1

bn(λ)H(z)n

)
(4.6)

≥ −
∣∣∣∣∣

∞∑
n=1

bn(λ)H(z)n

∣∣∣∣∣ ≥ − 1
4
.

Since bλ0 = 1, there exists R1 ∈ (0,R/2) so small that 1
2 < Re bλ < 3

2 for all
λ ∈ B(λ0,R1). It then follows from (4.6) that

(4.7) Re
(
ϕ̃λ(z)

)
≥ Re(z + bλ) − 1

4
= Re(z) + Re(bλ) − 1

4
> Re(z) +

1
4

for all λ ∈ B(λ0,R1) and all

z ∈ U2 :=
{
z ∈ C : Re(z) >

(
(R/8)max{1,M }

)p} ⊆ U1.

Analogously,

(4.8)
∣∣ϕ̃λ(z)

∣∣ ≤ |z| + 2.

Hence, ϕ̃λ(U2) ⊆ U2 for all λ ∈ B(λ0,R1), and we get by a straightforward
induction that

(4.9) Re(z) +
n

4
≤ Re

(
ϕ̃n

λ(z)
)

≤
∣∣ϕ̃n

λ(z)
∣∣ ≤ |z| + 2n

for all λ ∈ B(λ0,R1), all z ∈ U2 and all n ≥ 0. It follows from (4.4) that

(4.10) ϕ̃′
λ(z) = 1 +

∞∑
n=1

bn(λ)nH(z)n−1H ′(z) = 1 − 1
p
z−1

∞∑
n=1

bn(λ)nH(z)n.

Now notice that there exists a constant Q ≥ 1 such that n(R
4 )n ≤ Q(R

2 )n for
all n ≥ 0. Proceeding as in (4.5), we thus get for all λ ∈ B(λ0,

R
4 ) and all

z ∈ U2 that∣∣∣∣∣
∞∑

n=1

nbn(λ)H(z)n

∣∣∣∣ ≤
∞∑

n=1

∣∣bn(λ)
∣∣n(

R

4

)n((
R

4

)p

|z|
)−n/p

(4.11)

≤ Q

∞∑
n=1

∣∣bn(λ)
∣∣((

R

4

)p

|z|
)−n/p

≤ MQ

((
R

4

)p

|z|
)−1/p

= 4MQR−1|z| −1/p,

where writing the last inequality (“≤”) sign we were assuming that |z| ≥ ( 4
R )p.

Assume from now on that in the definition of U2, the number T > 0 is taken
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to be larger than (4/R)p. Inserting (4.11) to (4.10), we get that

(4.12)
∣∣ϕ′

λ(z) − 1
∣∣ ≤ 4MQ(pR)−1|z| −(p+1)/p.

Write qλ(z) = ϕ̃′
λ(z) − 1. By the Chain Rule we have,

(4.13)
(
ϕ̃n

λ

)′(z) =
n−1∏
j=0

ϕ̃′
λ

(
ϕ̃j

λ(z)
)

=
n−1∏
j=0

(
1 + qλ

(
ϕ̃j

λ(z)
))

.

But, with Q1 = 4MQ(pR)−1, combining (4.12) and (4.9), we get

∣∣qλ

(
ϕ̃j

λ(z)
)∣∣ ≤ Q1

∣∣ϕ̃j
λ(z)

∣∣−(p+1)/p ≤ Q1

(
T +

j

4

)−(p+1)/p

.

Since the series
∑∞

j=0(T + j
4 )−(p+1)/p converges, taking T > 0 sufficiently large

and looking at (4.13), we get the following.

Lemma 4.7. There exists a constant Q2 ≥ 1 such that

Q−1
2 ≤

∣∣(ϕ̃n
λ

)′(z)
∣∣ ≤ Q2

for all (λ, z) ∈ B(λ0,R1) × U2 and all n ≥ 0.

Using the Chain Rule and the definition of ϕ̃λ, we obtain∣∣(ϕn
λ

)′(
H(z)

)∣∣ =
∣∣(H ◦ ϕ̃n

λ ◦ H−1
)′(

H(z)
)∣∣

=
∣∣H ′(ϕ̃n

λ(z)
)∣∣ ·

∣∣(ϕ̃n
λ

)′(z)
∣∣ ·

∣∣(H−1
)′(

H(z)
∣∣

=
1
p

∣∣ϕ̃n
λ(z)

∣∣−(p+1)/p∣∣(ϕ̃n
λ

)′(z)
∣∣ ·

∣∣H ′(z)
∣∣−1

= |z| −(p+1)/p
∣∣(ϕ̃n

λ

)′(z)
∣∣ ·

∣∣ϕ̃n
λ(z)

∣∣−(p+1)/p
.

Combining this with Lemma 4.7 and (4.9) yields

Q−1
2 |z| −(p+1)/p

(
|z| + 2n

)−1 ≤
∣∣(ϕn

λ

)′(
H(z)

)∣∣(4.14)

≤ Q2|z| −(p+1)/p

(
Re(z) +

n

4

)−(p+1)/p

for all (λ, z) ∈ B(λ0,R1) × U2 and all n ≥ 0. Now, for every α ∈ (0, π) let

Sα =
{
z ∈ C \ {0} :

∣∣Arg(z)
∣∣ < α

}
.

Then for every α ∈ (0, π/p), we have H−1(Sα) = Sαp and H−1(0) = ∞. Now,
fix α ∈ (0, π/(2p)). Since 0 < pα < π/2, we conclude from the above that
there exists r2 > 0 so small that Re(H−1(z)) ≥ T for all z ∈ Sα ∩ B(0, r2). We
therefore get from (4.14) the following.

Lemma 4.8. For every compact set Γ ⊆ Sα ∩ B(0, r2), where α ∈ (0, π/(2p)),
there exists a constant QΓ ≥ 1 such that

Q−1
Γ n−(p+1)/p ≤

∣∣(ϕn
λ

)′(z)
∣∣ ≤ QΓn−(p+1)/p

for all λ ∈ B(λ0,R1), all z ∈ Λ, and all n ≥ 1.
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As the essentially last step in the process of the verifying condition (c) of
the regular analyticity of the family {Ŝλ}λ∈Λ we prove first the following.

Lemma 4.9. Suppose that {Sλ}λ∈Λ is a holomorphic family of holomorphic
PGDMS. Fix λ0 ∈ Λ. Then there exist a constant Q ≥ 1 and radius R2 > 0
such that

Q−1n−(p+1)/p ≤
∣∣(ϕλ

anb

)′(z)
∣∣ ≤ Qn−(p+1)/p

for all a ∈ Ω, all b ∈ E \ {a} such that Aba = 1, all λ ∈ B(λ0,R2), all z ∈ Xλ
t(b),

and all n ≥ 1.

Proof. Since the set E is finite it suffices to produce Q and R2 for a fixed
pair (a, b) ∈ Ω × (E \ {a}) such that Aba = 1. Indeed, in virtue of Lemma 9.3.8
and Proposition 9.4.1 from [5], there exists k ≥ 1 so large that ϕλ0

anb(X
λ0
t(b)) ⊆

Sα
4

∩ B(xa, r2/4) for all n ≥ k. By the Bounded Distortion Property, we may
farther assume with k ≥ 1 sufficiently large, and r3 ∈ (0, r2], sufficiently small,
that

ϕλ0
anb(Wt(b)) ⊆ Sα

3
∩ B(xa, r2/3) and ϕλ0

akb
(Wt(b)) ∩ B(xa,2r3) = ∅

for all n ≥ k. It then follows from analyticity of the function

Λ × Wt(b) � (λ, z) �→ ϕλ
akb(z)

(since the family {Ŝλ}λ∈Λ is analytic) and from the compactness of the set
Yt(b), along with condition (d) of analyticity of Sλ, that there exists R2 ∈
(0,R1) so small that

ϕλ
akb

(
Xλ

t(b)

)
⊆ ϕλ

akb(Yt(b)) ⊆
(
Sα/2 ∩ B(xa, r2/2)

)
\ B(xa, r3)

for all λ ∈ B(λ0,R2). But then

Γ :=
⋃

λ∈B(λ0,R2)

ϕ̂λ
akb

(
Xλ

t(b)

)
⊆ Sα/2 ∩ B(a, r2/2) \ B(a, r3) ⊆ Sα ∩ B(a, r2).

Since the middle set above is compact, so is Γ. Hence, applying Lemma 4.8,
we conclude that

(4.15) Q−1
Γ n−(p+1)/p ≤

∣∣(ϕλ
an

)′(
ϕλ

akb

)
(z)

∣∣ ≤ QΓn−(p+1)/p

for all z ∈ Xλ
t(b), all n ≥ 1, and all λ ∈ B(λ0,R2). Since, clearly,

0 < inf
{∣∣(ϕ̂λ

ajb

)′(z)
∣∣ : 0 ≤ j ≤ k, z ∈ Yt(b), λ ∈ B(λ0,R2)

}
≤ sup

{∣∣(ϕ̂λ
ajb

)′(z)
∣∣ : 0 ≤ j ≤ k, z ∈ Yt(b), λ ∈ B(λ0,R2)

}
< +∞,

using the Chain Rule, formula (4.15) yields the lemma. �

Since the set E is finite and since for every λ ∈ Λ and every ω ∈ Ê∞
Â

, we
have πλ(σ(ω)) ∈ Xλ

t(ω1)
, Lemma 4.9 yields immediately condition (c) of regular

analyticity for the family {Ŝλ}λ∈B(λ0,R2). The proof of the Theorem 4.6 is
complete. �
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Combining Theorem 4.6 with Theorem 4.5 we get the following.

Corollary 4.10. If {Sλ}λ∈Λ is a holomorphic family of holomorphic
PGDMS, then the function Λ � λ �→ HD(JSλ

) is real-analytic.

5. PGDMS associated with fλ, λ ∈ D0

In this section, we apply the machinery developed in the previous sections
to study the family of polynomials fλ(z) = z(1 − z − λz2), λ ∈ D0, described
in Section 2. The idea is to associate to this family a holomorphic family
of holomorphic parabolic graph directed Markov systems whose limit sets
coincide with the Julia sets of polynomials fλ up to a countable set. Then to
apply Corollary 4.10. Fix λ ∈ D0. Let Jλ be the Julia set of fλ and let Kλ

be the corresponding filled in Julia set. Let Aλ(∞) be the basin of attraction
to ∞ and let Gλ be Green’s function for Aλ(∞) with the pole at ∞. It has
the following properties.

Gλ

(
fλ(z)

)
= 3Gλ(z), z ∈ C,

(5.1)
Gλ ≥ 0,

and

(5.2) Kλ = G−1
λ (0).

Let
ρλ = Gλ

(
c
(2)
λ

)
.

Fix any tλ ∈ (0, ρλ) sufficiently close to ρλ. Then the set G−1
λ ([0, tλ]) consists

of two connected components. Denote by Ŵ 0
λ the component containing 0 and

by Ŵ 1
λ the other one. It follows from (5.1) that {fn

λ (c(2)
λ ) : n ≥ 0} ∩ (Ŵ 0

λ ∪
Ŵ 1

λ) = ∅, and from (5.2) that{
fn

λ

(
c
(1)
λ

)
: n ≥ 0

}
⊆ Ŵ 0

λ .

Consequently, {
fn

λ

(
c
(1)
λ

)
, fn

λ

(
c
(2)
λ

)
: n ≥ 0

}
∩ Ŵ 1

λ = ∅.

Starting a rather lengthy process of the definition of a PGDMS associated to
fλ, set

V = {1,2,3}.

Let f −1
λ,0 be a maximal holomorphic continuation of the holomorphic inverse

branch of fλ defined on a sufficiently small neighborhood of 0 and sending 0
back to 0. Let Δr

λ be the repelling ray (emanating from 0) of fλ. It follows
from local behavior around parabolic points (see Section 4 for example) that
there exists a triangle T r

λ ⊆ Ŵ 0
λ symmetric with respect to Δr

λ with one vertex
0 and such that f −1

λ,0(T
r
λ) ⊆ T r

λ . Let ωλ be the only point on Δλ ∩ ∂T r
λ different

from 0. Then f −1
λ,0(ωλ) ∈ T r

λ and let βλ be the closed line segment (contained
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in T ) with end points ωλ and f −1
λ,0(ωλ). Since the diameter of f −n

λ,0 (βλ) is of
magnitude n−2 and limn→∞ f −n

λ,0 (ωλ) = 0, we conclude that

β∞
λ := {0} ∪

∞⋃
n=0

f −n
λ,0 (βλ)

is a piecewise smooth (with countably many pieces) closed topological arc
with end points 0 and βλ. In addition, β∞

λ is tangent to Δr
λ at the point 0.

We have

(5.3) fλ

(
β∞

λ

)
= {0} ∪

∞⋃
n=1

f −n
λ,0 (βλ) ⊆ β∞

λ .

Let Aλ(0) be the basin of immediate attraction of fλ to the rationally indiffer-
ent fixed point 0. Like above, let Δc

λ be the contracting ray (emanating from
0) of fλ. Again as above, there exists a triangle T c

λ ⊆ Aλ(0) ∪ {0} symmetric
with respect to Δc

λ with vertex 0 and such that

(5.4) fλ

(
T c

λ

)
⊆ Int

(
T c

λ

)
∪ {0}.

Let bλ be the edge of the triangle T c
λ not containing 0, i.e., the edge per-

pendicular to Δc
λ. We may require in addition that there exists k ≥ 1 such

that

(5.5) fk
λ

(
c
(1)
λ

)
∈ bλ and

{
c
(1)
λ , fλ

(
c
(1)
λ

)
, . . . , f

(k−1)
λ

(
c
(1)
λ

)}
∩ T c

λ = ∅.

Take now a little open ball B1
λ centered at 0 and disjoint from the set {c

(1)
λ ,

fλ(c(1)
λ ), . . . , fk

λ (c(1)
λ )}. Take also an open topological disk Dλ ⊇ B1

λ ∪ T c
λ

which is disjoint from the set {c
(1)
λ , fλ(c(1)

λ ), . . . , f (k−1)
λ (c(1)

λ )}. Then, for every
j = 1, . . . , k − 1 there exists a unique holomorphic inverse branch f −j

λ,0 : Dλ →
Aλ(0) sending 0 to 0. There also exists a unique holomorphic inverse branch
f −k

λ,0 : B1
λ ∪ Int(T c

λ) → Aλ(0) sending 0 to 0. Note that for all j = 1, . . . , k

(5.6) fλ ◦ f −j
λ,0 = f

−(j−1)
λ,0

and, by (5.4), for all 1 ≤ j ≤ k − 1,

(5.7) f −j
λ,0

(
T c

λ

)
⊇ f

−(j−1)
λ,0

(
T c

λ

)
.

If j = k, then

(5.8) f −j
λ,0

(
Int

(
T c

λ

))
⊇ f

−(j−1)
λ,0

(
Int

(
T c

λ

))
.

In particular, f
−(k−1)
λ,0 (fk

λ (c(1)
λ )) = fλ(c(1)

λ ), and, as f −1
λ (fλ(c(1)

λ )) ∩ Aλ(0) =

{c
(1)
λ }, it follows from (5.5) that c

(1)
λ ∈ ∂f −k

λ,0(Int(T c
λ)). Note also that f −k

λ,0 =

f̃ −1
λ,0 ◦ f

−(k−1)
λ,0 , where f̃ −1

λ,0 is the extension of f −1
λ,0 on f

−(k−1)
λ,0 (B1

λ ∪ Int(T c
λ)).

But, there also exists a second holomorphic inverse branch f̃ −1
λ,1 of fλ defined
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on f
−(k−1)
λ,0 (Bλ ∪ Int(T c

λ)) and mapping Int(T c
λ) into Aλ(0). Put f −k

λ,1 = f̃ −1
λ,1 ◦

f
−(k−1)
λ,0 . As above c

(1)
λ ∈ ∂f −k

λ,1(Int(T c
λ)). We thus have

f −k
λ,0

(
Int

(
T c

λ

))
∩ f −k

λ,1

(
Int

(
T c

λ

))
= ∅ and

f −k
λ,0

(
Int

(
T c

λ

))
∩ f −k

λ,1

(
Int

(
T c

λ

))
=

{
c
(1)
λ

}
.

Put αλ = f −k
λ,1(1). By continuity of f −k

λ,1 , we get that αλ ∈ f −1
λ,1((T

c
λ) ⊆

f −1
λ,1(Int(T c

λ)) ⊆ Aλ(0), and since αλ ∈ J(fλ), we obtain that

αλ ∈ ∂Aλ(0).

In virtue of (5.4), (5.5) and (5.6), f2
λ(c(1)

λ ) ∈ f
−(k−1)
λ,0 (Int(T c

λ)). Thus, there

exists a little open disk Bλ centered at c
(1)
λ such that

(5.9) f2
λ(Bλ) ⊆ f

−(k−1)
λ,0

(
Int

(
T c

λ

))
.

Set

Hλ = f −k
λ,0

(
Int

(
T c

λ

))
∪ f −k

λ,1

(
Int

(
T c

λ

))
∪ Bλ ∪ fλ(Bλ) ∪ f2

λ(Bλ) ⊂ Aλ(0).

We have, by (5.6), (5.7), and (5.8), that

fλ

(
f −k

λ,0

(
Int

(
T c

λ

))
∪ f −k

λ,1

(
Int

(
T c

λ

)))
= fλ

(
f −k

λ,0

(
Int

(
T c

λ

)))
∪ fλ

(
f −k

λ,1

(
Int

(
T c

λ

)))
= f

−(k−1)
λ,0

(
Int

(
T c

λ

))
∪ f

−(k−1)
λ,0

(
Int

(
T c

λ

))
= f

−(k−1)
λ,0

(
Int

(
T c

λ

))
⊆ f −k

λ,0

(
Int

(
T c

λ

))
⊂ Hλ.

By (5.9) and (5.8), we get

f2
λ(Bλ) ⊆ f

−(k−1)
λ,0

(
Int

(
T c

λ

))
⊆ f −k

λ,0

(
Int

(
T c

λ

))
⊆ Hλ.

Thus,

(5.10) fλ(Hλ) ⊆ Hλ and fλ(Hλ) ⊆ Hλ.

Let

(5.11) β̃∞
λ = f̃ −1

λ,1

(
fλ

(
β∞

λ

))
and ω̃λ = f̃ −1

λ,1

(
fλ(ωλ)

)
.

Set
sλ = Gλ(ωλ) = Gλ

(
ω̃λ

)
< tλ.

Define Xλ
1 to be the connected component of G−1

λ ([0, sλ]) not containing 0.
Then Xλ

1 is simply connected and, consequently, containing Aλ(1). Let Zλ be
the other connected component of G−1

λ ([0, sλ]), i.e., the one containing 0. The
set Zλ is connected and simply connected (closed topological disk with smooth
boundary). By its construction the set Hλ is connected and simply connected
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too. Since, in addition, β∞
λ ∩ Hλ = {0}, β̃∞

λ ∩ Hλ = {αλ}, β∞
λ ∩ β̃∞

λ = ∅, and
since both β∞

λ and β̃∞
λ are closed arcs, the closed set

(5.12) Fλ := β∞
λ ∩ Hλ ∩ β̃∞

λ ⊆ Zλ

is connected and simply connected. We have

Fλ ∩ ∂Zλ =
{
ωλ, ω̃λ

}
.

In consequence, the set Zλ \ Fλ has two connected components. Label their
closures by Xλ

2 and Xλ
3 . By the construction,

Xλ
3 ∩

∞⋃
n=0

fn
λ

({
c
(1)
λ , c

(2)
λ

})
= ∅,(5.13)

(
Xλ

2 ∪ Xλ
3

)
∩

∞⋃
n=0

fn
λ

({
c
(1)
λ , c

(2)
λ

})
= {0},(5.14)

and all these sets Xλ
1 , Xλ

2 and Xλ
3 are simply connected. Hence, all the three

holomorphic inverse branches of fλ are well defined on each set Xλ
1 , Xλ

2 and
Xλ

3 . Since the polynomial fλ is of degree 3, for every a ∈ {1,2,3} there are
three holomorphic inverse branches f −1

λ,(a,1), f −1
λ,(a,2) and f −1

λ,(a,3) of fλ defined
on Xλ

1 , Xλ
2 and Xλ

3 , respectively if a = 1,2, or 3. Consider first the case when
a = 3. Then

f −1
λ

(
Xλ

1

)
= G−1

λ

(
[0, sλ/3]

)
⊆ G−1

λ

(
[0, sλ)

)
.

Let Y1 be the connected component of f −1
λ (Xλ

1 ) not containing 0 and let
f −1
(1,1) : X1 → C be the corresponding holomorphic inverse branch of fλ. Thus,

(5.15) f −1
λ,(1,1)

(
Xλ

1

)
⊆ Xλ

1 .

Let f −1
λ,(1,b) be another holomorphic inverse branch of fλ defined on Xλ

1 . We
then have

(5.16) f −1
λ,(1,b)

(
Xλ

1

)
⊆ Zλ.

Looking at (5.10), (5.3), and (5.11), we see that

(5.17) fλ(Fλ) ⊆ Fλ.

Since, in addition, Xλ
1 ∩ Zλ = ∅ and Fλ ⊆ Zλ, we conclude that f −1

λ,(1,b)(X
λ
1 ) ∩

Fλ = ∅. Along with (5.16) this gives that

f −1
λ,(1,b)

(
Xλ

1

)
⊆ Zλ \ Fλ.

Since f −1
λ,(1,b)(X

λ
1 ) is a connected set it must be contained in one of the two

connected components of Zλ \ Fλ, the more in the closure of one of these two
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components. Set b = 2 if this closure is Xλ
2 and set b = 3 if it is Xλ

3 . We thus
have

(5.18) f −1
λ,(1,2)

(
Xλ

1

)
⊆ Xλ

2 and f −1
λ,(1,3)

(
Xλ

1

)
⊆ Xλ

3 .

Now consider the case when a ∈ {2,3}. Without loss of generality, we may
assume that a = 2. Since the map fλ restricted to Aλ(1) is of degree 2, there
are two branches of f −1

λ defined on Xλ
2 whose images intersect Aλ(1). Fix

one of them and label it by f −1
λ,(2,b), b ∈ {2,3}. Since

f −1
λ,(2,b)

(
Xλ

2

)
⊆ f −1

λ

(
Zλ

)
⊆ G−1

λ

(
[0, sλ/3]

)
⊆ G−1

λ

(
[0, sλ]

)
,

since f −1
λ,(2,b) is a connected set, and since f −1

λ,(2,b)(X
λ
2 ) ∩ Aλ(1) �= ∅, we conclude

that

(5.19) f −1
λ,(2,b)

(
Xλ

2

)
⊆ Zλ.

Since Int(Xλ
2 ) ∩ Fλ = ∅, we see from (5.17) that f −1

λ,(2,b)(Int(Xλ
2 )) ∩ Fλ = ∅.

Together with (5.19) this yields

f −1
λ,(2,b)

(
Int

(
Xλ

2

))
⊆ Zλ \ Fλ.

The same argument as above then gives that

f −1
λ,(2,b)

(
Int

(
Xλ

2

))
⊆ Xλ

2 or f −1
λ,(2,b)

(
Int

(
Xλ

2

))
⊆ Xλ

3 .

Thus,

(5.20) f −1
λ,(2,b)

(
Xλ

2

)
⊆ Xλ

2 or f −1
λ,(2,b)

(
Xλ

2

)
⊆ Xλ

3 .

Put b equal 2 or 3 according to whether the first or the second part of the
above alternative holds. Note that

(5.21) f −1
λ,(2,2)(0) = 0 and f −1

λ,(2,3)(0) = αλ.

It is left to consider the branch f −1
λ,(2,1) : Xλ

2 → C characterized by the property
that

f −1
λ,(2,1)

(
Xλ

2

)
∩ Aλ(1) = ∅.

By (5.19), f −1
λ,(2,2)(X

λ
2 ) ∪ f −1

λ,(2,3)(X
λ
2 ) ⊆ Zλ. Therefore, since fλ is of degree 2

on Zλ, we have that

(5.22) f −1
λ,(2,1)

(
Xλ

2

)
∩ Zλ = ∅.

But f −1
λ,(2,1)(X

λ
2 ) ⊆ G−1

λ ([0, sλ]), and since f −1
λ,(2,3)(X

λ
2 ) is connected, we con-

clude from (5.22) and from the definition of Zλ and Xλ
2 , that,

(5.23) f −1
λ,(2,1)

(
Xλ

2

)
⊆ Xλ

1 .

Now, we shall define the open simply connected sets Wλ
1 , Wλ

2 and Wλ
3 . Fix

ξ ∈ (s, t) and define Wλ
1 to be the connected component of G−1

λ ([0, ξ]) not
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containing 0. Clearly Wλ
1 is an open topological disk with smooth boundary

and

(5.24) Xλ
1 ⊆ Wλ

1 and W
λ

1 ∩
∞⋃

n=0

{
fn

λ

(
c
(1)
λ

)
, fn

λ

(
c
(2)
λ

)}
= ∅.

Since, by (5.20), f −1
λ,(2,3)(X

λ
2 ) ⊆ Xλ

3 , and since, by (5.21), 0 /∈ f −1
λ,(2,3)(X

λ
2 ), it

follows from (5.14) that there exists an open topological disk Uλ
2 ⊇ f −1

λ,(2,3)(X
λ
2 )

whose closure is disjoint from
⋃∞

n=0{fn
λ (c(1)

λ ), fn
λ (c(2)

λ )}. In virtue of (5.14),
there exists an open topological disk Wλ

2 ⊆ C with the following properties.
(a) Xλ

2 ⊆ Wλ
2 ⊆ G−1

λ ([0, ξ)),
(b) fλ({c

(1)
λ , c

(2)
λ }) ∩ W

λ

2 = ∅, and if f −1
λ,(2,3) is a holomorphic extension of

f −1
λ,(2,3) onto Wλ

2 (which exists because of (b) and for which we keep the

same symbol fλ, (2,3)−1), then
(c) f −1

λ,(2,3)(W
λ
2 ) ⊂ Uλ

2 .

And from (c),

(5.25) f −1
λ,(2,3)

(
Wλ

2

)
∩

∞⋃
n=0

{
fn

λ

(
c
(1)
λ

)
, fn

λ

(
c
(2)
λ

)}
= ∅.

The sets Uλ
3 and Wλ

3 are defined verbatim with 2 and 3 mutually interchanged.
In virtue of (5.24) and (a), there exists δ > 0 such that

(5.26) B
(
Xλ

i , δ
)

⊆ Wλ
i

for all i = 1,2,3. By (5.24), the family F λ
1 of all holomorphic inverse branches

of all iterates of fλ is well-defined on an open set containing W
λ

1 . Since
J(fλ) ∩ Wλ

1 �= ∅ this family is normal and all its limit functions are constant.
Likewise, the family F λ

2
′ of all holomorphic inverse branches of all iterates

of fλ is well defined on Uλ
2 . Let F λ

2 = {φ ◦ f −1
(2,3) : φ ∈ F λ

2 } and let F λ
3 be

defined analogously. Again, since J(fλ) ∩ Wλ
2 �= ∅ and J(f) ∩ Wλ

3 �= ∅, both
families F λ

2 and F λ
3 are normal and all their limit functions are constant.

Using (c), we therefore conclude that there exists qλ = q ≥ 1 such that if
φ ∈ F λ := F λ

1 ∪ F λ
2 ∪ F λ

3 is a holomorphic inverse branch of fn
λ with n ≥ q (we

say φ ∈ F λ
n ), then

(5.27) diam
(
φ
(
Wλ

i

))
< δ and sup

{∣∣φ′(z)
∣∣ : z ∈ Wλ

i

}
<

1
2
,

where i = 1,2 or 3 according to whether φ ∈ F λ
i . Note that each such element

φ ∈ F λ
i forms a unique holomorphic extension of some unique element f −1

λ,ω1
◦

f −1
λ,ω2

◦ · · · ◦ f −1
λ,ωn

, where all ωj ∈ {1,2,3}2. Let Sλ be the system determined by
the set of vertices V = {1,2,3}, the set of edges Eq = ({1,2,3})q, the spaces
Xλ

v and Wλ
ω , v ∈ V , described above, the maps t(a1, b1, a2, b2, . . . , aq, bq) =
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aq , i(a1, b1, a2, b2, . . . , aq, bq) = b1, the generators f −q
λ,τ : Xλ

t(τ) → Xλ
i(τ), τ =

(a1, b1, a2, b2, . . . , aq, bq) ∈ E and f −q
λ,τ = f −1

λ,(a1,b1)
◦ f −1

λ,(a2,b2)
◦ · · · ◦ f −1

λ,(aq,bq),
Ω = {(2,2, . . . ,2), (3,3, . . . ,3)}, and the incidence matrix A : E × E → {0,1}
consisting of all entries equal to 1. After all these definitions and prepara-
tions, it is rather easy to prove the following proposition.

Proposition 5.1. For every λ ∈ D0, Sλ is a pf-irreducible PGDMS.

Proof. Conditions (2a) and (2d) follow directly from the definition of the
sets Xλ

v , v ∈ V . Condition (2b) is fulfilled by (5.15), (5.18), (5.20) (taken also
with 2 replaced by 3) and the definition of f −q

λ,τ , τ ∈ Eq , given above. Condi-
tion (2c) follows from the fact that the interiors {Int(Xλ

v )}v∈V are mutually
disjoint and that the generators of the system S are formed by continuous
inverse branches of a single map, namely fq

λ . Let us deal with condition (2e).
If ω ∈ E∗ is a hyperbolic word, say |ω| = n, then φω ∈ F λ

n , and it follows from
(5.27) that diam(φω(Wλ

t(ω))) < δ. But φω(Xλ
t(ω)) ⊆ Xλ

i(ω), and using (5.26),
we conclude that

φω

(
Wλ

t(ω)

)
⊆ B

(
Xλ

i(ω), δ
)

⊆ Wλ
i(ω).

Condition (2e) is established. Conditions (2f) and (2g) follow directly from
Koebe Distortion Theorem. Condition (2h) is established by (5.27). To see
that conditions (2i) and (2j) hold, consider without loss of generality the
parabolic map φ(2,2)q . It is enough to note that the sets φn

(2,2)q (2B ∩ Xλ
2 )

converge to the parabolic point 0, by the local behavior of parabolic points,
where B is a sufficiently small ball centered at 0, and that the family of maps
φn

(2,2)q , restricted to some sufficiently small neighborhood of Xλ
2 \ B, is well-

defined and normal. In conclusion, Sλ is a parabolic graph directed Markov
system. It is obvious that Sλ is a pf-system since the incidence matrix A
consists of 1s only and since Eq \ Ω is not empty. We are done. �

Now, we shall prove the following.

Lemma 5.2. For every λ0 ∈ D0 there exists R0 > 0 such that with suit-
ably chosen sets Xλ

v , λ ∈ B(λ0,R0), the family {Sλ}λ∈B(λ0,R0) of holomorphic
PGDMSs is holomorphic.

Proof. It follows from the construction of systems Sλ and local behavior of
maps fλ around zero, that the only non-trivial task to be done is to verify that
the family {Sλ}λ∈D0 satisfies conditions (c), (d), and (b) of the definition of
holomorphic families of holomorphic PGDMSs. In order to do it, fix λ0 ∈ D0.
Put Oλ0 = G−1

λ0
((3ρλ0 ,+∞]). Then fλ0(Oλ0) ⊆ G−1

λ0
((9ρλ0 ,+∞]) and taking

R1 > 0 sufficiently small, we will have fλ(Oλ0) ⊆ G−1
λ0

((8ρλ0 ,+∞]) ⊆ Oλ0 for
all λ ∈ B(λ0,R1). Consequently,

(5.28) f −1
λ

(
G−1

λ0

(
[0,3ρλ0 ]

))
⊆ G−1

λ0

(
[0,3ρλ0 ]

)
.
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We have by our construction,

(5.29) Wλ0
1 ∪ Wλ0

2 ∪ Wλ0
3 ⊆ G−1

λ0

(
[0, tλ0 ]

)
⊆ G−1

λ0

(
[0, ρλ0 ]

)
⊆ G−1

λ0

(
[0,3ρλ0 ]

)
.

There also exists R2 ∈ (0,R1] so small that

(
Uλ0

2 ∪ Uλ0
3

)
∩

⋃
λ∈B(λ0,R1)

∞⋃
n=0

{
fn

λ

(
c
(1)
λ

)
, fn

λ

(
c
(2)
λ

)}
= ∅.

From continuity of the functions D0 � λ �→ c
(1)
λ , c

(2)
λ , and consequently, of the

function, λ �→ ρλ1 , we can choose the numbers sλ < ζλ such that

(5.30) lim
λ→λ0

sλ = sλ0 < ζλ0 = lim
λ→λ0

ζλ.

We can also choose ωλ so that limλ→λ0 ωλ = ωλ0 , limλ→λ0 T c
λ = T c

λ0
,

limλ→λ0 Bλ = Bλ0 (the two latter in the sense of Hausdorff metric on com-
pact subsets of the complex plane C). Consequently, also limλ→λ0 β∞

λ = β∞
λ0

,
limλ→λ0 β̃∞

λ = β̃∞
λ0

, and limλ→λ0 Hλ = Hλ0 . Therefore (see (5.12))

(5.31) lim
λ→λ0

Fλ = Fλ0 .

It follows immediately from (5.30) that

lim
λ→λ0

Xλ
1 = Xλ0

1 and lim
λ→λ0

Zλ = Zλ0 .

Along with (5.31), this implies that

lim
λ→λ0

Xλ
i = Xλ0

i for i = 1,2,3.

Because of this and (5.30), we can find for every i = 1,2,3 one open set Uλ0
i

and one open set Wλ0
i ⊆ W̃i

λ0 that all satisfy all the requirements for the sets
Uλ

i and Wλ
i from the construction leading to Proposition 5.1 up to formula

(5.26) if λ is sufficiently close to λ0, say λ ∈ B(λ0,R3), R3 ∈ (0,R2]. That is,
we can from now on either set

Wλ
i := Wλ0

i or Wλ
i := W̃λ0

i

for all i = 1,2,3 and for all λ ∈ B(λ0,R3). We can even find compact sets Y1,
Y2 and Y3 such that Xλ

i ⊆ Yi ⊆ Wλ0
i for all i = 1,2,3 and all λ ∈ B(λ0,R3).

Hence, the condition (d) of the definition of holomorphic families of holo-
morphic PGDMS is satisfied. Recall that for every λ ∈ B(λ0,R3) the fam-
ily F λ is bijectively parametrized by the set Ẽ∗, where E = {1,2,3}2, Ω =
{(2,2), (2,3)}, and Ê is defined accordingly. In fact, in view of our construc-
tion of the sets Wλ0

i , it follows from the Implicit Function theorem and Mon-
odromy theorem, that for every ω ∈ Ê∗, there exists a holomorphic function
gω : B(λ0,R3) × W̃λ0

t(ω) → C such that, abusing slightly notation, we have{
gω | {λ} ×W̃

λ0
i

: ω ∈ Ê∗ and t(ω) = i
}

= F λ
i
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for all i = 1,2,3. In virtue of (5.28) and (5.29) we have,

gω

(
B(λ0,R3) × W̃λ0

t(ω)

)
⊆ G−1

λ0

(
[0,3ρλ0 ]

)
for all ω ∈ Ê∗. Since the set G−1

λ0
([0,3ρλ0 ]) is bounded, we thus conclude that

for each i = 1,2,3, the family

Γi =
{
gω : B(λ0,R3) × W̃λ0

t(ω) : ω ∈ Ê∗ and t(ω) = i
}

is normal. Since for each λ ∈ B(λ0,R3) and each i ∈ {1,2,3}, Xλ
i ⊆ Wλ0

i and
Jλ ∩ Xλ

i �= ∅, all the limit functions of the normal family F λ
i are constant.

But this means that all the limit functions of the family Γi depend only on
the first coordinate λ. Therefore (remember that Wλ0

i ⊂ W̃λ0
i ), there exists

R4 ∈ (0,R3] and q ≥ 1 such that

diam
(
gω

(
B(λ0,R4) × W̃λ0

i

))
< δ

and

sup
{∣∣∣∣∂gω

∂z
(λ, z)

∣∣∣∣ : (λ, z) ∈ B(λ0,R) × Wλ0
i

}
<

1
2

for all i ∈ {1,2,3} and all ω ∈ Ê∗ with |ω| ≥ q. Now, as in the previous section,
we conclude from this, (5.26), the inclusion φλ

ω(Xλ
t(ω)) ⊆ Xλ

t(ω), and equality
φλ

ω = gω |{λ} ×B(λ0,R4)
(with obvious abuse of notation) that

φλ
ω

(
Wλ0

t(ω)

)
⊆ B

(
Xλ0

t(ω), δ
)

⊆ Wλ0
t(ω)

for all λ ∈ B(λ0,R4) and all ω ∈ Ê∗ with |ω| ≥ q. Now, define the systems
Sλ, λ ∈ B(λ0,R4), as appearing in Proposition 5.1 with the help of this same
q ≥ 1. Since obviously all the maps B(λ0,R) × Wλ0

i � (λ, z) �→ φλ
ω(z), ω ∈ Ê∗

are holomorphic, the family {Ŝλ}λ∈B(λ0,R4) is analytic, meaning that condi-
tion (b) of the definition of holomorphic families of holomorphic PGDMSs
is satisfied. Since clearly, all the maps B(λ0,R) × B(0,R0) � (λ, z) �→ φλ

e (z),
with e being (2,2)q or (3,3)q and R0 ∈ [0,R4] sufficiently small, are holomor-
phic, we see that condition (c) of the definition of holomorphic families of
holomorphic PGDMSs is satisfied, and we may therefore conclude that the
family {Sλ}λ∈B(λ0,R0) is holomorphic. We are done. �

As an immediate consequence of this lemma and Corollary 4.10, we get the
following main result of our paper.

Theorem 5.3. The Hausdorff dimension function D0 � λ �→ HD(J(fλ)) is
real-analytic.
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